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PREFACE

To put all the good stu� into one book is patently impossible,

and attempting even to be reasonably omprehensive

about ertain aspets of the subjet is likely to lead to runaway growth.

| GERALD B. FOLLAND, \Editor's Corner" (2005)

La derni�ere hose qu'on trouve en faisant un ouvrage

est de savoir elle qu'il faut mettre la premi�ere.

| BLAISE PASCAL, Pens�ees 740 (. 1660)

This booklet ontains draft material that I'm irulating to experts in the

�eld, in hopes that they an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for

ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet reahed a very mature state. Beware: This material has

not yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3

were at the time of their �rst printings. And those arefully-heked volumes,

alas, were subsequently found to ontain thousands of mistakes.

Given this aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be disouraged from reading the material arefully.

I did try to make the text both interesting and authoritative, as far as it goes.

But the �eld is vast; I annot hope to have surrounded it enough to orral it

ompletely. So I beg you to let me know about any de�ienies that you disover.

To put the material in ontext, this pre-fasile ontains the opening remarks

intended to launh a long, long hapter on ombinatorial algorithms. Chapter 7

is planned to be by far the longest single hapter of The Art of Computer

Programming ; it will eventually �ll at least three volumes (namely Volumes

4A, 4B, and 4C), assuming that I'm able to remain healthy. Like the seond-

longest hapter (Chapter 5), it begins with pump-priming introdutory material

that omes before the main text, inluding dozens of exerises to get the ball

rolling. A long voyage lies ahead, and some important provisions need to be

brought on board before we embark. Furthermore I want to minimize the shok

of transition between Chapter 6 and the new hapter, beause Chapter 6 was

originally written and published more than thirty years ago.

Chapter 7 proper, whih follows the material in the present pre-fasile,

begins with Setion 7.1: Zeros and Ones. Setion 7.1 is another sort of intro-

dution, at a di�erent level; it has four subsetions about Boolean and bitwise

omputations, appearing respetively in pre-fasiles 0b, 0, 1a, and 1b. The

next part, 7.2, is about generating all possibilities, and it begins with Setion

iii
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7.2.1: Generating Basi Combinatorial Patterns. Fasiles for Setion 7.2.1 have

already appeared in print. Setion 7.2.2 will deal with baktraking in general.

And so it will go on, if all goes well; an outline of the entire Chapter 7 as urrently

envisaged appears on the taop webpage that is ited on page ii.

This introdutory setion has turned out to have more than twie as many

exerises as I had originally planned. But many of them are quite simple, in-

tended to reinfore the reader's understanding of basi de�nitions, or to aquaint

readers with the joys of The Stanford GraphBase. Other exerises were simply

irresistible, as they ried out to be inluded here|although, believe it or not, I

did rejet more potential leads than I atually followed up.

My notes on ombinatorial algorithms have been aumulating for more than

forty years, so I fear that in several respets my knowledge is woefully behind

the times. Please look, for example, at the exerises that I've lassed as researh

problems (rated with diÆulty level 46 or higher), namely exerises 15, 16, 67,

and 125; I've also impliitly mentioned or posed additional unsolved questions

in the answers to exerises 7 and 133(m). Are those problems still open? Please

inform me if you know of a solution to any of these intriguing questions. And of

ourse if no solution is known today but you do make progress on any of them

in the future, I hope you'll let me know.

I urgently need your help also with respet to some exerises that I made

up as I was preparing this material. I ertainly don't like to reeive redit for

things that have already been published by others, and most of these results

are quite natural \fruits" that were just waiting to be \pluked." Therefore

please tell me if you know who deserves to be redited, with respet to the ideas

found in exerises 3, 25, 32, 35, 72, 84, 108, 116, and 135, and/or the answer to

exerises 105.

Thanks to Je� Dean of Google for letting me look at the statistis of �ve-

letter words in the Internet at the beginning of 2004, and to Robin Wilson of

the Open University for his areful reading and many detailed suggestions.

I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is

�rst reported to me, whether that error be typographial, tehnial, or historial.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/ eah. (Furthermore, if

you �nd a better solution to an exerise, I'll atually reward you with immortal

glory instead of mere money, by publishing your name in the eventual book:�)

Cross referenes to yet-unwritten material sometimes appear as `00'; this

impossible value is a plaeholder for the atual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

28 April 2007

The author is espeially grateful to the Addison{Wesley Publishing Company

for its patiene in waiting a full deade for this manusript

from the date the ontrat was signed.

| FRANK HARARY, Graph Theory (1968)
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Prefae to Volume 4 (draft)

The title of Volume 4 is Combinatorial Algorithms, and when I proposed it

I was strongly inlined to add a subtitle: The Kind of Programming I Like Best.

My editors have deided to tone down suh exuberane, but the fat remains

that programs with a ombinatorial avor have always been my favorites.

On the other hand I've often been surprised to �nd that, in many people's

minds, the word \ombinatorial" is linked with omputational diÆulty. Indeed,

Samuel Johnson, in his famous ditionary of the English language (1755), said

that the orresponding noun \is now generally used in an ill sense." Colleagues

tell me tales of woe, in whih they report that \the ombinatoris of the sit-

uation defeated us." Why is it that, for me, ombinatoris arouses feelings of

pure pleasure, yet for many others it evokes pure pani?

It's true that ombinatorial problems are often assoiated with humongously

large numbers. Johnson's ditionary entry also inluded a quote from Ephraim

Chambers, who had stated that the total number of words of length 24 or less,

in a 24-letter alphabet, is 1,391,724,288,887,252,999,425,128,493,402,200. The

orresponding number for a 10-letter alphabet is 11,111,111,110; and it's only

3905 when the number of letters is 5. Thus a \ombinatorial explosion" ertainly

does our as the size of the alphabet grows from 5 to 10 to 24 and beyond.

Computing mahines have beome tremendously more powerful throughout

my life. As I write these words, I know that they are being proessed by a

omputer whose speed is more than 100,000 times faster than the IBM Type 650

omputer to whih I'm dediating these books, and whose memory apaity is

also more than 100,000 times greater. Tomorrow's mahines will be even faster

and more apaious. But these amazing advanes have not diminished people's

raving for answers to ombinatorial questions; quite the ontrary. Our one-

unimaginable ability to ompute so rapidly has raised our expetations, and

whetted our appetite for more|beause, in fat, the size of a ombinatorial

problem an inrease more than 100,000-fold when n simply inreases by 1.

Combinatorial algorithms an be de�ned informally as tehniques for the

high-speed manipulation of ombinatorial objets suh as permutations or graphs.

We typially try to �nd patterns or arrangements that are the best possible ways

to satisfy ertain onstraints. The number of suh problems is vast, and the art

of writing suh programs is espeially important and appealing beause a single

good idea an save years or even enturies of omputer time.

Indeed, the fat that good algorithms for ombinatorial problems an have a

terri� payo� has led to terri� advanes in the state of the art. Many problems

that one were thought to be intratable an now be polished o� with ease, and

v



vi PREFACE TO VOLUME 4 (DRAFT)

Floyd's Lemmamany algorithms that one were known to be good have now beome better.

Starting about 1970, omputer sientists began to experiene a phenomenon

that we alled \Floyd's Lemma": Problems that seemed to need n

3

operations

ould atually be solved in O(n

2

); problems that seemed to require n

2

ould be

handled in O(n logn); and n logn was often reduible to O(n). More diÆult

problems saw a redution in running time from O(2

n

) to O(1:5

n

) to O(1:3

n

),

et. Other problems remained diÆult in general, but they were found to have

important speial ases that are muh simpler. Many ombinatorial questions

that I one thought would never be answered have now been resolved, and these

breakthroughs are due mainly to improvements in algorithms rather than to

improvements in proessor speeds.

By 1975, suh researh was advaning so rapidly that a substantial fration

of the papers published in leading journals of omputer siene were devoted

to ombinatorial algorithms. And the advanes weren't being made only by

people in the ore of omputer siene; signi�ant ontributions were oming

from workers in eletrial engineering, arti�ial intelligene, operations researh,

mathematis, physis, statistis, and other �elds. I was trying to omplete

Volume 4 of The Art of Computer Programming, but instead I felt like I was

sitting on the lid of a boiling kettle: I was onfronted with a ombinatorial

explosion of another kind, a prodigious explosion of new ideas!

This series of books was born at the beginning of 1962, when I na��vely

wrote out a list of tentative hapter titles for a 12-hapter book. At that time

I deided to inlude a brief hapter about ombinatorial algorithms, just for

fun. \Hey look, most people use omputers to deal with numbers, but we an

also write programs that deal with patterns." In those days it was easy to give

a fairly omplete desription of just about every ombinatorial algorithm that

was known. And even by 1966, when I'd �nished a �rst draft of about 3000

handwritten pages for that already-overgrown book, fewer than 100 of those

pages belonged to Chapter 7. I had absolutely no idea that what I'd foreseen as

a sort of \salad ourse" would eventually turn out to be the main dish.

The great ombinatorial fermentation of 1975 has ontinued to hurn, as

more and more people have begun to partiipate. New ideas improve upon the

older ones, but rarely replae them or make them obsolete. So of ourse I've had

to abandon any hopes that I one had of being able to surround the �eld, to write

a de�nitive book that sets everything in order and provides one-stop shopping

for everyone who has ombinatorial problems to solve. It's almost never possible

to disuss a subtopi and say, \Here's the �nal solution: end of story." Instead,

I must restrit myself to explaining the most important priniples that seem to

underlie all of the eÆient ombinatorial methods that I've enountered so far.

At present I've aumulated more than twie as muh raw material for Volume 4

as for all of Volumes 1{3 ombined.

This sheer mass of material implies that the one-planned \Volume 4" must

atually beome several physial volumes. You are now looking at Volume 4A.

Volumes 4B and 4C will exist someday, assuming that I'm able to remain healthy;

and (who knows?) there may also be Volumes 4D, 4E, : : : ; but surely not 4Z.
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My plan is to go systematially through the �les that I've amassed sine 1962

and to tell the stories that I believe are still waiting to be told, to the best of

my ability. I an't aspire to ompleteness, but I do want to give proper redit to

all of the pioneers who have been responsible for key ideas; so I won't srimp on

historial details. Furthermore, whenever I learn something that I think is likely

to remain important 50 years from now, something that an also be explained

elegantly in a paragraph or two, I an't bear to leave it out. Conversely, diÆult

material that requires a lengthy proof is beyond the sope of these books, unless

the subjet matter is truly fundamental.

OK, it's lear that the �eld of Combinatorial Algorithms is vast, and I an't

over it all. What are the most important things that I'm leaving out? My

biggest blind spot, I think, is geometry, beause I've always been muh better at

visualizing and manipulating algebrai formulas than objets in spae. Therefore

I don't attempt to deal in these books with ombinatorial problems that are re-

lated to omputational geometry, suh as lose paking of spheres, or lustering of

data points in n-dimensional Eulidean spae, or even the Steiner tree problem in

the plane. More signi�antly, I tend to shy away from polyhedral ombinatoris,

and from approahes that are based primarily on linear programming, integer

programming, or semide�nite programming. Those topis are treated well in

many other books on the subjet, but they rely on geometrial intuition. Purely

ombinatorial developments are easier for me to understand.

I also must onfess a bias against algorithms that are eÆient only in

an asymptoti sense, algorithms whose superior performane doesn't begin to

\kik in" until the size of the problem exeeds the size of the universe. A great

many publiations nowadays are devoted to algorithms of that kind. I an

understand why the ontemplation of ultimate limits has intelletual appeal and

arries an aademi ahet; but in The Art of Computer Programming I tend

to give short shrift to any methods that I would never onsider using myself in

an atual program. (There are, of ourse, exeptions to this rule, espeially with

respet to basi onepts in the ore of the subjet. Some impratial methods

are simply too beautiful and/or too insightful to be exluded; others provide

instrutive examples of what not to do.)

Furthermore, as in earlier volumes of this series, I'm intentionally onen-

trating almost entirely on sequential algorithms, even though omputers are

inreasingly able to arry out ativities in parallel. I'm unable to judge what

ideas about parallelism are likely to be useful �ve or ten years from now, let

alone �fty, so I happily leave suh questions to others who are wiser than I.

Sequential methods, by themselves, already test the limits of my own ability to

disern what the artful programmers of tomorrow will want to know.

The main deision that I needed to make when planning how to present this

material was whether to organize it by problems or by tehniques. Chapter 5

in Volume 3, for example, was devoted to a single problem, the sorting of data

into order; more than two dozen tehniques were applied to di�erent aspets

of that problem. Combinatorial algorithms, by ontrast, involve many di�erent

problems, whih tend to be attaked with a smaller repertoire of tehniques. I
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�nally deided that a mixed strategy would work better than any pure approah.

Thus, for example, these books treat the problem of �nding shortest paths

in Setion 7.3, and problems of onnetivity in Setion 7.4.1; but many other

setions are devoted to basi tehniques, suh as the use of Boolean algebra

(Setion 7.1), baktraking (Setion 7.2), matroid theory (Setion 7.6), or dy-

nami programming (Setion 7.7). The famous Traveling Salesrep Problem, and

other lassi ombinatorial tasks related to overing, oloring, and paking, have

no setions of their own, but they ome up several times in di�erent plaes as

they are treated by di�erent methods.

I've mentioned great progress in the art of ombinatorial omputing, but I

don't mean to imply that all ombinatorial problems have atually been tamed.

When the running time of a omputer program goes ballisti, its programmers

shouldn't expet to �nd a silver bullet for their needs in this book. The methods

desribed here will often work a great deal faster than the �rst approahes that

a programmer tries; but let's fae it: Combinatorial problems get huge very

quikly. We an even prove rigorously that a ertain small, natural problem will

never have a feasible solution in the real world, although it is solvable in priniple

(see the theorem of Stokmeyer and Meyer in Setion 7.1.2). In other ases we

annot prove as yet that no deent algorithm for a given problem exists, but

we know that suh methods are unlikely, beause any eÆient algorithm would

yield a good way to solve thousands of other problems that have stumped the

world's greatest experts (see the disussion of NP-ompleteness in Setion 7.9).

Experiene suggests that new ombinatorial algorithms will ontinue to be

invented, for new ombinatorial problems and for newly identi�ed variations or

speial ases of old ones; and that people's appetite for suh algorithms will also

ontinue to grow. The art of omputer programming ontinually reahes new

heights when programmers are faed with hallenges suh as these. Yet today's

methods are also likely to remain relevant.

Most of this book is self-ontained, although there are frequent tie-ins with

the topis disussed in Volumes 1{3. Low-level details of mahine language

programming have been overed extensively in those volumes, so the algorithms

in the present book are usually spei�ed only at an abstrat level, independent of

any mahine. However, some aspets of ombinatorial programming are heavily

dependent on low-level details that didn't arise before; in suh ases, all examples

in this book are based on the MMIX omputer, whih supersedes the MIX mahine

that was de�ned in early editions of Volume 1. Details about MMIX appear in

a paperbak supplement to that volume alled The Art of Computer Program-

ming, Volume 1, Fasile 1; they're also available on the Internet, together with

downloadable assemblers and simulators.

Another downloadable resoure, a olletion of programs and data alledThe

Stanford GraphBase, is ited extensively in the examples of this book. Readers

are enouraged to play with it, in order to learn about ombinatorial algorithms

in what I think will be the most eÆient and most enjoyable way.

Inidentally, while writing the introdutory material at the beginning of

Chapter 7, I was pleased to note that it was natural to mention some work of



PREFACE TO VOLUME 4 (DRAFT) ix

Hall

Ore

Skolem

Thue

Internet

Knuth

PAPADIMITRIOU

IEEE Transations

my Ph.D. thesis advisor, Marshall Hall, Jr. (1910{1990), as well as some work

of his thesis advisor, Oystein Ore (1899{1968), as well as some work of his thesis

advisor, Thoralf Skolem (1887{1963). Skolem's advisor, Axel Thue (1863{1922),

was already present in Chapter 6.

I'm immensely grateful to the hundreds of readers who have helped me to

ferret out numerous mistakes that I made in early drafts of this volume, whih

were originally posted on the Internet and subsequently printed in paperbak

fasiles. But I fear that other errors still lurk among the details olleted here,

and I want to orret them as soon as possible. Therefore I will heerfully pay

$2.56 to the �rst �nder of eah tehnial, typographial, or historial error. The

taop webpage ited on page ii ontains a urrent listing of all orretions that

have been reported to me.

Stanford, California D. E. K.

April 2007

Naturally, I am responsible for the remaining errors|

although, in my opinion, my friends ould have aught a few more.

| CHRISTOS H. PAPADIMITRIOU, Computational Complexity (1995)

A note on referenes. Referenes to IEEE Transations inlude a letter ode

for the type of transations, in boldfae preeding the volume number. For

example, `IEEE Trans. C-35' means the IEEE Transations on Computers,

volume 35. The IEEE no longer uses these onvenient letter odes, but the

odes aren't too hard to deipher: `EC' one stood for \Eletroni Computers,"

`IT' for \Information Theory," `SE' for \Software Engineering," and `SP' for

\Signal Proessing," et.; `CAD' meant \Computer-Aided Design of Integrated

Ciruits and Systems."
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CHAPTER SEVEN

COMBINATORIAL SEARCHING

You shall seeke all day ere you �nde them,

& when you have them, they are not worth the searh.

| BASSANIO, in The Merhant of Venie (At I, Sene 1, Line 117)

Amid the ation and reation of so dense a swarm of humanity,

every possible ombination of events may be expeted to take plae,

and many a little problem will be presented whih may be striking and bizarre.

| SHERLOCK HOLMES, in The Adventure of the Blue Carbunle (1892)

The �eld of ombinatorial algorithms is too vast to over

in a single paper or even in a single book.

| ROBERT E. TARJAN (1976)

While jostling against all manner of people

it has been impressed upon my mind that the suessful ones

are those who have a natural faulty for solving puzzles.

Life is full of puzzles, and we are alled upon

to solve suh as fate throws our way.

| SAM LOYD, JR. (1927)

Combinatoris is the study of the ways in whih disrete objets an be

arranged into various kinds of patterns. For example, the objets might be 2n

numbers f1; 1; 2; 2; : : : ; n; ng, and we might want to plae them in a row so that

exatly k numbers our between the two appearanes of eah digit k. When

n = 3 there is essentially only one way to arrange suh \Langford pairs," namely

231213 (and its left-right reversal); similarly, there's also a unique solution when

n = 4. Many other types of ombinatorial patterns are disussed below.

Five basi types of questions typially arise when ombinatorial problems

are studied, some more diÆult than others.

i) Existene: Are there any arrangements X that onform to the pattern?

ii) Constrution: If so, an suh an X be found quikly?

iii) Enumeration: How many di�erent arrangements X exist?

iv) Generation: Can all arrangements X

1

, X

2

, : : : be visited systematially?

v) Optimization: What arrangements maximize or minimize f(X), given an

objetive funtion f?

Eah of these questions turns out to be interesting with respet to Langford pairs.

1
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For example, onsider the question of existene. Trial and error quikly

reveals that, when n = 5, we annot plae f1; 1; 2; 2; : : : ; 5; 5g properly into ten

positions. The two 1s must both go into even-numbered slots, or both into odd-

numbered slots; similarly, the 3s and 5s must hoose between two evens or two

odds; but the 2s and 4s use one of eah. Thus we an't �ll exatly �ve slots of

eah parity. This reasoning also proves that the problem has no solution when

n = 6, or in general whenever the number of odd values in f1; 2; : : : ; ng is odd.

In other words, Langford pairings an exist only when n = 4m�1 or n = 4m,

for some integer m. Conversely, when n does have this form, Roy O. Davies has

found an elegant way to onstrut a suitable plaement (see exerise 1).

How many essentially di�erent pairings, L

n

, exist? Lots, when n grows:

L

3

= 1;

L

7

= 26;

L

11

= 17;792;

L

15

= 39;809;640;

L

19

= 256;814;891;280;

L

23

= 3;799;455;942;515;488;

L

4

= 1;

L

8

= 150;

L

12

= 108;144;

L

16

= 326;721;800;

L

20

= 2;636;337;861;200;

L

24

= 46;845;158;056;515;936:

(1)

[The values of L

23

and L

24

were determined by M. Krajeki, C. Jaillet, and A. Bui

in 2004 and 2005; see Studia Informatia Universalis 4 (2005), 151{190.℄ A seat-

of-the-pants alulation suggests that L

n

might be roughly of order (4n=e

3

)

n+1=2

when it is nonzero (see exerise 5); and in fat this predition turns out to be

basially orret in all known ases. But no simple formula is apparent.

The problem of Langford arrangements is a simple speial ase of a general

lass of ombinatorial hallenges alled exat over problems. In Setion 7.2.2.1

we shall study an algorithm alled \daning links," whih is a onvenient way to

generate all solutions to suh problems. When n = 16, for example, that method

needs to perform only about 3200 memory aesses for eah Langford pair

arrangement that it �nds. Thus the value of L

16

an be omputed in a reasonable

amount of time by simply generating all of the pairings and ounting them.

Notie, however, that L

24

is a huge number| roughly 5�10

16

, or about 1500

MIP-years. (Reall that a \MIP-year" is the number of instrutions exeuted

per year by a mahine that arries out a million instrutions per seond, namely

31;556;952;000;000.) Therefore it's lear that the exat value of L

24

was deter-

mined by some tehnique that did not involve generating all of the arrangements.

Indeed, there is a muh, muh faster way to ompute L

n

, using polynomial

algebra. The instrutive method desribed in exerise 6 needs O(4

n

n) operations,

whih may seem ineÆient; but it beats the generate-and-ount method by a

whopping fator of order �((n=e

3

)

n�1=2

), and even when n = 16 it runs about

20 times faster. On the other hand, the exat value of L

100

will probably never

be known, even as omputers beome faster and faster.

We an also onsider Langford pairings that are optimum in various ways.

For example, it's possible to arrange sixteen pairs of weights f1; 1; 2; 2; : : : ; 16; 16g

that satisfy Langford's ondition and have the additional property of being \well-
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width

lexiographi order

Pohl, Ira Sheldon

orthogonal latin squares{

latin squares{

Ozanam

playing ards

Euler

balaned," in the sense that they won't tip a balane beam when they are plaed

in the appropriate order:

16 6 9 15 2 3 8 2 6 3 1310 9 1214 8 11 16 1 15 1 5 10 7 13 4 12 5 11 14 4 7

: (2)

In other words, 15:5 �16+14:5 �6+ � � �+0:5 �8 = 0:5 �11+ � � �+14:5 �4+15:5 �7; and

in this partiular example we also have another kind of balane, 16+6+ � � �+8 =

11+16+ � � �+7, hene also 16 �16+15 �6+ � � �+1 �8 = 1 �11+ � � �+15 �4+16 �7.

Moreover, the arrangement in (2) has minimum width among all Langford

pairings of order 16: The onneting lines at the bottom of the diagram show

that no more than seven pairs are inomplete at any point, as we read from left

to right; and one an show that a width of six is impossible. (See exerise 7.)

What arrangements a

1

a

2

: : : a

32

of f1; 1; : : : ; 16; 16g are the least balaned,

in the sense that

P

32

k=1

ka

k

is maximized? The maximum possible value turns

out to be 5268. One suh pairing|there are 12,016 of them|is

2 3 4 2 1 3 1 4 16 13 15 5 14 7 9 6 11 5 12 10 8 7 6 13 9 16 15 14 11 8 10 12: (3)

A more interesting question is to ask for the Langford pairings that are

smallest and largest in lexiographi order. The answers for n = 24 are

fababdefgdoersfpgqtuwxvjklonhmirpsjqkhltiunmwvx ,

xvwsquntkigrdapaodgiknqsvxwutmrpohljfbebhmfejlg

(4)

if we use the letters a, b, : : : , w, x instead of the numbers 1, 2, : : : , 23, 24.

We shall disuss many tehniques for ombinatorial optimization in later se-

tions of this hapter. Our goal, of ourse, will be to solve suh problems without

examining more than a tiny portion of the spae of all possible arrangements.

Orthogonal latin squares. Let's look bak for a moment at the early days of

ombinatoris. A posthumous edition of Jaques Ozanam's Rereations math-

ematiques et physiques (Paris: 1725) inluded an amusing puzzle in volume 4,

page 434: \Take all the aes, kings, queens, and jaks from an ordinary dek of

playing ards and arrange them in a square so that eah row and eah olumn

ontains all four values and all four suits." Can you do it? Ozanam's solution,

shown in Fig. 1 on the next page, does even more: It exhibits the full panoply

of values and of suits also on both main diagonals. (Please don't turn the page

until you've given this problem a try.)

By 1779 a similar puzzle was making the rounds of St. Petersburg, and it

ame to the attention of the great mathematiian Leonhard Euler. \Thirty-six

oÆers of six di�erent ranks, taken from six di�erent regiments, want to marh

in a 6� 6 formation so that eah row and eah olumn will ontain one oÆer of

eah rank and one of eah regiment. How an they do it?" Nobody was able to
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Gr�o-Latin square

Fig. 1. Disorder in the ourt ards:

No agreement in any line of four.

(This on�guration is one of many

ways to solve a popular eighteenth-

entury problem.)

�nd a satisfatory marhing order. So Euler deided to resolve the riddle|even

though he had beome nearly blind in 1771 and was ditating all of his work

to assistants. He wrote a major paper on the subjet [eventually published in

Verhandelingen uitgegeven door het Zeeuwsh Genootshap der Wetenshappen

te Vlissingen 9 (1782), 85{239℄, in whih he onstruted suitable arrangements

for the analogous task with n ranks and n regiments when n = 1, 3, 4, 5, 7, 8,

9, 11, 12, 13, 15, 16, : : : ; only the ases with nmod 4 = 2 eluded him.

There's obviously no solution when n = 2. But Euler was stumped when n =

6, after having examined a \very onsiderable number" of square arrangements

that didn't work. He showed that any atual solution would lead to many others

that look di�erent, and he ouldn't believe that all suh solutions had esaped

his attention. Therefore he said, \I do not hesitate to onlude that one annot

produe a omplete square of 36 ells, and that the same impossibility extends

to the ases n = 10, n = 14 : : : in general to all oddly even numbers."

Euler named the 36 oÆers a�, a�, a, aÆ, a�, a�, b�, b�, b, bÆ, b�, b�,

�, �, , Æ, �, �, d�, d�, d, dÆ, d�, d�, e�, e�, e, eÆ, e�, e�, f�, f�, f,

fÆ, f�, f�, based on their regiments and ranks. He observed that any solution

would amount to having two separate squares, one for Latin letters and another

for Greek. Eah of those squares is supposed to have distint entries in rows and

olumns; so he began by studying the possible on�gurations for fa; b; ; d; e; fg,

whih he alled Latin squares. A Latin square an be paired up with a Greek

square to form a \Gr�o-Latin square" only if the squares are orthogonal to eah

other, meaning that no (Latin, Greek) pair of letters an be found together in

more than one plae when the squares are superimposed. For example, if we let

a = A, b = K,  = Q, d = J, � = |, � = �,  = }, and Æ = ~, Fig. 1 is equivalent
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Clausen

Shumaher

Gauss

Tarry

Petersen

Wernike

MaNeish

Paige

Tompkins

SWAC

Bose

Shrikhande

Parker

UNIVAC 1206 Military Computer

to the Latin, Greek, and Gr�o-Latin squares

0

B

�

d a b 

 b a d

a d  b

b  d a

1

C

A

;

0

B

�

 Æ � �

� �  Æ

� � Æ 

Æ  � �

1

C

A

; and

0

B

�

d aÆ b� �

� b� a dÆ

a� d� Æ b

bÆ  d� a�

1

C

A

: (5)

Of ourse we an use any n distint symbols in an n�n Latin square; all that

matters is that no symbol ours twie in any row or twie in any olumn. So

we might as well use numeri values f0; 1; : : : ; n�1g for the entries. Furthermore

we'll just refer to \latin squares" (with a lowerase \l"), instead of ategorizing

a square as either Latin or Greek, beause orthogonality is a symmetri relation.

Euler's assertion that two 6 � 6 latin squares annot be orthogonal was

veri�ed by Thomas Clausen, who redued the problem to an examination of 17

fundamentally di�erent ases, aording to a letter from H. C. Shumaher to

C. F. Gauss dated 10 August 1842. But Clausen did not publish his analysis.

The �rst demonstration to appear in print was by G. Tarry [Comptes rendus,

Assoiation fran�aise pour l'avanement des sienes 29, part 2 (1901), 170{203℄,

who disovered in his own way that 6� 6 latin squares an be lassi�ed into 17

di�erent families. (In Setion 7.2.3 we shall study how to deompose a problem

into ombinatorially inequivalent lasses of arrangements.)

Euler's onjeture about the remaining ases n = 10, n = 14, : : : was

\proved" three times, by J. Petersen [Annuaire des math�ematiiens (Paris: 1902),

413{427℄, by P. Wernike [Jahresberiht der Deutshen Math.-Vereinigung 19

(1910), 264{267℄, and by H. F. MaNeish [Annals of Math. 23 (1922), 221{227℄.

Flaws in all three arguments beame known, however; and the question was still

unsettled when omputers beame available many years later. One of the very

�rst ombinatorial problems to be takled by mahine was therefore the enigma

of 10� 10 Gr�o-Latin squares: Do they exist or not?

In 1957, L. J. Paige and C. B. Tompkins programmed the SWAC omputer to

searh for a ounterexample to Euler's predition. They seleted one partiular

10�10 latin square \almost at random," and their program tried to �nd another

square that would be orthogonal to it. But the results were disouraging, and

they deided to shut the mahine o� after �ve hours. Already the program

had generated enough data for them to predit that at least 4:8� 10

11

hours of

omputer time would be needed to �nish the run!

Shortly afterwards, three mathematiians made a breakthrough that put

latin squares onto page one of major world newspapers: R. C. Bose, S. S. Shri-

khande, and E. T. Parker found a remarkable series of onstrutions that yield

orthogonal n�n squares for all n > 6 [Pro. Nat. Aad. Si. 45 (1959), 734{737,

859{862; Canadian J. Math. 12 (1960), 189{203℄. Thus, after resisting attaks

for 180 years, Euler's onjeture turned out to be almost entirely wrong.

Their disovery was made without omputer help. But Parker worked for

UNIVAC, and he soon brought programming skills into the piture by solving the

problem of Paige and Tompkins in less than an hour, on a UNIVAC 1206 Military

Computer. [See Pro. Symp. Applied Math. 10 (1960), 71{83; 15 (1963), 73{81.℄
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Parker

Paige

Tompkins

SWAC
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Let's take a loser look at what the earlier programmers did, and how

Parker dramatially trumped their approah. Paige and Tompkins began with

the following 10� 10 square L and its unknown orthogonal mate(s) M :

L =

0

B

B

B

B

B

B

B

B

B

B

�

0 1 2 3 4 5 6 7 8 9

1 8 3 2 5 4 7 6 9 0

2 9 5 6 3 0 8 4 7 1

3 7 0 9 8 6 1 5 2 4

4 6 7 5 2 9 0 8 1 3

5 0 9 4 7 8 3 1 6 2

6 5 4 7 1 3 2 9 0 8

7 4 1 8 0 2 9 3 5 6

8 3 6 0 9 1 5 2 4 7

9 2 8 1 6 7 4 0 3 5

1

C

C

C

C

C

C

C

C

C

C

A

and M =

0

B

B

B

B

B

B

B

B

B

B

�

0

         

1

         

2

         

3

         

4

         

5

         

6

         

7

         

8

         

9

         

1

C

C

C

C

C

C

C

C

C

C

A

: (6)

We an assume without loss of generality that the rows of M begin with 0, 1,

: : : , 9, as shown. The problem is to �ll in the remaining 90 blank entries, and the

original SWAC program proeeded from top to bottom, left to right. The top left

 

an't be �lled with 0, sine 0 has already ourred in the top row of M. And it

an't be 1 either, beause the pair (1; 1) already ours at the left of the next row

in (L;M). We an, however, tentatively insert a 2. The digit 1 an be plaed

next; and pretty soon we �nd the lexiographially smallest top row that might

work for M, namely 0214365897. Similarly, the smallest rows that �t below

0214365897 are 1023456789 and 2108537946; and the smallest legitimate row

below them is 3540619278. Now, unfortunately, the going gets tougher: There's

no way to omplete another row without oming into onit with a previous

hoie. So we hange 3540619278 to 3540629178 (but that doesn't work either),

then to 3540698172, and so on for several more steps, until �nally 3546109278

an be followed by 4397028651 before we get stuk again.

In Setion 7.2.3, we'll study ways to estimate the behavior of suh searhes,

without atually performing them. Suh estimates tell us in this ase that

the Paige{Tompkins method essentially traverses an impliit searh tree that

ontains about 2:5� 10

18

nodes. Most of those nodes belong to only a few levels

of the tree; more than half of them deal with hoies on the right half of the

sixth row of M, after about 50 of the 90 blanks have been tentatively �lled in.

A typial node of the searh tree probably requires about 75 mems (memory

aesses) for proessing, to hek validity. Therefore the total running time on a

modern omputer would be roughly the time needed to perform 2� 10

20

mems.

Parker, on the other hand, went bak to the method that Euler had originally

used to searh for orthogonal mates in 1779. First he found all of the so-alled

transversals of L, namely all ways to hoose some of its elements so that there's

exatly one element in eah row, one in eah olumn, and one of eah value. For

example, one transversal is 0859734216, in Euler's notation, meaning that we

hoose the 0 in olumn 0, the 8 in olumn 1, : : : , the 6 in olumn 9. Eah transver-

sal that inludes the k in L's leftmost olumn represents a legitimate way to plae

the ten k's into square M . The task of �nding transversals is, in fat, rather

easy, and the given matrix L turns out to have exatly 808 of them; there are

respetively (79; 96; 76; 87; 70; 84; 83; 75; 95; 63) transversals for k = (0; 1; : : : ; 9).
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One the transversals are known, we're left with an exat over problem of

10 stages, whih is muh simpler than the original 90-stage problem in (6). All we

need to do is over the square with ten transversals that don't interset|beause

every suh set of ten is equivalent to a latin square M that is orthogonal to L.

The partiular square L in (6) has, in fat, exatly one orthogonal mate:

0

B

B

B

B

B

B

B

B

B

B

�

0 1 2 3 4 5 6 7 8 9

1 8 3 2 5 4 7 6 9 0

2 9 5 6 3 0 8 4 7 1

3 7 0 9 8 6 1 5 2 4

4 6 7 5 2 9 0 8 1 3

5 0 9 4 7 8 3 1 6 2

6 5 4 7 1 3 2 9 0 8

7 4 1 8 0 2 9 3 5 6

8 3 6 0 9 1 5 2 4 7

9 2 8 1 6 7 4 0 3 5

1

C

C

C

C

C

C

C

C

C

C

A

?

0

B

B

B

B

B

B

B

B

B

B

�

0 2 8 5 9 4 7 3 6 1

1 7 4 9 3 6 5 0 2 8

2 5 6 4 8 7 0 1 9 3

3 6 9 0 4 5 8 2 1 7

4 8 1 7 5 3 6 9 0 2

5 1 7 8 0 2 9 4 3 6

6 9 0 2 7 1 3 8 4 5

7 3 5 1 2 0 4 6 8 9

8 0 2 3 6 9 1 7 5 4

9 4 3 6 1 8 2 5 7 0

1

C

C

C

C

C

C

C

C

C

C

A

: (7)

The daning links algorithm �nds it, and proves its uniqueness, after doing only

about 1:7� 10

8

mems of omputation, given the 808 transversals. Furthermore,

the ost of the transversal-�nding phase, about 5 million mems, is negligible by

omparison. Thus the original running time of 2� 10

20

mems|whih one was

regarded as the inevitable ost of solving a problem for whih there are 10

90

ways

to �ll in the blanks|has been redued by a further fator of more than 10

12

(!).

We will see later that advanes have also been made in methods for solving

90-level problems like (6). Indeed, (6) turns out to be representable diretly

as an exat over problem (see exerise 17), whih the daning links proedure

of Setion 7.2.2.1 solves after expending only 1:3 � 10

11

mems. Even so, the

Euler{Parker approah remains about a thousand times better than the Paige{

Tompkins approah. By \fatoring" the problem into two separate phases, one

for transversal-�nding and one for transversal-ombining, Euler and Parker es-

sentially redued the omputational ost from a produt, T

1

T

2

, to a sum, T

1

+T

2

.

The moral of this story is lear: Combinatorial problems might onfront us

with a huge universe of possibilities, yet we shouldn't give up too easily. A single

good idea an redue the amount of omputation by many orders of magnitude.

Puzzles versus the real world. Many of the ombinatorial problems we shall

study in this hapter, like Langford's problem of pairs or Ozanam's problem

of the sixteen honor ards, originated as amusing puzzles or \brain twisters."

Some readers might be put o� by this emphasis on rereational topis, whih

they regard as a frivolous waste of time. Shouldn't omputers really be doing

useful work? And shouldn't textbooks about omputers be primarily onerned

with signi�ant appliations to industry and/or world progress?

Well, the author of the textbook you are reading has absolutely no objetions

to useful work and human progress. But he believes strongly that a book suh as

this should stress methods of problem solving, together with mathematial ideas

and models that help to solve many di�erent problems, rather than fousing on

the reasons why those methods and models might be useful. We shall learn many

beautiful and powerful ways to attak ombinatorial problems, and the elegane
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of those methods will be our main motivation for studying them. Combinatorial

hallenges pop up everywhere, and new ways to apply the tehniques disussed

in this hapter arise every day. So let's not limit our horizons by attempting to

atalog in advane what the ideas are good for.

For example, it turns out that orthogonal latin squares are enormously

useful, partiularly in the design of experiments. Already in 1788, Fran�ois

Crett�e de Palluel used a 4�4 latin square to study what happens when sixteen

sheep| four eah from four di�erent breeds|were fed four di�erent diets and

harvested at four di�erent times. [M�emoires d'Agriulture (Paris: Soi�et�e Royale

d'Agriulture, trimestre d'�et�e, 1788), 17{23.℄ The latin square allowed him to do

this with 16 sheep instead of 64; with a Gr�o-Latin square he ould also have

varied another parameter by trying, say, four di�erent quantities of food or four

di�erent grazing paradigms.

But if we had foused our disussion on his approah to animal husbandry,

we might well have gotten bogged down in details about breeding, about root

vegetables versus grains and the osts of growing them, et. Readers who aren't

farmers might therefore have deided to skip the whole topi, even though latin

square designs apply to a wide range of studies. (Think about testing �ve kinds

of pills, on patients in �ve stages of some disease, �ve age brakets, and �ve

weight groups.) Moreover, a onentration on experimental design ould lead

readers to miss the fat that latin squares also have important appliations to

oding and ryptography (see exerises 18{24).

Even the topi of Langford pairing, whih seems at �rst to be purely rere-

ational, turns out to have pratial importane. T. Skolem used Langford se-

quenes to onstrut Steiner triple systems, whih we have applied to database

queries in Setion 6.5 [see Math. Sandinavia 6 (1958), 273{280℄; and in the

1960s, E. J. Groth of Motorola Corporation applied Langford pairs to the design

of iruits for multipliation. Furthermore, the algorithms that eÆiently �nd

Langford pairs and latin square transversals, suh as the method of daning links,

apply to exat over problems in general; and the problem of exat overing has

great relevane to ruial problems suh as the equitable apportionment of voter

preints to eletoral distrits, et.

The appliations are not the most important thing, and neither are the

puzzles. Our primary goal is rather to get basi onepts into our brains, like

the notions of latin squares and exat overing. Suh notions give us the building

bloks, voabulary, and insights that tomorrow's problems will need.

Still, it's foolish to disuss problem solving without atually solving any

problems. We need good problems to stimulate our reative juies, to light up

our grey ells in a more or less organized fashion, and to make the basi onepts

familiar. Mind-bending puzzles are often ideal for this purpose, beause they an

be presented in a few words, needing no ompliated bakground knowledge.

V�alav Havel one remarked that the omplexities of life are vast: \There

is too muh to know: : : We have to abandon the arrogant belief that the world

is merely a puzzle to be solved, a mahine with instrutions for use waiting to

be disovered, a body of information to be fed into a omputer." He alled
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for an inreased sense of justie and responsibility; for taste, ourage, and

ompassion. His words were �lled with great wisdom. Yet thank goodness we

do also have puzzles that an be solved! Puzzles deserve to be ounted among

the great pleasures of life, to be enjoyed in moderation like all other treats.

Of ourse, Langford and Ozanam direted their puzzles to human beings, not

to omputers. Aren't we missing the point if we merely shu�e suh questions o�

to mahines, to be solved by brute fore instead of by rational thought? George

Brewster, writing to Martin Gardner in 1963, expressed a widely held view as

follows: \Feeding a rereational puzzle into a omputer is no more than a step

above dynamiting a trout stream. Suumbing to instant rereation."

Yes, but that view misses another important point: Simple puzzles often

have generalizations that go beyond human ability and arouse our uriosity. The

study of those generalizations often suggests instrutive methods that apply to

numerous other problems and have surprising onsequenes. Indeed, many of the

key tehniques that we shall study were born when people were trying to solve

various puzzles. While writing this hapter, the author ouldn't help relishing

the fat that puzzles are now more fun than ever, as omputers get faster and

faster, beause we keep getting more powerful dynamite to play with. [Further

omments appear in the author's essay, \Can toy problems be useful?", originally

written in 1976; see Seleted Papers on Computer Siene (1996), 169{183.℄

Puzzles do have the danger that they an be too elegant. Good puzzles tend

to be mathematially lean and well-strutured, but we also need to learn how

to deal systematially with the messy, haoti, organi stu� that surrounds us

every day. Indeed, some omputational tehniques are important hiey beause

they provide powerful ways to ope with suh omplexities. That is why, for

example, the arane rules of library-ard alphabetization were presented at the

beginning of Chapter 5, and an atual elevator system was disussed at length

to illustrate simulation tehniques in Setion 2.2.5.

A olletion of programs and data alled the Stanford GraphBase (SGB) has

been prepared so that experiments with ombinatorial algorithms an readily be

performed on a variety of real-world examples. SGB inludes, for example, data

about Amerian highways, and an input-output model of the U.S. eonomy; it

reords the asts of haraters in Homer's Iliad, Tolstoy's Anna Karenina, and

several other novels; it enapsulates the struture of Roget's Thesaurus of 1879;

it douments hundreds of ollege football sores; it spei�es the gray-value pixels

of Leonardo da Vini's Gioonda (Mona Lisa). And perhaps most importantly,

SGB ontains a olletion of �ve-letter words, whih we shall disuss next.

The �ve-letter words of English. Many of the examples in this hapter will

be based on the following list of �ve-letter words:

aargh; abaa; abai; abak; abaft; abase; abash; : : : ; zooms; zowie: (8)

(There are 5757 words altogether| too many to display here; but those that are

missing an readily be imagined.) It's a personal list, olleted by the author

between 1972 and 1992, beginning when he realized that suh words would make

ideal data for testing many kinds of ombinatorial algorithms.
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The list has intentionally been restrited to words that are truly part of the

English language, in the sense that the author has enountered them in atual

use. Unabridged ditionaries ontain thousands of entries that are muh more

esoteri, like aalii, abamp, : : : , zymin, and zyxst; words like that are useful

primarily to Srabble

R

players. But unfamiliar words tend to spoil the fun

for anybody who doesn't know them. Therefore, for twenty years, the author

systematially took note of all words that seemed right for the expository goals

of The Art of Computer Programming.

Finally it was neessary to freeze the olletion, in order to have a fixed

point for reproduible experiments. The English language will always be evolv-

ing, but the 5757 SGB words will therefore always stay the same|even though

the author has been tempted at times to add a few words that he didn't know in

1992, suh as hads, stent, blogs, ditzy, phish, bling, and possibly teth.

No; noway. The time for any hanges to SGB has long sine ended: finis.

The following Glossary is intended to ontain all well-known English words

. . . whih may be used in good soiety, and whih an serve as Links.

. . . There must be a stent to the admission of spik words.

| LEWIS CARROLL, Doublets: A Word-Puzzle (1879)

If there is suh a verb as to teth, Mr. Lillywaite tethed.

| ROBERT BARNARD, Corpse in a Gilded Cage (1984)

Proper names like Knuth are not onsidered to be legitimate words. But

gauss and hardy are valid, beause \gauss" is a unit of magneti indution and

\hardy" is hardy. In fat, SGB words are omposed entirely of ordinary lowerase

letters; the list ontains no hyphenated words, ontrations, or terms like blas�e

that require an aent. Thus eah word an also be regarded as a vetor, whih

has �ve omponents in the range [0 : : 26). In the vetor sense, the words yua

and abuzz are furthest apart: The Eulidean distane between them is

k(24; 20; 2; 2; 0)� (0; 1; 20; 25; 25)k

2

=

p

24

2

+ 19

2

+ 18

2

+ 23

2

+ 25

2

=

p

2415:

The entire Stanford GraphBase, inluding all of its programs and data sets,

is easy to download from the author's website (see page ii). And the list of all

SGB words is even easier to obtain, beause it is in the �le `sgb-words.txt' at

the same plae. That �le ontains 5757 lines with one word per line, beginning

with `whih' and ending with `pupal'. The words appear in a default order,

orresponding to frequeny of usage; for example, the words of rank 1000, 2000,

3000, 4000, and 5000 are respetively dith, galls, visas, faker, and pismo.

The notation `WORDS(n)' will be used in this hapter to stand for the n most

ommon words, aording to this ranking.

Inidentally, �ve-letter words inlude many plurals of four-letter words, and

it should be noted that no Vitorian-style ensorship was done. Potentially o�en-

sive voabulary has been expurgated from The OÆial Srabble

R

Players Di-

tionary, but not from the SGB. One way to ensure that semantially unsuitable
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overing

word square

word ube

daning links

graphs{

Carroll

Doublets

Gardner

smile

^

terms will not appear in a professional paper based on the SGB wordlist is to

restrit onsideration to WORDS(n) where n is, say, 3000.

Exerises 26{37 below an be used as warmups for initial explorations of the

SGB words, whih we'll see in many di�erent ombinatorial ontexts throughout

this hapter. For example, while overing problems are still on our minds, we

might as well note that the four words `third flok began jumps' over 20 of

the �rst 21 letters of the alphabet. Five words an, however, over at most 24

di�erent letters, as in fbeks; fjord; glitz; nymph; squawg|unless we resort to

a rare non-SGB word like waqfs (Islami endowments), whih an be ombined

with fgyved; bronx; himp; klutzg to over 25.

Simple words from WORDS(400) suÆe to make a word square:

lass

light

agree

sheep

steps

: (9)

We need to go almost to WORDS(3000), however, to obtain a word ube,

types

yeast

pasta

ester

start

yeast

earth

armor

stove

three

pasta

armor

smoke

token

arena

ester

stove

token

event

rents

start

three

arena

rents

tease

; (10)

in whih every 5 � 5 \slie" is a word square. With a simple extension of the

basi daning links algorithm (see Setion 7.2.2.2), one an show after performing

about 390 billion mems of omputation that WORDS(3000) supports only three

symmetri word ubes suh as (10); exerise 36 reveals the other two. Surpris-

ingly, 83,576 symmetrial ubes an be made from the full set, WORDS(5757).

Graphs from words. It's interesting and important to arrange objets into

rows, squares, ubes, and other designs; but in pratial appliations another

kind of ombinatorial struture is even more interesting and important, namely

a graph. Reall from Setion 2.3.4.1 that a graph is a set of points alled

verties, together with a set of lines alled edges, whih onnet ertain pairs

of verties. Graphs are ubiquitous, and many beautiful graph algorithms have

been disovered, so graphs will naturally be the primary fous of many setions

in this hapter. In fat, the Stanford GraphBase is primarily about graphs, as

its name implies; and the SGB words were olleted hiey beause they an be

used to de�ne interesting and instrutive graphs.

Lewis Carroll blazed the trail by inventing a game that he alled Word-

Links or Doublets, at the end of 1877. [See Martin Gardner, The Universe in

a Handkerhief (1996), Chapter 6.℄ Carroll's idea, whih soon beame quite

popular, was to transform one word to another by hanging a letter at a time:

tears���sears���stars���stare���stale���stile���smile: (11)
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shortest path

Hamming distane

Stanford GraphBase

id

words+

seed

pseudorandom

Carroll

Knuth

T

E

X

METAFONT

Eulidean distane

Hamming distane

subword

T

E

X

dot produt

direted graphs

The shortest suh transformation is the shortest path in a graph, where the

verties of the graph are English words and the edges join pairs of words that

have \Hamming distane 1" (meaning that they disagree in just one plae).

When restrited to SGB words, Carroll's rule produes a graph of the

Stanford GraphBase whose oÆial name is words (5757; 0; 0; 0). Every graph

de�ned by SGB has a unique identi�er alled its id, and the graphs that are

derived in Carrollian fashion from SGB words are identi�ed by ids of the form

words (n; l; t; s). Here n is the number of verties; l is either 0 or a list of weights,

used to emphasize various kinds of voabulary; t is a threshold so that low-weight

words an be disallowed; and s is the seed for any pseudorandom numbers that

might be needed to break ties between words of equal weight. The full details

needn't onern us, but a few examples will give the general idea:

� words (n; 0; 0; 0) is preisely the graph that arises when Carroll's idea is

applied to WORDS(n), for 1 � n � 5757.

� words (1000; f0; 0; 0; 0; 0; 0; 0; 0; 0g; 0; s) ontains 1000 randomly hosen SGB

words, usually di�erent for di�erent values of s.

� words (766; f0; 0; 0; 0; 0; 0; 0; 1; 0g; 1; 0) ontains all of the �ve-letter words

that appear in the author's books about T

E

X and METAFONT.

There are only 766 words in the latter graph, so we an't form very many long

paths like (11), although

basi���basis���bases���based

���baked���naked���named���names���games (12)

is one noteworthy example.

Of ourse there are many other ways to de�ne the edges of a graph when the

verties represent �ve-letter words. We ould, for example, require the Eulidean

distane to be small, instead of the Hamming distane. Or we ould delare two

words to be adjaent whenever they share a subword of length four; that strategy

would substantially enrih the graph, making it possible for haos to yield peae,

even when on�ned to the 766 words that are related to T

E

X:

haos���hose���whose���whole���holes���hopes���opes���sope

���sore���store���stare���spare���spae���paes���peae: (13)

(In this rule we remove a letter, then insert another, possibly in a di�erent plae.)

Or we might hoose a totally di�erent strategy, like putting an edge between word

vetors a

1

a

2

a

3

a

4

a

5

and b

1

b

2

b

3

b

4

b

5

if and only if their dot produt a

1

b

1

+ a

2

b

2

+

a

3

b

3

+ a

4

b

4

+ a

5

b

5

is a multiple of some parameter m. Graph algorithms thrive

on di�erent kinds of data.

SGB words lead also to an interesting family of direted graphs, if we write

a

1

a

2

a

3

a

4

a

5

! b

1

b

2

b

3

b

4

b

5

when fa

2

; a

3

; a

4

; a

5

g � fb

1

; b

2

; b

3

; b

4

; b

5

g as multisets.

(Remove the �rst letter, insert another, and rearrange.) With this rule we an,

for example, transform words to graph via a shortest oriented path of length six:

words! dross! soars! oras! rash! sharp! graph: (14)
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Theory meets pratie

Taylor series

COVER

STANLEY

graph theory, introdution to{

neighbors

adjaent

multigraphs

loops

subgraph

spanning

indued

restrition of a graph

notation G j V

0

notation G n v

notation G n e

order n

size e

omplete graph

K

n

path

P

n

yle

C

n

multigraphs

isomorphi graphs++

Theory is the �rst term in the Taylor series of pratie.

| THOMAS M. COVER (1992)

The number of systems of terminology presently used in graph theory

is equal, to a lose approximation, to the number of graph theorists.

| RICHARD P. STANLEY (1986)

Graph theory: The basis. A graph G onsists of a set V of verties together

with a set E of edges, whih are pairs of distint verties. We will assume that

V and E are �nite sets unless otherwise spei�ed. We write u��� v if u and v

are verties with fu; vg 2 E, and u /���v if u and v are verties with fu; vg =2 E.

Verties with u���v are alled \neighbors," and they're also said to be \adjaent"

in G. One onsequene of this de�nition is that we have u��� v if and only if

v���u. Another onsequene is that v /��� v, for all v 2 V ; that is, no vertex is

adjaent to itself. (We shall, however, disuss multigraphs below, in whih loops

from a vertex to itself are permitted.)

The graph G

0

= (V

0

; E

0

) is a subgraph of G = (V;E) if V

0

� V and E

0

� E.

It's a spanning subgraph of G if, in fat, V

0

= V . And it's an indued subgraph

of G if E

0

has as many edges as possible, when V

0

is a given subset of the

verties. In other words, when V

0

� V the subgraph of G = (V;E) indued by

V

0

is G

0

= (V

0

; E

0

), where

E

0

=

�

fu; vg

�

�

u 2 V

0

, v 2 V

0

, and fu; vg 2 E

	

: (15)

This subgraph G

0

is denoted by G jV

0

, and often alled \G restrited to V

0

." In

the ommon ase where V

0

= V nfvg, we write simply Gnv (\G minus vertex v")

as an abbreviation for G j (V n fvg). The similar notation G n e is used when

e 2 E to denote the subgraph G

0

= (V;E n feg), obtained by removing an edge

instead of a vertex. Notie that all of the SGB graphs known as words (n; l; t; s),

desribed earlier, are indued subgraphs of the main graph words (5757; 0; 0; 0);

only the voabulary hanges in those graphs, not the rule for adjaeny.

A graph with n verties and e edges is said to have order n and size e. The

simplest and most important graphs of order n are the omplete graph K

n

, the

path P

n

, and the yle C

n

. Suppose the verties are V = f1; 2; : : : ; ng. Then

� K

n

has

�

n

2

�

=

1

2

n(n � 1) edges u��� v for 1 � u < v � n; every n-vertex

graph is a spanning subgraph of K

n

.

� P

n

has n � 1 edges v ��� (v+1) for 1 � v < n, when n � 1; it is a path

of length n�1 from 1 to n.

� C

n

has n edges v��� ((v mod n)+1) for 1 � v � n; it is a graph only when

n = 0 or n � 3 (but C

1

and C

2

are multigraphs).

We ould atually have de�ned K

n

, P

n

, and C

n

on the verties f0; 1; : : : ; n�1g,

or on any n-element set V instead of f1; 2; : : : ; ng, beause two graphs that di�er

only in the names of their verties but not in the struture of their edges are

ombinatorially equivalent.

Formally, we say that graphs G = (V;E) and G

0

= (V

0

; E

0

) are isomorphi

if there is a one-to-one orrespondene ' from V to V

0

suh that u���v in G if
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notation G

�

=

G

0

isomorphi

diagram

Petersen graph

Petersen

Chv�atal graph

Chv�atal

planar

degree

valeny, see degree

regular

ubi

trivalent

Bondy

symmetries

automorphisms

and only if '(u)���'(v) in G

0

. The notation G

�

=

G

0

is often used to indiate

that G and G

0

are isomorphi; but we shall often be less preise, by treating

isomorphi graphs as if they were equal, and by oasionally writing G = G

0

even when the vertex sets of G and G

0

aren't stritly idential.

Small graphs an be de�ned by simply drawing a diagram, in whih the

verties are small irles and the edges are lines between them. Figure 2 illus-

trates several important examples, whose properties we will be studying later.

The Petersen graph in Figure 2(e) is named after Julius Petersen, an early

graph theorist who used it to disprove a plausible onjeture [L'Interm�ediaire

des Math�ematiiens 5 (1898), 225{227℄; it is, in fat, a remarkable on�guration

that serves as a ounterexample to many optimisti preditions about what might

be true for graphs in general. The Chv�atal graph, Figure 2(f), was introdued

by V�alav Chv�atal in J. Combinatorial Theory 9 (1970), 93{94.

(a)

P

5

(b)

C

5

()

K

5

(d)

3-ube

(e)

Petersen graph

(f)

Chv�atal graph

Fig. 2. Six example graphs, whih have respetively (5; 5; 5; 8; 10; 12) verties and

(4; 5; 10; 12; 15; 24) edges.

The lines of a graph diagram are allowed to ross eah other at points that

aren't verties. For example, the enter point of Fig. 2(f) is not a vertex of

Chv�atal's graph. A graph is alled planar if there's a way to draw it without

any rossings. Clearly P

n

and C

n

are always planar; Fig. 2(d) shows that the

3-ube is also planar. But K

5

has too many edges to be planar (see exerise 46).

The degree of a vertex is the number of neighbors that it has. If all verties

have the same degree, the graph is said to be regular. In Fig. 2, for example, P

5

is irregular beause it has two verties of degree 1 and three of degree 2. But

the other �ve graphs are regular, of degrees (2; 4; 3; 3; 4) respetively. A regular

graph of degree 3 is often alled \ubi" or \trivalent."

There are many ways to draw a given graph, some of whih are muh more

perspiuous than others. For example, eah of the six diagrams

(16)

is isomorphi to the 3-ube, Fig. 2(d). The layout of Chv�atal's graph that appears

in Fig. 2(f) was disovered by Adrian Bondy many years after Chv�atal's paper

was published, thereby revealing unexpeted symmetries.

The symmetries of a graph, also known as its automorphisms, are the permu-

tations of its verties that preserve adjaeny. In other words, the permutation

' is an automorphism of G if we have '(u)���'(v) whenever u��� v in G. A
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planar

ontiguous United States of Ameria

postal odes

spanning

Hamiltonian path

Hamiltonian yle

Hamilton

dodeahedron

Kirkman

Biggs

Lloyd

Wilson

knight

hessboard

Hamiltonian

Petersen graph

de Poligna

girth

ayli

well-hosen drawing like Fig. 2(f) an reveal underlying symmetry, but a single

diagram isn't always able to display all the symmetries that exist. For example,

the 3-ube has 48 automorphisms, and the Petersen graph has 120. We'll study

algorithms that deal with isomorphisms and automorphisms in Setion 7.2.3.

Symmetries an often be exploited to avoid unneessary omputations, mak-

ing an algorithm almost k times faster when it operates on a graph that has

k automorphisms.

Graphs that have evolved in the real world tend to be rather di�erent from

the mathematially pristine graphs of Figure 2. For example, here's a familiar

graph that has no symmetry whatsoever, although it does have the virtue of

being planar:

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

(17)

It represents the ontiguous United States of Ameria, and we'll be using it later

in several examples. The 49 verties of this diagram have been labeled with two-

letter postal odes for onveniene, instead of being redued to empty irles.

Paths and yles. A spanning path of a graph is alled a Hamiltonian path,

and a spanning yle is alled a Hamiltonian yle, beause W. R. Hamilton

invented and sold a puzzle in 1859 whose goal was to �nd suh paths and yles

on the edges of a dodeahedron. T. P. Kirkman had independently studied the

problem for polyhedra in general, in Philosophial Transations 148 (1858),

145{161. [See Graph Theory 1736{1936 by N. L. Biggs, E. K. Lloyd, and R. J.

Wilson (1998), Chapter 2.℄ The task of �nding a spanning path or yle is,

however, muh older| indeed, we an legitimately onsider it to be the oldest

ombinatorial problem of all, beause paths and tours of a knight on a hessboard

have a ontinuous history going bak to ninth-entury India (see Setion 7.3.3).

A graph is alled Hamiltonian if it has a Hamiltonian yle. (The Petersen

graph, inidentally, is the smallest 3-regular graph that is neither planar nor

Hamiltonian; see C. de Poligna, Bull. So. Math. de Frane 27 (1899), 142{145.)

The girth of a graph is the length of its shortest yle; the girth is in�nite if

the graph is ayli (ontaining no yles). For example, the six graphs of Fig. 2

have girths (1; 5; 3; 4; 5; 4), respetively. It's not diÆult to prove that a graph

of minimum degree k and girth 5 must have at least k

2

+ 1 verties. Further

analysis shows in fat that this minimum value is ahievable only if k = 2 (C

5

),

k = 3 (Petersen), k = 7, or perhaps k = 57. (See exerises 63 and 65.)
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distane

shortest path

triangle inequality

diameter

onneted

omponents

5-letter wds

smile

giant omponent

distane, generalized+

The distane d(u; v) between two verties u and v is the minimum length

of a path from u to v in the graph; it is in�nite if there's no suh path. Clearly

d(v; v) = 0, and d(u; v) = d(v; u). We also have the triangle inequality

d(u; v) + d(v; w) � d(u;w): (18)

For if d(u; v) = p and d(v; w) = q and p <1 and q <1, there are paths

u = u

0

���u

1

���� � ����u

p

= v and v = v

0

���v

1

���� � ����v

q

= w; (19)

and we an �nd the least subsript r suh that u

r

= v

s

for some s. Then

u

0

���u

1

���� � ����u

r�1

���v

s

���v

s+1

���� � ����v

q

(20)

is a path of length � p+ q from u to w.

The diameter of a graph is the maximum of d(u; v), over all verties u and v.

The graph is onneted if its diameter is �nite. The verties of a graph an always

be partitioned into onneted omponents, where two verties u and v belong to

the same omponent if and only if d(u; v) <1.

In the graph words (5757; 0; 0; 0), for example, we have d(tears; smile) = 6,

beause (11) is a shortest path from tears to smile. Also d(tears; happy) = 6,

and d(smile; happy) = 10, and d(world; ourt) = 6. But d(world; happy) =

1; the graph isn't onneted. In fat, it ontains 671 words like aloof, whih

have no neighbors and form onneted omponents of order 1 all by themselves.

Word pairs suh as alpha ��� aloha, droid ��� druid, and opium ��� odium

aount for 103 further omponents of order 2. Some omponents of order 3,

like hain ��� hair ��� hoir, are paths; others, like fgetup; letup; setupg,

are yles. A few more small omponents are also present, like the urious path

login���logi���yogi���yogis���yogas���togas; (21)

whose words have no other neighbors. But the vast majority of all �ve-letter

words belong to a giant omponent of order 4493. If you an go two steps away

from a given word, the odds are better than 15 to 1 that your word is onneted

to everything in the giant omponent.

Similarly, the graph words (n; 0; 0; 0) has a giant omponent of order (3825;

2986; 2056; 1198; 224) when n = (5000; 4000; 3000; 2000; 1000), respetively. But

if n is small, there aren't enough edges to provide muh onnetivity. For exam-

ple, words (500; 0; 0; 0) has 327 di�erent omponents, none of order 15 or more.

The onept of distane an be generalized to d(v

1

; v

2

; : : : ; v

k

) for any value

of k, meaning the minimum number of edges in a onneted subgraph that

ontains the verties fv

1

; v

2

; : : : ; v

k

g. For example, d(blood; sweat; tears) turns

out be 15, beause the subgraph

blood���brood���broad���bread���tread���treed���tweed

j j

tears���teams���trams���trims���tries���trees tweet

j

sweat���sweet

(22)

has 15 edges, and there's no suitable 14-edge subgraph.
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free tree

Steiner tree

Steiner

Eulidean plane

Heinen

Gauss

Shumaher

Coloring

k-partite

k-olorable

Four Color Theorem

Guthrie

Appel

Haken

Koh

planar

Robertson

Sanders

Seymour

Thomas

bipartite

bigraph

K}onig

subgraph

omplete bipartite graph

omplete k-partite graph

free tree

star graph

We noted in Setion 2.3.4.1 that a onneted graph with fewest edges is

alled a free tree. A subgraph that orresponds to the generalized distane

d(v

1

; : : : ; v

k

) will always be a free tree. It is misleadingly alled a Steiner tree,

beause Jaob Steiner one mentioned the ase k = 3 for points fv

1

; v

2

; v

3

g in

the Eulidean plane [Crelle 13 (1835), 362{363℄. Franz Heinen had solved that

problem in

�

Uber Systeme von Kr�aften (1834); Gauss extended the analysis to

k = 4 in a letter to Shumaher (21 Marh 1836).

Coloring. A graph is said to be k-partite or k-olorable if its verties an be

partitioned into k or fewer parts, with the endpoints of eah edge belonging to

di�erent parts|or equivalently, if there's a way to paint its verties with at most

k di�erent olors, never assigning the same olor to two adjaent verties. The fa-

mous Four Color Theorem, onjetured by F. Guthrie in 1852 and �nally proved

with massive omputer aid by K. Appel, W. Haken, and J. Koh [Illinois J. Math.

21 (1977), 429{567℄, states that every planar graph is 4-olorable. No simple

proof is known, but speial ases like (17) an be olored at sight (see exerise 45);

and O(n

2

) steps suÆe to 4-olor a planar graph in general [N. Robertson, D. P.

Sanders, P. Seymour, and R. Thomas, STOC 28 (1996), 571{575℄.

The ase of 2-olorable graphs is espeially important in pratie. A 2-

partite graph is generally alled bipartite, or simply a \bigraph"; every edge of

suh a graph has one endpoint in eah part.

Theorem B. A graph is bipartite if and only if it ontains no yle of odd length.

Proof. [See D. K}onig, Math. Annalen 77 (1916), 453{454.℄ Every subgraph of

a k-partite graph is k-partite. Therefore the yle C

n

an be a subgraph of a

bipartite graph only if C

n

itself is a bigraph, in whih ase n must be even.

Conversely, if a graph ontains no odd yles we an olor its verties with

the two olors f0; 1g by arrying out the following proedure: Begin with all

verties unolored. If all neighbors of olored verties are already olored, hoose

an unolored vertex w, and olor it 0. Otherwise hoose a olored vertex u that

has an unolored neighbor v; assign to v the opposite olor. Exerise 48 proves

that a valid 2-oloring is eventually obtained.

The omplete bipartite graph K

m;n

is the largest bipartite graph whose

verties have two parts of sizes m and n. We an de�ne it on the vertex set

f1; 2; : : : ;m+ng by saying that u ��� v whenever 1 � u � m < v � m + n.

In other words, K

m;n

has mn edges, one for eah way to hoose one vertex in

the �rst part and another in the seond part. Similarly, the omplete k-partite

graph K

n

1

;:::;n

k

has N = n

1

+ � � � + n

k

verties partitioned into parts of sizes

fn

1

; : : : ; n

k

g, and it has edges between any two verties that don't belong to the

same part. Here are some examples when N = 6:

;

�

=

;

�

=

: (23)

K

1;5

K

3;3

K

2;2;2

Notie that K

1;n

is a free tree; it is popularly alled the star graph of order n+1.



18 COMBINATORIAL ALGORITHMS (F0A) 7

P

�

OLYA

Harary

direted graphs{

ars{

ars

self-loops

order

size

multiset

simple

initial vertex

�nal vertex

tip

out-degree

d

+

(v)

in-degree

d

�

(v)

soure

sink

spanning

indued

isomorphism

Diagrams for digraphs

transitive tournament

K~

n

oriented path

P~

n

oriented yle

C~

n

omplete digraph

J

n

Poirot

Christie

omponents

onnetivity in a digraph

ars as edges

From now on say \digraph" instead of \direted graph."

It is lear and short and it will ath on.

| GEORGE P

�

OLYA, letter to Frank Harary (. 1954)

Direted graphs. In Setion 2.3.4.2 we de�ned direted graphs (or digraphs),

whih are very muh like graphs exept that they have ars instead of edges.

An ar u ��! v runs from one vertex to another, while an edge u ��� v joins

two verties without distinguishing between them. Furthermore, digraphs are

allowed to have self-loops v��!v from a vertex to itself, and more than one ar

u��!v may be present between the same verties u and v.

Formally, a digraph D = (V;A) of order n and size m is a set V of n verties

and a multiset A of m ordered pairs (u; v), where u 2 V and v 2 V . The ordered

pairs are alled ars, and we write u��!v when (u; v) 2 A. The digraph is alled

simple if A is atually a set instead of a general multiset|namely, if there's at

most one ar (u; v) for all u and v. Eah ar (u; v) has an initial vertex u and a

�nal vertex v, also alled its \tip." Eah vertex has an out-degree d

+

(v), the num-

ber of ars for whih v is the initial vertex, and an in-degree d

�

(v), the number of

ars for whih v is the tip. A vertex with in-degree 0 is alled a \soure"; a vertex

with out-degree 0 is alled a \sink." Notie that

P

v2V

d

+

(v) =

P

v2V

d

�

(v),

beause both sums are equal to m, the total number of ars.

Most of the notions we've de�ned for graphs arry over to digraphs in a nat-

ural way, if we just insert the word \direted" or \oriented" (or the syllable \di")

when it's neessary to distinguish between edges and ars. For example, digraphs

have subdigraphs, whih an be spanning or indued or neither. An isomorphism

between digraphs D = (V;A) and D

0

= (V

0

; A

0

) is a one-to-one orrespondene '

from V to V

0

for whih the number of ars u��! v in D equals the number of

ars '(u)��!'(v) in D

0

, for all u; v 2 V .

Diagrams for digraphs use arrows between the verties, instead of unadorned

lines. The simplest and most important digraphs of order n are direted variants

of the graphsK

n

, P

n

, and C

n

, namely the transitive tournament K~

n

, the oriented

path P~

n

, and the oriented yle C~

n

. They an be shematially indiated by the

following diagrams for n = 5:

; ; : (24)

K~

5

P~

5

C~

5

There's also the omplete digraph J

n

, whih is the largest simple digraph on n

verties; it has n

2

ars u��!v, one for eah hoie of u and v.

Figure 3 shows a more elaborate diagram, for a digraph of order 17 that

we might all \expressly oriented": It is the direted graph desribed by Her-

ule Poirot in Agatha Christie's novel Murder on the Orient Express (1934).

Verties orrespond to the berths of the Stamboul{Calais oah in that story,

and an ar u ��! v means that the oupant of berth u has orroborated the

alibi of the person in berth v. This example has six onneted omponents,

namely f0; 1; 3; 6; 8; 12; 13; 14; 15; 16g, f2g, f4; 5g, f7g, f9g, and f10; 11g, beause

onnetivity in a digraph is determined by treating ars as edges.
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onseutive

walk

oriented path

oriented yle

direted distane d(u; v)

triangle inequality

graph an be regarded as a digraph

edges as ars

out-degree

in-degree

multigraph

loop

multipairs

parallel (repeated) edges

degrees

{graph theory, introdution to

adjaeny matrix+

0

1

23

4

5

6

7

8910

11 1213

14 15

16

LEGEND

0: Pierre Mihel, the Frenh ondutor

1: Herule Poirot, the Belgian detetive

2: Samuel Edward Rathett, the deeased Amerian

3: Caroline Martha Hubbard, the Amerian matron

4: Edward Henry Masterman, the British valet

5: Antonio Fosarelli, the Italian automobile salesman

6: Hetor MaQueen, the Amerian seretary

7: Harvey Harris, the Englishman who didn't show up

8: Hildegarde Shmidt, the German lady's maid

9: (vaany)

10: Greta Ohlsson, the Swedish nurse

11: Mary Hermione Debenham, the English governess

12: Helena Maria Andrenyi, the beautiful ountess

13: Rudolph Andrenyi, the Hungarian ount/diplomat

14: Natalia Dragomiro�, the Russian priness dowager

15: Colonel Arbuthnot, the British oÆer from India

16: Cyrus Bettman Hardman, the Amerian detetive

Fig. 3. A digraph of order 17 and size 18, devised by Agatha Christie.

Two ars are onseutive if the tip of the �rst is the initial vertex of the

seond. A sequene of onseutive ars (a

1

; a

2

; : : : ; a

k

) is alled a walk of length k;

it an be symbolized by showing the verties as well as the ars:

v

0

a

1

�! v

1

a

2

�! v

2

� � � v

k�1

a

k

�! v

k

: (25)

In a simple digraph it's suÆient merely to speify the verties; for example,

1��!0��!8��!14��!8��!3 is a walk in Fig. 3. The walk in (25) is an oriented

path when the verties fv

0

; v

1

; : : : ; v

k

g are distint; it's an oriented yle when

they are distint exept that v

k

= v

0

.

In a digraph, the direted distane d(u; v) is the number of ars in the short-

est oriented path from u to v, whih is also the length of the shortest walk from

u to v. It may di�er from d(v; u); but the triangle inequality (18) remains valid.

Every graph an be regarded as a digraph, beause an edge u ��� v is

essentially equivalent to a mathed pair of ars, u��!v and v��!u. The digraph

obtained in this way retains all the properties of the original graph; for example,

the degree of eah vertex in the graph beomes its out-degree in the digraph,

and also its in-degree in the digraph. Furthermore, distanes remain the same.

A multigraph (V;E) is like a graph exept that its edges E an be any

multiset of pairs fu; vg; edges v ��� v that loop from a vertex to itself, whih

orrespond to \multipairs" fv; vg, are also permitted. For example,

1 2 3

(26)

is a multigraph of order 3 with six edges, f1; 1g, f1; 2g, f2; 3g, f2; 3g, f3; 3g, and

f3; 3g. The vertex degrees in this example are d(1) = d(2) = 3 and d(3) = 6,

beause eah loop ontributes 2 to the degree of its vertex. An edge loop v���v

beomes two ar loops v��!v when a multigraph is regarded as a digraph.

Representation of graphs and digraphs. Any digraph, and therefore any

graph or multigraph, is ompletely desribed by its adjaeny matrix A = (a

uv

),

whih has n rows and n olumns when there are n verties. Eah entry a

uv

of

this matrix spei�es the number of ars from u to v. For example, the adjaeny

matries for K~

3

, P~

3

, C~

3

, J

3

, and (26) are respetively

K~

3

=

�

011

001

000

�

; P~

3

=

�

010

001

000

�

; C~

3

=

�

010

001

100

�

; J

3

=

�

111

111

111

�

; A =

�

210

102

024

�

: (27)
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matrix multipliation

walks

permutation matrix

0{1 matrix

sparse

Stanford GraphBase

The powerful mathematial tools of matrix theory make it possible to prove

many nontrivial results about graphs by studying their adjaeny matries;

exerise 65 provides a partiularly striking example of what an be done. One

of the main reasons is that matrix multipliation has a simple interpretation in

the ontext of digraphs. Consider the square of A, where the element in row u

and olumn v is

(A

2

)

uv

=

X

w2V

a

uw

a

wv

; (28)

by de�nition. Sine a

uw

is the number of ars from u to w, we see that a

uw

a

wv

is the number of walks of the form u��!w��! v. Therefore (A

2

)

uv

is the total

number of walks of length 2 from u to v. Similarly, the entries of A

k

tell us the

total number of walks of length k between any ordered pair of verties, for all

k � 0. For example, the matrix A in (27) satis�es

A =

�

2 1 0

1 0 2

0 2 4

�

; A

2

=

�

5 2 2

2 5 8

2 8 20

�

; A

3

=

�

12 9 12

9 18 42

12 42 96

�

; (29)

there are 12 walks of length 3 from the vertex 1 of the multigraph (26) to vertex 3,

and 18 suh walks from vertex 2 to itself.

Reordering of the verties hanges an adjaeny matrix from A to P

�

AP ,

where P is a permutation matrix (a 0{1 matrix with exatly one 1 in eah row

and olumn), and P

�

= P

T

is the matrix for the inverse permutation. Thus

�

210

102

024

�

;

�

201

042

120

�

;

�

012

120

204

�

;

�

021

240

102

�

;

�

402

021

210

�

; and

�

420

201

012

�

(30)

are all adjaeny matries for (26), and there are no others.

There are more than 2

n(n�1)=2

=n! graphs of order n, when n > 1, and

almost all of them require 
(n

2

) bits of data in their most eonomial enoding.

Consequently the best way to represent the vast majority of all possible graphs

inside a omputer, from the standpoint of memory usage, is essentially to work

with their adjaeny matries.

But the graphs that atually arise in pratial problems have quite di�erent

harateristis from graphs that are hosen at random from the set of all possi-

bilities. A real-life graph usually turns out to be \sparse," having say O(n logn)

edges instead of 
(n

2

), unless n is rather small, beause 
(n

2

) bits of data are

diÆult to generate. For example, suppose the verties orrespond to people,

and the edges orrespond to friendships. If we onsider 5 billion people, few

of them will have more than 10000 friends. But even if everybody had 10000

friends, on average, the graph would still have only 2:5�10

13

edges, while almost

all graphs of order 5 billion have approximately 6:25� 10

18

edges.

Thus the best way to represent a graph inside a mahine usually turns out

to be rather di�erent than to reord n

2

values a

uv

of adjaeny matrix elements.

Instead, the algorithms of the Stanford GraphBase were developed with a data

struture akin to the linked representation of sparse matries disussed in Setion

2.2.6, though somewhat simpli�ed. That approah has proved to be not only

versatile and eÆient, but also easy to use.



7 COMBINATORIAL SEARCHING 21

SGB representation of a digraph

sequential

linked alloation

node sizes+

standard �elds

utility �elds

NAME

ARCS

vertex variable

TIP

NEXT

ar variable

out-degree

multigraph

edges as ars+

MATE+

mates+

MATE(a)+

The SGB representation of a digraph is a ombination of sequential and

linked alloation, using nodes of two basi types. Some nodes represent verties,

other nodes represent ars. (There's also a third type of node, whih represents

an entire graph, for algorithms that deal with several graphs at one. But eah

graph needs only one graph node, so the vertex and ar nodes predominate.)

Here's how it works: Every SGB digraph of order n and size m is built

upon a sequential array of n vertex nodes, making it easy to aess vertex k

for 0 � k < n. The m ar nodes, by ontrast, are linked together within a

general memory pool that is essentially unstrutured. Eah vertex node typially

oupies 32 bytes, and eah ar node oupies 20 (and the graph node oupies

220); but the node sizes an be modi�ed without diÆulty. A few �elds of eah

node have a �xed, de�nite meaning in all ases; the remaining �elds an be used

for di�erent purposes in di�erent algorithms or in di�erent phases of a single

algorithm. The �xed-purpose parts of a node are alled its \standard �elds,"

and the multipurpose parts are alled its \utility �elds."

Every vertex node has two standard �elds alled NAME and ARCS. If v is a

variable that points to a vertex node, we'll all it a vertex variable. Then NAME(v)

points to a string of haraters that an be used to identify the orresponding

vertex in human-oriented output; for example, the 49 verties of graph (17) have

names like CA, WA, OR, : : : , RI. The other standard �eld, ARCS(v), is far more

important in algorithms: It points to an ar node, the �rst in a singly linked list

of length d

+

(v), with one node for eah ar that emanates from vertex v.

Every ar node has two standard �elds alled TIP and NEXT; a variable a that

points to an ar node is alled an ar variable. TIP(a) points to the vertex node

that represents the tip of ar a; NEXT(a) points to the ar node that represents

the next ar whose initial vertex agrees with that of a.

A vertex v with out-degree 0 is represented by letting ARCS(v) = � (the null

pointer). Otherwise if, say, the out-degree is 3, the data struture ontains three

ar nodes with ARCS(v) = a

1

, NEXT(a

1

) = a

2

, NEXT(a

2

) = a

3

, and NEXT(a

3

) =

�; and the three ars from v lead to TIP(a

1

), TIP(a

2

), TIP(a

3

).

Suppose, for example, that we want to ompute the out-degree of vertex v,

and store it in a utility �eld alled ODEG. It's easy:

Set a ARCS(v) and d 0.

While a 6= �, set d d+ 1 and a NEXT(a).

Set ODEG(v) d.

(31)

When a graph or a multigraph is onsidered to be a digraph, as mentioned

above, its edges u���v are eah equivalent to two ars, u��!v and v��!u. These

ars are alled \mates"; and they oupy two ar nodes, say a and a

0

, where a

appears in the list of ars from u and a

0

appears in the list of ars from v. Then

TIP(a) = v and TIP(a

0

) = u. We'll also write

MATE(a) = a

0

and MATE(a

0

) = a; (32)

in algorithms that want to move rapidly from one list to another. However, we

usually won't need to store an expliit pointer from an ar to its mate, or to have



22 COMBINATORIAL ALGORITHMS (F0A) 7

impliitly

bitwise AND

portable

C

LOC

graph node

M(g)

N(g)

VERTICES(g)

ID(g)

id

{direted graphs

bipartiteness testing+

a utility �eld alled MATE within eah ar node, beause the neessary link an

be dedued impliitly when the data struture has been onstruted leverly.

The impliit-mate trik works like this: While reating eah edge u ��� v

of an undireted graph or multigraph, we introdue onseutive ar nodes for

u��!v and v��!u. For example, if there are 20 bytes per ar node, we'll reserve

40 onseutive bytes for eah new pair. We an also make sure that the memory

address of the �rst byte is a multiple of 8. Then if the ar node a is in memory

loation �, its mate is in loation

n

�+ 20; if �mod 8 = 0

�� 20; if �mod 8 = 4

o

= �� 20 +

�

40 & ((�& 4)� 1)

�

: (33)

Suh triks are valuable in ombinatorial problems, when operations might

be performed a trillion times, beause every way to save 3.6 nanoseonds per

operation will make suh a omputation �nish an hour sooner. But (33) isn't

diretly \portable" from one implementation to another. If the size of an ar

node were hanged from 20 to 24, for example, we would have to hange the

numbers 40, 20, 8, and 4 in (33) to 48, 24, 16, and 8.

The algorithms in this book will make no assumptions about node sizes.

Instead, we'll adopt a onvention of the C programming language and its de-

sendants, so that if a points to an ar node, `a+1' denotes a pointer to the ar

node that follows it in memory. And in general

LOC(NODE(a+ k)) = LOC(NODE(a)) + k; (34)

when there are  bytes in eah ar node. Similarly, if v is a vertex variable, `v+k'

will stand for the kth vertex node following node v; the atual memory loation

of that node will be v plus k times the size of a vertex node.

The standard �elds of a graph node g inlude M(g), the total number of ars;

N(g), the total number of verties; VERTICES(g), a pointer to the �rst vertex

node in the sequential list of all vertex nodes; ID(g), the graph's identi�ation,

whih is a string like words(5757,0,0,0); and some other �elds needed for the

alloation and reyling of memory when the graph grows or shrinks, or for

exporting a graph to external formats that interfae with other users and other

graph-manipulation systems. But we will rarely need to refer to any of these

graph node �elds, nor will it be neessary to give a omplete desription of SGB

format here, sine we shall desribe almost all of the graph algorithms in this

hapter by stiking to an English-language desription at a fairly abstrat level

instead of desending to the bit level of mahine programs.

A simple graph algorithm. To illustrate a medium-high-level algorithm of

the kind that will appear later, let's onvert the proof of Theorem B into a

step-by-step proedure that paints the verties of a given graph with two olors

whenever that graph is bipartite.

Algorithm B (Bipartiteness testing). Given a graph represented in SGB format,

this algorithm either �nds a 2-oloring with COLOR(v) 2 f0; 1g in eah vertex v,

or it terminates unsuessfully when no valid 2-oloring is possible. Here COLOR

is a utility �eld in eah vertex node. Another vertex utility �eld, LINK(v), is a



7 COMBINATORIAL SEARCHING 23

stak

vertex variable

ar variable

depth-�rst searh

sparse graphs

{ars

Stanford GraphBase++

generator routines

roget

Roget

Roget

book

Hugo

novel

bi book

bipartite graph

vertex pointer used to maintain a stak of all olored verties whose neighbors

have not yet been examined. An auxiliary vertex variable s points to the top of

this stak. The algorithm also uses variables u, v, w for verties and a for ars.

The vertex nodes are assumed to be v

0

+ k for 0 � k < n.

B1. [Initialize.℄ Set COLOR(v

0

+ k)  �1 for 0 � k < n. (Now all verties are

unolored.) Then set w  v

0

+ n.

B2. [Done?℄ (At this point all verties � w have been olored, and so have the

neighbors of all olored verties.) Terminate the algorithm suessfully if

w = v

0

. Otherwise set w  w � 1, the next lower vertex node.

B3. [Color w if neessary.℄ If COLOR(w) � 0, return to B2. Otherwise set

COLOR(w) 0, LINK(w) �, and s w.

B4. [Stak) u.℄ Set u  s, s  LINK(s), a  ARCS(u). (We will examine all

neighbors of the olored vertex u.)

B5. [Done with u?℄ If a = �, go to B8. Otherwise set v  TIP(a).

B6. [Proess v.℄ If COLOR(v) < 0, set COLOR(v) 1� COLOR(u), LINK(v) s,

and s v. Otherwise if COLOR(v) = COLOR(u), terminate unsuessfully.

B7. [Loop on a.℄ Set a NEXT(a) and return to B5.

B8. [Stak nonempty?℄ If s 6= �, return to B4. Otherwise return to B2.

This algorithm is a variant of a general graph traversal proedure alled \depth-

�rst searh," whih we will study in detail in Setion 7.4.1. Its running time is

O(m + n) when there are m ars and n verties (see exerise 70); therefore it

is well adapted to the ommon ase of sparse graphs. With small hanges we

an make it output an odd-length yle whenever it terminates unsuessfully,

thereby proving the impossibility of a 2-oloring (see exerise 72).

Examples of graphs. The Stanford GraphBase inludes a library of more than

three dozen generator routines, apable of produing a great variety of graphs

and digraphs for use in experiments. We've already disussed words ; now let's

look at a few of the others, in order to get a feeling for some of the possibilities.

� roget(1022; 0; 0; 0) is a direted graph with 1022 verties and 5075 ars. The

verties represent the ategories of words or onepts that P. M. Roget and J. L.

Roget inluded in their famous 19th-entury Thesaurus (London: Longmans,

Green, 1879). The ars are the ross referenes between ategories, as found

in that book. For example, typial ars are water��!moisture, disovery��!

truth, preparation��!learning, vulgarity��!ugliness, wit��!amusement.

� book("jean"; 80; 0; 1; 356; 0; 0; 0) is a graph with 80 verties and 254 edges.

The verties represent the haraters of Vitor Hugo's Les Mis�erables; the edges

onnet haraters who enounter eah other in that novel. Typial edges are

Fantine���Javert, Cosette���Th�enardier.

� bi book("jean"; 80; 0; 1; 356; 0; 0; 0) is a bipartite graph with 80+356 verties

and 727 edges. The verties represent haraters or hapters in Les Mis�erables;

the edges onnet haraters with the hapters in whih they appear (for in-

stane, Napoleon���2.1.8, Marius���4.14.4).
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in�nity

Delaunay triangulation
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bi lisa

bipartite graph

smile

Gherardini, Lisa

raman

expander graph

regular graph+

Ramanujan graphs

girth

diameter

� plane miles(128; 0; 0; 0; 1; 0; 0) is a planar graph with 129 verties and 381

edges. The verties represent 128 ities in the United States or Canada, plus

a speial vertex INF for a \point at in�nity." The edges de�ne the so-alled

Delaunay triangulation of those ities, based on latitude and longitude in a

plane; this means that u ��� v if and only if the smallest irle that passes

through u and v does not enlose any other vertex. Edges also run between INF

and all verties that lie on the onvex hull of all ity loations. Typial edges are

Seattle, WA��� Vanouver, BC��� INF; Toronto, ON��� Rohester, NY.

� plane lisa(360; 250; 15; 0; 360; 0; 250; 0; 0; 2295000) is a planar graph that has

3027 verties and 5967 edges. It is obtained by starting with a digitized image of

Leonardo da Vini'sMona Lisa, having 360 rows and 250 olumns of pixels, then

rounding the pixel intensities to 16 levels of gray from 0 (blak) to 15 (white).

The resulting 3027 rookwise onneted regions of onstant brightness are then

onsidered to be neighbors when they share a pixel boundary. (See Fig. 4.)

Fig. 4. A digital rendition of Mona Lisa, with a loseup detail (best viewed from afar).

� bi lisa(360; 250; 0; 360; 0; 250; 8192; 0) is a bipartite graph with 360 + 250 =

610 verties and 40923 edges. It's another takeo� on Leonardo's famous painting,

this time linking rows and olumns where the brightness level is at least 1=8. For

example, the edge r102���113 ours right in the middle of Lisa's \smile."

� raman(31; 23; 3; 1) is a graph with quite a di�erent nature from the SGB

graphs in previous examples. Instead of being linked to language, literature,

or other outgrowths of human ulture, it's a so-alled \Ramanujan expander

graph," based on strit mathematial priniples. Eah of its (23

3

�23)=2 = 6072

verties has degree 32; hene it has 97152 edges. The verties orrespond to

equivalene lasses of 2 � 2 matries that are nonsingular modulo 23; a typial

edge is (2,7;1,1) ��� (4,6;1,3). Ramanujan graphs are important hiey

beause they have unusually high girth and low diameter for their size and degree.

This one has girth 4 and diameter 4.
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bipartite

random graph

pseudorandom
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� raman(5; 37; 4; 1), similarly, is a regular graph of degree 6 with 50616 verties

and 151848 edges. It has girth 10, diameter 10, and happens also to be bipartite.

� random graph(1000; 5000; 0; 0; 0; 0; 0; 0; 0; s) is a graph with 1000 verties,

5000 edges, and seed s. It \evolved" by starting with no edges, then by repeatedly

hoosing pseudorandom vertex numbers 0 � u; v < 1000 and adding the edge

u���v, unless u = v or that edge was already present. When s = 0, all verties

belong to a giant omponent of order 999, exept for the isolated vertex 908.

� random graph(1000; 5000; 0; 0; 1; 0; 0; 0; 0; 0) is a digraph with 1000 verties

and 5000 ars, obtained via a similar sort of evolution. (In fat, eah of its ars

happens to be part also of random graph(1000; 5000; 0; 0; 0; 0; 0; 0; 0; 0).)

� subsets(5; 1;�10; 0; 0; 0;

#

1; 0) is a graph with

�

11

5

�

= 462 verties, one for

every �ve-element subset of f0; 1; : : : ; 10g. Two verties are adjaent whenever

the orresponding subsets are disjoint; thus, the graph is regular of degree 6,

and it has 1386 edges. We an onsider it to be a generalization of the Petersen

graph, whih has subsets(2; 1;�4; 0; 0; 0;

#

1; 0) as one of its SGB names.

� subsets(5; 1;�10; 0; 0; 0;

#

10; 0) has the same 462 verties, but now they are

adjaent if the orresponding subsets have four elements in ommon. This graph

is regular of degree 30, and it has 6930 edges.

� parts(30; 10; 30; 0) is another SGB graph with a mathematial basis. It has

3590 verties, one for eah partition of 30 into at most 10 parts. Two partitions

are adjaent when one is obtained by subdividing a part of the other; this rule

de�nes 31377 edges. The digraph parts(30; 10; 30; 1) is similar, but its 31377 ars

point from shorter to longer partitions (for example, 13+7+7+3��!7+7+7+6+3).

� simplex (10; 10; 10; 10; 10; 0; 0) is a graph with 286 verties and 1320 edges.

Its verties are the integer solutions to x

1

+x

2

+x

3

+x

4

= 10 with x

i

� 0, namely

the \ompositions of 10 into four nonnegative parts"; they an also be regarded

as baryentri oordinates for points inside a tetrahedron. The edges, suh as

3,1,4,2���3,0,4,3, onnet ompositions that are as lose together as possible.

� board(8; 8; 0; 0; 5; 0; 0) and board(8; 8; 0; 0;�2; 0; 0) are graphs on 64 verties

whose 168 or 280 edges orrespond to the moves of a knight or bishop in hess.

And zillions of further examples are obtainable by varying the parameters to the

SGB graph generators. For example, Fig. 5 shows two simple variants of board

and simplex ; the somewhat arane rules of board are explained in exerise 75.

board(6; 9; 0; 0; 5; 0; 0)

(Knight moves on a 6 � 9 hessboard)

simplex(10; 8; 7; 6; 0; 0; 0)

(A trunated triangular grid)

Fig. 5. Samples of SGB graphs related to board games.
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join
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Graph algebra. We an also obtain new graphs by operating on the graphs

that we already have. For example, if G = (V;E) is any graph, its omplement

G = (V;E) is obtained by letting

u���v in G () u 6= v and u /���v in G. (35)

Thus, non-edges beome edges, and vie versa. Notie that G = G, and that K

n

has no edges. The orresponding adjaeny matries A and A satisfy

A+A = J � I ; (36)

here J is the matrix of all 1s, and I is the identity matrix, so J and J � I are

respetively the adjaeny matries of J

n

and K

n

when G has order n.

Furthermore, every graph G = (V;E) leads to a line graph L(G), whose

verties are the edges E; two edges are adjaent in L(G) if they have a ommon

vertex. Thus, for example, the line graph L(K

n

) has

�

n

2

�

verties, and it is regular

of degree 2n� 4 when n � 2 (see exerise 82). A graph is alled k-edge-olorable

when its line graph is k-olorable.

Given two graphs G = (U;E) and H = (V; F ), their union G [ H is the

graph (U[V;E[F ) obtained by ombining the verties and edges. For example,

suppose G and H are the graphs of rook and bishop moves in hess; then G[H

is the graph of queen moves, and its oÆial SGB name is

gunion (board (8; 8; 0; 0;�1; 0; 0); board (8; 8; 0; 0;�2; 0; 0); 0; 0): (37)

In the speial ase where the vertex sets U and V are disjoint, the union

G[H doesn't require the verties to be identi�ed in any onsistent way for ross-

orrelation; we get a diagram for G[H by simply drawing a diagram of G next

to a diagram of H. This speial ase is alled the \juxtaposition" or diret sum

of G and H, and we shall denote it by G�H. For example, it's easy to see that

K

m

�K

n

�

=

K

m;n

; (38)

and that every graph is the diret sum of its onneted omponents.

Equation (38) is a speial ase of the general formula

K

n

1

�K

n

2

� � � � �K

n

k

�

=

K

n

1

;n

2

;:::;n

k

; (39)

whih holds for omplete k-partite graphs whenever k � 2. But (39) fails when

k = 1, beause of a sandalous fat: The standard graph-theoreti notation

for omplete graphs is inonsistent! Indeed, K

m;n

denotes a omplete 2-partite

graph, but K

n

does not denote a omplete 1-partite graph. Somehow graph the-

orists have been able to live with this anomaly for deades without going berserk.

Another important way to ombine disjoint graphs G and H is to form their

join, G���H, whih onsists of G�H together with all edges u���v for u 2 U

and v 2 V . [See A. A. Zykov, Mat. Sbornik 24 (1949), 163{188, xI.3.℄ And

if G and H are disjoint digraphs, their direted join G��!H is similar, but it

supplements G�H by adding only the one-way ars u��!v from U to V .
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diret sum of two matries

O

diret sum of graphs

adjaeny matrix

J

assoiative

omplementation

transitive tournament

K~

n

K

n

Cartesian produt

The diret sum of two matries A and B is obtained by plaing B diagonally

below and to the right of A:

A�B =

�

A O

O B

�

; (40)

where eah O in this example is a matrix of all zeros, with the proper number of

rows and olumns to make everything line up orretly. Our notation G�H for

the diret sum of graphs is easy to remember beause the adjaeny matrix for

G�H is preisely the diret sum of the respetive adjaeny matries A and B for

G and H. Similarly, the adjaeny matries for G���H, G��!H, and G ��H are

A���B =

�

A J

J B

�

; A��!B =

�

A J

O B

�

; A ��B =

�

A O

J B

�

; (41)

respetively, where J is an all-1s matrix as in (36). These operations are asso-

iative, and related by omplementation:

A� (B � C) = (A�B)� C; A���(B���C) = (A���B)���C ; (42)

A��! (B��!C) = (A��!B)��!C; A �� (B ��C) = (A ��B) ��C ; (43)

A�B = A���B; A���B = A�B ; (44)

A��!B = A ��B; A ��B = A��!B ; (45)

(A� B) + (A���B) = (A��!B) + (A ��B): (46)

Notie that, by ombining (39) with (42) and (44), we have

K

n

1

;n

2

;:::;n

k

= K

n

1

���K

n

2

��� � � � ���K

n

k

(47)

when k � 2. Also

K

n

= K

1

���K

1

��� � � � ���K

1

and K~

n

= K

1

��!K

1

��!� � ���!K

1

; (48)

with n opies of K

1

, showing that K

n

= K

1;1;:::;1

is a omplete n-partite graph.

Diret sums and joins are analogous to addition, beause we haveK

m

�K

n

=

K

m+n

and K

m

���K

n

= K

m+n

. We an also ombine graphs with algebrai

operations that are analogous to multipliation. For example, the Cartesian

produt operation forms a graph G H of order mn from a graph G = (U;E) of

order m and a graph H = (V; F ) of order n. The verties of G H are ordered

pairs (u; v), where u 2 U and v 2 V ; the edges are (u; v)���(u

0

; v) when u���u

0

in G, together with (u; v)��� (u; v

0

) when v��� v

0

in H. In other words, G H

is formed by replaing eah vertex of G by a opy of H, and replaing eah edge

of G by edges between orresponding verties of the appropriate opies:

= : (49)
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graph-paper graphs

grid

ylinder

torus

diret produt

onjuntion

ategorial produt

tensor produt, see diret produt

strong produt

odd produt

lexiographi produt

omposition

assoiative laws

k-ube

Hamming distane

Imrih

Klav�zar

fatorization of a given graph

\prime" subgraphs

As usual, the simplest speial ases of this general onstrution turn out to

be espeially important in pratie. When both G and H are paths or yles, we

get \graph-paper graphs," namely the m � n grid P

m

P

n

, the m � n ylinder

P

m

C

n

, and the m� n torus C

m

C

n

, illustrated here for m = 3 and n = 4:

P

3

P

4

(3 � 4 grid)

P

3

C

4

(3 � 4 ylinder)

C

3

C

4

(3 � 4 torus)

(50)

Four other noteworthy ways to de�ne produts of graphs have also proved to

be useful. In eah ase the verties of the produt graph are ordered pairs (u; v).

� The diret produt G
H, also alled the \onjuntion" of G and H, or their

\ategorial produt," has (u; v)��� (u

0

; v

0

) when u���u

0

in G and v���v

0

in H.

� The strong produt G�H ombines the edges of G H with those of G
H.

� The odd produt G4H has (u; v)��� (u

0

; v

0

) when we have either u��� u

0

in G or v���v

0

in H, but not both.

� The lexiographi produt G ÆH, also alled the \omposition" of G and H,

has (u; v)���(u

0

; v

0

) when u���u

0

in G, and (u; v)���(u; v

0

) when v���v

0

in H.

All �ve of these operations extend naturally to produts of k � 2 graphs G

1

=

(V

1

; E

1

), : : : , G

k

= (V

k

; E

k

), whose verties are the ordered k-tuples (v

1

; : : : ; v

k

)

with v

j

2 V

j

for 1 � j � k. For example, when k = 3, the Cartesian produts

G

1

(G

2

G

3

) and (G

1

G

2

) G

3

are isomorphi, if we onsider the ompound

verties (v

1

; (v

2

; v

3

)) and ((v

1

; v

2

); v

3

) to be the same as (v

1

; v

2

; v

3

). Therefore

we an write this Cartesian produt without parentheses, as G

1

G

2

G

3

. The

most important example of a Cartesian produt with k fators is the k-ube,

K

2

K

2

� � � K

2

; (51)

its 2

k

verties (v

1

; : : : ; v

k

) are adjaent when their Hamming distane is 1.

In general, suppose v = (v

1

; : : : ; v

k

) and v

0

= (v

0

1

; : : : ; v

0

k

) are k-tuples of

verties, where we have v

j

��� v

0

j

in G

j

for exatly a of the subsripts j, and

v

j

= v

0

j

for exatly b of the subsripts. Then we have:

� v���v

0

in G

1

� � � G

k

if and only if a = 1 and b = k � 1;

� v���v

0

in G

1


 � � � 
G

k

if and only if a = k and b = 0;

� v���v

0

in G

1

�� � ��G

k

if and only if a+ b = k and a > 0;

� v���v

0

in G

1

4 � � �4G

k

if and only if a is odd.

The lexiographi produt is somewhat di�erent, beause it isn't ommutative;

in G

1

Æ � � � ÆG

k

we have v���v

0

for v 6= v

0

if and only if v

j

���v

0

j

, where j is the

minimum subsript with v

j

6= v

0

j

.

Exerises 91{102 explore some of the basi properties of graph produts.

See also the book Produt Graphs by Wilfried Imrih and Sandi Klav�zar (2000),

whih ontains a omprehensive introdution to the general theory, inluding

algorithms for fatorization of a given graph into \prime" subgraphs.
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degree sequenes++

graphial

Havel (mathematiian)

tableaux+

onjugate partitions+

*Graphial degree sequenes. A sequene d

1

d

2

: : : d

n

of nonnegative integers

is alled graphial if there's at least one graph on verties f1; 2; : : : ; ng suh that

vertex k has degree d

k

. We an assume that d

1

� d

2

� � � � � d

n

. Clearly d

1

< n

in any suh graph; and the sum m = d

1

+d

2

+ � � �+d

n

of any graphial sequene

is always even, beause it is twie the number of edges. Furthermore, it's easy to

see that the sequene 3311 is not graphial; therefore graphial sequenes must

also satisfy additional onditions. What are they?

A simple way to deide if a given sequene d

1

d

2

: : : d

n

is graphial, and to

onstrut suh a graph if one exists, was disovered by V. Havel [

�

Casopis pro

P�estov�an�� Matematiky 80 (1955), 477{479℄. We begin with an empty tableau,

having d

k

ells in row k; these ells represent \slots" into whih we'll plae the

neighbors of vertex k in the onstruted graph. Let 

j

be the number of ells in

olumn j; thus 

1

� 

2

� � � � , and when 1 � k � n we have 

j

� k if and only if

d

k

� j. For example, suppose n = 8 and d

1

: : : d

8

= 55544322; then

1

2

3

4

5

6

7

8

(52)

is the initial tableau, and we have 

1

: : : 

5

= 88653. Havel's idea is to pair up

vertex n with d

n

of the highest-degree verties. In this ase, for example, we

reate the two edges 8���3 and 8���2, and the tableau takes the following form:

1

2 8

3 8

4

5

6

7

8 2 3

. (53)

(We don't want 8���1, beause the empty slots should ontinue to form a tableau

shape; the ells of eah olumn must be �lled from the bottom up.) Next we set

n  7 and reate two further edges, 7��� 1 and 7��� 5. And then ome three

more, 6���4, 6���3, 6���2, making the tableau almost half full:

1 7

2 6 8

3 6 8

4 6

5 7

6 2 3 4

7 5 1

8 2 3

. (54)
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majorization

partitions

We've redued the problem to �nding a graph with degree sequene d

1

: : : d

5

=

43333; at this point we also have 

1

: : : 

4

= 5551. The reader is enouraged to

�ll in the remaining blanks, before looking at the answer in exerise 103.

Algorithm H (Graph generator for spei�ed degrees). Given d

1

� � � � � d

n

�

d

n+1

= 0, this algorithm reates edges between the verties f1; : : : ; ng in suh

a way that exatly d

k

edges touh vertex k, for 1 � k � n, unless the sequene

d

1

: : : d

n

isn't graphial. An array 

1

: : : 

d

1

is used for auxiliary storage.

H1. [Set the 's.℄ Start with k  d

1

and j  0. Then while k > 0 do the follow-

ing operations: Set j  j + 1; while k > d

j+1

, set 

k

 j and k  k � 1.

H2. [Find n.℄ Set n 

1

. Terminate suessfully if n = 0; terminate unsuess-

fully if d

1

� n > 0.

H3. [Loop on j.℄ Set i 1, t d

1

, and r  

t

. Do step H4 for j = d

n

, d

n

� 1,

: : : , 1; then return to H2.

H4. [Generate a new edge.℄ Set 

j

 

j

�1 and k  

t

. Create the edge k���n,

and set d

k

 d

k

� 1, 

t

 k� 1. If k = i, set i r+1, t d

i

, and r  

t

.

(See exerise 104.)

When Algorithm H sueeds, it ertainly has onstruted a graph with the

desired degrees. But when it fails, how an we be sure that its mission was

impossible? The key fat is based on an important onept alled \majorization":

If d

1

: : : d

n

and d

0

1

: : : d

0

n

are two partitions of the same integer (that is, if d

1

�

� � � � d

n

and d

0

1

� � � � � d

0

n

and d

1

+ � � � + d

n

= d

0

1

+ � � � + d

0

n

), we say that

d

1

: : : d

n

majorizes d

0

1

: : : d

0

n

if d

1

+ � � �+ d

k

� d

0

1

+ � � �+ d

0

k

for 1 � k � n.

Lemma M. If d

1

: : : d

n

is graphial and d

1

: : : d

n

majorizes d

0

1

: : : d

0

n

, then

d

0

1

: : : d

0

n

is also graphial.

Proof. It is suÆient to prove the laim when d

1

: : : d

n

and d

0

1

: : : d

0

n

di�er in

only two plaes,

d

0

k

= d

k

� [k= i℄ + [k= j ℄ where i < j, (55)

beause any sequene majorized by d

1

: : : d

n

an be obtained by repeatedly

performing mini-majorizations suh as this. (Exerise 7.2.1.4{55 disusses ma-

jorization in detail.)

Condition (55) implies that d

i

> d

0

i

� d

0

i+1

� d

0

j

> d

j

. So any graph

with degree sequene d

1

: : : d

n

ontains a vertex v suh that v��� i and v /��� j.

Deleting the edge v��� i and adding the edge v��� j yields a graph with degree

sequene d

0

1

: : : d

0

n

, as desired.

Corollary H. Algorithm H sueeds whenever d

1

: : : d

n

is graphial.

Proof. We may assume that n > 1. Suppose G is any graph on f1; : : : ; ng with

degree sequene d

1

: : : d

n

, and let G

0

be the subgraph indued by f1; : : : ; n� 1g;

in other words, obtain G

0

by removing vertex n and the d

n

edges that it touhes.

The degree sequene d

0

1

: : : d

0

n�1

of G

0

is obtained from d

1

: : : d

n�1

by reduing

some d

n

of the entries by 1 and sorting them into noninreasing order. By



7 COMBINATORIAL SEARCHING 31

network

words

plane lisa

pixel

board

bishop

Stanford GraphBase

miles

plane miles

highways

eon

ow of money

games

football

olleges

universities

Stanford Cardinal

Golden Bears

ris

direted ayli graph

dag

de�nition, d

0

1

: : : d

0

n�1

is graphial. The new degree sequene d

00

1

: : : d

00

n�1

produed

by the strategy of steps H3 and H4 is designed to be majorized by every suh

d

0

1

: : : d

0

n�1

, beause it redues the largest possible d

n

entries by 1. Thus the new

d

00

1

: : : d

00

n�1

is graphial. Algorithm H, whih sets d

1

: : : d

n�1

 d

00

1

: : : d

00

n�1

, will

therefore sueed by indution on n.

The running time of Algorithm H is roughly proportional to the number

of edges generated, whih an be of order n

2

. Exerise 105 presents a faster

method, whih deides in O(n) steps whether or not a given sequene d

1

: : : d

n

is graphial (without onstruting any graph).

Beyond graphs. When the verties and/or ars of a graph or digraph are

deorated with additional data, we all it a network. For example, every vertex of

words (5757; 0; 0; 0) has an assoiated rank, whih orresponds to the popularity

of the orresponding �ve-letter word. Every vertex of plane lisa (360; 250; 15;

0; 360; 0; 250; 0; 0; 2295000) has an assoiated pixel density, between 0 and 15.

Every ar of board (8; 8; 0; 0;�2; 0; 0) has an assoiated length, whih reets

the distane of a piee's motion on the board: A bishop's move from orner to

orner has length 7. The Stanford GraphBase inludes several further generators

that were not mentioned above, beause they are primarily used to generate

interesting networks, rather than to generate graphs with interesting struture:

� miles(128; 0; 0; 0; 0; 127; 0) is a network with 128 verties, orresponding to

the same North Amerian ities as the graph plane miles desribed earlier. But

miles, unlike plane miles, is a omplete graph with

�

128

2

�

edges. Every edge has

an integer length, whih represents the distane that a ar or truk would have

needed to travel in 1949 when going from one given ity to another. For example,

`Vanouver, BC' is 3496 miles from `West Palm Beah, FL' in the miles network.

� eon(81; 0; 0; 0) is a network with 81 verties and 4902 ars. Its verties

represent setors of the United States eonomy, and its ars represent the ow of

money from one setor to another during the year 1985, measured in millions of

dollars. For example, the ow value from Apparel to Household furniture is 44,

meaning that the furniture industry paid $44,000,000 to the apparel industry in

that year. The sum of ows oming into eah vertex is equal to the sum of ows

going out. An ar appears only when the ow is nonzero. A speial vertex alled

Users reeives the ows that represent total demand for a produt; a few of these

end-user ows are negative, beause of the way imported goods are treated by

government eonomists.

� games(120; 0; 0; 0; 0; 0; 128; 0) is a network with 120 verties and 1276 ars.

Its verties represent football teams at Amerian olleges and universities. Ars

run between teams that played eah other during the exiting 1990 season,

and they are labeled with the number of points sored. For example, the ar

Stanford��! California has value 27, and the ar California��! Stanford

has value 25, beause the Stanford Cardinal defeated the U. C. Berkeley Golden

Bears by a sore of 27{25 on 17 November 1990.

� ris(16) is a network of an entirely di�erent kind. It has 3240 verties and

7878 ars, whih de�ne a direted ayli graph or \dag"|namely, a digraph
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oriented yles

Ayli: Containing no yles

RISC: Redued Instrution Set Computer

gates

Boolean values

AND

OR

XOR

NOT

lath

Knuth

Stanford GraphBase: omplete guide to

LADDERS

shortest path

TAKE RISC

nanoomputer

ris

hypergraphs+++

hyperedges

edges of a hypergraph+++

r-uniform

omplete r-uniform hypergraph

K

(r)

n

indued

omplement H of an r-uniform hypergraph

k-oloring of a hypergraph

family of sets

set system, see hypergraph

triple system

0{1 matries++

that ontains no oriented yles. The verties represent gates that have Boolean

values; an ar suh as Z45 ��! R0:7~ means that the value of gate Z45 is an

input to gate R0:7~. Eah gate has a type ode (AND, OR, XOR, NOT, lath,

or external input); eah ar has a length, denoting an amount of delay. The

network ontains the omplete logi for a miniature RISC hip that is able to

obey simple ommands governing sixteen registers, eah 16 bits wide.

Complete details about all the SGB generators an be found in the author's

book The Stanford GraphBase (New York: ACM Press, 1993), together with

dozens of short example programs that explain how to manipulate the graphs and

networks that the generators produe. For example, a program alled LADDERS

shows how to �nd a shortest path between one �ve-letter word and another. A

program alled TAKE RISC demonstrates how to put a nanoomputer through

its paes by simulating the ations of a network built from the gates of ris(16).

Hypergraphs. Graphs and networks an be utterly fasinating, but they aren't

the end of the story by any means. Lots of important ombinatorial algorithms

are designed to work with hypergraphs, whih are more general than graphs

beause their edges are allowed to be arbitrary subsets of the verties.

For example, we might have seven verties, identi�ed by nonzero binary

strings v = a

1

a

2

a

3

, together with seven edges, identi�ed by braketed nonzero

binary strings e = [b

1

b

2

b

3

℄, with v 2 e if and only if (a

1

b

1

+a

2

b

2

+a

3

b

3

) mod 2 = 0.

Eah of these edges ontains exatly three verties:

[001℄ = f010; 100; 110g; [010℄ = f001; 100; 101g; [011℄ = f011; 100; 111g;

[100℄ = f001; 010; 011g; [101℄ = f010; 101; 111g;

[110℄ = f001; 110; 111g; [111℄ = f011; 101; 110g: (56)

And by symmetry, eah vertex belongs to exatly three edges. (Edges that

ontain three or more verties are sometimes alled \hyperedges," to distinguish

them from the edges of an ordinary graph. But it's OK to all them just \edges.")

A hypergraph is said to be r-uniform if every edge ontains exatly r verties.

Thus (56) is a 3-uniform hypergraph, and a 2-uniform hypergraph is an ordinary

graph. The omplete r-uniform hypergraph K

(r)

n

has n verties and

�

n

r

�

edges.

Most of the basi onepts of graph theory an be extended to hypergraphs

in a natural way. For example, if H = (V;E) is a hypergraph and if U � V , the

subhypergraph H j U indued by U has the edges fe j e 2 E and e � U g. The

omplement H of an r-uniform hypergraph has the edges of K

(r)

n

that aren't

edges of H. A k-oloring of a hypergraph is an assignment of olors to the

verties so that no edge is monohromati. And so on.

Hypergraphs go by many other names, beause the same properties an be

formulated in many di�erent ways. For example, every hypergraph H = (V;E)

is essentially a family of sets, beause eah edge is a subset of V . A 3-uniform

hypergraph is also alled a triple system. A hypergraph is also equivalent to

a matrix B of 0s and 1s, with one row for eah vertex v and one olumn for

eah edge e; row v and olumn e of this matrix ontains the value b

ve

= [v 2 e℄.
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inidene matrix

bipartite graph

onneted

yle

dual

transposing

regular

distint olumns

Boolean funtion

Matrix B is alled the inidene matrix of H, and we say that \v is inident

with e" when v 2 e. Furthermore, a hypergraph is equivalent to a bipartite

graph, with vertex set V [ E and with the edge v ��� e whenever v is inident

with e. The hypergraph is said to be onneted if and only if the orresponding

bipartite graph is onneted. A yle of length k in a hypergraph is de�ned to

be a yle of length 2k in the orresponding bipartite graph.

For example, the hypergraph (56) an be de�ned by an equivalent inidene

matrix or an equivalent bipartite graph as follows:

[001℄ [010℄ [011℄ [100℄ [101℄ [110℄ [111℄

001 0 1 0 1 0 1 0

010 1 0 0 1 1 0 0

011 0 0 1 1 0 0 1

100

0

B

B

B

B

B

B

B

�

1 1 1 0 0 0 0

1

C

C

C

C

C

C

C

A

101 0 1 0 0 1 0 1

110 1 0 0 0 0 1 1

111 0 0 1 0 1 1 0

[001℄

010

[100℄

001[010℄

101

[101℄

111

[110℄

110

[111℄ 011

[011℄

100

(57)

It ontains 28 yles of length 3, suh as

[101℄���101��� [010℄���001��� [100℄���010��� [101℄: (58)

The dual H

T

of a hypergraph H is obtained by interhanging the roles

of verties and edges, but retaining the inidene relation. In other words, it

orresponds to transposing the inidene matrix. Notie, for example, that the

dual of an r-regular graph is an r-uniform hypergraph.

Inidene matries and bipartite graphs might orrespond to hypergraphs in

whih some edges our more than one, beause distint olumns of the matrix

might be equal. When a hypergraph H = (V;E) does not have any repeated

edges, it orresponds also to yet another ombinatorial objet, namely a Boolean

funtion. For if, say, the vertex set V is f1; 2; : : : ; ng, the funtion

h(x

1

; x

2

; : : : ; x

n

) =

�

fj j x

j

= 1g 2 E

�

(59)

haraterizes the edges of H. For example, the Boolean formula

(x

1

� x

2

� x

4

) ^ (x

2

� x

3

� x

5

) ^ (x

3

� x

4

� x

6

) ^ (x

4

� x

5

� x

7

)

^ (x

5

� x

6

� x

1

) ^ (x

6

� x

7

� x

2

) ^ (x

7

� x

1

� x

3

) ^ (�x

1

_ �x

2

_ �x

3

)

(60)

is another way to desribe the hypergraph of (56) and (57).

The fat that ombinatorial objets an be viewed in so many ways an

be mind-boggling. But it's also extremely helpful, beause it suggests di�erent

ways to solve equivalent problems. When we look at a problem from di�erent

perspetives, our brains naturally think of di�erent ways to attak it. Sometimes

we get the best insights by thinking about how to manipulate rows and olumns

in a matrix. Sometimes we make progress by imagining verties and paths, or

by visualizing lusters of points in spae. Sometimes Boolean algebra is just the

thing. If we're stuk in one domain, another might ome to our resue.
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over

independent

stable

orthogonal

dot produt

Berge

minimal

maximal

ontiguous United States

ditionaries of English

minimal versus minimum+

maximal versus maximum+

optimal versus optimum

Covering and independene. If H = (V;E) is a graph or hypergraph, a set

U of verties is said to over H if every edge ontains at least one member of U .

A set W of verties is said to be independent (or \stable") in H if no edge is

ompletely ontained in W .

From the standpoint of the inidene matrix, a overing is a set of rows

whose sum is nonzero in every olumn. And in the speial ase that H is a

graph, every olumn of the matrix ontains just two 1s; hene an independent

set in a graph orresponds to a set of rows that are mutually orthogonal| that

is, a set for whih the dot produt of any two di�erent rows is zero.

These onepts are opposite sides of the same oin. If U overs H, then

W = V n U is independent in H; onversely, if W is independent in H, then

U = V nW overs H. Both statements are equivalent to saying that the indued

hypergraph H jW has no edges.

This dual relationship between overing and independene, whih was per-

haps �rst noted by Claude Berge [Pro. National Aad. Si. 43 (1957), 842{844℄,

is somewhat paradoxial. Although it's logially obvious and easy to verify, it's

also intuitively surprising. When we look at a graph and try to �nd a large

independent set, we tend to have rather di�erent thoughts from when we look at

the same graph and try to �nd a small vertex over; yet both goals are the same.

A overing set U is minimal if U n u fails to be a over for all u 2 U .

Similarly, an independent set W is maximal if W [w fails to be independent for

all w =2 W . Here, for example, is a minimal over of the 49-vertex graph of the

ontiguous United States, (17), and the orresponding maximal independent set:

Minimal vertex over,

with 38 verties

Maximal independent set,

with 11 verties

(61)

A overing is alled minimum if it has the smallest possible size, and an

independent set is alledmaximum if it has the largest possible size. For example,

with graph (17) we an do muh better than (61):

Minimum vertex over,

with 30 verties

Maximum independent set,

with 19 verties

(62)

Notie the subtle distintion between \minimal" and \minimum" here: In gen-

eral (but in ontrast to most ditionaries of English), people who work with

ombinatorial algorithms use `-al' words like \minimal" or \optimal" to refer
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loally

globally

maximum independent set

NP-omplete

bipartite graph

dual

mathing

line graph

�(H)

independene number

stability number

hromati number

lique number

lique

independent set

omplementary graph

lique over

over

inidene matrix

exat over

{graphs

to ombinatorial on�gurations that are loally best, in the sense that small

hanges don't improve them. The orresponding `-um' words, \minimum" or

\optimum," are reserved for on�gurations that are globally best, onsidered

over all possibilities. It's easy to �nd solutions to any optimization problem

that are merely optimal, in the weak loal sense, by limbing repeatedly until

reahing the top of a hill. But it's usually muh harder to �nd solutions that

are truly optimum. For example, we'll see in Setion 7.9 that the problem of

�nding a maximum independent set in a given graph belongs to a lass of diÆult

problems that are alled NP-omplete.

Even when a problem is NP-omplete, we needn't despair. We'll disuss

tehniques for �nding minimum overs in several parts of this hapter, and those

methods work �ne on smallish problems; the optimum solution in (62) was found

in less than a seond, after examining only a tiny fration of the 2

49

possibilities.

Furthermore, speial ases of NP-omplete problems often turn out to be simpler

than the general ase. In Setion 7.5.1 we'll see that a minimum vertex over an

be disovered quikly in any bipartite graph, or in any hypergraph that is the dual

of a graph. And in Setion 7.5.5 we'll study eÆient ways to disover a maximum

mathing, whih is a maximum independent set in the line graph of a given graph.

The problem of maximizing the size of an independent set ours suÆiently

often that it has aquired a speial notation: If H is any hypergraph, the number

�(H) = max

�

jW j

�

�

W is an independent set of verties in H

	

(63)

is alled the independene number (or the stability number) of H. Similarly,

�(H) = minfk j H is k-olorableg (64)

is alled the hromati number of H. Notie that �(H) is the size of a mini-

mum overing of H by independent sets, beause the verties that reeive any

partiular olor must be independent aording to our de�nitions.

These de�nitions of �(H) and �(H) apply in partiular to the ase when

H is an ordinary graph, but of ourse we usually write �(G) and �(G) in suh

situations. Graphs have another important number alled their lique number,

!(G) = max

�

jXj

�

�

X is a lique in G

	

; (65)

where a \lique" is a set of mutually adjaent verties. Clearly

!(G) = �(G); (66)

beause a lique in G is an independent set in the omplementary graph. Sim-

ilarly we an see that �(G) is the minimum size of a \lique over," whih is a

set of liques that exatly overs all of the verties.

Several instanes of \exat over problems" were mentioned earlier in this

setion, without an explanation of exatly what suh a problem really signi�es.

Finally we're ready for the de�nition: Given the inidene matrix of a hyper-

graph H, an exat over of H is a set of rows whose sum is (1 1 : : : 1). In other

words, an exat over is a set of verties that touhes eah hyperedge exatly

one; an ordinary over is only required to touh eah hyperedge at least one.
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Langford pairs

Skolem

Fibonai string

Godfrey

well-balaned

planar

Langford triples

magi square

Gr�o-Latin

Hebrew

Euler

addition table

intruders

EXERCISES

1. [25 ℄ Suppose n = 4m � 1. Construt arrangements of Langford pairs for the

numbers f1; 1; : : : ; n; ng, with the property that we also obtain a solution for n = 4m

by hanging the �rst `2m�1' to `4m' and appending `2m�1 4m' at the right. Hint:

Put the m� 1 even numbers 4m�4, 4m�6, : : : , 2m at the left.

2. [18 ℄ For whih n an f0; 0; 1; 1; : : : ; n�1; n�1g be arranged as Langford pairs?

3. [22 ℄ Suppose we arrange the numbers f0; 0; 1; 1; : : : ; n�1; n�1g in a irle, instead

of a straight line, with distane k between the two k's. Do we get solutions that are

essentially distint from those of exerise 2?

4. [M20 ℄ (T. Skolem, 1957.) Show that the Fibonai string S

1

= babbababbabba : : :

of exerise 1.2.8{36 leads diretly to an in�nite sequene 0012132453674 : : : of Langford

pairs for the set of all nonnegative integers, if we simply replae the a's and b's

independently by 0, 1, 2, et., from left to right.

x 5. [HM22 ℄ If a permutation of f1; 1; 2; 2; : : : ; n; ng is hosen at random, what is the

probability that the two k's are exatly k positions apart, given k? Use this formula

to guess the size of the Langford numbers L

n

in (1).

x 6. [M28 ℄ (M. Godfrey, 2002.)Let f(x

1

; : : : ; x

2n

) =

Q

n

k=1

(x

k

x

n+k

P

2n�k�1

j=1

x

j

x

j+k+1

):

a) Prove that

P

x

1

;:::;x

2n

2f�1;+1g

f(x

1

; : : : ; x

2n

) = 2

2n+1

L

n

.

b) Explain how to evaluate this sum in O(4

n

n) steps. How many bits of preision

are needed for the arithmeti?

) Gain a fator of eight by exploiting the identities

f(x

1

; : : : ; x

2n

) = f(�x

1

; : : : ;�x

2n

) = f(x

2n

; : : : ; x

1

) = f(x

1

;�x

2

; : : : ; x

2n�1

;�x

2n

):

7. [M22 ℄ Prove that every Langford pairing of f1; 1; : : : ; 16; 16g must have seven

unompleted pairs at some point, when read from left to right.

8. [23 ℄ The simplest Langford sequene is not only well-balaned; it's planar, in the

sense that its pairs an be onneted up without rossing lines as in (2):

2 23 31 1

:

Find all of the planar Langford pairings for whih n � 8.

9. [24 ℄ (Langford triples.) In how many ways an f1; 1; 1; 2; 2; 2; : : : ; 9; 9; 9g be ar-

ranged in a row so that onseutive k's are k apart, for 1 � k � 9?

10. [M20 ℄ Explain how to onstrut a magi square diretly from Fig. 1. (Convert

eah ard into a number between 1 and 16, in suh a way that the rows, olumns, and

main diagonals all sum to 34.)

11. [20 ℄ Extend (5) to a \Hebrai-Gr�o-Latin" square by appending one of the

letters f�; A; B; Cg to the two-letter string in eah ompartment. No letter pair (Latin,

Greek), (Latin, Hebrew), or (Greek, Hebrew) should appear in more than one plae.

x 12. [M21 ℄ (L. Euler.) Let L

ij

= (i+j) mod n for 0 � i; j < n be the addition table for

integers mod n. Prove that a latin square orthogonal to L exists if and only if n is odd.

13. [M25 ℄ A 10� 10 square an be divided into four quarters of size 5� 5. A 10� 10

latin square formed from the digits f0; 1; : : : ; 9g has k \intruders" if its upper left

quarter has exatly k elements � 5. (See exerise 14(e) for an example with k = 3.)

Prove that the square has no orthogonal mate unless there are at least three intruders.
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mutually orthogonal

Ryser

order n

Order of a latin square

latin square

transversals

orthogonal mates

exat over problem

n-ary

orthogonal

orthogonal array

orthogonal vetors

dot produt

geometri net

parallel

orthogonal array

geometri net

Error-orreting odes+

Hamming distane+

14. [29 ℄ Find all orthogonal mates of the following latin squares:

(a)

3145926870

2819763504

9452307168

6208451793

8364095217

5981274036

4627530981

0576148329

1730689452

7093812645

;

(b)

2718459036

0287135649

7524093168

1435962780

6390718425

4069271853

3102684597

9871546302

8956307214

5643820971

;

()

0572164938

6051298473

4867039215

1439807652

8324756091

7203941586

5610473829

9148625307

2795380164

3986512740

;

(d)

1680397425

8346512097

9805761342

2754689130

0538976214

4963820571

7192034658

6219405783

3471258906

5027143869

;

(e)

7823456019

8234067195

2340178956

3401289567

4012395678

5678912340

6789523401

0195634782

1956740823

9567801234

:

15. [50 ℄ Find three 10� 10 latin squares that are mutually orthogonal to eah other.

16. [48 ℄ (H. J. Ryser, 1967.) A latin square is said to be of \order n" if it has n rows,

n olumns, and n symbols. Does every latin square of odd order have a transversal?

17. [25 ℄ Let L be a latin square with elements L

ij

for 0 � i; j < n. Show that the

problems of (a) �nding all the transversals of L, and (b) �nding all the orthogonal

mates of L, are speial ases of the general exat over problem.

18. [M23 ℄ The string x

1

x

2

: : : x

N

is alled \n-ary" if eah element x

j

belongs to the

set f0; 1; : : : ; n�1g of n-ary digits. Two strings x

1

x

2

: : : x

N

and y

1

y

2

: : : y

N

are said to

be orthogonal if the N pairs (x

j

; y

j

) are distint for 1 � j � N . (Consequently, two

n-ary strings annot be orthogonal if their length N exeeds n

2

.) An n-ary matrix

with m rows and n

2

olumns whose rows are orthogonal to eah other is alled an

orthogonal array of order n and depth m.

Find a orrespondene between orthogonal arrays of depth m and lists of m � 2

mutually orthogonal latin squares. What orthogonal array orresponds to exerise 11?

x 19. [M25 ℄ Continuing exerise 18, prove that an orthogonal array of order n > 1 and

depth m is possible only if m � n + 1. Show that this upper limit is ahievable when

n is a prime number p. Write out an example when p = 5.

20. [HM20 ℄ Show that if eah element k in an orthogonal array is replaed by e

2�ki=n

,

the rows beome orthogonal vetors in the usual sense (their dot produt is zero).

x 21. [M21 ℄ A geometri net is a system of points and lines that obeys three axioms:

i) Eah line is a set of points.

ii) Distint lines have at most one point in ommon.

iii) If p is a point and L is a line with p =2 L, then there is exatly one line M suh

that p 2M and L \M = ;.

If L \M = ; we say that L is parallel to M , and write L kM .

a) Prove that the lines of a geometri net an be partitioned into equivalene lasses,

with two lines in the same lass if and only if they are equal or parallel.

b) Show that if there are at least two lasses of parallel lines, every line ontains the

same number of points as the other lines in its lass.

) Furthermore, if there are at least three lasses, there are numbers m and n suh

that all points belong to exatly m lines and all lines ontain exatly n points.

x 22. [M22 ℄ Show that every orthogonal array an be regarded as a geometri net. Is

the onverse also true?

23. [M21 ℄ (Error-orreting odes.) The \Hamming distane" d(x; y) between two

strings x = x

1

: : : x

N

and y = y

1

: : : y

N

is the number of positions j where x

j

6= y

j

. A
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odewords, b-ary

distane of a ode

geometri net

parity bits

latin square

word square

ditionaries

palindromes

mirror pairs

alphabeti order

lexiographially

MManus

arithmeti progression

perfet shu�e

Morris

vowels

onsonants

omplete binary trie

b-ary ode with n information digits and r hek digits is a set C(b; n; r) of b

n

strings

x = x

1

: : : x

n+r

, where 0 � x

j

< b for 1 � j � n+r. When a odeword x is transmitted

and the message y is reeived, d(x; y) is the number of transmission errors. The ode

is alled t-error orreting if we an reonstrut the value of x whenever a message y

is reeived with d(x; y) � t. The distane of the ode is the minimum value of d(x; x

0

),

taken over all pairs of odewords x 6= x

0

.

a) Prove that a ode is t-error orreting if and only if its distane exeeds 2t.

b) Prove that a single-error orreting b-ary ode with 2 information digits and 2 hek

digits is equivalent to a pair of orthogonal latin squares of order b.

) Furthermore, a ode C(b; 2; r) with distane r+1 is equivalent to a set of r mutually

orthogonal latin squares of order b.

x 24. [M30 ℄ A geometri net with N points and R lines leads naturally to the binary

ode C(2;N;R) with odewords x

1

: : : x

N

x

N+1

: : : x

N+R

de�ned by the parity bits

x

N+k

= f

k

(x

1

; : : : ; x

N

) = (

P

fx

j

j point j lies on line kg)mod 2:

a) If the net has m lasses of parallel lines, prove that this ode has distane m+ 1.

b) Find an eÆient way to orret up to t errors with this ode, assuming thatm = 2t.

Illustrate the deoding proess in the ase N = 25, R = 30, t = 3.

25. [27 ℄ Find a latin square whose rows and olumns are �ve-letter words. (For this

exerise you'll need to dig out the big ditionaries.)

x 26. [25 ℄ Compose a meaningful English sentene that ontains only �ve-letter words.

27. [20 ℄ How many SGB words ontain exatly k distint letters, for 1 � k � 5?

28. [20 ℄ Are there any pairs of SGB word vetors that di�er by�1 in eah omponent?

29. [20 ℄ Find all SGB words that are palindromes (equal to their reetion), or mirror

pairs (like regal lager).

x 30. [20 ℄ The letters of first are in alphabeti order from left to right. What is the

lexiographially �rst suh �ve-letter word? What is the last?

31. [21 ℄ (C. MManus.) Find all sets of three SGB words that are in arithmeti

progression but have no ommon letters in any �xed position. (One suh example is

fpower; slugs; visitg.)

32. [23 ℄ Does the English language ontain any 10-letter words a

0

a

1

: : : a

9

for whih

both a

0

a

2

a

4

a

6

a

8

and a

1

a

3

a

5

a

7

a

9

are SGB words?

33. [20 ℄ (Sot Morris.) Complete the following list of 26 interesting SGB words:

about; baon; faed; under; hief; : : : ; pizza:

x 34. [21 ℄ For eah SGB word that doesn't inlude the letter y, obtain a 5-bit binary

number by hanging the vowels fa; e; i; o; ug to 1 and the other letters to 0. What are

the most ommon words for eah of the 32 binary outomes?

x 35. [26 ℄ Sixteen well-hosen elements of WORDS(1000) lead to the branhing pattern

sheep

sheet

shelf

shell

shore

short

shown

shows

stalk

stall

stars

start

steal

steam

steel

steep

;
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omplete binary trie

trie

symmetries

word ube

degree

smile

graphs{

Lehmer

Petersen graph

symmetries

Chv�atal's graph

ontiguous USA+

planar

maximal planar graph

ubi graphs

geometri net

bipartite graph

girth

diameter

girth

words

giant omponent

whih is a omplete binary trie of words that begin with the letter s. But there's no suh

pattern of words beginning with a, even if we onsider the full olletion WORDS(5757).

What letters of the alphabet an be used as the starting letter of sixteen words

that form a omplete binary trie within WORDS(n), given n?

36. [M17 ℄ Explain the symmetries that appear in the word ube (10). Also show that

two more suh ubes an be obtained by hanging only the two words fstove; eventg.

37. [20 ℄ Whih verties of the graph words (5757; 0; 0; 0) have maximum degree?

38. [22 ℄ Using the digraph rule in (14), hange tears to smile in just three steps,

without omputer assistane.

39. [M00 ℄ Is G n e an indued subgraph of G? Is it a spanning subgraph?

40. [M15 ℄ How many (a) spanning (b) indued subgraphs does a graph G = (V;E)

have, when jV j = n and jEj = e?

41. [M10 ℄ For whih integers n do we have (a) K

n

= P

n

? (b) K

n

= C

n

?

42. [15 ℄ (D. H. Lehmer.) Let G be a graph with 13 verties, in whih every vertex

has degree 5. Make a nontrivial statement about G.

43. [23 ℄ Are any of the following graphs the same as the Petersen graph?

44. [M23 ℄ How many symmetries does Chv�atal's graph have? (See Fig. 2(f).)

45. [20 ℄ Find an easy way to 4-olor the planar graph (17). Would 3 olors suÆe?

46. [M25 ℄ Let G be a graph with n � 3 verties, de�ned by a planar diagram that

is \maximal," in the sense that no additional lines an be drawn between nonadjaent

verties without rossing an existing edge.

a) Prove that the diagram partitions the plane into regions that eah have exatly

three verties on their boundary. (One of these regions is the set of all points that

lie outside the diagram.)

b) Therefore G has exatly 3n� 6 edges.

47. [M22 ℄ Prove that the omplete bigraph K

3;3

isn't planar.

48. [M25 ℄ Complete the proof of Theorem B by showing that the stated proedure

never gives the same olor to two adjaent verties.

49. [18 ℄ Draw diagrams of all the ubi graphs with at most 6 verties.

50. [M24 ℄ Find all bipartite graphs that an be 3-olored in exatly 24 ways.

x 51. [M22 ℄ Given a geometri net as desribed in exerise 21, onstrut the bipartite

graph whose verties are the points p and the lines L of the net, with p��� L if and

only if p 2 L. What is the girth of this graph?

52. [M16 ℄ Find a simple inequality that relates the diameter of a graph to its girth.

(How small an the diameter be, if the girth is large?)

53. [15 ℄ Whih of the words world and happy belongs to the giant omponent of the

graph words (5757; 0; 0; 0)?
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postal odes

omponents

strongly onneted omponents

omplete k-partite graph

multigraph

digraph

simple

tournament

oriented spanning path

K~

n

transitive tournament

out-degree

permutation digraph

omponents

oriented yles

even

odd

permanent

girth

adjaeny matrix

eigenvetors

eigenvalues

x 54. [21 ℄ The 49 postal odes in graph (17) are AL, AR, AZ, CA, CO, CT, DC, DE, FL, GA,

IA, ID, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV,

NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV, WY, in alphabetial order.

a) Suppose we onsider two states to be adjaent if their postal odes agree in one

plae (namely AL���AR���OR���OH, et.). What are the omponents of this graph?

b) Now form a direted graph with XY ��! YZ (for example, AL ��! LA ��! AR, et.).

What are the strongly onneted omponents of this digraph? (See Setion 2.3.4.2.)

) The United States has additional postal odes AA, AE, AK, AP, AS, FM, GU, HI, MH,

MP, PW, PR, VI, besides those in (17). Reonsider question (b), using all 62 odes.

55. [M20 ℄ How many edges are in the omplete k-partite graph K

n

1

;:::;n

k

?

x 56. [M10 ℄ True or false: A multigraph is a graph if and only if the orresponding

digraph is simple.

57. [M10 ℄ True or false: Verties u and v are in the same onneted omponent of a

direted graph if and only if either d(u; v) <1 or d(v; u) <1.

58. [M17 ℄ Desribe all (a) graphs (b) multigraphs that are regular of degree 2.

x 59. [M23 ℄ A tournament of order n is a digraph on n verties that has exatly

�

n

2

�

ars, either u��!v or v��!u for every pair of distint verties fu; vg.

a) Prove that every tournament ontains an oriented spanning path v

1

��!� � ���!v

n

.

b) Consider the tournament on verties f0; 1; 2; 3; 4g for whih u��! v if and only if

(u� v) mod 5 � 3. How many oriented spanning paths does it have?

) Is K~

n

the only tournament of order n that has a unique oriented spanning path?

x 60. [M22 ℄ Let u be a vertex of greatest out-degree in a tournament, and let v be any

other vertex. Prove that d(u; v) � 2.

61. [M16 ℄ Construt a digraph that has k walks of length k from vertex 1 to vertex 2.

62. [M21 ℄ A permutation digraph is a direted graph in whih every vertex has out-

degree 1 and in-degree 1; therefore its omponents are oriented yles. If it has

n verties and k omponents, we all it even if n� k is even, odd if n� k is odd.

a) Let G be a direted graph with adjaeny matrix A. Prove that the number of

spanning permutation digraphs of G is perA, the permanent of A.

b) Interpret the determinant, detA, in terms of spanning permutation digraphs.

63. [M23 ℄ Let G be a graph of girth g in whih every vertex has at least d neighbors.

Prove that G has at least N verties, where

N =

(

1 +

P

0�k<t

d(d� 1)

k

; if g = 2t+ 1;

1 + (d� 1)

t

+

P

0�k<t

d(d� 1)

k

; if g = 2t+ 2.

x 64. [M21 ℄ Continuing exerise 63, show that there's a unique graph of girth 4, mini-

mum degree d, and order 2d, for eah d � 2.

x 65. [HM31 ℄ Suppose graph G has girth 5, minimum degree d, and N = d

2

+1 verties.

a) Prove that the adjaeny matrix A of G satis�es the equation A

2

+A = (d�1)I+J .

b) Sine A is a symmetri matrix, it has N orthogonal eigenvetors x

j

, with orre-

sponding eigenvalues �

j

, suh that Ax

j

= �

j

x

j

for 1 � j � N . Prove that eah

�

j

is either d or (�1�

p

4d� 3)=2.

) Show that if

p

4d� 3 is irrational, then d = 2. Hint: �

1

+ � � �+�

N

= trae(A) = 0.

d) And if

p

4d� 3 is rational, d 2 f3; 7; 57g.

66. [M30 ℄ Continuing exerise 65, onstrut suh a graph when d = 7.
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girth

adjaeny matries

out-degree

in-degree

SGB format

analysis of alg

depth-�rst searh

MMIX

MMIXAL

bipartite

random graph

roget

graph generator

board

hess, generalized piees

wraparound

lexiographially

omplete graph

path

yle

transitive tournament

oriented path

oriented yle

m� n grid

m� n ylinder

m� n torus

m� n rook graph

m� n direted torus

null graph

n-ube

loops

parallel (repeated) edges

multigraphs

diameter

omplement

67. [M48 ℄ Is there a regular graph of degree 57, order 3250, and girth 5?

68. [M20 ℄ How many di�erent adjaeny matries does a graph G on n verties have?

x 69. [20 ℄ Extending (31), explain how to alulate both out-degree ODEG(v) and in-

degree IDEG(v) for all verties v in a graph that has been represented in SGB format.

x 70. [M20 ℄ How often is eah step of Algorithm B performed, when that algorithm

suessfully 2-olors a graph with m ars and n verties?

71. [26 ℄ Implement Algorithm B for the MMIX omputer, using the MMIXAL assembly

language. Assume that, when your program begins, register v0 points to the �rst vertex

node and register n ontains the number of verties.

x 72. [M22 ℄ When COLOR(v) is set in step B6, all u the parent of v; but when COLOR(w)

is set in step B3, say that w has no parent. De�ne the anestors of vertex v, reursively,

to be v together with the anestors of v's parent (if any).

a) Prove that if v is below u in the stak during Algorithm B, the parent of v is an

anestor of u.

b) Furthermore, if COLOR(v) = COLOR(u) in step B6, v is urrently in the stak.

) Use these fats to extend Algorithm B so that, if the given graph is not bipartite,

the names of verties in a yle of odd length are output.

73. [15 ℄ What's another name for random graph(10; 45; 0; 0; 0; 0; 0; 0; 0; 0)?

74. [21 ℄ What vertex of roget(1022; 0; 0; 0) has the largest out-degree?

75. [22 ℄ The SGB graph generator board(n

1

; n

2

; n

3

; n

4

; p; w; o) reates a graph whose

verties are the t-dimensional integer vetors (x

1

; : : : ; x

t

) for 0 � x

i

< b

i

, determined

by the �rst four parameters (n

1

; n

2

; n

3

; n

4

) as follows: Set n

5

 0 and let j � 0 be min-

imum suh that n

j+1

� 0. If j = 0, set b

1

 b

2

 8 and t 2; this is the default 8�8

board. Otherwise if n

j+1

= 0, set b

i

 n

i

for 1 � i � j and t = j. Finally, if n

j+1

< 0,

set t  jn

j+1

j, and set b

i

to the ith element of the periodi sequene (n

1

; : : : ; n

j

;

n

1

; : : : ; n

j

; n

1

; : : : ). (For example, the spei�ation (n

1

; n

2

; n

3

; n

4

) = (2; 3; 5;�7) is

about as triky as you an get; it produes a 7-dimensional board with (b

1

; : : : ; b

7

) =

(2; 3; 5; 2; 3; 5; 2), hene a graph with 2 � 3 � 5 � 2 � 3 � 5 � 2 = 1800 verties.)

The remaining parameters (p;w; o), for \piee, wrap, and orientation," determine

the ars of the graph. Suppose �rst that w = o = 0. If p > 0, we have (x

1

; : : : ; x

t

)��!

(y

1

; : : : ; y

t

) if and only if y

i

= x

i

+ Æ

i

for 1 � i � t, where (Æ

1

; : : : ; Æ

t

) is an integer

solution to the equation Æ

2

1

+ � � �+ Æ

2

t

= jpj. And if p < 0, we allow also y

i

= x

i

+ kÆ

i

for k � 1, orresponding to k moves in the same diretion.

If w 6= 0, let w = (w

t

: : : w

1

)

2

in binary notation. Then we allow \wraparound,"

y

i

= (x

i

+ Æ

i

) mod b

i

or y

i

= (x

i

+ kÆ

i

) mod b

i

, in eah oordinate i for whih w

i

= 1.

If o 6= 0, the graph is direted; o�sets (Æ

1

; : : : ; Æ

t

) produe ars only when they are

lexiographially greater than (0; : : : ; 0). But if o = 0, the graph is undireted.

Find settings of (n

1

; n

2

; n

3

; n

4

; p; w; o) for whih board will produe the following

fundamental graphs: (a) the omplete graph K

n

; (b) the path P

n

; () the yle C

n

;

(d) the transitive tournament K~

n

; (e) the oriented path P~

n

; (f) the oriented yle C~

n

;

(g) the m�n grid P

m

P

n

; (h) the m�n ylinder P

m

C

n

; (i) the m�n torus C

m

C

n

;

(j) the m� n rook graph K

m

K

n

; (k) the m� n direted torus C~

m

C~

n

; (l) the null

graph K

n

; (m) the n-ube P

2

� � � P

2

with 2

n

verties.

76. [20 ℄ Can board(n

1

; n

2

; n

3

; n

4

; p; w; o) produe loops, or parallel (repeated) edges?

77. [M20 ℄ If graph G has diameter � 3, prove that G has diameter � 3.
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self-omplementary

self-omplementary graph

diameter

omplement of a simple digraph

line graphs

indued subgraph

regular graph

omponents

Ore

Wilson

Petersen graph

edge-olorable

wheel

yles

assoiative laws

ograph

omplementation

diret sum

graphs of order 4

graph algebra++

graph produts+

Cartesian produt++

diret produt+

strong produt++

odd produt+

lexiographi produt+

digraphs

78. [M26 ℄ Let G = (V;E) be a graph with jV j = n and G

�

=

G. (In other words, G

is self-omplementary : There's a permutation ' of V suh that u��� v if and only if

'(u) /���'(v) and u 6= v. We an imagine that the edges of K

n

have been painted blak

or white; the white edges de�ne a graph that's isomorphi to the graph of blak edges.)

a) Prove that nmod 4 = 0 or 1. Draw diagrams for all suh graphs with n < 8.

b) Prove that if nmod 4 = 0, every yle of the permutation ' has a length that is a

multiple of 4.

) Conversely, every permutation ' with suh yles arises in some suh graph G.

d) Extend these results to the ase nmod 4 = 1.

x 79. [M22 ℄ Given k � 0, onstrut a graph on the verties f0; 1; : : : ; 4kg that is both

regular and self-omplementary.

x 80. [M22 ℄ A self-omplementary graph must have diameter 2 or 3, by exerise 77.

Given k � 2, onstrut self-omplementary graphs of both possible diameters, when

(a) V = f1; 2; : : : ; 4kg; (b) V = f0; 1; 2; : : : ; 4kg.

81. [20 ℄ The omplement of a simple digraph without loops is de�ned by extending

(35) and (36), so that we have u! v in D if and only if u 6= v and u 6! v in D. What

are the self-omplementary digraphs of order 3?

82. [M21 ℄ Are the following statements about line graphs true or false?

a) If G is ontained in G

0

, then L(G) is an indued subgraph of L(G

0

).

b) If G is a regular graph, so is L(G).

) L(K

m;n

) is regular, for all m;n > 0.

d) L(K

m;n;r

) is regular, for all m;n; r > 0.

e) L(K

m;n

)

�

=

K

m

K

n

.

f) L(K

4

)

�

=

K

2;2;2

.

g) L(P

n+1

)

�

=

P

n

.

h) The graphs G and L(G) both have the same number of omponents.

83. [16 ℄ Draw the graph L(K

5

).

x 84. [M21 ℄ Is L(K

3;3

) self-omplementary?

85. [M22 ℄ (O. Ore, 1962.) For whih graphs G do we have G

�

=

L(G)?

86. [M20 ℄ (R. J. Wilson.) Find a graph G of order 6 for whih G

�

=

L(G).

87. [20 ℄ Is the Petersen graph (a) 3-olorable? (b) 3-edge-olorable?

88. [M20 ℄ The graph W

n

= K

1

���C

n�1

is alled the wheel of order n,

when n � 4. How many yles does it ontain as subgraphs?

W

8

89. [M20 ℄ Prove the assoiative laws, (42) and (43).

x 90. [M24 ℄ A graph is alled a ograph if it an be onstruted algebraially from

1-element graphs by means of omplementation and/or diret sum operations. For

example, there are four nonisomorphi graphs of order 3, and they all are ographs:

K

3

= K

1

� K

1

� K

1

and its omplement, K

3

; K

1;2

= K

1

� K

2

and its omplement,

K

1;2

, where K

2

= K

1

�K

1

.

Exhaustive enumeration shows that there are 11 nonisomorphi graphs of order 4.

Give algebrai formulas to prove that 10 of them are ographs. Whih one isn't?

x 91. [20 ℄ Draw diagrams for the 4-vertex graphs (a) K

2

K

2

; (b) K

2


K

2

; () K

2

�K

2

;

(d) K

2

4K

2

; (e) K

2

ÆK

2

; (f) K

2

ÆK

2

; (g) K

2

ÆK

2

.

92. [21 ℄ The �ve types of graph produts de�ned in the text work �ne for simple

digraphs as well as for ordinary graphs. Draw diagrams for the 4-vertex digraphs

(a) K~

2

K~

2

; (b) K~

2


K~

2

; () K~

2

�K~

2

; (d) K~

2

4K~

2

; (e) K~

2

ÆK~

2

.
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words

indued subgraphs

�ve-letter words

degree

diret produt

adjaeny matrix

distributive law

diret sums

distane

king moves

onjugate

graphial

onneted

degree sequene

self-omplementary graph

simple direted graph

in-degree

out-degree

bipartite graph

93. [15 ℄ Whih of the �ve graph produts takes K

m

and K

n

into K

mn

?

94. [10 ℄ Are the SGB words graphs indued subgraphs of P

26

P

26

P

26

P

26

P

26

?

95. [M20 ℄ If vertex u of G has degree d

u

and vertex v of H has degree d

v

, what is

the degree of vertex (u; v) in (a) G H? (b) G
H? () G�H? (d) G4H? (e) G ÆH?

x 96. [M22 ℄ Let A be an m �m

0

matrix with a

uu

0

in row u and olumn u

0

; let B be

an n � n

0

matrix with b

vv

0

in row v and olumn v

0

. The diret produt A 
 B is an

mn �m

0

n

0

matrix with a

uu

0

b

vv

0

in row (u; v) and olumn (u

0

; v

0

). Thus A 
 B is the

adjaeny matrix of G
H, if A and B are the adjaeny matries of G and H.

Find analogous formulas for the adjaeny matries of (a) G H; (b) G�H;

() G4H; (d) G ÆH.

97. [M25 ℄ Find as many interesting algebrai relations between graph sums and prod-

uts as you an. (For example, the distributive law (A�B)
C = (A
C)�(B
C) for

diret sums and produts of matries implies that (G�G

0

)
H = (G
H)� (G

0


H).

We also have K

m

H = H � � � � �H, with m opies of H, et.)

98. [M20 ℄ If the graph G has k omponents and the graph H has l omponents, how

many omponents are in the graphs G H and G�H?

99. [M20 ℄ Let d

G

(u; u

0

) be the distane from vertex u to vertex u

0

in graph G.

Prove that d

G H

((u; v); (u

0

; v

0

)) = d

G

(u; u

0

) + d

H

(v; v

0

), and �nd a similar formula

for d

G�H

((u; v); (u

0

; v

0

)).

100. [M21 ℄ For whih onneted graphs is G
H onneted?

x 101. [M25 ℄ Find all onneted graphs G and H suh that G H

�

=

G
H.

102. [M20 ℄ What's a simple algebrai formula for the graph of king moves (whih

take one step horizontally, vertially, or diagonally) on an m� n board?

103. [20 ℄ Complete tableau (54). Also apply Algorithm H to the sequene 866444444.

104. [18 ℄ Explain the manipulation of variables i, t, and r in steps H3 and H4.

105. [M34 ℄ Suppose d

1

� � � � � d

n

� 0, and let 

1

� � � � � 

d

1

be its onjugate as in

Algorithm H. Prove that d

1

: : : d

n

is graphial if and only if d

1

+ � � �+ d

n

is even and

d

1

+ � � �+ d

k

� 

1

+ � � �+ 

k

� k for 1 � k � s, where s is maximal suh that d

s

� s.

106. [20 ℄ True or false: If d

1

= � � � = d

n

= d < n and nd is even, Algorithm H

onstruts a onneted graph.

107. [M21 ℄ Prove that the degree sequene d

1

: : : d

n

of a self-omplementary graph

satis�es d

j

+ d

n+1�j

= n� 1 and d

2j�1

= d

2j

for 1 � j � n=2.

x 108. [M23 ℄ Design an algorithm analogous to Algorithm H that onstruts a simple

direted graph on verties f1; : : : ; ng, having spei�ed values d

�

k

and d

+

k

for the in-degree

and out-degree of eah vertex k, whenever at least one suh graph exists.

109. [M20 ℄ Design an algorithm analogous to Algorithm H that onstruts a bipartite

graph on verties f1; : : : ;m + ng, having spei�ed degrees d

k

for eah vertex k when

possible; all edges j���k should have j � m and k > m.

110. [M22 ℄ Without using Algorithm H, show by a diret onstrution that the se-

quene d

1

: : : d

n

is graphial when n > d

1

� � � � � d

n

� d

1

�1 and d

1

+ � � �+d

n

is even.

x 111. [25 ℄ Let G be a graph on verties V = f1; : : : ; ng, with d

k

the degree of k and

max(d

1

; : : : ; d

n

) = d. Prove that there's an integer N with n � N � 2n and a graph H

on verties f1; : : : ; Ng, suh that H is regular of degree d and H jV = G. Explain how

to onstrut suh a regular graph with N as small as possible.
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network

miles

equidistant ities

hypergraph

inidene matrix

multigraph

bipartite graph

inidene matrix

omplete bipartite r-uniform hypergraph

K

(r)

m;n

hyperforest

yles

degrees

direted hypergraphs

maximal independent sets

triple systems

dual

Petersen graph

Chv�atal graph

kingwise torus

queen graph

omplete k-partite graph

tightly olorable

musial graph

order

size

girth

diameter

independene number

hromati number

edge-hromati number

lique number

minimum vertex over

maximum mathing

regular

planar

onneted

direted

free tree

Hamiltonian

x 112. [20 ℄ Does the network miles(128; 0; 0; 0; 0; 127; 0) have three equidistant ities?

If not, what three ities ome losest to an equilateral triangle?

113. [05 ℄ When H is a hypergraph with m edges and n verties, how many rows and

olumns does its inidene matrix have?

114. [M20 ℄ Suppose the multigraph (26) is regarded as a hypergraph. What is the

orresponding inidene matrix? What is the orresponding bipartite graph?

x 115. [M20 ℄ When B is the inidene matrix of a graph G, explain the signi�ane of

the symmetri matries B

T

B and BB

T

.

116. [M17 ℄ Desribe the edges of the omplete bipartite r-uniform hypergraph K

(r)

m;n

.

117. [M22 ℄ How many nonisomorphi 1-uniform hypergraphs havem edges and n ver-

ties? (Edges may be repeated.) List them all when m = 4 and n = 3.

118. [M20 ℄ A \hyperforest" is a hypergraph that ontains no yles. If a hyperforest

hasm edges, n verties, and p omponents, what's the sum of the degrees of its verties?

119. [M18 ℄ What hypergraph orresponds to (60) without the �nal term (�x

1

_�x

2

_�x

3

)?

120. [M20 ℄ De�ne direted hypergraphs, by generalizing the onept of direted graphs.

121. [M19 ℄ Given a hypergraph H = (V;E), let I(H) = (V;F ), where F is the family

of all maximal independent sets ofH. Express �(H) in terms of jV j, jF j, and �(I(H)

T

).

x 122. [M24 ℄ Find a maximum independent set and a minimum oloring of the following

triple systems: (a) the hypergraph (56); (b) the dual of the Petersen graph.

123. [17 ℄ Show that the optimum olorings of K

n

K

n

are equivalent to the solutions

of a famous ombinatorial problem.

124. [M22 ℄ What is the hromati number of the Chv�atal graph, Fig. 2(f)?

125. [M48 ℄ For what values of g is there a 4-regular, 4-hromati graph of girth g?

x 126. [M22 ℄ Find optimum olorings of the \kingwise torus," C

m

�C

n

, when m;n � 3.

127. [M22 ℄ Prove that (a) �(G) + �(G) � n+ 1 and (b) �(G)�(G) � n when G is a

graph of order n, and �nd graphs for whih equality holds.

128. [M18 ℄ Express �(G H) in terms of �(G) and �(H), when G and H are graphs.

129. [23 ℄ Desribe the maximal liques of the 8� 8 queen graph (37).

130. [M20 ℄ How many maximal liques are in a omplete k-partite graph?

131. [M30 ℄ Let N(n) be the largest number of maximal liques that an n-vertex graph

an have. Prove that 3

bn=3

� N(n) � 3

dn=3e

.

x 132. [M20 ℄ We all G tightly olorable if �(G) = !(G). Prove that �(G�H) =

�(G)�(H) whenever G and H are tightly olorable.

133. [21 ℄ The \musial graph" illustrated here pro-

vides a nie way to review numerous de�nitions

that were given in this setion, beause its proper-

ties are easily analyzed. Determine its (a) order;

(b) size; () girth; (d) diameter; (e) independ-

ene number, �(G); (f) hromati number, �(G);

(g) edge-hromati number, �(L(G)); (h) lique

number, !(G); (i) algebrai formula as a produt

of well-known smaller graphs. What is the size

of (j) a minimum vertex over? (k) a maximum

mathing? Is G (l) regular? (m) planar? (n) on-

neted? (o) direted? (p) a free tree? (q) Hamiltonian?
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automorphisms

random walk

musial graph

walk

Cayley digraph

Petersen graph

{graphs

generalized toruses+

translation, tiling by+

tiling of the plane

134. [M22 ℄ How many automorphisms does the musial graph have?

x 135. [HM26 ℄ Suppose a omposer takes a random walk in the musial graph, starting

at vertex C and then making �ve equally likely hoies at eah step. Show that after

an even number of steps, the walk is more likely to end at vertex C than at any other

vertex. What is the exat probability of going from C to C in a 12-step walk?

136. [HM23 ℄ A Cayley digraph is a direted graph whose verties V are the elements

of a group and whose ars are v ��! v�

j

for 1 � j � d and all verties v, where

(�

1

; : : : ; �

d

) are �xed elements of the group. A Cayley graph is a Cayley digraph that

is also a graph. Is the Petersen graph a Cayley graph?

0

4

8

3

7

11

6

10

2

9

1

5

0

4

8

3

7

11

6

10

2
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2

9

1

5

0

4

8

3

7

11

6

10

2
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1
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6
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1
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0
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8

3

7
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6
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9

1

5

0

4

8

3

7
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2

9

1

5

0

4

8

3

7
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6
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9

1

5

0

4

8

3

7
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6
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2

9

1

5

1 4

8 11

3

7

2
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6 9 0

5

1 4

8 11

3

7

2
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6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2
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6 9 0

5

1 4

8 11

3

7

2
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6 9 0

5
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3

7

2
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5
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3

7
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5

1 4

8 11

3

7

2
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5

1 4

8 11

3

7

2

10

6 9 0

5

x 137. [M25 ℄ (Generalized toruses.) An m� n torus an be regarded as a tiling of the

plane. For example, we an imagine that in�nitely many opies of the 3 � 4 torus

in (50) have been plaed together gridwise, as indiated in the left-hand illustration

above; from eah vertex we an move north, south, east, or west to another vertex of the

torus. The verties have been numbered here so that a northward move from v goes to

(v+4) mod 12, and an eastward move to (v+3) mod 12, et. The right-hand illustration

shows the same torus, but with a di�erently shaped tile; any way to hoose twelve ells

numbered f0; 1; : : : ; 11g will tile the plane, with exatly the same underlying graph.

Shifted opies of a single shape will also tile the plane if they form a generalized

torus, in whih ell (x; y) orresponds to the same vertex as ells (x + a; y + b) and

(x + ; y + d), where (a; b) and (; d) are integer vetors and n = ad � b > 0. The

generalized torus will then have n points. These vetors (a; b) and (; d) are (4; 0) and

(0; 3) in the 3�4 example above; and when they are respetively (5; 2) and (1; 3) we get

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

:

Here n = 13, and a northward move from v goes to (v + 4) mod 13; an eastward move

goes to (v + 1) mod 13.

Prove that if gd(a; b; ; d) = 1, the verties of suh a generalized torus an always

be assigned integer labels f0; 1; : : : ; n�1g in suh a way that the neighbors of v are

(v � p) mod n and (v � q) mod n, for some integers p and q.
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indued subgraph

random

proportional

wheel graph

degree sequene

Janson

Kratohv��l

order 4

distint rows

ompletion

hromati number

oloring

don't ares

Boyer

Moore

majority element

138. [HM27 ℄ Continuing exerise 137, what is a good way to label k-dimensional

verties x = (x

1

; : : : ; x

k

), when integer vetors �

j

are given suh that eah vetor x

is equivalent to x + �

j

for 1 � j � k? Illustrate your method in the ase k = 3,

�

1

= (3; 1; 1), �

2

= (1; 3; 1), �

3

= (1; 1; 3).

x 139. [M22 ℄ Let H be a �xed graph of order h, and let #(H:G) be the number of times

that H ours as an indued subgraph of a given graph G. If G is hosen at random

from the set of all 2

n(n�1)=2

graphs on the verties V = f1; 2; : : : ; ng, what is the average

value of #(H:G) when H is (a) K

h

; (b) P

h

, for h > 1; () C

h

, for h > 2; (d) arbitrary?

140. [M30 ℄ A graph G is alled proportional if its indued subgraph ounts #(K

3

:G),

#(K

3

:G), and #(P

3

:G) eah agree with the expeted values derived in exerise 139.

a) Show that the wheel graph W

8

of exerise 88 is proportional in this sense.

b) Prove that G is proportional if and only if #(K

3

:G) =

1

8

�

n

3

�

and the degree

sequene d

1

: : : d

n

of its verties satis�es the identities

d

1

+ � � �+ d

n

=

�

n

2

�

; d

2

1

+ � � �+ d

2

n

=

n

2

�

n

2

�

: (�)

141. [26 ℄ The onditions of exerise 140(b) an hold only if nmod 16 2 f0; 1; 8g.

Write a program to �nd all of the proportional graphs that have n = 8 verties.

142. [M30 ℄ (S. Janson and J. Kratohv��l, 1991.) Prove that no graph G on 4 or more

verties an be \extraproportional," in the sense that its subgraph ounts #(H:G) agree

with the expeted values in exerise 139 for eah of the eleven nonisomorphi graphs H

of order 4. Hint: (n� 3)#(K

3

:G) = 4#(K

4

:G) + 2#(K

1;1;2

:G) + #(K

1

�K

3

:G).

x 143. [M25 ℄ Let A be any matrix withm > 1 distint rows, and n � m olumns. Prove

that at least one olumn of A an be deleted, without making any two rows equal.

x 144. [21 ℄ Let X be an m � n matrix whose entries x

ij

are either 0, 1, or �. A

\ompletion" of X is a matrix X

�

in whih every � has been replaed by either 0 or 1.

Show that the problem of �nding a ompletion with fewest distint rows is equivalent

to the problem of �nding the hromati number of a graph.

x 145. [25 ℄ (R. S. Boyer and J. S. Moore, 1980.) Suppose the array a

1

: : : a

n

ontains a

majority element, namely a value that ours more than n=2 times. Design an algorithm

that �nds it after making fewer than n omparisons. Hint: If n � 3 and a

n�1

6= a

n

,

the majority element of a

1

: : : a

n

is also the majority element of a

1

: : : a

n�2

.
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Simpson

phi

spetrum

ANSWERS TO EXERCISES

Answer not a fool aording to his folly,

lest thou also be like unto him.

| Proverbs 26:4

SECTION 7

1. Following the hint, we'll want the seond `4m�4' to be immediately followed by the

�rst `2m�1'. The desired arrangements an be dedued from the �rst four examples,

given in hexadeimal notation: 231213, 46171435623725, 86a31b1368597a425b2479,

a8e531f1358a7db9e6427f2469bd. [R. O. Davies,Math. Gazette 43 (1959), 253{255.℄

2. Suh arrangements exist if and only if nmod 4 = 0 or 1. This ondition is neessary

beause there must be an even number of odd items. And it is suÆient beause we

an plae `00' in front of the solutions in the previous exerise.

Notes: This question was �rst raised by Marshall Hall in 1951, and solved the

following year by F. T. Leahy, Jr., in unpublished work [Armed Fores Seurity Ageny

report 343 (28 January 1952)℄. It was independently posed and resolved by T. Skolem

and T. Bang, Math. Sandinavia 5 (1957), 57{58. For other intervals of numbers, see

the omplete solution by J. E. Simpson, Disrete Math. 44 (1983), 97{104.

3. Yes. For example, the yle (0072362435714165) an't be broken up.

4. The kth ourrene of b is in position bk� from the left, and the kth ourrene

of a is in position bk�

2

. Clearly bk�

2

 � bk� = k, beause �

2

= �+ 1. (The integers

bk� form the \spetrum" of �; see exerise 3.13 of CMath.)

5. 2n� k� 1 of the

�

2n

2

�

equally likely pairs of positions satisfy the stated ondition.

If these probabilities were independent (but they aren't), the value of 2L

n

would be

�

2n

2; 2; : : : ; 2

�

n

Y

k=1

((2n� 1� k)=

�

2n

2

�

) =

(2n)!

2

n(n� 1)

n!(2n)

n+1

(2n� 1)

n+1

= exp

�

n ln

4n

e

3

+ ln

r

�en

2

+O(n

�1

)

�

:

6. (a) When the produts are expanded, we obtain a polynomial of (2n�2)!=(n�2)!

terms, eah of degree 4n. There's a term x

2

1

: : : x

2

2n

for eah Langford pairing; every

other term has at least one variable of degree 1. Summing over x

1

; : : : ; x

2n

2 f�1;+1g

therefore anels out all the bad terms, but gives 2

2n

for the good terms. An extra fator

of 2 arises beause there are 2L

n

Langford pairings (inluding left-right reversals).

47
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Gray-ode

modular arithmeti

organ-pipe order

palindromi

puzzle

RainBones puzzle

Langford

exat over problem

Brette

Skolem

width

Singmaster

Baron

daning links

exat over problem

Ibn al-Hajj

Islami maths

Arabi maths

Doutt�e

(b) Let f

k

=

P

2n�k�1

j=1

x

j

x

j+k+1

be the main part of the kth fator. We an run

through all 4

n

ases x

1

; : : : ; x

2n

2 f�1;+1g in Gray-ode order (Algorithm 7.2.1.1L),

negating only one of the x

j

eah time. A hange in x

j

auses at most two adjustments

to eah f

k

; so eah Gray-ode step osts O(n).

We needn't ompute the sum exatly; it suÆes to work mod 2

N

, where 2

N

om-

fortably exeeds 2

2n+1

L

n

. Even better, when n = 24, would be to do the omputations

mod 2

60

�1, or mod both 2

30

�1 and 2

30

+1. One an also save dn=2e bits of preision

by exploiting the fat that f

k

� k + 1 (modulo 2).

() The third equality is atually valid only when nmod 4 = 0 or 3; but those are

the interesting n's. The sum an be arried out in n phases, where phase p for p < n

involves the ases where x

n�1

= x

n+2

, x

n�2

= x

n+3

, : : : , x

n�p+1

= x

n+p

, x

n�p

= x

n

=

x

n+1

= +1, and x

n+p+1

= �1; it has an outer loop that hooses (x

n�p+1

; : : : ; x

n�1

) in

all 2

p�1

ways, and an inner loop that hooses (x

1

; : : : ; x

n�p�1

; x

n+p+2

; : : : ; x

2n

) in all

2

2n�2p�2

ways. (The inner loop uses Gray binary ode, preferably with \organ-pipe

order" to prioritize the subsripts so that x

1

and x

2n

vary most rapidly. The outer

loop need not be espeially eÆient.) Phase n overs the 2

n�1

palindromi ases with

x

j

= x

2n+1�j

for 1 � j < n and x

n

= x

n+1

= +1. If s

p

denotes the sum in phase p,

then s

1

+ � � �+ s

n�1

+

1

2

s

n

= 2

2n�2

L

n

.

A substantial fration of the terms turn out be zero. For example, when n = 16,

zeros appear about 76% of the time (in 408,838,754 ases out of 2

29

+2

14

). This fat an

be used to avoid many multipliations in the inner loop. (Only f

1

, f

3

, : : : an be zero.)

7. Let d

k

be the number of inomplete pairs after k haraters have been read; thus

d

0

= d

2n

= 0, and d

k

= d

k�1

� 1 for 1 � k � 2n. The largest suh sequene in

whih d

k

never exeeds 6 is (0; 1; 2; 3; 4; 5; 6; 5; 6; : : : ; 5; 6; 5; 4; 3; 2; 1; 0). This sequene

has

P

2n

k=1

d

k

= 11n � 30. But

P

2n

k=1

d

k

=

P

n

k=1

(k + 1) =

�

n+1

2

�

+ n in any Langford

pairing. Hene

�

n+1

2

�

+ n � 11n� 30, and n � 15. (In fat, width 6 is also impossible

when n = 15. The largest and smallest possible width are unknown in general.)

8. There are no solutions when n = 4 or n = 7. When n = 8 there are four:

1 13 37 75 58 86 64 42 2

;

1 14 48 86 63 37 75 52 2

;

4 42 27 75 58 86 63 31 1

;

5 52 28 86 63 37 74 41 1

:

(This problem makes a pleasant mehanial puzzle, using gadgets of width k + 1 and

height dk=2e for piee k. In his original note [Math. Gazette 42 (1958), 228℄, C. Dudley

Langford illustrated similar piees, and exhibited a planar solution for n = 12. The

question an be ast as an exat over problem, with nonprimary olumns representing

plaes where two gadgets are not allowed to interset; see exerise 7.2.2.1{00. Jean

Brette has devised a somewhat similar puzzle, based on Skolem's variant of the problem

and using width instead of planarity; he gave a opy to David Singmaster in 1992.)

9. Just three ways: 181915267285296475384639743, 191218246279458634753968357,

191618257269258476354938743 (and their reversals). [First found in 1969 by G. Baron;

see Combinatorial Theory and Its Appliations (Budapest: 1970), 81{92. The \daning

links" method of Setion 7.2.2.1 resolves this question by traversing a searh tree that

has only 360 nodes, given an exat over problem with 132 rows.℄

10. For example, let A = 12, K = 8, Q = 4, J = 0, � = 4, ~ = 3, } = 2, | = 1; add.

[In this onnetion, orthogonal latin squares equivalent to Fig. 1 were impliitly

present already in medieval Islami talismans illustrated by Ibn al-Hajj in his Kitab

Shumus al-Anwar (Cairo: 1322); he also gave a 5�5 example. See E. Doutt�e, Magie
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Ahrens

Andersen

Sauveur

transversals

Mann

e



�

pi, as soure of \random" data

random

Parker

Euler

Brown

Hedayat

Ganter

Mathon

Rosa

Weisner

Knuth

et Religion dans l'Afrique du Nord (Algiers: 1909), 193{194, 214, 247; W. Ahrens,

Der Islam 7 (1917), 228{238. See also an artile on the history of latin squares being

prepared by Lars D. Andersen.℄

11.

0

B

B

�

d� aÆA b�B �C

�A b�� aC dÆB

a�B d�C Æ� bA

bÆC B d�A a��

1

C

C

A

.

[Joseph Sauveur presented the earliest known ex-

ample of suh squares in M�emoires de l'Aad�emie

Royale des Sienes (Paris, 1710), 92{138, x83.℄

12. If n is odd, we an let M

ij

= (i � j) mod n. But if n is even, there are no

transversals: For if f(t

0

+0) mod n; : : : ; (t

n�1

+n�1) mod ng is a transversal, we have

P

n�1

k=0

t

k

�

P

n�1

k=0

(t

k

+ k) (modulo n), hene

P

n�1

k=0

k =

1

2

n(n� 1) is a multiple of n.

13. Replae eah element l by bl=5 to get a matrix of 0s and 1s. Let the four quarters

be named (

A

C

B

D

); then A and D eah ontain exatly k 1s, while B and C eah ontain

exatly k 0s. Suppose the original matrix has ten disjoint transversals. If k � 2, at most

four of them go through a 1 in A or D, and at most four go through a 0 in B or C. Thus

at least two of them hit only 0s in A and D, only 1s in B and C. But suh a transversal

has an even number of 0s (not �ve), beause it intersets A and D equally often.

Similarly, a latin square of order 4m+2 with an orthogonal mate must have more

than m intruders in eah of its (2m+ 1)� (2m+ 1) submatries, under all renamings

of the elements. [H. B. Mann, Bull. Amer. Math. So. (2) 50 (1944), 249{257.℄

14. Cases (b) and (d) have no mates. Cases (a), (), and (e) have respetively 2, 6,

and 12265168(!), of whih the lexiographially �rst and last are

(a)

0456987213

1305629847

2043798165

3289176504

4518263790

5167432089

6894015372

7920341658

8731504926

9672850431

;

(a)

0691534782

1308257964

2169340578

3250879416

4587902631

5412763890

6945081327

7836425109

8723196045

9074618253

;

()

0362498571

1408327695

2673519408

3521970846

4890253167

5736841920

6259784013

7915602384

8147036259

9084165732

;

()

0986271435

1354068792

2741853960

3572690814

4630789251

5218947306

6095324178

7869512043

8407136529

9123405687

;

(e)

0214365897

1025973468

2690587143

3857694201

4168730925

5473829016

6942158730

7309216584

8531402679

9786041352

;

(e)

0987645321

1795402638

2506913874

3154067289

4231850967

5348276190

6820394715

7069128543

8412739056

9673581402

:

Notes: Squares (a), (b), (), and (d) were obtained from the deimal digits of �, e,

, and �, by disarding eah digit that is inonsistent with a ompleted latin square.

Although they aren't truly random, they're probably typial of 10 � 10 latin squares

in general, roughly half of whih appear to have orthogonal mates. Parker onstruted

square (e) in order to obtain an unusually large number of transversals; it has 5504 of

them. (Euler had studied a similar example of order 6, therefore \just missing" the

disovery of a 10� 10 pair.)

15. Parker was dismayed to disover that none of the mates of square 14(e) are

orthogonal to eah other. With J. W. Brown and A. S. Hedayat [J. Combinatoris, Inf.

and System Si. 18 (1993), 113{115℄, he later found two 10�10s that have four disjoint

ommon transversals (but not ten). [See also B. Ganter, R. Mathon, and A. Rosa,

Congressus Numerantium 20 (1978), 383{398; 22 (1979), 181{204.℄ While pursuing

an idea of L. Weisner [Canadian Math. Bull. 6 (1963), 61{63℄, the author aidentally

notied some squares that ome even loser to a mutually orthogonal trio: The square

below is orthogonal to its transpose; and it has �ve diagonally symmetri transver-

sals, in ells (0; p

0

), : : : , (9; p

9

) for p

0

: : : p

9

= 0132674598, 2301457689, 3210896745,
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MKay

Meynert

Myrvold

Wang

Wilson

Todorov

Brualdi

Ryser

latin square

Gr�o-Latin squares

Hebrai

Rao

4897065312, and 6528410937, whih are almost disjoint: They over 49 ells.

L =

0

B

B

B

B

B

B

B

B

B

B

�

0234567891

3192708546

6528139407

8753241960

1689473025

4970852613

5047986132

9416320758

7361095284

2805614379

1

C

C

C

C

C

C

C

C

C

C

A

?

0

B

B

B

B

B

B

B

B

B

B

�

0368145972

2157690438

3925874160

4283907615

5712489306

6034758291

7891326054

8549061723

9406213587

1670532849

1

C

C

C

C

C

C

C

C

C

C

A

= L

T

:

Extensive omputations by B. D. MKay, A. Meynert, and W. Myrvold [J. Comb.

Designs 15 (2007), 98{119℄ prove that no 10�10 latin square with nontrivial symmetry

has two mates orthogonal to eah other. Three mutually orthogonal latin squares are

known to exist for all orders n > 10 [see S. M. P. Wang and R. M. Wilson, Congressus

Numerantium 21 (1978), 688; D. T. Todorov, Ars Combinatoria 20 (1985), 45{47℄.

16. See R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory (Cambridge

University Press, 1991), x8.2.

17. (a) Let there be 3n olumns r

j

, 

j

, v

j

for 0 � j < n, and n

2

rows; row (i; j) has

1 in olumns r

i

, 

j

, and v

l

, where l = L

ij

, for 0 � i; j < n.

(b) Let there be 4n

2

olumns r

ij

, 

ij

, x

ij

, y

ij

for 0 � i; j < n, and n

3

�n

2

+n rows;

row (i; j; k) has 1 in olumns r

ik

, 

jk

, x

ij

, and y

lk

, where l = L

ij

, for 0 � i; j; k < n

and (i = k or j > 0).

18. Given an orthogonal array A with rows A

i

for 1 � i � m, de�ne latin square

L

i

= (L

ijk

) for 1 � i � m � 2 by setting L

ijk

= A

iq

when A

(m�1)q

= j and A

mq

= k,

for 0 � j; k < n. (The value of q is uniquely determined by the values of j and k.)

Permuting the olumns of the array does not hange the orresponding latin squares.

This onstrution an also be reversed, to produe orthogonal arrays of order n

from mutually orthogonal latin squares of order n. In exerise 11, for example, we an

let a = � = � = 0, b = � = A = 1,  =  = B = 2, and d = Æ = C = 3, obtaining

A =

0

B

B

B

�

3012210303211230

2310102301323201

0123103223013210

0000111122223333

0123012301230123

1

C

C

C

A

:

(The onept of an orthogonal array is mathematially \leaner" than the onept

of orthogonal latin squares, beause it aounts better for the underlying symmetries.

Notie, for example, that an n�nmatrix L is a latin square if and only if it is orthogonal

to two partiular non-latin squares, namely

L ?

0

B

B

�

1 1 : : : 1

2 2 : : : 2

.

.

.

.

.

.

.

.

.

.

.

.

n n : : : n

1

C

C

A

and L ?

0

B

B

�

1 2 : : : n

1 2 : : : n

.

.

.

.

.

.

.

.

.

.

.

.

1 2 : : : n

1

C

C

A

:

Therefore Latin squares, Gr�o-Latin squares, Hebrai-Gr�o-Latin squares, et., are

equivalent to orthogonal arrays of depth 3, 4, 5, : : : . Moreover, the orthogonal arrays

onsidered here are merely the speial ase t = 2 and � = 1 of a more general onept

of n-ary m � �n

t

arrays having \strength t" and \index �," introdued by C. R. Rao
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Hedayat

Sloane

Stufken

�nite �eld

Moore

projetive planes

Hall

equivalene relation

transitive law

Bruk

in Pro. Edinburgh Math. So. 8 (1949), 119{125; see the book Orthogonal Arrays by

A. S. Hedayat, N. J. A. Sloane, and J. Stufken (Springer, 1999).)

19. We an rearrange the olumns so that the �rst row is 0

n

1

n

: : : (n�1)

n

. Then we

an renumber the elements of the other rows so that they begin with 01 : : : (n�1). The

elements in eah remaining olumn must then be distint, in all rows but the �rst.

To ahieve the upper bound when n = p, let eah olumn be indexed by two

numbers x and y, where 0 � x; y < p, and put the numbers y, x, (x + y) mod p,

(x+2y) mod p, : : : , (x+(p�1)y) mod p into that olumn. For example, when p = 5 we

get the following orthogonal array, equivalent to four mutually orthogonal latin squares:

0

B

B

B

B

�

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3

0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2

0 1 2 3 4 3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1

0 1 2 3 4 4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0

1

C

C

C

C

A

:

[Essentially the same idea works when n is a prime power, using the �nite �eld GF(p

e

);

see E. H. Moore, Amerian Journal of Mathematis 18 (1896), 264{303, x15(l). These

arrays are equivalent to �nite projetive planes; see Marshall Hall, Jr., Combinatorial

Theory (Blaisdell, 1967), Chapters 12 and 13.℄

20. Let ! = e

2�i=n

, and suppose a

1

: : : a

n

2 and b

1

: : : b

n

2 are the vetors in di�erent

rows. Then a

1

b

1

+ � � �+ a

n

2

b

n

2

=

P

0�j;k<n

!

j+k

= 0 beause

P

n�1

k=0

!

k

= 0.

21. (a) To show that equality-or-parallelism is an equivalene relation, we need to

verify the transitive law: If L kM and M k N and L 6= N , then we must have L k N .

Otherwise there would be a point p with L \N = fpg, by (ii); and p would lie on two

di�erent lines parallel to M , ontraditing (iii).

(b) Let fL

1

; : : : ; L

n

g be a lass of parallel lines, and assume that M is a line of

another lass. Then eah L

j

intersets M in a unique point p

j

; and every point of M

is enountered in this way, beause every point of the geometry lies on exatly one line

of eah lass, by (iii). Thus M ontains exatly n points.

() We've already observed that every point belongs to m lines when there are m

lasses. If lines L, M , and N belong to three di�erent lasses, then M and N have the

same number of points as the number of lines in L's lass. So there's a ommon line

size n, and in fat the total number of points is n

2

. (Of ourse n might be in�nite.)

22. Given an orthogonal array A of order n and depth m, de�ne a geometri net with

n

2

points and m lasses of parallel lines by regarding the olumns of A as points; line j

of lass k is the set of olumns where symbol j appears in row k of A.

All �nite geometri nets with m � 3 lasses arise in this way. But a geometri net

with only one lass is trivially a partition of the points into disjoint subsets. A geometri

net with m = 2 lasses has nn

0

points (x; x

0

), where there are n lines `x = onstant' in

one lass and n

0

lines `x

0

= onstant' in the other. [For further information, see R. H.

Bruk, Canadian J. Math. 3 (1951), 94{107; Pai� J. Math. 13 (1963), 421{457.℄

23. (a) If d(x; y) � t and d(x

0

; y) � t and x 6= x

0

, then d(x; x

0

) � 2t. Thus a ode with

distane > 2t between odewords allows the orretion of up to t errors|at least in

priniple, although the omputations might be omplex. Conversely, if d(x; x

0

) � 2t

and x 6= x

0

, there's an element y with d(x; y) � t and d(x

0

; y) � t; hene we an't

reonstrut x uniquely when y is reeived.

(b, ) Let m = r + 2, and observe that a set of b

2

b-ary m-tuples has Hamming

distane � m� 1 between all pairs of elements if and only if it forms the olumns of a
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orthogonal array

Golomb

Posner

oding theory

majority

witness bits

Hsiao

Bossen

Chien

anagrams

Chauer

Leighton

Gordon

b-ary orthogonal array of depth m. [See S. W. Golomb and E. C. Posner, IEEE Trans.

IT-10 (1964), 196{208. The literature of oding theory often denotes a ode C(b; n; r)

of distane d by the symbol (n+ r; b

n

; d)

b

. Thus, a b-ary orthogonal array of depth m

is essentially an (m; b

2

;m� 1)

b

ode.℄

24. (a) Suppose x

j

6= x

0

j

for 1 � j � l and x

j

= x

0

j

for l < j � N . We have x = x

0

if l = 0. Otherwise onsider the parity bits that orrespond to the m lines through

point 1. At most l�1 of those bits orrespond to lines that touh the points f2; : : : ; lg.

Hene x

0

has at least m� (l�1) parity hanges, and d(x; x

0

) � l+(m� (l�1)) = m+1.

(b) Let l

p1

, : : : , l

pm

be the index numbers of the lines through point p. After

reeiving a message y

1

: : : y

N+R

, ompute x

p

for 1 � p � N by taking the majority

value of the m+ 1 \witness bits" fy

p0

; : : : ; y

pm

g, where y

p0

= y

p

and

y

pk

= (y

N+l

pk

+

P

fy

j

j j 6= p and point j lies on line l

pk

g)mod 2; for 1 � k � m:

This method works beause eah reeived bit y

j

a�ets at most one of the witness bits.

For example, in the 25-point geometry of exerise 19, suppose the parity bit

x

26+5i+j

of eah odeword orresponds to line j of row i, for 0 � i � 5 and 0 �

j < 5; thus x

26

= x

1

� x

2

� x

3

� x

4

� x

5

, x

27

= x

6

� x

7

� x

8

� x

9

� x

10

, : : : ,

x

55

= x

5

� x

6

� x

12

� x

18

� x

24

. Given message y

1

: : : y

55

, we deode bit x

1

(say) by

omputing the majority of the seven bits y

1

, y

26

�y

2

�y

3

�y

4

�y

5

, y

31

�y

6

�y

11

�y

16

�y

21

,

y

36

� y

10

� y

14

� y

18

� y

22

, y

41

� y

9

� y

12

� y

20

� y

23

, y

46

� y

8

� y

15

� y

17

� y

24

,

y

51

� y

7

� y

13

� y

19

� y

25

. [Setion 7.1.2 explains how to alulate majority funtions

eÆiently. Notie that we an eliminate the last 10 bits if we only wish to orret up to

two errors, and the last 20 if single-error orretion is suÆient. See M. Y. Hsiao, D. C.

Bossen, and R. T. Chien, IBM J. Researh and Development 14 (1970), 390{394.℄

25. By onsidering anagrams of fl; e; a; s; tg (see exerise 5{21), we're led to the square

stela

telas

elast

laste

astel

;

and the yli rotations of its rows. Here telas are Spanish fabris; elast is a pre�x

meaning exible; and laste is an imperative Chauerian verb. (Of ourse just about

every pronouneable ombination of �ve letters has been used to spell or misspell

something somewhere, at some point in history.)

26. \every night, young video buffs ath rerun fever forty years after those

great shows first aired." [Robert Leighton, GAMES 16, 6 (Deember 1992), 34, 47.℄

27. (0; 4; 163; 1756; 3834) for k = (1; 2; 3; 4; 5); mamma and esses give a \full house."

28. Yes, 38 pairs altogether. The \most ommon" solution is needs (rank 180) and

offer (rank 384). Only three ases di�er onsistently by +1 (adder beefs, sheer

tiffs, sneer toffs). Other memorable examples are ghost hints and strut rusts.

One word of the pair ends with the letter s exept in four ases, suh as robed spade.

[See Leonard J. Gordon, Word Ways 23 (1990), 59{61.℄

29. There are 18 palindromes, from level (rank 184) to dewed (rank 5688). Some of

the 34 mirror pairs are `devil lived', `knits stink', `smart trams', `faed deaf'.

30. Among 105 suh words in the SGB, first, below, floor, begin, ells, empty,

and hills are the most ommon; abbey and pssst are lexiographially �rst and last.

(If you don't like pssst, the next-to-last is mossy.) Only 37 words, from mea to

zoned, have their letters in reverse order; but they are, of ourse, wrong answers.
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Internet

Cohen

Horton

Strahler

poetry

omplete ternary trie

Grant

Ditionary

Carroll

31. The middle word is the average of the other two, so the extreme words must be

ongruent mod 2; this observation redues the number of ditionary lookups by a fator

of about 32. There are 119 suh triples in WORDS(5757), but only two in WORDS(2000):

marry, photo, solve; risky, tempo, vague. [Word Ways 25 (1992), 13{15.℄

32. The only reasonably ommon example seems to be peopleless.

33. hief, fight, right, whih, ouija, jokes, ankle, films, hymns, known, rops,

pique, quart, first, first, study, mauve, vowel, waxes, proxy, razy, pizza. (The

idea is to �nd the most ommon word in whih x is followed by (x + 1) mod 26, for

x = a (0), x = b (1), : : : , x = z (25). We also minimize the intervening distane, thus

preferring baon to the more ommon word blak. In the one ase where no suh word

exists, razy seems most rational. See OMNI 16, 8 (May 1994), 94.)

34. The top two (and total number) in eah ategory are: pssst and pffft (2), shwa

and shmo (2), threw and throw (36), three and spree (5), whih and think (709),

there and these (234), their and great (291), whooo and wheee (3), words and first

(628), large and sine (376), water and never (1313), value and radio (84), would

and ould (460), house and voie (101), quiet and queen (25), queue only (1), ahhhh

and ankhs (4), angle and extra (20), other and after (227), agree and issue (20),

along and using (124), above and alone (92), about and again (58), adieu and aquae

(2), earth and eight (16), eagle and oune (8), outer and eaten (42), eerie and

audio (4), (0), ouija and aioli (2), (0), (0); years and every are the most ommon of

the 868 omitted words. [To �ll the three holes, Internet usage suggests ooops, ooooh,

and ooooo. See P. M. Cohen, Word Ways 10 (1977), 221{223.℄

35. Consider the olletion WORDS(n) for n = 1, 2, : : : , 5757. The illustrated trie, rooted

at s, �rst beomes possible when n reahes 978 (the rank of stalk). The next root

letter to support suh a trie is , whih aquires enough branhing in its desendants

when n = 2503 (the rank of raze). Subsequent breakthroughs our when n = 2730

(bulks), 3999 (duky), 4230 (panty), 4459 (minis), 4709 (whooo), 4782 (lardy), 4824

(herem), 4840 (firma), 4924 (ridgy), 5343 (taxol).

(A breakthrough ours when a top-level trie aquires Horton{Strahler number 4;

see exerise 7.2.1.6{124. Amusing sets of words, suggestive of a new kind of poetry, arise

also when the branhing is right-to-left instead of left-to-right: blak, slak, rak,

trak, lik, slik, brik, trik, blank, plank, rank, drank, blink, link, brink,

drink. In fat, right-to-left branhing yields a omplete ternary trie with 81 leaves:

males, sales, tales, files, miles, piles, holes, : : : , tests, osts, hosts, posts.)

36. Denoting the elements of the ube by a

ijk

for 1 � i; j; k � 5, the symmetry

ondition is a

ijk

= a

ikj

= a

jik

= a

jki

= a

kij

= a

kji

. In general an n�n�n ube has

3n

2

words, obtained by �xing two oordinates and letting the third range from 1 to n;

but the symmetry ondition means that we need only

�

n+1

2

�

words. Hene when n = 5

the number of neessary words is redued from 75 to 15. [Je� Grant was able to �nd 75

suitable words in the Oxford English Ditionary ; see Word Ways 11 (1978), 156{157.℄

Changing (stove; event) to (store; eret) or (stole; elet) gives two more.

37. The densest part of the graph, whih we might all its \bare ore," ontains the

verties named bares and ores, whih eah have degree 25.

38. tears ! raise ! aisle ! smile; the seond word might also be reals. [Going

from tears to smile as in (11) was one of Lewis Carroll's �rst �ve-letter examples. He

would have been delighted to learn that the direted rule makes it more diÆult to go

from smile to tears, beause four steps are needed in that diretion.℄
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Kempe

planar

Hamiltonian

girth

shrink any edge

puzzle

utilities

Dudeney

law

39. Always spanning, never indued.

40. (a) 2

e

, (b) 2

n

, one for eah subset of E or V .

41. (a) n = 1 and n = 2; P

0

is unde�ned. (b) n = 0 and n = 3.

42. G has 65/2 edges (hene it doesn't exist).

43. Yes: The �rst three are isomorphi to Fig. 2(e). [The left-hand diagram is, in fat,

idential to the earliest known appearane of the Petersen graph in print: See A. B.

Kempe, Philosophial Transations 177 (1886), 1{70, espeially Fig. 13 in x59.℄ But

the right-hand graph is de�nitely di�erent; it is planar, Hamiltonian, and has girth 4.

44. Any automorphism must take a orner point into a orner point, beause three

distint paths of length 2 an be found only between ertain pairs of non-orner points.

Therefore the graph has only the eight symmetries of C

4

.

45. All edges of this graph onnet verties of the same row or adjaent rows. Therefore

we an use the olors 0 and 2 alternately in even-numbered rows, 1 and 3 alternately in

odd-numbered rows. The neighbors of NV form a 5-yle, hene four olors are neessary.

46. (a) Every vertex has degree � 2, and its neighbors have a well-de�ned yli order

orresponding to the inoming lines. If u���v and u���w, where v and w are ylially

onseutive neighbors of u, we must have v���w. Thus all points in the viinity of any

vertex u belong to a unique triangular region.

(b) The formula holds when n = 3. If n > 3, shrink any edge to a point; this

transformation removes one vertex and three edges. (If u���v shrinks, suppose it was

part of the triangles x��� u��� v ��� x and y ��� u��� v ��� y. We lose vertex v and

edges fx���v; u���v; y���vg; all other edges of the form w���v beome w���u.)

47. A planar diagram would divide the plane into regions, with either 4 or 6 verties in

the boundary of eah region (beause K

3;3

has no odd yles). If there are f

4

and f

6

of

eah kind, we must have 4f

4

+6f

6

= 18, sine there are 9 edges; hene (f

4

; f

6

) = (3; 1)

or (0; 3). We ould also triangulate the graph by adding f

4

+3f

6

more edges; but then

it would have at least 15 edges, ontraditing exerise 46.

[The fat that K

3;3

is nonplanar goes bak to a puzzle about onneting three

houses to three utilities (water, gas, and eletriity), without rossing pipes. Its origin

is unknown; H. E. Dudeney alled it \anient" in Strand 46 (1913), 110.℄

48. If u, v, w are verties and u��� v, we must have d(w; u) 6� d(w; v) (modulo 2);

otherwise shortest paths from w to u and from w to v would yield an odd yle. After

w is olored 0, the proedure therefore assigns the olor d(w; v) mod 2 to eah new

unolored vertex v that is adjaent to a olored vertex u; and every vertex v with

d(w; v) <1 is olored before a new w is hosen.

49. There are only three: K

4

, K

3;3

, and (whih is C

6

).

50. The graph must be onneted, beause the number of 3-olorings is divisible by

3

r

when there are r omponents. It must also be ontained in a omplete bipartite

graph K

m;n

, whih an be 3-olored in 3(2

m

+ 2

n

� 2) ways. Deleting edges from

K

m;n

does not derease the number of olorings; hene 2

m

+ 2

n

� 2 � 8, and we have

fm;ng = f1; 1g, f1; 2g, f1; 3g, or f2; 2g. So the only possibilities are the law K

1;3

and

the path P

4

.

51. A 4-yle p

1

��� L

1

��� p

2

��� L

2

��� p

1

would orrespond to two distint lines

fL

1

; L

2

g with two ommon points fp

1

; p

2

g, ontraditing (ii). So the girth is at least 6.

If there's only one lass of parallel lines, the girth is 1; if there are two lasses, it

is 8. (See answer 22.) Otherwise we an �nd a 6-yle by making a triangle from three

lines that are hosen from di�erent lasses.
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line graph

bipartite graph

J

n

strongly onneted

straight insertion sorting

R�edei

Szele

Landau

Harary

linear subgraphs

omplete bigraph

52. If the diameter is d and the girth is g, then d � bg=2, unless g =1.

53. happy (whih is onneted to tears and sweat, but not to world).

54. (a) It's a single, highly onneted omponent. (Inidentally, this graph is the

line graph of the bipartite graph in whih one part orresponds to the initial letters

fA; C; D; F; G; : : : ; Wg and the other to the �nal letters fA; C; D; E; H; : : : ; Zg.)

(b) Vertex WY is isolated. The other verties with in-degree zero, namely FL, GA,

PA, UT, WA, WI, and WV, form strong omponents by themselves; they all preede a giant

strong omponent, whih is followed by eah of the remaining single-vertex strong

omponents with out-degree zero: AZ, DE, KY, ME, NE, NH, NJ, NY, OH, TX.

() Now the strong omponent fGUg preedes fUTg; NH, OH, PA, WA, WI, and WV join

the giant strong omponent; fFMg preedes it; fAEg and fWYg follow it.

55.

�

N

2

�

�

�

n

1

2

�

� � � � �

�

n

k

2

�

, where N = n

1

+ � � �+ n

k

.

56. True. Note that J

n

is simple, but it doesn't orrespond to any multigraph.

57. False, in the onneted digraph u��!w ��v. (But u and v are in the same strongly

onneted omponent if and only if d(u; v) <1 and d(v; u) <1; see Setion 2.3.4.2.)

58. Eah omponent is a yle whose order is at least (a) 3 (b) 1.

59. (a) By indution on n, we an use straight insertion sorting: Suppose v

1

��!� � ���!

v

n�1

. Then either v

n

��! v

1

or v

n�1

��! v

n

or v

k�1

��! v

n

��! v

k

, where k is minimum

suh that v

n

��!v

k

. [L. R�edei, Ata litterarum a sientiarum 7 (Szeged, 1934), 39{43.℄

(b) 15: 01234, 02341, 02413, and their yli shifts. [The number of suh oriented

paths is always odd; see T. Szele, Matematikai �es Fizikai Lapok 50 (1943), 223{256.℄

() Yes. (By indution: If there's only one plae to insert v

n

as in part (a), the

tournament is transitive.)

60. Set A = fx j u��!xg, B = fx j x��!vg, C = fx j v��!xg. If v =2 A and A\B = ;

we have jAj+ jBj = jA[Bj � n�2, beause u =2 A[B and v =2 A[B. But jBj+ jCj =

n� 1; hene jAj < jCj. [H. G. Landau, Bull. Math. Biophysis 15 (1953), 148.℄

61. 1��!1, 1��!2, 2��!2; then A =

�

1 1

0 1

�

and A

k

=

�

1 k

0 1

�

for all integers k.

62. (a) Suppose the verties are f1; : : : ; ng. Eah of the n! terms a

1p

1

: : : a

np

n

in the

expansion of the permanent is the number of spanning permutation digraphs that have

ars j��!p

j

. (b) A similar argument shows that detA is the number of even spanning

permutation digraphs minus the number of odd ones. [See F. Harary, SIAM Review 4

(1962), 202{210, where permutation digraphs are alled \linear subgraphs."℄

63. Let v be any vertex. If g = 2t+1, at least d(d�1)

k�1

verties x satisfy d(v; x) = k,

for 1 � k < t. If g = 2t+ 2 and v

0

is any neighbor of v, there also are at least (d� 1)

t

verties x for whih d(v; x) = t+ 1 and d(v

0

; x) = t.

64. To ahieve the lower bound in answer 63, every vertex v must have degree d, and

the d neighbors of v must all be adjaent to the remaining d� 1 verties. This graph

is, in fat, K

d;d

.

65. (a) By answer 63, G must be regular of degree d, and there must be exatly one

path of length � 2 between any two distint verties.

(b) We may take �

1

= d, with x

1

= (1 : : : 1)

T

. All other eigenvetors satisfy

Jx

j

= (0 : : : 0)

T

; hene �

2

j

+ �

j

= d� 1 for 1 < j � N .

() If �

2

= � � � = �

m

= (�1+

p

4d�3)=2 and �

m+1

= � � � = �

N

= (�1�

p

4d�3)=2,

we must have m� 1 = N �m. With this value we �nd �

1

+ � � �+ �

N

= d� d

2

=2.
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Ho�man

Singleton

Brown

Ashbaher

automorphisms

permutation matries

VERTICES(g)

N(g)

(d) If 4d� 3 = s

2

and m is as in (), the eigenvalues sum to

s

2

+ 3

4

+ (m� 1)

s� 1

2

�

�

(s

2

+ 3)

2

16

+ 1�m

�

s+ 1

2

;

whih is 15/32 plus a multiple of s. Hene s must be a divisor of 15.

[These results are due to A. J. Ho�man and R. R. Singleton, IBM J. Researh and

Development 4 (1960), 497{504, who also proved that the graph for d = 7 is unique.℄

66. Denote the 50 verties by [a; b℄ and (a; b) for 0 � a; b < 5, and de�ne three kinds

of edges, using arithmeti mod 5:

[a; b℄��� [a+ 1; b℄; (a; b)���(a+ 2; b); (a; b)��� [a+ b; ℄ for 0 � a; b;  < 5:

[See W. G. Brown, Canadian J. Math. 19 (1967), 644{648; J. London Math. So. 42

(1967), 514{520. Without the edges of the �rst two kinds, the graph has girth 6 and or-

responds to a geometri net as in exerise 51, using the orthogonal array in answer 19.℄

67. Certain possibilities have been ruled out by Mihael Ashbaher in Journal of

Algebra 19 (1971), 538{540.

68. If G has s automorphisms, it has n!=s adjaeny matries, beause there are s

permutation matries P suh that P

�

AP = A.

69. First set IDEG(v)  0 for all verties v. Then perform (31) for all v, also setting

u TIP(a) and IDEG(u) IDEG(u) + 1 in the seond line of that mini-algorithm.

To do something \for all v" using the SGB format, �rst set v  VERTICES(g);

then while v < VERTICES(g) + N(g), do the operation and set v  v + 1.

70. Step B1 is performed one (but it takes O(n) units of time). Steps (B2, B3, : : : ,

B8) are performed respetively (n+1; n; n;m+n;m;m; n) times, eah with O(1) ost.

71. Many hoies are possible. Here we use 32-bit pointers, all relative to a symboli

address Pool, whih lies in the Data_Segment. The following delarations provide one

way to establish onventions for dealing with basi SGB data strutures.

VSIZE IS 32 ;ASIZE IS 24 Node sizes

ARCS IS 0 ;COLOR IS 8 ;LINK IS 12 O�sets of vertex �elds

TIP IS 0 ;NEXT IS 4 O�sets of ar �elds

ars GREG Pool+ARCS ;olor GREG Pool+COLOR ;link GREG Pool+LINK

tip GREG Pool+TIP ;next GREG Pool+NEXT

u GREG ;v GREG ;w GREG ;s GREG ;a GREG ;mone GREG -1

AlgB BZ n,Suess Exit if the graph is null.

MUL $0,n,VSIZE B1. Initialize.

ADDU v,v0,$0 v  v

0

+ n.

SET w,v0 w  v

0

.

1H STT mone,olor,w COLOR(w) �1.

ADDU w,w,VSIZE w  w + 1.

CMP $0,w,v

PBNZ $0,1B Repeat until w = v.

0H SUBU w,w,VSIZE w  w � 1.

3H LDT $0,olor,w B3. Color w if neessary.

PBNN $0,2F To B2 if COLOR(w) � 0.

STCO 0,link,w COLOR(w) 0, LINK(w) �.

SET s,w s w.

4H SET u,s B4. Stak) u. Set u s.
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utility �eld

J

n

LDTU s,link,s s LINK(s).

LDT $1,olor,u

NEG $1,1,$1 $1 1� COLOR(u).

LDTU a,ars,u a ARCS(u).

5H BZ a,8F B5. Done with u? To B8 if a = �.

5H LDTU v,tip,a v  TIP(a).

6H LDT $0,olor,v B6. Proess v.

CMP $2,$0,$1 (Here the program is slightly lever)

PBZ $2,7F To B7 if COLOR(v) = 1� COLOR(u).

BNN $0,Failure Fail if COLOR(v) = COLOR(u).

STT $1,olor,v COLOR(v) 1� COLOR(u).

STTU s,link,v LINK(v) s.

SET s,v s v.

7H LDTU a,next,a B7. Loop on a. Set a NEXT(a).

PBNZ a,5B To B5 if a 6= �.

8H PBNZ s,4B B8. Stak nonempty? To B4 if s 6= �.

2H CMP $0,w,v0 B2. Done?

PBNZ $0,0B If w 6= v

0

, derease w and go to B3.

Suess LOC � (Suessful termination)

72. (a) This ondition learly remains invariant as verties enter or leave the stak.

(b) Vertex v has been olored but not yet explored, beause the neighbors of every

explored vertex have the proper olor.

() Just before setting s  v in step B6, set PARENT(v)  u, where PARENT is

a new utility �eld. And just before terminating unsuessfully in that step, do the

following: \Repeatedly output NAME(u) and set u PARENT(u), until u = PARENT(v);

then output NAME(u) and NAME(v)."

73. K

10

. (And random graph(10; 100; 0; 1; 1; 0; 0; 0; 0; 0) is J

10

.)

74. badness has out-degree 22; no other verties have out-degree > 20.

75. Let the parameters (n

1

; n

2

; n

3

; n

4

; p; w; o) be respetively (a) (n; 0; 0; 0;�1; 0; 0);

(b) (n; 0; 0; 0; 1; 0; 0); () (n; 0; 0; 0; 1; 1; 0); (d) (n; 0; 0; 0;�1; 0; 1); (e) (n; 0; 0; 0; 1; 0; 1);

(f) (n; 0; 0; 0; 1; 1; 1); (g) (m;n; 0; 0; 1; 0; 0); (h) (m;n; 0; 0; 1; 2; 0); (i) (m;n; 0; 0; 1; 3; 0);

(j) (m;n; 0; 0;�1; 0; 0); (k) (m;n; 0; 0; 1; 3; 1); (l) (n; 0; 0; 0; 2; 0; 0); (m) (2;�n; 0; 0;1; 0; 0).

76. Yes, for example from C

1

and C

2

in answer 75(). (But no self-loops an our

when p < 0, beause ars x��!y = x+ kÆ are generated for k = 1, 2, : : : until y is out

of range or y = x.)

77. Suppose x and y are verties with d(x; y) > 2. Thus x /���y; and if v is any other

vertex we must have either v /��� x or v /��� y. These fats yield a path of length at

most 3 in G between any two verties u and v.

78. (a) The number of edges,

�

n

2

�

=2, must be an integer. The smallest examples are

K

0

, K

1

, P

4

, C

5

, and .

(b) If q is any odd number, we have u���v if and only if '

q

(u) /���'

q

(v). Therefore

'

q

annot have two �xed points, nor an it ontain a 2-yle.

() Suh a permutation of V also de�nes a permutation b' of the edges of K

n

,

taking fu; vg 7! b' = f'(u); '(v)g, and it's easy to see that the yle lengths of b' are

all multiples of 4. If b' has t yles, we obtain 2

t

self-omplementary graphs by painting

the edges of eah yle with alternating olors.
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Sahs

Ringel

Sahs

Ringel

onverse

simple digraphs

self-onverse

isolated verties

Petersen graph

Kowalewski

Menon

triangular grid

Brooks

omplete graph

Petersen

diameter

wheel

(d) In this ase ' has a unique �xed point v, and G

0

= Gnv is self-omplementary.

Suppose ' has r yles in addition to (v); then b' has r yles involving the edges that

touh vertex v, and there are 2

r

ways to extend G

0

to a graph G.

[Referenes: H. Sahs, Publiationes Mathemati� 9 (Debreen, 1962), 270{288;

G. Ringel, Arhiv der Mathematik 14 (1963), 354{358.℄

79. Solution 1, by H. Sahs, with ' = (1 2 : : : 4k): Let u��� v when u > v > 0 and

u+ v mod 4 � 1; also 0���v when v mod 2 = 0.

Solution 2, with ' = (a

1

b

1



1

d

1

) : : : (a

k

b

k



k

d

k

), where a

j

= 4j � 3, b

j

= 4j � 2,



j

= 4j � 1, and d

j

= 4j: Let 0 ��� b

j

��� a

j

��� 

j

��� d

j

��� 0 for 1 � j � k, and

a

i

���a

j

���b

i

���d

j

���

i

���

j

���d

i

���b

j

���a

i

, for 1 � i < j � k.

80. (Solution by G. Ringel.) Let ' be as in answer 79, solution 2. Let E

0

be the 3k

edges b

j

���a

j

���

j

���d

j

for 1 � j � k; let E

1

be the 8

�

k

2

�

edges between fa

i

; b

i

; 

i

; d

i

g

and fb

j

; d

j

g for 1 � i < j � k; let E

2

be the 8

�

k

2

�

edges between fa

i

; b

i

; 

i

; d

i

g and

fa

j

; 

j

g for 1 � i < j � k. In ase (a), E

0

[ E

1

gives diameter 2; E

0

[ E

2

gives diam-

eter 3. Case (b) is similar, but we add 2k edges b

j

���0���d

j

to E

1

, a

j

���0���

j

to E

2

.

81. C~

3

, K~

3

, D = , and D

T

= . (The onverse D

T

of a digraph D

is obtained by reversing the diretion of its ars. There are 16 nonisomorphi simple

digraphs of order 3 without loops, 10 of whih are self-onverse, inluding C~

3

and K~

3

.)

82. (a) True, by de�nition. (b) True: If every vertex has d neighbors, every edge

u���v has d � 1 neighbors u���w and d� 1 neighbors w���v. () True: fa

i

; b

j

g has

m+ n� 2 neighbors, for 0 � i < m and 0 � j < n. (d) False: L(K

1;1;2

) has 5 verties

and 8 edges. (e) True. (f) True: The only nonadjaent edges are f0; 1g /��� f2; 3g,

f0; 2g /��� f1; 3g, f0; 3g /��� f1; 2g. (g) True, for all n > 0. (h) False, unless G has no

isolated verties.

83. It is the Petersen graph. [A. Kowalewski, Sitzungsberihte der Akademie der

Wissenshaften in Wien, Mathematish-Nat. Klasse, Abteilung IIa, 126 (1917), 67{90.℄

84. Yes: Let '(fa

u

; b

v

g) = fa

(u+v) mod 3

; b

(u�v) mod 3

g for 0 � u; v < 3.

85. Let the vertex degrees be fd

1

; : : : ; d

n

g. Then G has

1

2

(d

1

+ � � � + d

n

) edges, and

L(G) has

1

2

(d

1

(d

1

�1)+ � � �+d

n

(d

n

�1)). Thus G and L(G) both have exatly n edges

if and only if (d

1

�2)

2

+ � � �+(d

n

�2)

2

= 0. Consequently exerise 58 gives the answer.

[See V. V. Menon, Canadian Math. Bull. 8 (1965), 7{15.℄

86. If G = then G = = L(G).

87. (a) Yes, easily. [In fat, R. L. Brooks has proved that every onneted graph with

maximum vertex degree d > 2 is d-olorable, exept for the omplete graph K

d+1

; see

Pro. Cambridge Phil. So. 37 (1941), 194{197.℄

(b) No. There's essentially only one way to 3-olor the edges of the outer 5-yle

in Fig. 2(e); this fores a onit on the inner 5-yle. [Petersen proved this in 1898.℄

88. One yle doesn't use the enter vertex, and there are (n�1)(n�2) yles that do

(namely, one for every ordered pair of distint verties on the rim). We don't ount C

0

.

89. Both sides equal

 

A O O

O B O

O O C

!

,

 

A J J

J B J

J J C

!

,

 

A J J

O B J

O O C

!

,

 

A O O

J B O

J J C

!

, respetively.

90. K

4

and K

4

; K

1;1;2

and K

1;1;2

; K

2;2

= C

4

and K

2;2

; K

1;3

and K

1;3

; K

1

� K

1;2

and its omplement; all graphs K

�

are ographs by (47). Missing is P

4

= P

4

. (All

onneted subgraphs of a ograph have diameter � 2; W

5

is a ograph, but not W

6

.)
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Mnemonis

notations

Ne�set�ril

graph produts

digraphs

multigraphs

simple digraphs

Kroneker produt

Hensel

Zehfuss

Hurwitz

omplementation

line graph

distributive laws

Weihsel

91. (a) ; (b) ; () ; (d) ; (e) ; (f) ; (g) . (In general we

have K

2

4H = (K

2

H) [ (K

2


H), and K

2

ÆH = H���H. Thus the oinidenes

K

2

4H = K

2

H and K

2

ÆH = K

2

�H our if and only if H is a omplete graph.)

Mnemonis: Our notations G H and G�H niely math diagrams (a) and (),

as suggested by J. Ne�set�ril, Leture Notes in Comp. Si. 118 (1981), 94{102. His

analogous reommendation to write G � H for (b) is also tempting; but it wasn't

adopted here, beause hundreds of authors have used G�H to denote G H.

92. (a) ; (b) ; () ; (d) ; (e) .

93. K

m

�K

n

= K

m

ÆK

n

�

=

K

mn

.

94. No; they're indued subgraphs of K

26

K

26

K

26

K

26

K

26

.

95. (a) d

u

+d

v

. (b) d

u

d

v

. () d

u

d

v

+d

u

+d

v

. (d) d

u

(n�d

v

)+(m�d

u

)d

v

. (e) d

u

n+d

v

.

96. (a)A B = A
I+I
B. (b)A�B = A B+A
B. ()A4B = A
J+J
B�2A
B.

(d) AÆB = A
J+I
B. (Formulas (a), (b), and (d) de�ne graph produts of arbitrary

digraphs and multigraphs. Formula () is valid in general for simple digraphs; but

negative entries an our when A and B ontain values > 1.)

Historial notes: The diret produt of matries is often alled the Kroneker

produt, beause K. Hensel [Crelle 105 (1889), 329{344℄ said he had heard it in Kro-

neker's letures; however, Kroneker never atually published anything about it. Its

�rst known appearane was in a paper by J. G. Zehfuss [Zeitshrift f�ur Math. und Physik

3 (1858), 298{301℄, who proved that det(A
B) = (detA)

n

(detB)

m

when m = m

0

and

n = n

0

. The basi formulas (A
B)

T

= A

T


B

T

, (A
B)(A

0


B

0

) = AA

0


BB

0

, and

(A
 B)

�1

= A

�1


 B

�1

are due to A. Hurwitz [Math. Annalen 45 (1894), 381{404℄.

97. Operations on adjaeny matries prove that (G�G

0

) H = (G H)� (G

0

H);

(G � G

0

)�H = (G�H) � (G

0

�H); (G � G

0

) Æ H = (G Æ H) � (G

0

Æ H). Sine

G H

�

=

H G, G
H

�

=

H 
G, and G�H

�

=

H�G, we also have right-distributive

laws G (H � H

0

)

�

=

(G H) � (G H

0

); G 
 (H � H

0

)

�

=

(G 
 H) � (G 
 H

0

);

G�(H�H

0

)

�

=

(G�H)� (G�H

0

). The lexiographi produt satis�es G ÆH = GÆH;

alsoK

m

ÆH = H���� � ����H, hene K

m

ÆK

n

= K

n;:::;n

. Furthermore GÆK

n

= G�K

n

;

K

m


K

n

= K

m

K

n

= L(K

m;n

).

98. There are kl omponents (beause of the distributive laws in the previous exerise,

and the fats that G H and G�H are onneted when G and H are onneted).

99. Every path from (u; v) to (u

0

; v

0

) in G H must use at least d

G

(u; u

0

) \G-steps"

and at least d

H

(v; v

0

) \H-steps"; and that minimum is ahievable. Similar reasoning

shows that d

G�H

((u; v); (u

0

; v

0

)) = max(d

G

(u; u

0

); d

H

(v; v

0

)).

100. If G and H are onneted, and if eah of them has at least two verties, G 
H

is disonneted if and only if G and H are bipartite. The \if" part is easy; onversely,

if there's an odd yle in G, we an get from (u; v) to (u

0

; v

0

) as follows: First go to

(u

00

; v

0

), where u

00

is any vertex of G that happens to be expedient. Then walk an even

number of steps in G from u

00

to u

0

, while alternating in H between v

0

and one of its

neighbors. [P. M. Weihsel, Pro. Amer. Math. So. 13 (1962), 47{52.℄

101. Choose verties u and v with maximum degree. Then d

u

+ d

v

= d

u

d

v

by

exerise 95; so either G = H = K

1

, or d

u

= d

v

= 2. In the latter ase, G = P

m

or C

m

, and H = P

n

or C

n

. But G H is onneted, so G or H must be nonbipartite,

say G. Then G H is nonbipartite, so H must also be nonbipartite; thus G = C

m

and H = C

n

, with m and n both odd. The shortest yle in C

m

C

n

has length

min(m;n); in C

m


 C

n

it has length max(m;n); hene m = n. Conversely, if n � 3
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Miller

planar

Erd}os

Gallai

automorphism

is odd, we have C

n

C

n

�

=

C

n


 C

n

, under the isomorphism that takes (u; v) 7!

((u + v) mod n; (u � v) mod n) for 0 � u; v < n. [D. J. Miller, Canadian J. Math. 20

(1968), 1511{1521.℄

102. P

m

�P

n

. (It is planar only when min(m;n) � 2 or m = n = 3.)

103.

1 2 3 4 5 7

2 1 3 4 6 8

3 1 2 5 6 8

4 1 2 5 6

5 3 4 1 7

6 2 3 4

7 5 1

8 2 3

1 2 3 4 5 6 7 8 9

2 1 3 4 6 8 9

3 1 2 5 6 8 9

4 1 2 5 7

5 3 4 1 7

6 2 3 1 7

7 4 5 6 1

8 2 3 1 9

9 8 2 3 1

104. Edges must be reated in a somewhat iruitous order, to maintain the tableau

shape. Variables r and i mark the starting and ending row in olumn t. For example,

the seond part of exerise 103 begins with i  1, t  8, r  1; then 9��� 1, i  2,

t 6, r  3; then 9���3, 9���2, i 4, t 4, r  8; then 9���8.

105. Notie that d

k

� k if and only if 

k

� k. When d

k

� k we have



1

+ � � �+ 

k

= k

2

+min(k; d

k+1

) + min(k; d

k+2

) + � � �+min(k; d

n

);

therefore the ondition d

1

+ � � �+ d

k

� 

1

+ � � �+ 

k

� k is equivalent to

d

1

+ � � �+ d

k

� f(k); where f(k) = k(k�1) + min(k; d

k+1

) + � � �+min(k; d

n

). (�)

If k � s we have f(k + 1) � f(k) = 2k � d

k+1

� d

k+1

; hene (�) holds for 1 � k � n

if and only if it holds for 1 � k � s. Condition (�) was disovered by P. Erd}os and

T. Gallai [Matematikai Lapok 11 (1960), 264{274℄. It is obviously neessary, if we

onsider the edges between f1; : : : ; kg and fk+1; : : : ; ng.

Let a

k

= d

1

+ � � �+ d

k

� 

1

�� � �� 

k

+ k, and suppose that a

k

> 0 for some k � s

after steps H3 and H4 have ated. Let A

j

, C

j

, D

j

, N , and S be the numbers that

orrespond to a

j

, 

j

, d

j

, n, and s before steps H3 and H4; thus N = n + 1, D

j

=

d

j

+ (0 or 1), et. We want to prove that A

K

> 0 for some K � S.

Steps H3 and H4 have removed the bottommost q ells in olumn t, for some

t � S, together with the rightmost ells in rows 1 through p, where q + p = D

N

. Thus

A

j

= a

j

for 1 � j � p; furthermore A

j

= a

j

when j � C

t

.

Let k be minimal with a

k

> 0, and let d

k

= d; notie that 

k

� d. If d > t we have

k � p, hene A

k

= a

k

> 0. Therefore we may assume that d = t� (0 or 1), and D

k

= t.

If k < j � C

t

we have d

j

� D

j

� 1 = t� 1 � d� 1 � 

k

� 1 � 

j

� 1. Therefore

A

K

= a

K

� a

k

when K = C

t

; we may assume that C

t

> S.

Now D

S

= D

S+1

= t, so S = t. Also k = t; otherwise 

k

� S + 1 > t � d.

Therefore s = S and d = t = 

t

. Further analysis shows that the only possibility with

A

t

� 0 is D

j

= t+ [j� t℄ for 1 � j � N = t+ 2. Algorithm H does indeed hange this

\good" sequene into a \bad" one; but D

1

+ � � �+D

N

= t

2

+ 3t� 1 is odd.

106. False in the trivial ases when d � 1 and n � d+ 2. Otherwise true: In fat, the

�rst n� 1 edges generated in step H4 ontain no yles, so they form a spanning tree.

107. The permutation ' of exerise 78 takes a vertex of degree d into a vertex of degree

n�1�d. And '

2

is an automorphism that pairs up two verties of equal degree, exept

for a possible �xed point of degree (n� 1)=2.

(Conversely, a somewhat intriate extension of Algorithm H will onstrut a self-

omplementary graph from every graphial sequene that satis�es these onditions,
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Clapham

Kleitman

majorized

onjugate partition

Fulkerson

Wang

Kleitman

vertex onnetivity

Erd}os

Kelly

Murphy's Law

loop

multihypergraph

adjaeny matrix

line graph

degree

provided that d

(n�1)=2

= (n � 1)=2 when n is odd. See C. R. J. Clapham and D. J.

Kleitman, J. Combinatorial Theory B20 (1976), 67{74.)

108. We may assume that d

+

1

� � � � � d

+

n

; the in-degrees d

�

k

need not be in any

partiular order. Apply Algorithm H to the sequene d

1

: : : d

n

= d

+

1

: : : d

+

n

, but with

the following hanges: Step H2 beomes \[Done?℄ Terminate suessfully if d

1

= n = 0;

terminate unsuessfully if d

1

> n." After setting i, t, and r in step H3, terminate

unsuessfully if d

�

n

> 

1

; otherwise do step H4 for 1 � j � d

�

n

, then set n n�1 and

return to H2. In step H5, omit \

j

 

j

� 1," and reate the ar k��!n instead of the

edge k���n. An argument like Lemma M and Corollary H justi�es this approah.

(Exerise 7.2.1.4{57 proves that suh digraphs exist if and only if d

�

1

+ � � �+d

�

n

=

d

+

1

+ � � � + d

+

n

and d

�

1

: : : d

�

n

= fd

0

1

; : : : ; d

0

n

g, where d

0

1

� � � � � d

0

n

and d

0

1

: : : d

0

n

is

majorized by the onjugate partition 

1

: : : 

n

= (d

+

1

: : : d

+

n

)

T

. The variant where loops

v��!v are forbidden is harder; see D.R. Fulkerson, Pai� J. Math. 10 (1960), 831{836.)

109. It's the same as exerise 108, if we put d

+

k

= d

k

[k�m℄ and d

�

k

= d

k

[k>m℄.

110. There are p verties of degree d = d

1

and q verties of degree d�1, where p+q = n.

Case 1, d = 2k + 1. Make u ��� v whenever (u � v) mod n 2 f2; 3; : : : ; k + 1;

n� k � 1; : : : ; n� 3; n� 2g; also add the p=2 edges 1���2, 3���4, : : : , (p�1)���p.

Case 2, d = 2k. Make u��� v whenever (u � v) mod n 2 f2; 3; : : : ; k; n � k; : : : ;

n � 3; n � 2g; also add the edges 1��� 2, : : : , (q�1)��� q, as well as the path or yle

(q = 0? n: q)��� (q+1)��� � � � ��� (n�1)��� n. [D. L. Wang and D. J. Kleitman, in

Networks 3 (1973), 225{239, have proved that suh graphs are highly onneted.℄

111. Suppose N = n+n

0

and V

0

= fn+1; : : : ; Ng. We want to onstrut e

k

= d� d

k

edges between k and V

0

, and additional edges within V

0

, so that eah vertex of V

0

has

degree d. Let s = e

1

+ � � �+ e

n

. This task is possible only if (i) n

0

� max(e

1

; : : : ; e

n

);

(ii) n

0

d � s; (iii) n

0

d � s+ n

0

(n

0

� 1); and (iv) (n+ n

0

)d is even.

Suh edges do exist whenever n

0

satis�es (i){(iv): First, s suitable edges be-

tween V and V

0

an be reated by ylially hoosing endpoints (n+1; n+2; : : : ; n+n

0

;

n+1; : : : ), beause of (i). This proess assigns either bs=n

0

 or ds=n

0

e edges to eah

vertex of V

0

; we have ds=n

0

e � d by (ii), and d � bs=n

0

 � n

0

� 1 by (iii). Therefore

the additional edges needed inside V

0

are onstrutible by exerise 110 and (iv).

The hoie n

0

= n always works. Conversely, if G = K

n

(V ) n f1���2g, ondition

(iii) requires n

0

� n when n � 4. [P. Erd}os and P. Kelly, AMM 70 (1963), 1074{1075.℄

112. The uniquely best triangle in the miles data is

Saint Louis, MO

748

��� Toronto, ON

746

��� Winston-Salem, NC

748

��� Saint Louis, MO.

113. By Murphy's Law, it has n rows and m olumns; so it's n�m, not m� n.

114. A loop in a multigraph is an edge fa; ag with repeated verties, and a multigraph

is a 2-uniform hypergraph. Thus we should allow the inidene matrix of a general hy-

pergraph to have entries greater than 1 when an edge ontains a vertex more than one.

(A pedant would probably all this a \multihypergraph.") With these onsiderations

in mind, the inidene matrix and bipartite graph orresponding to (26) are

�

210000

011100

001122

�

; :

115. The element in row e and olumn f of B

T

B is

P

v

b

ve

b

vf

; so B

T

B is 2I plus the

adjaeny matrix of L(G). Similarly, BB

T

is D plus the adjaeny matrix of G, where

D is the diagonal matrix with d

vv

= degree of v. (See exerises 2.3.4.2{18, 19, and 20.)
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partitions

bipartite graph

hyperars

projetive plane

bipartite hypergraph

latin squares

Chv�atal graph

Brinkmann

Meringer

Gr�unbaum

Vesztergombi

116. K

(r)

m;n

= K

(r)

m

�K

(r)

n

, generalizing (38), for all r � 1.

117. The nonisomorphi multisets of singleton edges for m = 4 and V = f0; 1; 2g are

ff0g; f0g; f0g; f0gg, ff0g; f0g; f0g; f1gg, ff0g; f0g; f1g; f1gg, and ff0g; f0g; f1g; f2gg.

The answer in general is the number of partitions of m into at most n parts, namely

�

�

m+n

n

�

�

, using the notation explained in Setion 7.2.1.4. (Of ourse, there's little reason to

think of partitions as 1-uniform hypergraphs, exept when answering strange exerises.)

118. Let d be the sum of the vertex degrees. The orresponding bipartite graph is

a forest with m + n verties, d edges, and p omponents. Hene d = m + n � p, by

Theorem 2.3.4.1A.

119. Then there's an additional edge, ontaining all seven verties.

120. We ould say that (hyper)ars are arbitrary sequenes of verties, or sequenes

of distint verties. But most authors seem to de�ne hyperars to be A��!v, where A

is an unordered set of verties. When the best de�nition is found, it will probably be

the one that has the most important pratial appliations.

121. �(H) = jF j � �(I(H)

T

) is the size of a minimum over of V by sets of F .

122. (a) One an verify that there are just seven 3-element overs, namely the verties

of an edge; so there are seven 4-element independent sets, namely the omplements of

an edge. We an't two-olor the hypergraph, beause one olor would need to be used

4 times and the other three olors would be an edge. (Hypergraph (56) is essentially

the projetive plane with seven points and seven lines.)

(b) Sine we're dualizing, let's all the verties and edges of the Petersen graph

\points" and \lines"; then the verties and edges of the dual are lines and points,

respetively. Color red the �ve lines that join an outer point to an inner point. The

other ten lines are independent (they don't ontain all three of the lines touhing any

point); so they an be olored green. No set of eleven lines an be independent, beause

no four lines an touh all ten points. (Thus the Petersen dual is a bipartite hypergraph,

in spite of the fat that it ontains yles of length 5.)

123. They orrespond to n� n latin squares, whose entries are the vertex olors.

124. Four olors easily suÆe. If it were 3-olorable, there must be four verties of

eah olor, sine no �ve verties are independent. Then two opposite orners must have

the same olor, and a ontradition arises quikly.

125. The Chv�atal graph is the smallest suh graph with g = 4. G. Brinkmann found

the smallest with g = 5: It has 21 verties a

j

, b

j

, 

j

for 0 � j < 7, with edges

a

j

���a

j+2

, a

j

���b

j

, a

j

���b

j+1

, b

j

���

j

, b

j

���

j+2

, 

j

���

j+3

and subsripts mod 7.

M. Meringer showed that there must be at least 35 verties if g > 5. B. Gr�unbaum

onjetured that g an be arbitrarily large; but no further onstrutions are known.

[See AMM 77 (1970), 1088{1092; Graph Theory Notes of New York 32 (1997), 40{41.℄

126. When m and n are even, both C

m

and C

n

are bipartite, and 4-oloring is easy.

Otherwise a 4-oloring is impossible. When m = n = 3, a 9-oloring is optimum by

exerise 93. When m = 3 and n = 4 or 5, at most two verties are independent; it's

easy to �nd an optimum 6- or 8-oloring. Otherwise we obtain a 5-oloring by painting

vertex (j; k) with (a

j

+ 2b

k

) mod 5, where periodi sequenes ha

j

i and hb

k

i exist with

period lengths m and n, respetively, suh that a

j

� a

j+1

� �1 and b

k

� b

k+1

� �1

for all j and k. [K. Vesztergombi, Ata Cybernetia 4 (1978), 207{212.℄

127. (a) The result is true when n = 1. Otherwise let H = Gnv, where v is any vertex.

Then H = Gnv, and we have �(H)+�(H) � n by indution. Clearly �(G) � �(H)+1
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Nordhaus

Gaddum

Fink

join

Erd}os

Moon

Moser

rossings

onnetivity

and �(G) � �(H) + 1; so there's no problem unless equality holds in all three ases.

But that an't happen; it implies that �(H) � d and �(H) � n� 1� d, where d is the

degree of v in G. [E. A. Nordhaus and J. W. Gaddum, AMM 63 (1956), 175{177.℄

To get equality, let G = K

a

�K

b

, where ab > 0 and a+b = n. Then we have G =

K

a

���K

b

, �(G) = a, and �(G) = b+1. [All graphs for whih equality holds have been

found by H.-J. Fink, Wiss. Zeit. der Teh. Hohshule Ilmenau 12 (1966), 243{246.℄

(b) A k-oloring of G has at least dn=ke verties of some olor; those verties form

a lique in G. Hene �(G)�(G) � �(G)dn=�(G)e � n. Equality holds when G = K

n

.

(From (a) and (b) we dedue that �(G)+�(G) � 2

p

n and �(G)�(G) �

1

4

(n+1)

2

.)

128. �(G H) = max(�(G); �(H)). This many olors is learly neessary. And if the

funtions a(u) and b(v) olor G and H with the olors f0; 1; : : : ; k � 1g, we an olor

G H with (u; v) = (a(u) + b(v)) mod k.

129. A omplete row or olumn (16 ases); a omplete diagonal of length 4 or more

(18 ases); a 5-ell pattern f(x; y); (x�a; y�a); (x�a; y+a); (x+a; y�a); (x+a; y+a)g

for a 2 f1; 2; 3g (36+16+4 ases); a 5-ell pattern f(x; y); (x�a; y); (x+a; y); (x; y�a);

(x; y+a)g for a 2 f1; 2; 3g (36 + 16 + 4 ases); a pattern ontaining four of those

�ve ells, when the �fth lies o� the board (24 + 32 + 24 ases); or a 4-ell pattern

f(x; y); (x+a; y); (x; y+a); (x+a; y+a)g for a 2 f1; 3; 5; 7g (49 + 25 + 9 + 1 ases).

Altogether 310 maximal liques, with respetively (168; 116; 4; 4; 18) of size (4; 5; 6; 7; 8).

130. If graph G has p maximal liques and graph H has q, then the join G���H has

pq, beause the liques of G���H are simply the unions of liques from G and H.

Furthermore, the empty graph K

n

has n maximal liques (namely its singleton sets).

Thus the omplete k-partite graph with part sizes fn

1

; : : : ; n

k

g, being the join of

empty graphs of those sizes, has n

1

: : : n

k

maximal liques.

131. Assume that n > 1. In a omplete k-partite graph, the number n

1

: : : n

k

is maxi-

mized when eah part has size 3, exept perhaps for one or two parts of size 2. (See exer-

ise 7.2.1.4{68(a).) So we must prove thatN(n) annot be larger than this in any graph.

Let m(v) be the number of maximal liques that ontain vertex v. If u /���v and

m(u) � m(v), onstrut the graph G

0

that is like G exept that u is now adjaent to

all the neighbors of v instead of to its former neighbors. Every maximal lique U in

either graph belongs to one of three lasses:

i) u 2 U ; there are m(u) of these in G and m(v) of them in G

0

.

ii) v 2 U ; there are m(v) of these in G and also in G

0

.

iii) u =2 U and v =2 U ; suh maximal liques in G are also maximal in G

0

.

Therefore G

0

has at least as many maximal liques as G. And we an obtain a omplete

k-partite graph by appropriately repeating the proess.

[This argument, due to Paul Erd}os, was presented by J. W. Moon and L. Moser

in Israel J. Math. 3 (1965), 23{25.℄

132. The strong produt of liques in G andH is a lique in G�H, by exerise 93; hene

!(G�H) � !(G)!(H) = �(G)�(H). On the other hand, olorings a(u) and b(v) of G

and H lead to the oloring (u; v) = (a(u); b(v)) of G�H; hene �(G�H) � �(G)�(H).

And !(G�H) � �(G�H).

133. (a) 24; (b) 60; () 3; (d) 6; (e) 6; (f) 4; (g) 5; (h) 4; (i) K

2

�C

12

; (j) 18; (k) 12.

(l) Yes, of degree 5. (m) No. [Can it be drawn with fewer than 12 rossings?℄ (n) Yes;

in fat, it is 4-onneted (see Setion 7.4.1). (o) Yes; we onsider every graph to be

direted, with two ars for eah edge. (p) Of ourse not. (q) Yes, easily.
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Wilson

Watkins

strong produt

Holton

Sheehan

raman

[The musial graph represents simple modulations between key signatures. It

appears on page 73 of Graphs by R. J. Wilson and J. J. Watkins (1990).℄

134. By rotating and/or swapping the inner and outer verties, we an �nd an auto-

morphism that takes any vertex into C. If C is �xed, we an interhange the inner and

outer verties of any subset of the remaining 11 pairs, and/or do a left-right reetion.

Therefore there are 24� 2

11

� 2 = 98;304 automorphisms altogether.

135. Let ! = e

2�i=6

, and de�ne the matries Q = (q

ij

), S = (s

ij

), where q

ij

=

[j=(i+ 1) mod 12℄ and s

ij

= !

ij

, for 0 � i; j < 12. By exerise 96(b), the adjaeny

matrix of the musial graph K

2

�C

12

is A =

�

1 1

1 1

�


(I+Q+Q

�

)�I. Let T be the matrix

�

1 1

1�1

�


 S; then T

�

AT is a diagonal matrix D whose �rst 12 entries are 1 + 4 os

j�

6

for 0 � j < 12, and whose other 12 entries are �1. Therefore A

2m

= TD

m

T

�

, and it

follows that the number of 2m-step walks from C to (C;G;D;A;E;B;F

℄

) respetively is

C

m

=

1

24

(25

m

+ 2(13 + 4

p

3)

m

+ 3

2m+1

+ 2(13� 4

p

3)

m

+ 16);

G

m

=

1

24

(25

m

+

p

3(13 + 4

p

3)

m

�

p

3(13� 4

p

3)

m

� 1);

D

m

=

1

24

(25

m

+ (13 + 4

p

3)

m

+ (13� 4

p

3)

m

� 3);

A

m

=

1

24

(25

m

� 3

2m+1

+ 2);

E

m

=

1

24

(25

m

� (13 + 4

p

3)

m

� (13� 4

p

3)

m

+ 1);

B

m

=

1

24

(25

m

�

p

3(13 + 4

p

3)

m

+

p

3(13� 4

p

3)

m

� 1);

F

℄

m

=

1

24

(25

m

� 2(13 + 4

p

3)

m

+ 3

2m+1

� 2(13� 4

p

3)

m

);

also a

m

=C

m

�1, d

m

=F

m

=e

m

=G

m

, et. In partiular, (C

6

;G

6

;D

6

;A

6

;E

6

;B

6

;F

℄

6

)=

(15462617, 14689116, 12784356, 10106096, 7560696, 5655936, 5015296), so the desired

probability is 15462617=5

12

� 6:33%. Asm!1, the probabilities are all

1

24

+O(0:8

m

).

136. No. Only two Cayley graphs of order 10 are ubi, namelyK

2

C

5

(whose verties

an be written fe; �; �

2

; �

3

; �

4

; �; ��; ��

2

; ��

3

; ��

4

g where �

5

= �

2

= (��)

2

= e) and

the graph with verties f0; 1; : : : ; 9g and ars v ! (v�1) mod 10, v ! (v+5) mod 10.

[See D. A. Holton and J. Sheehan, The Petersen Graph (1993), exerise 9.10. Iniden-

tally, the SGB graphs raman (p; q; t; 0) are Cayley graphs.℄

137. Let [x; y℄ denote the label of (x; y); we want [x; y℄ = [x+ a; y + b℄ = [x+ ; y + d℄

for all x and y. If A is the matrix (

a



b

d

), the operation of adding t times the bottom

row of A to the top row hanges A to the matrix A

0

= (

1

0

t

1

)A = (

a

0



0

b

0

d

0

), where

a

0

= a + t, b

0

= b + td, 

0

= , d

0

= d. The new ondition [x; y℄ = [x + a

0

; y + b

0

℄ =

[x + 

0

; y + d

0

℄ is equivalent to the old; and gd(a

0

; b

0

; 

0

; d

0

) = gd(a; b; ; d). Similarly

we an premultiply A by (

1

t

0

1

) without really hanging the problem.

We an also operate on olumns, replaing A by A

00

= A(

1

0

t

1

) = (

a

00



00

b

00

d

00

), where

a

00

= a, b

00

= ta+b, 

00

= , d

00

= t+d. This operation does alter the problem, but only

slightly: If we �nd a labeling that satis�es [[x; y℄℄ = [[x+ a

00

; y + b

00

℄℄ = [[x+ 

00

; y + d

00

℄℄

for all x and y, then we'll have [x; y℄ = [x+a; y+b℄ = [x+; x+d℄ if [x; y℄ = [[x; y+ tx℄℄.

Similarly we an postmultiply A by (

1

t

0

1

); the problem remains almost the same.

A series of suh row and olumn operations will redue A to the simple form

UAV = (

1

0

0

n

), where U and V are integer matries with detU = detV = 1. And if we

have V = (

�



�

Æ

), a labeling for the redued problem that satis�es the simple onditions

[[x; y℄℄ = [[x+ 1; y℄℄ = [[x; y + n℄℄ will provide a solution to the original labeling problem

if we de�ne [x; y℄ = [[�x+ y; �x+ Æy℄℄.
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diagonal matrix

determinants

Smith normal form

multigraph

Cayley graphs

Abelian groups

Wong

Coppersmith

Fiduia

Forade

Zito

labeled graphs

unlabeled graphs

isomorphi

automorphisms

Janson

Kratohv��l

Barbour

Karo�nski

Rui�nski

variane

Finally, the redued labeling problem is easy: We let [[x; y℄℄ = y mod n. Thus the

desired answer is to set p = �, q = Æ.

138. Proeeding as before, but with a k � k matrix A, row and olumn operations

will redue the problem to a diagonal matrix UAV . The diagonal entries (d

1

; : : : ; d

k

)

are haraterized by the ondition that d

1

: : : d

j

is the greatest ommon divisor of

the determinants of all j � j submatries of A. [This is \Smith normal form"; see

H. J. S. Smith, Philosophial Transations 151 (1861), 293{326, x14.℄ If the labeling

[[x℄℄ satis�es the redued problem, the original problem is satis�ed by [x℄ = [[xV ℄℄. The

number of elements in the generalized torus is n = detA = d

1

: : : d

k

.

The redued problem has a simple solution as before if d

1

= � � � = d

k�1

= 1. But

in general the redued labeling will be an r-dimensional ordinary torus of dimensions

(d

k�r+1

; : : : ; d

k

), where d

k�r+1

> d

k�r

= 1. (Here d

0

= 1; we might have r = k.)

In the requested example, we �nd d

1

= 1, d

2

= 2, d

3

= 10, n = 20; indeed,

UAV =

0

�

1 �2 0

0 1 �1

�1 �1 4

1

A

0

�

3 1 1

1 3 1

1 1 3

1

A

0

�

1 5 6

0 1 1

0 0 1

1

A

=

0

�

1 0 0

0 2 0

0 0 10

1

A

:

Eah point (x; y; z) now reeives a two-dimensional label (u; v) = ((5x + y) mod 2;

(6x+ y+ z) mod 10). The six neighbors of (u; v) are ((u� 1) mod 2; v), ((u� 1) mod 2;

(v�1) mod 10), (u; (v�1) mod 10). It's a multigraph, sine the �rst two neighbors are

idential; but it's not the same as the multigraph C

2

�C

10

, whih has degree 8.

[Generalized toruses are essentially the Cayley graphs of Abelian groups; see

exerise 136. They have been proposed as onvenient interonnetion networks, in

whih ase it is desirable to minimize the diameter when k and n are given. See C. K.

Wong and D. Coppersmith, JACM 21 (1974), 392{402; C. M. Fiduia, R. W. Forade,

and J. S. Zito, SIAM J. Disrete Math. 11 (1998), 157{167.℄

139. (This exerise helps larify the distintion between labeled graphs G, in whih the

verties have de�nite names, and unlabeled graphs H suh as those in Fig. 2.) If N

H

is

the number of labeled graphs on f1; 2; : : : ; hg that are isomorphi to H, and if U is any

h-element subset of V , the probability that G j U is isomorphi to H is N

H

=2

h(h�1)=2

.

Therefore the answer is

�

n

h

�

N

H

=2

h(h�1)=2

. We need only �gure out the value of N

H

,

whih is: (a) 1; (b) h!=2; () (h� 1)!=2; (d) h!=a, where H has a automorphisms.

140. (a) #(K

3

:W

n

) = n�1 and #(P

3

:W

n

) =

�

n�1

2

�

for n � 5; also #(K

3

:W

8

) = 7.

(b) G is proportional if and only if #(K

3

:G) = #(K

3

:G) =

1

8

�

n

3

�

and #(P

3

:G) =

#(P

3

:G) =

3

8

�

n

3

�

. If G has e edges, we have (n�2)e = 3#(K

3

:G)+2#(P

3

:G)+#(P

3

:G),

beause every pair of verties appears in n�2 indued subgraphs. If G has degree

sequene d

1

: : : d

n

, we have d

1

+ � � �+d

n

= 2e,

�

d

1

2

�

+ � � �+

�

d

n

2

�

= 3#(K

3

:G)+#(P

3

:G),

and d

1

(n�1�d

1

)+� � �+d

n

(n�1�d

n

) = 2#(P

3

:G)+2#(P

3

:G). Therefore a proportional

graph satis�es (�)|unless n = 2. (The exerise should have exluded that ase.)

Conversely, if G satis�es (�) and has the orret #(K

3

:G), it also has the orret

#(P

3

:G), #(P

3

:G), and #(K

3

:G).

[Referenes: S. Janson and J. Kratohv��l, Random Strutures & Algorithms 2

(1991), 209{224. In J. Combinatorial Theory B47 (1989), 125{145, A. D. Barbour,

M. Karo�nski, and A. Rui�nski had shown that the variane of #(H:G) is proportional

to either n

2h�2

, n

2h�3

, or n

2h�4

, where the �rst ase ours when H does not have

1

2

�

h

2

�

edges, and the third ase ours when H is a proportional graph.℄

141. Only 8 degree sequenes d

1

: : : d

8

satisfy (�): 73333333 (1/2), 65433322 (26/64),

64444222 (2/10), 64443331 (8/22), 55543222 (8/20), 55533331 (2/10), 55444321 (26/64),
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self-omplementary

Bondy

adjaeny matrix

Sauerho�

Wegener

Misra

Gries

and 44444440 (1/2). Eah degree sequene is shown here with statistis (N

1

=N), where

N nonisomorphi graphs have that sequene and N

1

of them are proportional. The last

three ases are omplements of the �rst three. No graph of order 8 is both proportional

and self-omplementary. Maximally symmetri examples of the �rst �ve ases are W

8

,

; ; ; and :

142. The hint follows as in the previous answer; (n� 3)#(K

3

:G) and (n� 3)#(P

3

:G)

an also be expressed in terms of four-vertex ounts. Furthermore, a graph with e

edges has

�

e

2

�

= #(P

3

� G) +#(K

2

�K

2

� G), beause any two edges form either P

3

or K

2

�K

2

; in this formula, #(P

3

� G) ounts not-neessarily-indued subgraphs.

We have #(P

3

� G) = #(P

3

:G) + 3#(K

3

:G), and a similar formula expresses

#(K

2

�K

2

� G) in terms of indued ounts. Thus an extraproportional graph must

be proportional and satisfy e =

1

2

�

n

2

�

, #(P

3

� G) =

3

4

�

n

3

�

, #(K

2

�K

2

� G) =

3

4

�

n

4

�

.

But these values ontradit the formula for

�

e

2

�

.

143. Consider the graph whose verties are the rows of A, and whose edges u ��� v

signify that rows u and v agree exept in one olumn, j. Label suh an edge j.

If the graph ontains a yle, delete any edge of the yle, and repeat the proess

until no yles remain. Notie that the label on every deleted edge appears elsewhere in

its yle; hene the deletions don't a�et the set of edge labels. But we're left with fewer

than m � n edges, by Theorem 2.3.4.1A; so there are fewer than n di�erent labels.

[See J. A. Bondy, J. Combinatorial Theory B12 (1972), 201{202.℄

144. Let G be the graph on verties f1; : : : ;mg, with edges i ��� j if and only if

� 6= x

il

6= x

jl

6= � for some l. This graph is k-olorable if and only if there is a ompletion

with at most k distint rows. Conversely, if G is a graph on verties f1; : : : ; ng, with

adjaeny matrix A, the n � n matrix X = A + �(J � I � A) has the property that

i��� j if and only if � 6= x

il

6= x

jl

6= � for some l. [See M. Sauerho� and I. Wegener,

IEEE Trans. CAD-15 (1996), 1435{1437.℄

145. Set  0 and repeat the following operations for 1 � j � n: If  = 0, set x a

j

and   1; otherwise if x = a

j

, set    + 1; otherwise set    � 1. Then x is

the answer. The idea is to keep trak of a possible majority element x, whih ours

 times in nondisarded elements; we disard a

j

and one x whenever �nding x 6= a

j

.

[See Automated Reasoning (Kluwer, 1991), 105{117. Extensions to �nd all elements

that our more than n=k times, in O(n log k) steps, have been disussed by J. Misra

and D. Gries, Siene of Computer Programming 2 (1982), 143{152.℄
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^, see smile.

0{1 matries, 20, 32{35, 44, 46, see also

Adjaeny matries.

�(H) (independene number of a graph

or hypergraph), 35, 44.

 (Euler's onstant), as soure of

\random" data, 49.

� (irle ratio), as soure of \random"

data, 49.

� (golden ratio), 47.

as soure of \random" data, 49.

�(H) (hromati number of a graph or

hypergraph), 35, 44, 46.

!(G) (lique number of a graph), 35, 44.

Abelian (ommutative) groups, 65.

Ayli: Containing no yles, 15, 31{32.

Addition table modulo n, 36.

Adjaeny lists, 21{22.

Adjaeny matries, 19{20, 26, 27,

40{41, 43, 61, 66.

Adjaent verties, 13.

Ahrens, Wilhelm Ernst Martin Georg, 49.

All-0s matrix, 27, 58.

All-1s matrix, 26, 27, 58, 59.

Alphabeti order, 38.

Anagrams, 52.

Analysis of algorithms, 41.

AND gates, 32, 33.

AND operation, bitwise, 22.

Andersen, Lars D�vling, 49.

Appel, Kenneth Ira, 17.

Apportionment, 8.

Arabi mathematis, 48{49.

Ar lists, 21{22.

Ar variables, 21, 23.

Ars, 18{23.

as edges, 18.

ARCS(v) (�rst ar of a vertex), 21.

Arithmeti progressions, 38.

Ashbaher, Mihael George, 56.

Assoiative laws, 27, 28, 42.

Automorphisms, 14{15, 39, 45, 56,

60, 65{66.

Bah, Johann Sebastian, x.

Bang, Th�ger Sophus Vilhelm, 47.

Barbour, Andrew David, 65.

Barnard, Robert, 10.

Baron, Gerd, 48.

Baryentri oordinates, 25.

Bassanio of Venie, 1.

Bears, California Golden, 31.

Berge, Claude, 34.

bi book graphs, 23.

bi lisa graphs, 24.

Biggs, Norman Linstead, 15.

Bigraphs, 17, see Bipartite graphs.

Bipartite graphs, 17, 22{25, 35, 39,

41, 43, 55, 62.

orresponding to hypergraphs, 33, 44.

Bipartite hypergraphs, 62.

Bipartiteness testing, 22{23.

Bishop moves on a hessboard, 25, 26, 31.

Bitwise AND operation, 22.

board graphs, 25, 26, 31, 41.

Bondy, John Adrian, 14, 66.

book graphs, 23.

Boolean funtions, 33.

Boolean values, 32.

Bose, Raj Chandra (r;j <d¨ bsu), 5.

Bossen, Douglas Craig, 52.

Boyer, Robert Stephen, 46.

Brette, Jean, 48.

Brewster, George, 9.

Brinkmann, Gunnar, 62.

Brooks, Rowland Leonard, 58.

Brown, John Wesley, 49.

Brown, William Gordon, 56.

Brualdi, Rihard Anthony, 50.

Bruk, Rihard Hubert, 51.

Bui, Alain, 2.

C language, 22.

C

n

(yle of order n), 13, 28, 39, 41.

C~

n

(oriented yle of order n), 18, 41.

California Golden Bears, 31.

Cardinal, Stanford, 31.

Carroll, Lewis (= Dodgson, Charles

Lutwidge), 10{12, 53.

Cartesian produt of graphs, 27{28,

42{44, 59.

Categorial produt of graphs, 28, see

Diret produt of graphs.

Cayley, Arthur, digraphs, 45.

graphs, 45, 65.

Censorship, 10{11.

Chambers, Ephraim, v.

Chauer, Geo�rey, 52.

Chessboard-like graphs,

bishop moves, 25, 26, 31.

generalized piee moves, 41.

king moves, 43.

knight moves, 15, 25.

67
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queen moves, 26, 44.

rook moves, 26, 41.

Chien, Robert Tien Wen ( ), 52.

Christie Mallowan, Agatha Mary Clarissa

Miller, 18{19.

Chromati index, see Edge-hromati

number.

Chromati number �(G), 35, 44, 46.

Chv�atal, V�alav, 14.

graph, 14, 39, 44, 62.

Clapham, Christopher Robert Jasper, 61.

Clausen, Thomas, 5.

Claw graph, 54.

Clique overs, 35.

Clique number !(G), 35, 44.

Cliques, 35, 44.

Clustering, vii.

CMath: Conrete Mathematis, a book

by R. L. Graham, D. E. Knuth,

and O. Patashnik.

Codewords, b-ary, 38.

Coding theory, 52.

Cographs, 42.

Cohen, Philip Mihael, 53.

Colleges, 31.

Coloring of graphs, 17, 35, 42, 44, 46.

Coloring of hypergraphs, 32, 35, 44.

Combinatorial explosion, v.

Combinatoris, 1{7, see also Graphs.

Commutative laws, 28.

Complement, of a graph, 26, 27, 35,

41, 42, 59.

of a simple digraph, 42.

of an r-uniform hypergraph, 32.

Complete bigraphs (K

m;n

), 17, 26,

39, 42, 55.

Complete binary tries, 38{39.

Complete bipartite graphs, 17, 26,

39, 42, 55.

Complete digraphs (J

n

), 18, 55, 57.

Complete graphs (K

n

), 13, 26{27,

39, 41{43, 58.

Complete k-partite graphs, 17, 26{27,

40, 44.

Complete r-uniform hypergraphs, 32.

bipartite, 44.

Complete ternary tries, 53.

Complete tripartite graphs (K

m;n;r

), 17, 42.

Completion of a matrix, 46.

Components, 16, 18, 26, 40, 42, 43.

Composition of graphs, 28, see

Lexiographi produt of graphs.

Compositions of an integer, 25.

Conjugate of a partition, 29{30, 43, 61.

Conjuntion of graphs, 28, see

Diret produt of graphs.

Conneted digraphs, 18.

Conneted graphs, 16, 33, 43, 44.

Connetivity of a graph, viii, 63.

Conseutive ars, 19.

Consonants, 38.

Contiguous United States of Ameria,

15, 34, 39{40.

Converse of a digraph, 58.

Convex hull of points, 24.

Coppersmith, Don, 65.

Cover, Thomas Merrill, 13.

Covering problems, 11.

exat, 2, 7, 8, 35, 37, 48.

minimum, 34{35, 44.

Crett�e de Palluel, Fran�ois, 8.

Crossings in a diagram, 14, 63.

Cube graphs (k-ubes), 28, 41.

Cubi graphs, 14, 39, 64.

Cyle graph C

n

, 13, 28, 39, 41.

Cyles, 13, 28, 39, 41, 42, 44.

in a hypergraph, 33.

of a permutation, 40, 42.

oriented, 18, 19, 32, 40, 41.

Cylinders, 28, 41.

d

+

(v) (out-degree of v), 18.

d

�

(v) (in-degree of v), 18.

d(u; v) (distane in a graph), 16, 43.

direted, 19.

generalized, 16{17.

da Vini, Leonardo, 9, 24.

Dags (direted ayli graphs), 31{32.

Daning links method, 2, 7, 8, 11, 48.

Davies, Roy Osborne, 2, 47.

de Palluel, Fran�ois Crett�e, 8.

de Poligna, Camille Armand Jules

Marie, 15.

Dean, Je�rey Adgate, iv.

Degree of a vertex, 14, 19, 39, 43, 44, 61.

Degree sequenes, 29{31, 43, 46, 65{66.

Delaunay, Boris Nikolaevih (Delone, Boris

Nikolaeviq), triangulation, 24.

Depth-�rst searh, 23, 41.

Determinants, 40, 59, 65.

Diagonal matries, 64, 65.

Diagrams for digraphs, 18{19, 42.

Diagrams for graphs, 14{15, 26{28, 39, 42.

Diameter of a graph, 16, 24, 39, 41,

42, 44, 58.

Ditionaries of English, 10, 34, 38, 53.

Digitized image, 24.

Digraphs, 18, see Direted graphs.

Diret produt of graphs, 28, 42{43.

Diret produt of matries, 43.

Diret sum of graphs, 26{27, 42, 43.

Diret sum of matries, 27, 43.

Direted ayli graphs, 31{32.

Direted distane d(u; v), 19.
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Direted graphs, 12, 18{22, 40, 42, 59.

omplete, 18, 55, 57.

omponents of, 18.

onverse of, 58.

random, 25.

representation of, 19{22.

strong omponents of, 40, 55.

Direted hypergraphs, 44.

Direted join of digraphs, 26{27.

Disjoint graphs, 26.

Disjoint sets, 25.

Distane d(u; v) in a graph, 16, 43.

generalized, 16{17.

Distane of a ode, 38.

Distint olumns, 33.

Distint rows, 46.

Distributive laws, 43, 59.

Dodeahedron, 15.

Dodgson, Charles Lutwidge (= Lewis

Carroll), 10{12, 53.

Don't ares, 46.

Dot produt of vetors, 12, 34, 37.

Doublets game, 11.

Doutt�e, Edmond, 48.

Doyle, Arthur Conan, 1.

Dual of a hypergraph, 33, 35, 44.

Dudeney, Henry Ernest, 54.

e, as soure of \random" data, 49.

eon graphs, 31.

Edge-hromati number �(L(G)), 44.

Edges as ars, 19, 21{22.

Edges of a hypergraph, 32{35.

Eigenvalues of a matrix, 40.

Eigenvetors of a matrix, 40.

Eletoral distrits, 8.

Empty graphs (K

n

), 26, 27, 41{43, 46, 63.

English language, 9{10.

Equidistant ities, 44.

Equivalene relations, 45{46, 51.

Erd}os, P�al (= Paul), 60, 61, 63.

Error-orreting odes, 37{38.

Eulidean distane, 10, 12.

Eulidean plane, 17.

Euler, Leonhard (E�ler�, Leonard� =

��ler, Leonard), 3{7, 36, 49.

Even permutations, 40.

Evolution of random graphs, 25.

Exat over problems, 2, 7, 8, 35, 37, 48.

Expander graphs, 24.

Fatorization of a graph, 28.

Families of sets, 32, see Hypergraphs.

Fibonai strings, 36.

Fiduia, Charles Mihael, 65.

Final vertex of an ar, 18.

Fink, Hans-Joahim, 63.

Finite �elds, 51.

Five-letter words, iv, 9{12, 16, 38{39, 43.

Flows of money, 31.

Floyd, Robert W, Lemma, vi.

Folland, Gerald Budge, iii.

Football sores, 31.

Forade, Rodney Warring, 65.

Four Color Theorem, 17.

Free trees, 17, 44.

Frequeny of usage in English, 10.

Fulkerson, Delbert Ray, 61.

Gaddum, Jerry William, 63.

Gallai, Tibor, 60.

games graphs, 31.

Ganter, Bernhard, 49.

Gardner, Martin, 9, 11.

Gates, networks of, 32.

Gau� (= Gauss), Johann Friderih Carl

(= Carl Friedrih), 5, 17.

Generalized toruses, 45{46.

Generator routines, 23{26, 30{32, 41.

Geometri nets, 37{39.

Gherardini, Lisa, seeMona Lisa.

Giant omponent of a graph, 16, 25, 39, 55.

Girth of a graph, 15, 24, 39{41, 44.

Globally optimum solutions, 34{35.

Godfrey, Mihael John, 36.

Golden Bears, California, 31.

Golomb, Solomon Wolf, 52.

Google, iv.

Gordon, Leonard Joseph, 52.

Gr�o-Latin squares, 4{5, 8, 36, 50.

Graham, Ronald Lewis, 68.

Grant, Je�rey Lloydd Jagton, 53.

Graph theory, introdution to, 13{19.

Graph-paper graphs, 28.

Graphial degree sequenes, 29{31,

43, 46, 65{66.

Graphs, 11{35, 39{45.

algebra of, 26{28, 42{45.

bipartite, see Bipartite graphs.

omplete, 13, 26{27, 39, 41{43, 58.

empty (null), 26, 27, 41{43, 46, 63.

generators for, 23{26, 30{32, 41.

labeled versus unlabeled, 15, 16, 65.

of orders 3 and 4, 42, 46.

produts of, 27{28, 42{44, 59.

random, 25, 41, 46.

regarded as digraphs, 19{22.

regular, 14, 24{25, 33, 40{44.

representation of, 19{22.

Gray, Frank, binary ode, 48.

Grid graphs, 28, 41.

triangular, 25, 58.

Gries, David Joseph, 66.

Groth, Edward John, Jr., 8.

Gr�unbaum, Branko, 62.

gunion (union of SGB graphs), 26.

Guthrie, Franis, 17.
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Haken, Wolfgang, 17.

Hall, Marshall, Jr., ix, 47, 51.

Hamilton, William Rowan, 15.

yles and paths, 15.

Hamiltonian graphs, 15, 44, 54.

Hamming, Rihard Wesley, distane,

12, 28, 37{38.

Harary, Frank, iv, 18, 55.

Havel, V�alav (mathematiian), 29.

Havel, V�alav (playwright and

statesman), 8.

Hebrai-Gr�o-Latin squares, 36, 50.

Hebrew letters, 36.

Hedayat, Samad (= Abdossamad,

xÚm�Ó �Ì�¿m�q«), 49, 51.

Heinen, Franz, 17.

Hensel, Kurt Wilhelm Sebastian, 59.

Highways, 31.

Ho�man, Alan Jerome, 56.

Holmes, Thomas Sherlok Sott, 1.

Holton, Derek Alan, 64.

Homer (�Omhro), 9.

Horton, Robert Elmer, 53.

Hsiao, Ben Mu-Yue ( = ), 52.

Hugo, Vitor Marie, 23.

Hurwitz, Adolf, 59.

Hyperars, 62.

Hyperedges, 32.

Hyperforests, 44.

Hypergraphs, 32{35, 44.

I (identity matrix), 26, 59.

IBM Type 650 omputer, v.

Ibn al-H

.

�ajj, Muh

.

ammad ibn Muh

.

ammad

(}n�¿m Ñp �Ì�Ë Ñp �Ì�Ë), 48.

id of an SGB graph, 12, 22.

ID(g), 22.

Identity matrix, 26.

Image, digitized, 24.

Impliit data struture, 21{22.

Imrih, Wilfried, 28.

In-degree of a vertex, 18, 19, 41, 43.

Inidene matrix of a graph or hypergraph,

33, 35, 44.

Independene number �(H) of a graph

or hypergraph, 35, 44.

Independent verties, 34, 35, 44.

Indued subgraphs, 13, 18, 39, 42, 43, 46.

Indued subhypergraphs, 32.

In�nity, point at, 24.

Initial vertex of an ar, 18.

Integer programming, vii.

Internet, ii{iv, viii, ix, 10, 53.

Intruders, 36.

Inverse permutation, 20.

Inverter gates, 32.

Islami mathematis, 48{49.

Isolated verties: Verties of degree 0,

25, 55, 58.

Isomorphi graphs, 13{15, 28, 39, 65{66.

direted, 18.

J (all-ones matrix), 26, 27, 58, 59.

J

n

(omplete digraph of order n), 18, 55, 57.

Jaillet, Christophe Andr�e Georges, 2.

Janson, Carl Svante, 46, 65.

Johnson, Samuel, v.

Join of graphs, 26{27, 63.

Juxtaposition of graphs, 26, see Diret

sum of graphs.

k-olorable graphs or hypergraphs, 17,

32, 35, 42, 44.

k-ubes, 28, 41.

k-edge-olorable graphs, 26, 42, 44.

k-partite graphs or hypergraphs, 17,

32, 35, 42, 44.

omplete, 17, 26{27, 40, 44.

K

n

(omplete graph of order n), 13,

26{27, 41{43, 58.

K

(r)

n

(omplete r-uniform hypergraph), 32.

K~

n

(transitive tournament of order n),

18, 27, 40, 41.

K

3;3

(utilities graph), 17, 39, 42, 51.

K

m;n

(omplete bipartite graph), 17,

26, 39, 42, 55.

K

(r)

m;n

(omplete r-uniform bipartite

hypergraph), 44.

K

n

1

;:::;n

k

(omplete k-partite graph),

17, 26, 40, 44.

Karo�nski, Miha l, 65.

Kelly, Paul Joseph, 61.

Kempe, Alfred Bray, 54.

Kernel of a graph, see Maximal

independent sets.

King moves on a hessboard, 43.

Kingwise torus, 44.

Kirkman, Thomas Penyngton, 15.

Klav�zar, Sandi, 28.

Kleitman, Daniel J (Isaiah Solomon), 61.

Knight moves on a hessboard, 15, 25.

Knuth, Donald Ervin ( ), i, iv, ix,

x, 7, 9{10, 12, 32, 49, 68.

Koh, John Allen, 17.

K}onig, D�enes, 17.

Kowalewski, Arnold, 58.

Krajeki, Miha�el, 2.

Kratohv��l, Jan, 46, 65.

Kroneker, Leopold, produt, 59.

L(G) (line graph of G), 26, 42.

Labeled graphs, 15, 65.

LADDERS program, 32.

Landau, Hyman Garshin, 55.

Langford, Charles Dudley, 7, 9, 48.

pairs, 1{3, 8, 36.

triples, 36.

Lath gates, 32.

Latin squares, 3{8, 36{38, 50, 62.
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Leahy, Franis Theodore, Jr. (= Ted), 47.

Lehmer, Derrik Henry, 39.

Leighton, Robert Eri, 52.

Leonardo da Vini, 9, 24.

Lexiographi order, 3, 38, 41.

Lexiographi produt of graphs, 28,

42{43, 59.

Lillywaite, Peregrine, 10.

Line graph of a graph, 26, 35, 42, 55, 59, 61.

Linear programming, vii.

Linear subgraphs, 55.

Linked alloation, 21.

Lloyd, Edward Keith, 15.

LOC (memory loation), 22.

Loally optimal solutions, 34{35.

Loops from a vertex to itself, 13, 18,

19, 41, 61.

Loyd, Walter (= \Sam Loyd, Jr."), 1.

m�n ylinders, 28, 41.

m�n grids, 28, 41.

m�n rook graphs, 26, 41.

m�n toruses, 28, 41.

direted, 41.

M(g) (the number of ars in an SGB

graph), 22.

MaNeish, Harris Franklin, 5.

Magi squares, 36.

Majority element, 46.

Majority funtion, 52.

Majorization, 30, 61.

Mann, Henry Berthold, 49.

Mathing in a graph, 35, 44.

MATE (the onverse ar), 21{22.

Mates of ars, 21{22.

Mathon, Rudolf Anton, 49.

Matrix multipliation, 20, 59.

Maximal liques, 44.

Maximal independent sets, 34, 44.

Maximal planar graphs, 39.

Maximal versus maximum, 34{35.

Maximum independent sets, 34{35.

Maximum mathings, 44.

MKay, Brendan Damien, 50.

MManus, Christopher DeCormis, 38.

Mems: Memory aesses, 2, 6.

Menon, Vairelil Vishwanath, 58.

Meringer, Markus Reinhard, 62.

opqrstuq, 12.

Meyer, Albert Ronald da Silva, viii.

Meynert, Alison, 50.

miles graphs, 31, 44.

Miller, Donald John, 60.

Minimal versus minimum, 34{35.

Minimum vertex overs, 34{35, 44.

MIP-years, 2.

Mirror pairs, 38.

Misra, Jayadev (jYedb miS[), 66.

MMIX omputer, ii, viii, 41.

MMIXAL assembly language, 41.

Mnemonis, 59.

Modular arithmeti, 48.

Mona Lisa, 9, 24, 31.

Moon, John Wesley, 63.

Moore, Eliakim Hastings, 51.

Moore, J Strother, 46.

Morris, Sot Anderson, 38.

Moser, Leo, 63.

Multigraphs, 13, 19{21, 40, 41, 44, 59, 65.

Multihypergraphs, 61.

Multipairs, 19.

Multisets, 18.

Murphy's Law, 61.

Musial graph, 44, 45.

Mutually orthogonal latin squares, 37{38.

Myrvold, Wendy Joanne, 50.

n-ary strings, 37.

N(g) (the number of verties in an SGB

graph), 22, 56.

NAME(v) (the name of a vertex), 21.

Nanoomputer simulation, 32.

Neighboring verties, 13.

Ne�set�ril, Jaroslav, 59.

Networks: Graphs or digraphs together

with auxiliary data, 31{32, 44.

NEXT(a) (the next ar with the same

initial vertex), 21.

Nodes in SGB format, 21{23, 56.

Nordhaus, Edward Alfred, 63.

NOT gates, 32, 33.

Notation, 26, 59.

G (omplementation), 26, 32, 42.

G

�

=

G

0

(isomorphism), 14.

G j V

0

(indued subgraph), 13.

G n e (edge removal), 13.

G n v (vertex removal), 13.

Novels, 9, 23.

NP-omplete problems, viii, 35.

Null graphs (K

n

), 26, 27, 41{43, 46, 63.

O (all-zeros matrix), 27.

Odd permutations, 40.

Odd produt of graphs, 28, 42{43, 59.

Optimal versus optimum, 34{35.

OR gates, 32, 33.

Order of a graph, 13, 18, 44.

Order of a latin square, 37.

Order of an orthogonal array, 37.

Ore, �ystein, ix, 42.

Organ-pipe order, 48.

Oriented yles, 18, 19, 32, 40, 41.

Oriented paths, 18, 19, 41.

spanning, 40.

Orthogonal arrays, 37, 52.

generalized, 50{51.

Orthogonal latin squares, 3{8, 36{38.

Orthogonal strings, 37.

Orthogonal vetors, 34, 37.
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Out-degree of a vertex, 18, 19, 21,

40, 41, 43.

Ozanam, Jaques, 3, 7, 9.

P

n

(path of order n), 13, 28, 39.

P~

n

(oriented path of order n), 18, 41.

Paige, Lowell J., 5{7.

Palindromes, 38, 48.

Palluel, Fran�ois Crett�e de, 8.

Papadimitriou, Christos Harilaos

(Papadhmhtr�ou, Qr�sto Qaril�ou), ix.

Parallel edges of a multigraph, 19, 41.

Parallel lines, 37.

Parity bits, 38.

Parker, Ernest Tilden, 5{7, 49.

Partitions of an integer, 25, 30, 62.

parts graphs, 25.

Pasal, Blaise, iii.

Patashnik, Oren, 68.

Path graph P

n

, 13, 28, 39.

Paths in a graph, 13, 41.

oriented, 18, 19, 41.

shortest, viii, 12, 16, 32.

Perfet shu�es, 38.

Permanent of a matrix, 40.

Permutation digraphs, 40.

Permutation matries, 20, 56.

Petersen, Julius Peter Christian, 5, 14, 58.

graph, 14, 15, 25, 39, 42, 44, 45, 58.

Phi (�), 47.

as soure of \random" data, 49.

Pi (�), as soure of \random" data, 49.

Pixels, 24, 31.

Planar graphs, 14, 15, 17, 24, 39, 44, 54, 60.

Planar Langford pairings, 36.

plane lisa graphs, 24, 31.

plane miles graphs, 24, 31.

Playing ards, 3{4.

Poetry, 53.

Pohl, Ira Sheldon, 3.

Poirot, Herule, 18.

Poligna, Camille Armand Jules Marie

de, 15.

P�olya, Gy�orgy (= George), 18.

Polyhedral ombinatoris, vii.

Portable programs, 22.

Posner, Edward Charles, 52.

Postal odes, 15, 40.

Prime graphs, 28.

Produts of digraphs and multigraphs, 59.

Produts of graphs, 27{28, 42{44.

Projetive planes, 51, 62.

Pseudorandom numbers, 12, 25.

Puzzles, 1, 3, 7{9, 15, 48, 54.

Queen moves on a hessboard, 26, 44.

r-uniform hypergraphs, 32.

RainBones puzzle, 48.

raman graphs, 24, 64.

Ramanujan Iyengar, Srinivasa

(ÿ��W��W�WÈ{h I�axWm),

graphs, 24.

random graph graphs, 25, 41.

Random graphs, 25, 41, 46.

Random walks, 45.

Rao, Calyampudi Radhakrishna

(�Gi®	a�Ô �S g�Y�G��ç£� g�k�Ò), 50{51.

Rereations, 7{9.

R�edei, L�aszl�o, 55.

Regular graphs, 14, 24{25, 33, 40{44.

Representation of graphs and digraphs,

19{22.

Restrition of a graph, 13.

Ringel, Gerhard, 58.

ris graphs, 31{32.

RISC: Redued Instrution Set

Computer, 32.

Robertson, George Neil, 17.

roget graphs, 23, 41.

Roget, John Lewis, 23.

Roget, Peter Mark, 9, 23.

Rook moves on a hessboard, 26, 41.

Rookwise onneted pixels, 24.

Rosa, Alexander, 49.

Rui�nski, Andrzej, 65.

Ryser, Herbert John, 37, 50.

Sahs, Horst, 58.

Sanders, Daniel Preston, 17.

Sauerho�, Martin, 66.

Sauveur, Joseph, 49.

Sandalous fat, 26.

Shumaher, Heinrih Christian, 5, 17.

Srabble

R

, 10.

Searh trees, 6.

Seed value for pseudorandom numbers,

12, 25.

Self-omplementary graphs, 42, 43, 66.

Self-onverse graphs, 58.

Self-loops, 13, 18, 19, 41, 61.

Semide�nite programming, vii.

Sequential algorithms, vii.

Sequential alloation, 21.

Set systems, 32, see Hypergraphs.

Seymour, Paul Douglas, 17.

SGB, 9, see Stanford GraphBase.

Shakespeare (= Shakspere), William, 1.

Sheehan, John, 64.

Sheep, 8.

Shortest paths in a graph, viii, 12, 16, 32.

Shrikhande, Sharadhandra Shankar

(frd�

}

d f

�

kr �FK

�

w�), 5.

Shrinking an edge, 54.

Simple digraphs, 18, 19, 40, 43, 58, 59.

Simple graphs, see Graphs.
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simplex graphs, 25.

Simpson, James Edward, 47.

Singleton, Robert Rihmond, 56.

Singmaster, David Breyer, 48.

Sink vertex, 18.

Size of a digraph, 18.

Size of a graph, 13, 44.

Skolem, Albert Thoralf, ix, 8, 36, 47, 48.

Sloane, Neil James Alexander, 51.

smile, 11, 16, 24, 39.

Smith, Henry John Stephen, normal

form, 65.

Soure vertex, 18.

Spanning subgraphs, 13, 15, 18, 39.

Sparse graphs, 20, 23.

Spetrum of an irrational number, 47.

Spheres, vii.

Stability number �(H) of a graph or

hypergraph, 35.

Stable sets, 34, see Independent verties.

Stak struture, 23, 41.

Standard �elds in SGB format, 21.

Stanford Cardinal, 31.

Stanford GraphBase, ii, iv, viii, 9{12,

20, 23{26, 31.

omplete guide to, 32.

format for digraphs and graphs, 21{22, 41.

Stanley, Rihard Peter, 13.

Star graphs, 17.

Steiner, Jaob, 17.

trees, vii, 17.

triple systems, 8.

Stokmeyer, Larry Joseph, viii.

Strahler, Arthur Newell, 53.

Straight insertion sorting, 55.

Strong produt of graphs, 28, 42{44, 59, 64.

Strongly onneted graphs, 40, 55.

Stufken, John, 51.

Subgraphs, 13, 17.

subsets graphs, 25.

Subwords, 12.

SWAC omputer, 5{6.

Symmetri matries, 40, 44.

Symmetries of a graph, 14{15, 39,

45, 60, 65{66.

Szele, Tibor, 55.

Tableaux, 29{30, 43.

TAKE RISC program, 32.

Tarjan, Robert Endre, 1.

Tarry, Gaston, 5.

Taylor, Brook, series, 13.

Tensor produt of graphs, see

Diret produt of graphs.

Terminology, 13.

Tetrahedron, 25.

T

E

X, 12.

Theory meets pratie, vii, 13.

Thomas, Robin, 17.

Thue, Axel, ix.

Tightly olorable graphs, 44.

Tilings of the plane, 45.

Tip of an ar, 18.

TIP(a) (�nal vertex), 21.

Todorov, Dobromir Todorov (Todorov,

Dobromir Todorov), 50.

Tolstoy, Leo Nikolaevih, (Tolsto�, Lev

Nikolaeviq), 9.

Tompkins, Charles Brown, 5{7.

Toruses, 28, 41.

generalized, 45{46.

kingwise, 44.

Tournaments, 40.

transitive, 18, 27, 40, 41.

Transitive laws, 51.

Translation, tiling by, 45{46.

Transposing a matrix, 20, 33, 50.

Transversals of a latin square, 6{7, 37, 49.

Traveling Salesrep Problem, viii.

Triangle inequality, 16, 19.

Triangular grids, 25, 58.

Tries, 38{39.

Triple systems, 8, 32, 44.

Trivalent graphs, 14, 39, 64.

Union of graphs, 26, see also Diret

sum of graphs.

United States of Ameria, ontiguous,

15, 34, 39{40.

UNIVAC 1206 Military Computer, 5.

Universities, 31.

Unlabeled graphs, 14, 65.

Utilities, 54.

Utility �elds in SGB format, 21, 57.

Valeny, see Degree of a vertex.

Variane, 65.

Vertex onnetivity, 61.

Vertex overs, minimum, 34{35, 44.

Vertex variables, 21, 23.

VERTICES(g) (the �rst vertex node), 22, 56.

Vesztergombi, Katalin, 62.

Vini, Leonardo da, 9, 24.

Vowels, 38.

W

n

(wheel graph of order n), 42, 46, 58, 66.

Walks in a graph, 19{20, 40, 45.

Wang, Da-Lun ( ), 61.

Wang, Shinmin Patrik ( ), 50.

Watkins, John Jaeger, 64.

Wegener, Ingo Werner, 66.

Weihsel, Paul Morris, 59.

Weisner, Louis, 49.

Well-balaned Langford pairings, 2, 36.

Wernike, August Ludwig Paul, 5.

Wheel graphs, 42, 46, 58, 66.

Width of a Langford pairing, 3, 48.

Wilson, Rihard Mihael, 50.

Wilson, Robin James, iv, 15, 42, 64.
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Witness bits, 52.

Wong, Chak-Kuen ( ), 65.

Word ubes, 11, 39.

Word ladders, 11{12, 32.

Word squares, 11, 38.

words graphs, 12{13, 31, 39, 42.

WORDS(n), the n most ommon �ve-letter

words of English, 10{12.

Wraparound, 41.

XOR gates, 32, 33.

Zehfuss, Johann Georg, 59.

Zito, Jennifer Snyder, 65.

Zykov, Aleksander Aleksandrovih (Zykov,

Aleksandr Aleksandroviq), 26.


