Factorize GF(2)/CRC polynomials using Z3

GF(2)/CRC polynomials, like usual numbers, can also be factored, because a polynomial can be a product of two other polynomial (or not).

Some people say that good CRC polynomial should be irreducible (i.e., cannot be factored), some other say that this is not a requirement. I've checked several CRC-16 and CRC-32 polynomials from the Wikipedia article.

The multiplier is constructed in the same manner, as I did it earlier for integer factorization using SAT. Factors are not prime integers, but prime polynomials.

Another important thing to notice is that replacing XOR with addition will make this script factor integers, because addition in GF(2) is XOR.

Also, can be used for tests, online GF(2) polynomials factorization: http://www.ee.unb.ca/cgi-bin/tervo/factor.pl?binary=101.

import operator
from z3 import *

INPUT_SIZE=32
OUTPUT_SIZE=INPUT_SIZE*2

a=BitVec('a', INPUT_SIZE)
b=BitVec('b', INPUT_SIZE)

"""
rows with dots are partial products:

aaaa
b    ....
b   ....
b  ....
b ....

"""

# partial products
p=[BitVec('p_%d' % i, OUTPUT_SIZE) for i in range(INPUT_SIZE)]

s=Solver()

for i in range(INPUT_SIZE):
# if there is a bit in b[], assign shifted a[] padded with zeroes at left/right
# if there is no bit in b[], let p[] be zero

# Concat() is for glueling together bitvectors (of different widths)
# BitVecVal() is constant of specific width

if i==0:
s.add(p[i] == If((b>>i)&1==1, Concat(BitVecVal(0, OUTPUT_SIZE-i-INPUT_SIZE), a), 0))
else:
s.add(p[i] == If((b>>i)&1==1, Concat(BitVecVal(0, OUTPUT_SIZE-i-INPUT_SIZE), a, BitVecVal(0, i)), 0))

# tests

# from http://mathworld.wolfram.com/IrreduciblePolynomial.html
#poly=7 # irreducible
#poly=5 # reducible

# from Colbourn, Dinitz - Handbook of Combinatorial Designs (2ed, 2007), p.809:
#poly=0b10000001001 # irreducible
#poly=0b10000001111 # irreducible

# MSB is always 1 in CRC polynomials, and it's omitted
poly=0x18005 # CRC-16-IBM, reducible
#poly=0x11021 # CRC-16-CCITT, reducible
#poly=0x1C867 # CRC-16-CDMA2000, irreducible
#poly=0x104c11db7 # CRC-32, irreducible
#poly=0x11EDC6F41 # CRC-32C (Castagnoli), CRC32 x86 instruction, reducible
#poly=0x1741B8CD7 # CRC-32K (Koopman {1,3,28}), reducible
#poly=0x132583499 # CRC-32K2 (Koopman {1,1,30}), reducible
#poly=0x1814141AB # CRC-32Q, reducible

# form expression like s.add(p[0] ^ p[1] ^ ... ^ p[OUTPUT_SIZE-1] == poly)
# replace operator.xor to operator.add to factorize numbers:

# we are not interesting in these outputs:

if s.check()==unsat:
print "unsat"
exit(0)

m=s.model()
print "sat, a=0x%x, b=0x%x" % (m[a].as_long(), m[b].as_long())


( https://github.com/DennisYurichev/yurichev.com/blob/master/blog/CRC2/factor_GF2.py )