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PREFACE

To put all the good stu� into one book is patently impossible,

and attempting even to be reasonably 
omprehensive

about 
ertain aspe
ts of the subje
t is likely to lead to runaway growth.

| GERALD B. FOLLAND, \Editor's Corner" (2005)

La derni�ere 
hose qu'on trouve en faisant un ouvrage

est de savoir 
elle qu'il faut mettre la premi�ere.

| BLAISE PASCAL, Pens�ees 740 (
. 1660)

This booklet 
ontains draft material that I'm 
ir
ulating to experts in the

�eld, in hopes that they 
an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for


ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet rea
hed a very mature state. Beware: This material has

not yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3

were at the time of their �rst printings. And those 
arefully-
he
ked volumes,

alas, were subsequently found to 
ontain thousands of mistakes.

Given this 
aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be dis
ouraged from reading the material 
arefully.

I did try to make the text both interesting and authoritative, as far as it goes.

But the �eld is vast; I 
annot hope to have surrounded it enough to 
orral it


ompletely. So I beg you to let me know about any de�
ien
ies that you dis
over.

To put the material in 
ontext, this pre-fas
i
le 
ontains the opening remarks

intended to laun
h a long, long 
hapter on 
ombinatorial algorithms. Chapter 7

is planned to be by far the longest single 
hapter of The Art of Computer

Programming ; it will eventually �ll at least three volumes (namely Volumes

4A, 4B, and 4C), assuming that I'm able to remain healthy. Like the se
ond-

longest 
hapter (Chapter 5), it begins with pump-priming introdu
tory material

that 
omes before the main text, in
luding dozens of exer
ises to get the ball

rolling. A long voyage lies ahead, and some important provisions need to be

brought on board before we embark. Furthermore I want to minimize the sho
k

of transition between Chapter 6 and the new 
hapter, be
ause Chapter 6 was

originally written and published more than thirty years ago.

Chapter 7 proper, whi
h follows the material in the present pre-fas
i
le,

begins with Se
tion 7.1: Zeros and Ones. Se
tion 7.1 is another sort of intro-

du
tion, at a di�erent level; it has four subse
tions about Boolean and bitwise


omputations, appearing respe
tively in pre-fas
i
les 0b, 0
, 1a, and 1b. The

next part, 7.2, is about generating all possibilities, and it begins with Se
tion

iii
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7.2.1: Generating Basi
 Combinatorial Patterns. Fas
i
les for Se
tion 7.2.1 have

already appeared in print. Se
tion 7.2.2 will deal with ba
ktra
king in general.

And so it will go on, if all goes well; an outline of the entire Chapter 7 as 
urrently

envisaged appears on the tao
p webpage that is 
ited on page ii.

This introdu
tory se
tion has turned out to have more than twi
e as many

exer
ises as I had originally planned. But many of them are quite simple, in-

tended to reinfor
e the reader's understanding of basi
 de�nitions, or to a
quaint

readers with the joys of The Stanford GraphBase. Other exer
ises were simply

irresistible, as they 
ried out to be in
luded here|although, believe it or not, I

did reje
t more potential leads than I a
tually followed up.

My notes on 
ombinatorial algorithms have been a

umulating for more than

forty years, so I fear that in several respe
ts my knowledge is woefully behind

the times. Please look, for example, at the exer
ises that I've 
lassed as resear
h

problems (rated with diÆ
ulty level 46 or higher), namely exer
ises 15, 16, 67,

and 125; I've also impli
itly mentioned or posed additional unsolved questions

in the answers to exer
ises 7 and 133(m). Are those problems still open? Please

inform me if you know of a solution to any of these intriguing questions. And of


ourse if no solution is known today but you do make progress on any of them

in the future, I hope you'll let me know.

I urgently need your help also with respe
t to some exer
ises that I made

up as I was preparing this material. I 
ertainly don't like to re
eive 
redit for

things that have already been published by others, and most of these results

are quite natural \fruits" that were just waiting to be \plu
ked." Therefore

please tell me if you know who deserves to be 
redited, with respe
t to the ideas

found in exer
ises 3, 25, 32, 35, 72, 84, 108, 116, and 135, and/or the answer to

exer
ises 105.

Thanks to Je� Dean of Google for letting me look at the statisti
s of �ve-

letter words in the Internet at the beginning of 2004, and to Robin Wilson of

the Open University for his 
areful reading and many detailed suggestions.

I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is

�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, if

you �nd a better solution to an exer
ise, I'll a
tually reward you with immortal

glory instead of mere money, by publishing your name in the eventual book:�)

Cross referen
es to yet-unwritten material sometimes appear as `00'; this

impossible value is a pla
eholder for the a
tual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

28 April 2007

The author is espe
ially grateful to the Addison{Wesley Publishing Company

for its patien
e in waiting a full de
ade for this manus
ript

from the date the 
ontra
t was signed.

| FRANK HARARY, Graph Theory (1968)
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Prefa
e to Volume 4 (draft)

The title of Volume 4 is Combinatorial Algorithms, and when I proposed it

I was strongly in
lined to add a subtitle: The Kind of Programming I Like Best.

My editors have de
ided to tone down su
h exuberan
e, but the fa
t remains

that programs with a 
ombinatorial 
avor have always been my favorites.

On the other hand I've often been surprised to �nd that, in many people's

minds, the word \
ombinatorial" is linked with 
omputational diÆ
ulty. Indeed,

Samuel Johnson, in his famous di
tionary of the English language (1755), said

that the 
orresponding noun \is now generally used in an ill sense." Colleagues

tell me tales of woe, in whi
h they report that \the 
ombinatori
s of the sit-

uation defeated us." Why is it that, for me, 
ombinatori
s arouses feelings of

pure pleasure, yet for many others it evokes pure pani
?

It's true that 
ombinatorial problems are often asso
iated with humongously

large numbers. Johnson's di
tionary entry also in
luded a quote from Ephraim

Chambers, who had stated that the total number of words of length 24 or less,

in a 24-letter alphabet, is 1,391,724,288,887,252,999,425,128,493,402,200. The


orresponding number for a 10-letter alphabet is 11,111,111,110; and it's only

3905 when the number of letters is 5. Thus a \
ombinatorial explosion" 
ertainly

does o

ur as the size of the alphabet grows from 5 to 10 to 24 and beyond.

Computing ma
hines have be
ome tremendously more powerful throughout

my life. As I write these words, I know that they are being pro
essed by a


omputer whose speed is more than 100,000 times faster than the IBM Type 650


omputer to whi
h I'm dedi
ating these books, and whose memory 
apa
ity is

also more than 100,000 times greater. Tomorrow's ma
hines will be even faster

and more 
apa
ious. But these amazing advan
es have not diminished people's


raving for answers to 
ombinatorial questions; quite the 
ontrary. Our on
e-

unimaginable ability to 
ompute so rapidly has raised our expe
tations, and

whetted our appetite for more|be
ause, in fa
t, the size of a 
ombinatorial

problem 
an in
rease more than 100,000-fold when n simply in
reases by 1.

Combinatorial algorithms 
an be de�ned informally as te
hniques for the

high-speed manipulation of 
ombinatorial obje
ts su
h as permutations or graphs.

We typi
ally try to �nd patterns or arrangements that are the best possible ways

to satisfy 
ertain 
onstraints. The number of su
h problems is vast, and the art

of writing su
h programs is espe
ially important and appealing be
ause a single

good idea 
an save years or even 
enturies of 
omputer time.

Indeed, the fa
t that good algorithms for 
ombinatorial problems 
an have a

terri�
 payo� has led to terri�
 advan
es in the state of the art. Many problems

that on
e were thought to be intra
table 
an now be polished o� with ease, and

v
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Floyd's Lemmamany algorithms that on
e were known to be good have now be
ome better.

Starting about 1970, 
omputer s
ientists began to experien
e a phenomenon

that we 
alled \Floyd's Lemma": Problems that seemed to need n

3

operations


ould a
tually be solved in O(n

2

); problems that seemed to require n

2


ould be

handled in O(n logn); and n logn was often redu
ible to O(n). More diÆ
ult

problems saw a redu
tion in running time from O(2

n

) to O(1:5

n

) to O(1:3

n

),

et
. Other problems remained diÆ
ult in general, but they were found to have

important spe
ial 
ases that are mu
h simpler. Many 
ombinatorial questions

that I on
e thought would never be answered have now been resolved, and these

breakthroughs are due mainly to improvements in algorithms rather than to

improvements in pro
essor speeds.

By 1975, su
h resear
h was advan
ing so rapidly that a substantial fra
tion

of the papers published in leading journals of 
omputer s
ien
e were devoted

to 
ombinatorial algorithms. And the advan
es weren't being made only by

people in the 
ore of 
omputer s
ien
e; signi�
ant 
ontributions were 
oming

from workers in ele
tri
al engineering, arti�
ial intelligen
e, operations resear
h,

mathemati
s, physi
s, statisti
s, and other �elds. I was trying to 
omplete

Volume 4 of The Art of Computer Programming, but instead I felt like I was

sitting on the lid of a boiling kettle: I was 
onfronted with a 
ombinatorial

explosion of another kind, a prodigious explosion of new ideas!

This series of books was born at the beginning of 1962, when I na��vely

wrote out a list of tentative 
hapter titles for a 12-
hapter book. At that time

I de
ided to in
lude a brief 
hapter about 
ombinatorial algorithms, just for

fun. \Hey look, most people use 
omputers to deal with numbers, but we 
an

also write programs that deal with patterns." In those days it was easy to give

a fairly 
omplete des
ription of just about every 
ombinatorial algorithm that

was known. And even by 1966, when I'd �nished a �rst draft of about 3000

handwritten pages for that already-overgrown book, fewer than 100 of those

pages belonged to Chapter 7. I had absolutely no idea that what I'd foreseen as

a sort of \salad 
ourse" would eventually turn out to be the main dish.

The great 
ombinatorial fermentation of 1975 has 
ontinued to 
hurn, as

more and more people have begun to parti
ipate. New ideas improve upon the

older ones, but rarely repla
e them or make them obsolete. So of 
ourse I've had

to abandon any hopes that I on
e had of being able to surround the �eld, to write

a de�nitive book that sets everything in order and provides one-stop shopping

for everyone who has 
ombinatorial problems to solve. It's almost never possible

to dis
uss a subtopi
 and say, \Here's the �nal solution: end of story." Instead,

I must restri
t myself to explaining the most important prin
iples that seem to

underlie all of the eÆ
ient 
ombinatorial methods that I've en
ountered so far.

At present I've a

umulated more than twi
e as mu
h raw material for Volume 4

as for all of Volumes 1{3 
ombined.

This sheer mass of material implies that the on
e-planned \Volume 4" must

a
tually be
ome several physi
al volumes. You are now looking at Volume 4A.

Volumes 4B and 4C will exist someday, assuming that I'm able to remain healthy;

and (who knows?) there may also be Volumes 4D, 4E, : : : ; but surely not 4Z.
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spheres
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Steiner tree

polyhedral 
ombinatori
s

linear programming

integer programming

semide�nite programming

sequential

My plan is to go systemati
ally through the �les that I've amassed sin
e 1962

and to tell the stories that I believe are still waiting to be told, to the best of

my ability. I 
an't aspire to 
ompleteness, but I do want to give proper 
redit to

all of the pioneers who have been responsible for key ideas; so I won't s
rimp on

histori
al details. Furthermore, whenever I learn something that I think is likely

to remain important 50 years from now, something that 
an also be explained

elegantly in a paragraph or two, I 
an't bear to leave it out. Conversely, diÆ
ult

material that requires a lengthy proof is beyond the s
ope of these books, unless

the subje
t matter is truly fundamental.

OK, it's 
lear that the �eld of Combinatorial Algorithms is vast, and I 
an't


over it all. What are the most important things that I'm leaving out? My

biggest blind spot, I think, is geometry, be
ause I've always been mu
h better at

visualizing and manipulating algebrai
 formulas than obje
ts in spa
e. Therefore

I don't attempt to deal in these books with 
ombinatorial problems that are re-

lated to 
omputational geometry, su
h as 
lose pa
king of spheres, or 
lustering of

data points in n-dimensional Eu
lidean spa
e, or even the Steiner tree problem in

the plane. More signi�
antly, I tend to shy away from polyhedral 
ombinatori
s,

and from approa
hes that are based primarily on linear programming, integer

programming, or semide�nite programming. Those topi
s are treated well in

many other books on the subje
t, but they rely on geometri
al intuition. Purely


ombinatorial developments are easier for me to understand.

I also must 
onfess a bias against algorithms that are eÆ
ient only in

an asymptoti
 sense, algorithms whose superior performan
e doesn't begin to

\ki
k in" until the size of the problem ex
eeds the size of the universe. A great

many publi
ations nowadays are devoted to algorithms of that kind. I 
an

understand why the 
ontemplation of ultimate limits has intelle
tual appeal and


arries an a
ademi
 
a
het; but in The Art of Computer Programming I tend

to give short shrift to any methods that I would never 
onsider using myself in

an a
tual program. (There are, of 
ourse, ex
eptions to this rule, espe
ially with

respe
t to basi
 
on
epts in the 
ore of the subje
t. Some impra
ti
al methods

are simply too beautiful and/or too insightful to be ex
luded; others provide

instru
tive examples of what not to do.)

Furthermore, as in earlier volumes of this series, I'm intentionally 
on
en-

trating almost entirely on sequential algorithms, even though 
omputers are

in
reasingly able to 
arry out a
tivities in parallel. I'm unable to judge what

ideas about parallelism are likely to be useful �ve or ten years from now, let

alone �fty, so I happily leave su
h questions to others who are wiser than I.

Sequential methods, by themselves, already test the limits of my own ability to

dis
ern what the artful programmers of tomorrow will want to know.

The main de
ision that I needed to make when planning how to present this

material was whether to organize it by problems or by te
hniques. Chapter 5

in Volume 3, for example, was devoted to a single problem, the sorting of data

into order; more than two dozen te
hniques were applied to di�erent aspe
ts

of that problem. Combinatorial algorithms, by 
ontrast, involve many di�erent

problems, whi
h tend to be atta
ked with a smaller repertoire of te
hniques. I
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�nally de
ided that a mixed strategy would work better than any pure approa
h.

Thus, for example, these books treat the problem of �nding shortest paths

in Se
tion 7.3, and problems of 
onne
tivity in Se
tion 7.4.1; but many other

se
tions are devoted to basi
 te
hniques, su
h as the use of Boolean algebra

(Se
tion 7.1), ba
ktra
king (Se
tion 7.2), matroid theory (Se
tion 7.6), or dy-

nami
 programming (Se
tion 7.7). The famous Traveling Salesrep Problem, and

other 
lassi
 
ombinatorial tasks related to 
overing, 
oloring, and pa
king, have

no se
tions of their own, but they 
ome up several times in di�erent pla
es as

they are treated by di�erent methods.

I've mentioned great progress in the art of 
ombinatorial 
omputing, but I

don't mean to imply that all 
ombinatorial problems have a
tually been tamed.

When the running time of a 
omputer program goes ballisti
, its programmers

shouldn't expe
t to �nd a silver bullet for their needs in this book. The methods

des
ribed here will often work a great deal faster than the �rst approa
hes that

a programmer tries; but let's fa
e it: Combinatorial problems get huge very

qui
kly. We 
an even prove rigorously that a 
ertain small, natural problem will

never have a feasible solution in the real world, although it is solvable in prin
iple

(see the theorem of Sto
kmeyer and Meyer in Se
tion 7.1.2). In other 
ases we


annot prove as yet that no de
ent algorithm for a given problem exists, but

we know that su
h methods are unlikely, be
ause any eÆ
ient algorithm would

yield a good way to solve thousands of other problems that have stumped the

world's greatest experts (see the dis
ussion of NP-
ompleteness in Se
tion 7.9).

Experien
e suggests that new 
ombinatorial algorithms will 
ontinue to be

invented, for new 
ombinatorial problems and for newly identi�ed variations or

spe
ial 
ases of old ones; and that people's appetite for su
h algorithms will also


ontinue to grow. The art of 
omputer programming 
ontinually rea
hes new

heights when programmers are fa
ed with 
hallenges su
h as these. Yet today's

methods are also likely to remain relevant.

Most of this book is self-
ontained, although there are frequent tie-ins with

the topi
s dis
ussed in Volumes 1{3. Low-level details of ma
hine language

programming have been 
overed extensively in those volumes, so the algorithms

in the present book are usually spe
i�ed only at an abstra
t level, independent of

any ma
hine. However, some aspe
ts of 
ombinatorial programming are heavily

dependent on low-level details that didn't arise before; in su
h 
ases, all examples

in this book are based on the MMIX 
omputer, whi
h supersedes the MIX ma
hine

that was de�ned in early editions of Volume 1. Details about MMIX appear in

a paperba
k supplement to that volume 
alled The Art of Computer Program-

ming, Volume 1, Fas
i
le 1; they're also available on the Internet, together with

downloadable assemblers and simulators.

Another downloadable resour
e, a 
olle
tion of programs and data 
alledThe

Stanford GraphBase, is 
ited extensively in the examples of this book. Readers

are en
ouraged to play with it, in order to learn about 
ombinatorial algorithms

in what I think will be the most eÆ
ient and most enjoyable way.

In
identally, while writing the introdu
tory material at the beginning of

Chapter 7, I was pleased to note that it was natural to mention some work of
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IEEE Transa
tions

my Ph.D. thesis advisor, Marshall Hall, Jr. (1910{1990), as well as some work

of his thesis advisor, Oystein Ore (1899{1968), as well as some work of his thesis

advisor, Thoralf Skolem (1887{1963). Skolem's advisor, Axel Thue (1863{1922),

was already present in Chapter 6.

I'm immensely grateful to the hundreds of readers who have helped me to

ferret out numerous mistakes that I made in early drafts of this volume, whi
h

were originally posted on the Internet and subsequently printed in paperba
k

fas
i
les. But I fear that other errors still lurk among the details 
olle
ted here,

and I want to 
orre
t them as soon as possible. Therefore I will 
heerfully pay

$2.56 to the �rst �nder of ea
h te
hni
al, typographi
al, or histori
al error. The

tao
p webpage 
ited on page ii 
ontains a 
urrent listing of all 
orre
tions that

have been reported to me.

Stanford, California D. E. K.

April 2007

Naturally, I am responsible for the remaining errors|

although, in my opinion, my friends 
ould have 
aught a few more.

| CHRISTOS H. PAPADIMITRIOU, Computational Complexity (1995)

A note on referen
es. Referen
es to IEEE Transa
tions in
lude a letter 
ode

for the type of transa
tions, in boldfa
e pre
eding the volume number. For

example, `IEEE Trans. C-35' means the IEEE Transa
tions on Computers,

volume 35. The IEEE no longer uses these 
onvenient letter 
odes, but the


odes aren't too hard to de
ipher: `EC' on
e stood for \Ele
troni
 Computers,"

`IT' for \Information Theory," `SE' for \Software Engineering," and `SP' for

\Signal Pro
essing," et
.; `CAD' meant \Computer-Aided Design of Integrated

Cir
uits and Systems."
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CHAPTER SEVEN

COMBINATORIAL SEARCHING

You shall seeke all day ere you �nde them,

& when you have them, they are not worth the sear
h.

| BASSANIO, in The Mer
hant of Veni
e (A
t I, S
ene 1, Line 117)

Amid the a
tion and rea
tion of so dense a swarm of humanity,

every possible 
ombination of events may be expe
ted to take pla
e,

and many a little problem will be presented whi
h may be striking and bizarre.

| SHERLOCK HOLMES, in The Adventure of the Blue Carbun
le (1892)

The �eld of 
ombinatorial algorithms is too vast to 
over

in a single paper or even in a single book.

| ROBERT E. TARJAN (1976)

While jostling against all manner of people

it has been impressed upon my mind that the su

essful ones

are those who have a natural fa
ulty for solving puzzles.

Life is full of puzzles, and we are 
alled upon

to solve su
h as fate throws our way.

| SAM LOYD, JR. (1927)

Combinatori
s is the study of the ways in whi
h dis
rete obje
ts 
an be

arranged into various kinds of patterns. For example, the obje
ts might be 2n

numbers f1; 1; 2; 2; : : : ; n; ng, and we might want to pla
e them in a row so that

exa
tly k numbers o

ur between the two appearan
es of ea
h digit k. When

n = 3 there is essentially only one way to arrange su
h \Langford pairs," namely

231213 (and its left-right reversal); similarly, there's also a unique solution when

n = 4. Many other types of 
ombinatorial patterns are dis
ussed below.

Five basi
 types of questions typi
ally arise when 
ombinatorial problems

are studied, some more diÆ
ult than others.

i) Existen
e: Are there any arrangements X that 
onform to the pattern?

ii) Constru
tion: If so, 
an su
h an X be found qui
kly?

iii) Enumeration: How many di�erent arrangements X exist?

iv) Generation: Can all arrangements X

1

, X

2

, : : : be visited systemati
ally?

v) Optimization: What arrangements maximize or minimize f(X), given an

obje
tive fun
tion f?

Ea
h of these questions turns out to be interesting with respe
t to Langford pairs.

1
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Davies

Kraje
ki

Jaillet
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exa
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mems

MIP-years

well-balan
ed

For example, 
onsider the question of existen
e. Trial and error qui
kly

reveals that, when n = 5, we 
annot pla
e f1; 1; 2; 2; : : : ; 5; 5g properly into ten

positions. The two 1s must both go into even-numbered slots, or both into odd-

numbered slots; similarly, the 3s and 5s must 
hoose between two evens or two

odds; but the 2s and 4s use one of ea
h. Thus we 
an't �ll exa
tly �ve slots of

ea
h parity. This reasoning also proves that the problem has no solution when

n = 6, or in general whenever the number of odd values in f1; 2; : : : ; ng is odd.

In other words, Langford pairings 
an exist only when n = 4m�1 or n = 4m,

for some integer m. Conversely, when n does have this form, Roy O. Davies has

found an elegant way to 
onstru
t a suitable pla
ement (see exer
ise 1).

How many essentially di�erent pairings, L

n

, exist? Lots, when n grows:

L

3

= 1;

L

7

= 26;

L

11

= 17;792;

L

15

= 39;809;640;

L

19

= 256;814;891;280;

L

23

= 3;799;455;942;515;488;

L

4

= 1;

L

8

= 150;

L

12

= 108;144;

L

16

= 326;721;800;

L

20

= 2;636;337;861;200;

L

24

= 46;845;158;056;515;936:

(1)

[The values of L

23

and L

24

were determined by M. Kraje
ki, C. Jaillet, and A. Bui

in 2004 and 2005; see Studia Informati
a Universalis 4 (2005), 151{190.℄ A seat-

of-the-pants 
al
ulation suggests that L

n

might be roughly of order (4n=e

3

)

n+1=2

when it is nonzero (see exer
ise 5); and in fa
t this predi
tion turns out to be

basi
ally 
orre
t in all known 
ases. But no simple formula is apparent.

The problem of Langford arrangements is a simple spe
ial 
ase of a general


lass of 
ombinatorial 
hallenges 
alled exa
t 
over problems. In Se
tion 7.2.2.1

we shall study an algorithm 
alled \dan
ing links," whi
h is a 
onvenient way to

generate all solutions to su
h problems. When n = 16, for example, that method

needs to perform only about 3200 memory a

esses for ea
h Langford pair

arrangement that it �nds. Thus the value of L

16


an be 
omputed in a reasonable

amount of time by simply generating all of the pairings and 
ounting them.

Noti
e, however, that L

24

is a huge number| roughly 5�10

16

, or about 1500

MIP-years. (Re
all that a \MIP-year" is the number of instru
tions exe
uted

per year by a ma
hine that 
arries out a million instru
tions per se
ond, namely

31;556;952;000;000.) Therefore it's 
lear that the exa
t value of L

24

was deter-

mined by some te
hnique that did not involve generating all of the arrangements.

Indeed, there is a mu
h, mu
h faster way to 
ompute L

n

, using polynomial

algebra. The instru
tive method des
ribed in exer
ise 6 needs O(4

n

n) operations,

whi
h may seem ineÆ
ient; but it beats the generate-and-
ount method by a

whopping fa
tor of order �((n=e

3

)

n�1=2

), and even when n = 16 it runs about

20 times faster. On the other hand, the exa
t value of L

100

will probably never

be known, even as 
omputers be
ome faster and faster.

We 
an also 
onsider Langford pairings that are optimum in various ways.

For example, it's possible to arrange sixteen pairs of weights f1; 1; 2; 2; : : : ; 16; 16g

that satisfy Langford's 
ondition and have the additional property of being \well-
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width

lexi
ographi
 order

Pohl, Ira Sheldon

orthogonal latin squares{

latin squares{

Ozanam

playing 
ards

Euler

balan
ed," in the sense that they won't tip a balan
e beam when they are pla
ed

in the appropriate order:

16 6 9 15 2 3 8 2 6 3 1310 9 1214 8 11 16 1 15 1 5 10 7 13 4 12 5 11 14 4 7

: (2)

In other words, 15:5 �16+14:5 �6+ � � �+0:5 �8 = 0:5 �11+ � � �+14:5 �4+15:5 �7; and

in this parti
ular example we also have another kind of balan
e, 16+6+ � � �+8 =

11+16+ � � �+7, hen
e also 16 �16+15 �6+ � � �+1 �8 = 1 �11+ � � �+15 �4+16 �7.

Moreover, the arrangement in (2) has minimum width among all Langford

pairings of order 16: The 
onne
ting lines at the bottom of the diagram show

that no more than seven pairs are in
omplete at any point, as we read from left

to right; and one 
an show that a width of six is impossible. (See exer
ise 7.)

What arrangements a

1

a

2

: : : a

32

of f1; 1; : : : ; 16; 16g are the least balan
ed,

in the sense that

P

32

k=1

ka

k

is maximized? The maximum possible value turns

out to be 5268. One su
h pairing|there are 12,016 of them|is

2 3 4 2 1 3 1 4 16 13 15 5 14 7 9 6 11 5 12 10 8 7 6 13 9 16 15 14 11 8 10 12: (3)

A more interesting question is to ask for the Langford pairings that are

smallest and largest in lexi
ographi
 order. The answers for n = 24 are

faba
bde
fgdoersfpgqtuwxvjklonhmirpsjqkhltiunmwvx ,

xvwsquntkigrdapaodgiknqsvxwutmrpohlj
fbe
bhmfejlg

(4)

if we use the letters a, b, : : : , w, x instead of the numbers 1, 2, : : : , 23, 24.

We shall dis
uss many te
hniques for 
ombinatorial optimization in later se
-

tions of this 
hapter. Our goal, of 
ourse, will be to solve su
h problems without

examining more than a tiny portion of the spa
e of all possible arrangements.

Orthogonal latin squares. Let's look ba
k for a moment at the early days of


ombinatori
s. A posthumous edition of Ja
ques Ozanam's Re
reations math-

ematiques et physiques (Paris: 1725) in
luded an amusing puzzle in volume 4,

page 434: \Take all the a
es, kings, queens, and ja
ks from an ordinary de
k of

playing 
ards and arrange them in a square so that ea
h row and ea
h 
olumn


ontains all four values and all four suits." Can you do it? Ozanam's solution,

shown in Fig. 1 on the next page, does even more: It exhibits the full panoply

of values and of suits also on both main diagonals. (Please don't turn the page

until you've given this problem a try.)

By 1779 a similar puzzle was making the rounds of St. Petersburg, and it


ame to the attention of the great mathemati
ian Leonhard Euler. \Thirty-six

oÆ
ers of six di�erent ranks, taken from six di�erent regiments, want to mar
h

in a 6� 6 formation so that ea
h row and ea
h 
olumn will 
ontain one oÆ
er of

ea
h rank and one of ea
h regiment. How 
an they do it?" Nobody was able to
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Gr�
o-Latin square

Fig. 1. Disorder in the 
ourt 
ards:

No agreement in any line of four.

(This 
on�guration is one of many

ways to solve a popular eighteenth-


entury problem.)

�nd a satisfa
tory mar
hing order. So Euler de
ided to resolve the riddle|even

though he had be
ome nearly blind in 1771 and was di
tating all of his work

to assistants. He wrote a major paper on the subje
t [eventually published in

Verhandelingen uitgegeven door het Zeeuws
h Genoots
hap der Wetens
happen

te Vlissingen 9 (1782), 85{239℄, in whi
h he 
onstru
ted suitable arrangements

for the analogous task with n ranks and n regiments when n = 1, 3, 4, 5, 7, 8,

9, 11, 12, 13, 15, 16, : : : ; only the 
ases with nmod 4 = 2 eluded him.

There's obviously no solution when n = 2. But Euler was stumped when n =

6, after having examined a \very 
onsiderable number" of square arrangements

that didn't work. He showed that any a
tual solution would lead to many others

that look di�erent, and he 
ouldn't believe that all su
h solutions had es
aped

his attention. Therefore he said, \I do not hesitate to 
on
lude that one 
annot

produ
e a 
omplete square of 36 
ells, and that the same impossibility extends

to the 
ases n = 10, n = 14 : : : in general to all oddly even numbers."

Euler named the 36 oÆ
ers a�, a�, a
, aÆ, a�, a�, b�, b�, b
, bÆ, b�, b�,


�, 
�, 

, 
Æ, 
�, 
�, d�, d�, d
, dÆ, d�, d�, e�, e�, e
, eÆ, e�, e�, f�, f�, f
,

fÆ, f�, f�, based on their regiments and ranks. He observed that any solution

would amount to having two separate squares, one for Latin letters and another

for Greek. Ea
h of those squares is supposed to have distin
t entries in rows and


olumns; so he began by studying the possible 
on�gurations for fa; b; 
; d; e; fg,

whi
h he 
alled Latin squares. A Latin square 
an be paired up with a Greek

square to form a \Gr�
o-Latin square" only if the squares are orthogonal to ea
h

other, meaning that no (Latin, Greek) pair of letters 
an be found together in

more than one pla
e when the squares are superimposed. For example, if we let

a = A, b = K, 
 = Q, d = J, � = |, � = �, 
 = }, and Æ = ~, Fig. 1 is equivalent
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Clausen

S
huma
her

Gauss

Tarry

Petersen

Werni
ke

Ma
Neish

Paige

Tompkins

SWAC

Bose

Shrikhande

Parker

UNIVAC 1206 Military Computer

to the Latin, Greek, and Gr�
o-Latin squares

0

B

�

d a b 



 b a d

a d 
 b

b 
 d a

1

C

A

;

0

B

�


 Æ � �

� � 
 Æ

� � Æ 


Æ 
 � �

1

C

A

; and

0

B

�

d
 aÆ b� 
�


� b� a
 dÆ

a� d� 
Æ b


bÆ 

 d� a�

1

C

A

: (5)

Of 
ourse we 
an use any n distin
t symbols in an n�n Latin square; all that

matters is that no symbol o

urs twi
e in any row or twi
e in any 
olumn. So

we might as well use numeri
 values f0; 1; : : : ; n�1g for the entries. Furthermore

we'll just refer to \latin squares" (with a lower
ase \l"), instead of 
ategorizing

a square as either Latin or Greek, be
ause orthogonality is a symmetri
 relation.

Euler's assertion that two 6 � 6 latin squares 
annot be orthogonal was

veri�ed by Thomas Clausen, who redu
ed the problem to an examination of 17

fundamentally di�erent 
ases, a

ording to a letter from H. C. S
huma
her to

C. F. Gauss dated 10 August 1842. But Clausen did not publish his analysis.

The �rst demonstration to appear in print was by G. Tarry [Comptes rendus,

Asso
iation fran�
aise pour l'avan
ement des s
ien
es 29, part 2 (1901), 170{203℄,

who dis
overed in his own way that 6� 6 latin squares 
an be 
lassi�ed into 17

di�erent families. (In Se
tion 7.2.3 we shall study how to de
ompose a problem

into 
ombinatorially inequivalent 
lasses of arrangements.)

Euler's 
onje
ture about the remaining 
ases n = 10, n = 14, : : : was

\proved" three times, by J. Petersen [Annuaire des math�emati
iens (Paris: 1902),

413{427℄, by P. Werni
ke [Jahresberi
ht der Deuts
hen Math.-Vereinigung 19

(1910), 264{267℄, and by H. F. Ma
Neish [Annals of Math. 23 (1922), 221{227℄.

Flaws in all three arguments be
ame known, however; and the question was still

unsettled when 
omputers be
ame available many years later. One of the very

�rst 
ombinatorial problems to be ta
kled by ma
hine was therefore the enigma

of 10� 10 Gr�
o-Latin squares: Do they exist or not?

In 1957, L. J. Paige and C. B. Tompkins programmed the SWAC 
omputer to

sear
h for a 
ounterexample to Euler's predi
tion. They sele
ted one parti
ular

10�10 latin square \almost at random," and their program tried to �nd another

square that would be orthogonal to it. But the results were dis
ouraging, and

they de
ided to shut the ma
hine o� after �ve hours. Already the program

had generated enough data for them to predi
t that at least 4:8� 10

11

hours of


omputer time would be needed to �nish the run!

Shortly afterwards, three mathemati
ians made a breakthrough that put

latin squares onto page one of major world newspapers: R. C. Bose, S. S. Shri-

khande, and E. T. Parker found a remarkable series of 
onstru
tions that yield

orthogonal n�n squares for all n > 6 [Pro
. Nat. A
ad. S
i. 45 (1959), 734{737,

859{862; Canadian J. Math. 12 (1960), 189{203℄. Thus, after resisting atta
ks

for 180 years, Euler's 
onje
ture turned out to be almost entirely wrong.

Their dis
overy was made without 
omputer help. But Parker worked for

UNIVAC, and he soon brought programming skills into the pi
ture by solving the

problem of Paige and Tompkins in less than an hour, on a UNIVAC 1206 Military

Computer. [See Pro
. Symp. Applied Math. 10 (1960), 71{83; 15 (1963), 73{81.℄
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Parker

Paige

Tompkins

SWAC

sear
h tree

mems (memory a

esses)

Euler

transversals+

Let's take a 
loser look at what the earlier programmers did, and how

Parker dramati
ally trumped their approa
h. Paige and Tompkins began with

the following 10� 10 square L and its unknown orthogonal mate(s) M :

L =

0

B

B

B

B

B

B

B

B

B

B

�

0 1 2 3 4 5 6 7 8 9

1 8 3 2 5 4 7 6 9 0

2 9 5 6 3 0 8 4 7 1

3 7 0 9 8 6 1 5 2 4

4 6 7 5 2 9 0 8 1 3

5 0 9 4 7 8 3 1 6 2

6 5 4 7 1 3 2 9 0 8

7 4 1 8 0 2 9 3 5 6

8 3 6 0 9 1 5 2 4 7

9 2 8 1 6 7 4 0 3 5

1

C

C

C

C

C

C

C

C

C

C

A

and M =

0

B

B

B

B

B

B

B

B

B

B

�

0

         

1

         

2

         

3

         

4

         

5

         

6

         

7

         

8

         

9

         

1

C

C

C

C

C

C

C

C

C

C

A

: (6)

We 
an assume without loss of generality that the rows of M begin with 0, 1,

: : : , 9, as shown. The problem is to �ll in the remaining 90 blank entries, and the

original SWAC program pro
eeded from top to bottom, left to right. The top left

 


an't be �lled with 0, sin
e 0 has already o

urred in the top row of M. And it


an't be 1 either, be
ause the pair (1; 1) already o

urs at the left of the next row

in (L;M). We 
an, however, tentatively insert a 2. The digit 1 
an be pla
ed

next; and pretty soon we �nd the lexi
ographi
ally smallest top row that might

work for M, namely 0214365897. Similarly, the smallest rows that �t below

0214365897 are 1023456789 and 2108537946; and the smallest legitimate row

below them is 3540619278. Now, unfortunately, the going gets tougher: There's

no way to 
omplete another row without 
oming into 
on
i
t with a previous


hoi
e. So we 
hange 3540619278 to 3540629178 (but that doesn't work either),

then to 3540698172, and so on for several more steps, until �nally 3546109278


an be followed by 4397028651 before we get stu
k again.

In Se
tion 7.2.3, we'll study ways to estimate the behavior of su
h sear
hes,

without a
tually performing them. Su
h estimates tell us in this 
ase that

the Paige{Tompkins method essentially traverses an impli
it sear
h tree that


ontains about 2:5� 10

18

nodes. Most of those nodes belong to only a few levels

of the tree; more than half of them deal with 
hoi
es on the right half of the

sixth row of M, after about 50 of the 90 blanks have been tentatively �lled in.

A typi
al node of the sear
h tree probably requires about 75 mems (memory

a

esses) for pro
essing, to 
he
k validity. Therefore the total running time on a

modern 
omputer would be roughly the time needed to perform 2� 10

20

mems.

Parker, on the other hand, went ba
k to the method that Euler had originally

used to sear
h for orthogonal mates in 1779. First he found all of the so-
alled

transversals of L, namely all ways to 
hoose some of its elements so that there's

exa
tly one element in ea
h row, one in ea
h 
olumn, and one of ea
h value. For

example, one transversal is 0859734216, in Euler's notation, meaning that we


hoose the 0 in 
olumn 0, the 8 in 
olumn 1, : : : , the 6 in 
olumn 9. Ea
h transver-

sal that in
ludes the k in L's leftmost 
olumn represents a legitimate way to pla
e

the ten k's into square M . The task of �nding transversals is, in fa
t, rather

easy, and the given matrix L turns out to have exa
tly 808 of them; there are

respe
tively (79; 96; 76; 87; 70; 84; 83; 75; 95; 63) transversals for k = (0; 1; : : : ; 9).
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exa
t 
over problem

dan
ing links

Euler

Parker

Paige

Tompkins

{
ombinatori
s

puzzles++

Langford

Ozanam

re
reation

Knuth

On
e the transversals are known, we're left with an exa
t 
over problem of

10 stages, whi
h is mu
h simpler than the original 90-stage problem in (6). All we

need to do is 
over the square with ten transversals that don't interse
t|be
ause

every su
h set of ten is equivalent to a latin square M that is orthogonal to L.

The parti
ular square L in (6) has, in fa
t, exa
tly one orthogonal mate:

0

B

B

B

B

B

B

B

B

B

B

�

0 1 2 3 4 5 6 7 8 9

1 8 3 2 5 4 7 6 9 0

2 9 5 6 3 0 8 4 7 1

3 7 0 9 8 6 1 5 2 4

4 6 7 5 2 9 0 8 1 3

5 0 9 4 7 8 3 1 6 2

6 5 4 7 1 3 2 9 0 8

7 4 1 8 0 2 9 3 5 6

8 3 6 0 9 1 5 2 4 7

9 2 8 1 6 7 4 0 3 5

1

C

C

C

C

C

C

C

C

C

C

A

?

0

B

B

B

B

B

B

B

B

B

B

�

0 2 8 5 9 4 7 3 6 1

1 7 4 9 3 6 5 0 2 8

2 5 6 4 8 7 0 1 9 3

3 6 9 0 4 5 8 2 1 7

4 8 1 7 5 3 6 9 0 2

5 1 7 8 0 2 9 4 3 6

6 9 0 2 7 1 3 8 4 5

7 3 5 1 2 0 4 6 8 9

8 0 2 3 6 9 1 7 5 4

9 4 3 6 1 8 2 5 7 0

1

C

C

C

C

C

C

C

C

C

C

A

: (7)

The dan
ing links algorithm �nds it, and proves its uniqueness, after doing only

about 1:7� 10

8

mems of 
omputation, given the 808 transversals. Furthermore,

the 
ost of the transversal-�nding phase, about 5 million mems, is negligible by


omparison. Thus the original running time of 2� 10

20

mems|whi
h on
e was

regarded as the inevitable 
ost of solving a problem for whi
h there are 10

90

ways

to �ll in the blanks|has been redu
ed by a further fa
tor of more than 10

12

(!).

We will see later that advan
es have also been made in methods for solving

90-level problems like (6). Indeed, (6) turns out to be representable dire
tly

as an exa
t 
over problem (see exer
ise 17), whi
h the dan
ing links pro
edure

of Se
tion 7.2.2.1 solves after expending only 1:3 � 10

11

mems. Even so, the

Euler{Parker approa
h remains about a thousand times better than the Paige{

Tompkins approa
h. By \fa
toring" the problem into two separate phases, one

for transversal-�nding and one for transversal-
ombining, Euler and Parker es-

sentially redu
ed the 
omputational 
ost from a produ
t, T

1

T

2

, to a sum, T

1

+T

2

.

The moral of this story is 
lear: Combinatorial problems might 
onfront us

with a huge universe of possibilities, yet we shouldn't give up too easily. A single

good idea 
an redu
e the amount of 
omputation by many orders of magnitude.

Puzzles versus the real world. Many of the 
ombinatorial problems we shall

study in this 
hapter, like Langford's problem of pairs or Ozanam's problem

of the sixteen honor 
ards, originated as amusing puzzles or \brain twisters."

Some readers might be put o� by this emphasis on re
reational topi
s, whi
h

they regard as a frivolous waste of time. Shouldn't 
omputers really be doing

useful work? And shouldn't textbooks about 
omputers be primarily 
on
erned

with signi�
ant appli
ations to industry and/or world progress?

Well, the author of the textbook you are reading has absolutely no obje
tions

to useful work and human progress. But he believes strongly that a book su
h as

this should stress methods of problem solving, together with mathemati
al ideas

and models that help to solve many di�erent problems, rather than fo
using on

the reasons why those methods and models might be useful. We shall learn many

beautiful and powerful ways to atta
k 
ombinatorial problems, and the elegan
e
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Gr�
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Langford pairing

Skolem

Steiner triple systems

Groth

multipli
ation

exa
t 
over problems

apportionment

ele
toral distri
ts

Havel (playwright and statesman)

of those methods will be our main motivation for studying them. Combinatorial


hallenges pop up everywhere, and new ways to apply the te
hniques dis
ussed

in this 
hapter arise every day. So let's not limit our horizons by attempting to


atalog in advan
e what the ideas are good for.

For example, it turns out that orthogonal latin squares are enormously

useful, parti
ularly in the design of experiments. Already in 1788, Fran�
ois

Crett�e de Palluel used a 4�4 latin square to study what happens when sixteen

sheep| four ea
h from four di�erent breeds|were fed four di�erent diets and

harvested at four di�erent times. [M�emoires d'Agri
ulture (Paris: So
i�et�e Royale

d'Agri
ulture, trimestre d'�et�e, 1788), 17{23.℄ The latin square allowed him to do

this with 16 sheep instead of 64; with a Gr�
o-Latin square he 
ould also have

varied another parameter by trying, say, four di�erent quantities of food or four

di�erent grazing paradigms.

But if we had fo
used our dis
ussion on his approa
h to animal husbandry,

we might well have gotten bogged down in details about breeding, about root

vegetables versus grains and the 
osts of growing them, et
. Readers who aren't

farmers might therefore have de
ided to skip the whole topi
, even though latin

square designs apply to a wide range of studies. (Think about testing �ve kinds

of pills, on patients in �ve stages of some disease, �ve age bra
kets, and �ve

weight groups.) Moreover, a 
on
entration on experimental design 
ould lead

readers to miss the fa
t that latin squares also have important appli
ations to


oding and 
ryptography (see exer
ises 18{24).

Even the topi
 of Langford pairing, whi
h seems at �rst to be purely re
re-

ational, turns out to have pra
ti
al importan
e. T. Skolem used Langford se-

quen
es to 
onstru
t Steiner triple systems, whi
h we have applied to database

queries in Se
tion 6.5 [see Math. S
andinavi
a 6 (1958), 273{280℄; and in the

1960s, E. J. Groth of Motorola Corporation applied Langford pairs to the design

of 
ir
uits for multipli
ation. Furthermore, the algorithms that eÆ
iently �nd

Langford pairs and latin square transversals, su
h as the method of dan
ing links,

apply to exa
t 
over problems in general; and the problem of exa
t 
overing has

great relevan
e to 
ru
ial problems su
h as the equitable apportionment of voter

pre
in
ts to ele
toral distri
ts, et
.

The appli
ations are not the most important thing, and neither are the

puzzles. Our primary goal is rather to get basi
 
on
epts into our brains, like

the notions of latin squares and exa
t 
overing. Su
h notions give us the building

blo
ks, vo
abulary, and insights that tomorrow's problems will need.

Still, it's foolish to dis
uss problem solving without a
tually solving any

problems. We need good problems to stimulate our 
reative jui
es, to light up

our grey 
ells in a more or less organized fashion, and to make the basi
 
on
epts

familiar. Mind-bending puzzles are often ideal for this purpose, be
ause they 
an

be presented in a few words, needing no 
ompli
ated ba
kground knowledge.

V�a
lav Havel on
e remarked that the 
omplexities of life are vast: \There

is too mu
h to know: : : We have to abandon the arrogant belief that the world

is merely a puzzle to be solved, a ma
hine with instru
tions for use waiting to

be dis
overed, a body of information to be fed into a 
omputer." He 
alled
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Langford

Ozanam

Brewster

Gardner

Knuth

Stanford GraphBase

SGB

Homer

Tolstoy

novels

Roget

Leonardo da Vin
i

�ve-letter words+++

English+

Knuth+

for an in
reased sense of justi
e and responsibility; for taste, 
ourage, and


ompassion. His words were �lled with great wisdom. Yet thank goodness we

do also have puzzles that 
an be solved! Puzzles deserve to be 
ounted among

the great pleasures of life, to be enjoyed in moderation like all other treats.

Of 
ourse, Langford and Ozanam dire
ted their puzzles to human beings, not

to 
omputers. Aren't we missing the point if we merely shu�e su
h questions o�

to ma
hines, to be solved by brute for
e instead of by rational thought? George

Brewster, writing to Martin Gardner in 1963, expressed a widely held view as

follows: \Feeding a re
reational puzzle into a 
omputer is no more than a step

above dynamiting a trout stream. Su

umbing to instant re
reation."

Yes, but that view misses another important point: Simple puzzles often

have generalizations that go beyond human ability and arouse our 
uriosity. The

study of those generalizations often suggests instru
tive methods that apply to

numerous other problems and have surprising 
onsequen
es. Indeed, many of the

key te
hniques that we shall study were born when people were trying to solve

various puzzles. While writing this 
hapter, the author 
ouldn't help relishing

the fa
t that puzzles are now more fun than ever, as 
omputers get faster and

faster, be
ause we keep getting more powerful dynamite to play with. [Further


omments appear in the author's essay, \Can toy problems be useful?", originally

written in 1976; see Sele
ted Papers on Computer S
ien
e (1996), 169{183.℄

Puzzles do have the danger that they 
an be too elegant. Good puzzles tend

to be mathemati
ally 
lean and well-stru
tured, but we also need to learn how

to deal systemati
ally with the messy, 
haoti
, organi
 stu� that surrounds us

every day. Indeed, some 
omputational te
hniques are important 
hie
y be
ause

they provide powerful ways to 
ope with su
h 
omplexities. That is why, for

example, the ar
ane rules of library-
ard alphabetization were presented at the

beginning of Chapter 5, and an a
tual elevator system was dis
ussed at length

to illustrate simulation te
hniques in Se
tion 2.2.5.

A 
olle
tion of programs and data 
alled the Stanford GraphBase (SGB) has

been prepared so that experiments with 
ombinatorial algorithms 
an readily be

performed on a variety of real-world examples. SGB in
ludes, for example, data

about Ameri
an highways, and an input-output model of the U.S. e
onomy; it

re
ords the 
asts of 
hara
ters in Homer's Iliad, Tolstoy's Anna Karenina, and

several other novels; it en
apsulates the stru
ture of Roget's Thesaurus of 1879;

it do
uments hundreds of 
ollege football s
ores; it spe
i�es the gray-value pixels

of Leonardo da Vin
i's Gio
onda (Mona Lisa). And perhaps most importantly,

SGB 
ontains a 
olle
tion of �ve-letter words, whi
h we shall dis
uss next.

The �ve-letter words of English. Many of the examples in this 
hapter will

be based on the following list of �ve-letter words:

aargh; aba
a; aba
i; aba
k; abaft; abase; abash; : : : ; zooms; zowie: (8)

(There are 5757 words altogether| too many to display here; but those that are

missing 
an readily be imagined.) It's a personal list, 
olle
ted by the author

between 1972 and 1992, beginning when he realized that su
h words would make

ideal data for testing many kinds of 
ombinatorial algorithms.
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di
tionaries

S
rabble

R


CARROLL

Lillywaite

BARNARD

Eu
lidean distan
e

Stanford GraphBase

Internet

frequen
y of usage

WORDS(n)++


ensorship

The list has intentionally been restri
ted to words that are truly part of the

English language, in the sense that the author has en
ountered them in a
tual

use. Unabridged di
tionaries 
ontain thousands of entries that are mu
h more

esoteri
, like aalii, abamp, : : : , zymin, and zyxst; words like that are useful

primarily to S
rabble

R


players. But unfamiliar words tend to spoil the fun

for anybody who doesn't know them. Therefore, for twenty years, the author

systemati
ally took note of all words that seemed right for the expository goals

of The Art of Computer Programming.

Finally it was ne
essary to freeze the 
olle
tion, in order to have a fixed

point for reprodu
ible experiments. The English language will always be evolv-

ing, but the 5757 SGB words will therefore always stay the same|even though

the author has been tempted at times to add a few words that he didn't know in

1992, su
h as 
hads, stent, blogs, ditzy, phish, bling, and possibly tet
h.

No; noway. The time for any 
hanges to SGB has long sin
e ended: finis.

The following Glossary is intended to 
ontain all well-known English words

. . . whi
h may be used in good so
iety, and whi
h 
an serve as Links.

. . . There must be a stent to the admission of spi
k words.

| LEWIS CARROLL, Doublets: A Word-Puzzle (1879)

If there is su
h a verb as to tet
h, Mr. Lillywaite tet
hed.

| ROBERT BARNARD, Corpse in a Gilded Cage (1984)

Proper names like Knuth are not 
onsidered to be legitimate words. But

gauss and hardy are valid, be
ause \gauss" is a unit of magneti
 indu
tion and

\hardy" is hardy. In fa
t, SGB words are 
omposed entirely of ordinary lower
ase

letters; the list 
ontains no hyphenated words, 
ontra
tions, or terms like blas�e

that require an a

ent. Thus ea
h word 
an also be regarded as a ve
tor, whi
h

has �ve 
omponents in the range [0 : : 26). In the ve
tor sense, the words yu

a

and abuzz are furthest apart: The Eu
lidean distan
e between them is

k(24; 20; 2; 2; 0)� (0; 1; 20; 25; 25)k

2

=

p

24

2

+ 19

2

+ 18

2

+ 23

2

+ 25

2

=

p

2415:

The entire Stanford GraphBase, in
luding all of its programs and data sets,

is easy to download from the author's website (see page ii). And the list of all

SGB words is even easier to obtain, be
ause it is in the �le `sgb-words.txt' at

the same pla
e. That �le 
ontains 5757 lines with one word per line, beginning

with `whi
h' and ending with `pupal'. The words appear in a default order,


orresponding to frequen
y of usage; for example, the words of rank 1000, 2000,

3000, 4000, and 5000 are respe
tively dit
h, galls, visas, faker, and pismo.

The notation `WORDS(n)' will be used in this 
hapter to stand for the n most


ommon words, a

ording to this ranking.

In
identally, �ve-letter words in
lude many plurals of four-letter words, and

it should be noted that no Vi
torian-style 
ensorship was done. Potentially o�en-

sive vo
abulary has been expurgated from The OÆ
ial S
rabble

R


Players Di
-

tionary, but not from the SGB. One way to ensure that semanti
ally unsuitable
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overing

word square

word 
ube

dan
ing links

graphs{

Carroll

Doublets

Gardner

smile

^

terms will not appear in a professional paper based on the SGB wordlist is to

restri
t 
onsideration to WORDS(n) where n is, say, 3000.

Exer
ises 26{37 below 
an be used as warmups for initial explorations of the

SGB words, whi
h we'll see in many di�erent 
ombinatorial 
ontexts throughout

this 
hapter. For example, while 
overing problems are still on our minds, we

might as well note that the four words `third flo
k began jumps' 
over 20 of

the �rst 21 letters of the alphabet. Five words 
an, however, 
over at most 24

di�erent letters, as in fbe
ks; fjord; glitz; nymph; squawg|unless we resort to

a rare non-SGB word like waqfs (Islami
 endowments), whi
h 
an be 
ombined

with fgyved; bronx; 
himp; klutzg to 
over 25.

Simple words from WORDS(400) suÆ
e to make a word square:


lass

light

agree

sheep

steps

: (9)

We need to go almost to WORDS(3000), however, to obtain a word 
ube,

types

yeast

pasta

ester

start

yeast

earth

armor

stove

three

pasta

armor

smoke

token

arena

ester

stove

token

event

rents

start

three

arena

rents

tease

; (10)

in whi
h every 5 � 5 \sli
e" is a word square. With a simple extension of the

basi
 dan
ing links algorithm (see Se
tion 7.2.2.2), one 
an show after performing

about 390 billion mems of 
omputation that WORDS(3000) supports only three

symmetri
 word 
ubes su
h as (10); exer
ise 36 reveals the other two. Surpris-

ingly, 83,576 symmetri
al 
ubes 
an be made from the full set, WORDS(5757).

Graphs from words. It's interesting and important to arrange obje
ts into

rows, squares, 
ubes, and other designs; but in pra
ti
al appli
ations another

kind of 
ombinatorial stru
ture is even more interesting and important, namely

a graph. Re
all from Se
tion 2.3.4.1 that a graph is a set of points 
alled

verti
es, together with a set of lines 
alled edges, whi
h 
onne
t 
ertain pairs

of verti
es. Graphs are ubiquitous, and many beautiful graph algorithms have

been dis
overed, so graphs will naturally be the primary fo
us of many se
tions

in this 
hapter. In fa
t, the Stanford GraphBase is primarily about graphs, as

its name implies; and the SGB words were 
olle
ted 
hie
y be
ause they 
an be

used to de�ne interesting and instru
tive graphs.

Lewis Carroll blazed the trail by inventing a game that he 
alled Word-

Links or Doublets, at the end of 1877. [See Martin Gardner, The Universe in

a Handker
hief (1996), Chapter 6.℄ Carroll's idea, whi
h soon be
ame quite

popular, was to transform one word to another by 
hanging a letter at a time:

tears���sears���stars���stare���stale���stile���smile: (11)
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shortest path

Hamming distan
e

Stanford GraphBase

id

words+

seed

pseudorandom

Carroll

Knuth

T

E

X

METAFONT

Eu
lidean distan
e

Hamming distan
e

subword

T

E

X

dot produ
t

dire
ted graphs

The shortest su
h transformation is the shortest path in a graph, where the

verti
es of the graph are English words and the edges join pairs of words that

have \Hamming distan
e 1" (meaning that they disagree in just one pla
e).

When restri
ted to SGB words, Carroll's rule produ
es a graph of the

Stanford GraphBase whose oÆ
ial name is words (5757; 0; 0; 0). Every graph

de�ned by SGB has a unique identi�er 
alled its id, and the graphs that are

derived in Carrollian fashion from SGB words are identi�ed by ids of the form

words (n; l; t; s). Here n is the number of verti
es; l is either 0 or a list of weights,

used to emphasize various kinds of vo
abulary; t is a threshold so that low-weight

words 
an be disallowed; and s is the seed for any pseudorandom numbers that

might be needed to break ties between words of equal weight. The full details

needn't 
on
ern us, but a few examples will give the general idea:

� words (n; 0; 0; 0) is pre
isely the graph that arises when Carroll's idea is

applied to WORDS(n), for 1 � n � 5757.

� words (1000; f0; 0; 0; 0; 0; 0; 0; 0; 0g; 0; s) 
ontains 1000 randomly 
hosen SGB

words, usually di�erent for di�erent values of s.

� words (766; f0; 0; 0; 0; 0; 0; 0; 1; 0g; 1; 0) 
ontains all of the �ve-letter words

that appear in the author's books about T

E

X and METAFONT.

There are only 766 words in the latter graph, so we 
an't form very many long

paths like (11), although

basi
���basis���bases���based

���baked���naked���named���names���games (12)

is one noteworthy example.

Of 
ourse there are many other ways to de�ne the edges of a graph when the

verti
es represent �ve-letter words. We 
ould, for example, require the Eu
lidean

distan
e to be small, instead of the Hamming distan
e. Or we 
ould de
lare two

words to be adja
ent whenever they share a subword of length four; that strategy

would substantially enri
h the graph, making it possible for 
haos to yield pea
e,

even when 
on�ned to the 766 words that are related to T

E

X:


haos���
hose���whose���whole���holes���hopes���
opes���s
ope

���s
ore���store���stare���spare���spa
e���pa
es���pea
e: (13)

(In this rule we remove a letter, then insert another, possibly in a di�erent pla
e.)

Or we might 
hoose a totally di�erent strategy, like putting an edge between word

ve
tors a

1

a

2

a

3

a

4

a

5

and b

1

b

2

b

3

b

4

b

5

if and only if their dot produ
t a

1

b

1

+ a

2

b

2

+

a

3

b

3

+ a

4

b

4

+ a

5

b

5

is a multiple of some parameter m. Graph algorithms thrive

on di�erent kinds of data.

SGB words lead also to an interesting family of dire
ted graphs, if we write

a

1

a

2

a

3

a

4

a

5

! b

1

b

2

b

3

b

4

b

5

when fa

2

; a

3

; a

4

; a

5

g � fb

1

; b

2

; b

3

; b

4

; b

5

g as multisets.

(Remove the �rst letter, insert another, and rearrange.) With this rule we 
an,

for example, transform words to graph via a shortest oriented path of length six:

words! dross! soars! or
as! 
rash! sharp! graph: (14)
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Theory meets pra
ti
e

Taylor series

COVER

STANLEY

graph theory, introdu
tion to{

neighbors

adja
ent

multigraphs

loops

subgraph

spanning

indu
ed

restri
tion of a graph

notation G j V

0

notation G n v

notation G n e

order n

size e


omplete graph

K

n

path

P

n


y
le

C

n

multigraphs

isomorphi
 graphs++

Theory is the �rst term in the Taylor series of pra
ti
e.

| THOMAS M. COVER (1992)

The number of systems of terminology presently used in graph theory

is equal, to a 
lose approximation, to the number of graph theorists.

| RICHARD P. STANLEY (1986)

Graph theory: The basi
s. A graph G 
onsists of a set V of verti
es together

with a set E of edges, whi
h are pairs of distin
t verti
es. We will assume that

V and E are �nite sets unless otherwise spe
i�ed. We write u��� v if u and v

are verti
es with fu; vg 2 E, and u /���v if u and v are verti
es with fu; vg =2 E.

Verti
es with u���v are 
alled \neighbors," and they're also said to be \adja
ent"

in G. One 
onsequen
e of this de�nition is that we have u��� v if and only if

v���u. Another 
onsequen
e is that v /��� v, for all v 2 V ; that is, no vertex is

adja
ent to itself. (We shall, however, dis
uss multigraphs below, in whi
h loops

from a vertex to itself are permitted.)

The graph G

0

= (V

0

; E

0

) is a subgraph of G = (V;E) if V

0

� V and E

0

� E.

It's a spanning subgraph of G if, in fa
t, V

0

= V . And it's an indu
ed subgraph

of G if E

0

has as many edges as possible, when V

0

is a given subset of the

verti
es. In other words, when V

0

� V the subgraph of G = (V;E) indu
ed by

V

0

is G

0

= (V

0

; E

0

), where

E

0

=

�

fu; vg

�

�

u 2 V

0

, v 2 V

0

, and fu; vg 2 E

	

: (15)

This subgraph G

0

is denoted by G jV

0

, and often 
alled \G restri
ted to V

0

." In

the 
ommon 
ase where V

0

= V nfvg, we write simply Gnv (\G minus vertex v")

as an abbreviation for G j (V n fvg). The similar notation G n e is used when

e 2 E to denote the subgraph G

0

= (V;E n feg), obtained by removing an edge

instead of a vertex. Noti
e that all of the SGB graphs known as words (n; l; t; s),

des
ribed earlier, are indu
ed subgraphs of the main graph words (5757; 0; 0; 0);

only the vo
abulary 
hanges in those graphs, not the rule for adja
en
y.

A graph with n verti
es and e edges is said to have order n and size e. The

simplest and most important graphs of order n are the 
omplete graph K

n

, the

path P

n

, and the 
y
le C

n

. Suppose the verti
es are V = f1; 2; : : : ; ng. Then

� K

n

has

�

n

2

�

=

1

2

n(n � 1) edges u��� v for 1 � u < v � n; every n-vertex

graph is a spanning subgraph of K

n

.

� P

n

has n � 1 edges v ��� (v+1) for 1 � v < n, when n � 1; it is a path

of length n�1 from 1 to n.

� C

n

has n edges v��� ((v mod n)+1) for 1 � v � n; it is a graph only when

n = 0 or n � 3 (but C

1

and C

2

are multigraphs).

We 
ould a
tually have de�ned K

n

, P

n

, and C

n

on the verti
es f0; 1; : : : ; n�1g,

or on any n-element set V instead of f1; 2; : : : ; ng, be
ause two graphs that di�er

only in the names of their verti
es but not in the stru
ture of their edges are


ombinatorially equivalent.

Formally, we say that graphs G = (V;E) and G

0

= (V

0

; E

0

) are isomorphi


if there is a one-to-one 
orresponden
e ' from V to V

0

su
h that u���v in G if
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notation G

�

=

G

0

isomorphi


diagram

Petersen graph

Petersen

Chv�atal graph

Chv�atal

planar

degree

valen
y, see degree

regular


ubi


trivalent

Bondy

symmetries

automorphisms

and only if '(u)���'(v) in G

0

. The notation G

�

=

G

0

is often used to indi
ate

that G and G

0

are isomorphi
; but we shall often be less pre
ise, by treating

isomorphi
 graphs as if they were equal, and by o

asionally writing G = G

0

even when the vertex sets of G and G

0

aren't stri
tly identi
al.

Small graphs 
an be de�ned by simply drawing a diagram, in whi
h the

verti
es are small 
ir
les and the edges are lines between them. Figure 2 illus-

trates several important examples, whose properties we will be studying later.

The Petersen graph in Figure 2(e) is named after Julius Petersen, an early

graph theorist who used it to disprove a plausible 
onje
ture [L'Interm�ediaire

des Math�emati
iens 5 (1898), 225{227℄; it is, in fa
t, a remarkable 
on�guration

that serves as a 
ounterexample to many optimisti
 predi
tions about what might

be true for graphs in general. The Chv�atal graph, Figure 2(f), was introdu
ed

by V�a
lav Chv�atal in J. Combinatorial Theory 9 (1970), 93{94.

(a)

P

5

(b)

C

5

(
)

K

5

(d)

3-
ube

(e)

Petersen graph

(f)

Chv�atal graph

Fig. 2. Six example graphs, whi
h have respe
tively (5; 5; 5; 8; 10; 12) verti
es and

(4; 5; 10; 12; 15; 24) edges.

The lines of a graph diagram are allowed to 
ross ea
h other at points that

aren't verti
es. For example, the 
enter point of Fig. 2(f) is not a vertex of

Chv�atal's graph. A graph is 
alled planar if there's a way to draw it without

any 
rossings. Clearly P

n

and C

n

are always planar; Fig. 2(d) shows that the

3-
ube is also planar. But K

5

has too many edges to be planar (see exer
ise 46).

The degree of a vertex is the number of neighbors that it has. If all verti
es

have the same degree, the graph is said to be regular. In Fig. 2, for example, P

5

is irregular be
ause it has two verti
es of degree 1 and three of degree 2. But

the other �ve graphs are regular, of degrees (2; 4; 3; 3; 4) respe
tively. A regular

graph of degree 3 is often 
alled \
ubi
" or \trivalent."

There are many ways to draw a given graph, some of whi
h are mu
h more

perspi
uous than others. For example, ea
h of the six diagrams

(16)

is isomorphi
 to the 3-
ube, Fig. 2(d). The layout of Chv�atal's graph that appears

in Fig. 2(f) was dis
overed by Adrian Bondy many years after Chv�atal's paper

was published, thereby revealing unexpe
ted symmetries.

The symmetries of a graph, also known as its automorphisms, are the permu-

tations of its verti
es that preserve adja
en
y. In other words, the permutation

' is an automorphism of G if we have '(u)���'(v) whenever u��� v in G. A
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planar


ontiguous United States of Ameri
a

postal 
odes

spanning

Hamiltonian path

Hamiltonian 
y
le

Hamilton

dode
ahedron

Kirkman

Biggs

Lloyd

Wilson

knight


hessboard

Hamiltonian

Petersen graph

de Poligna


girth

a
y
li


well-
hosen drawing like Fig. 2(f) 
an reveal underlying symmetry, but a single

diagram isn't always able to display all the symmetries that exist. For example,

the 3-
ube has 48 automorphisms, and the Petersen graph has 120. We'll study

algorithms that deal with isomorphisms and automorphisms in Se
tion 7.2.3.

Symmetries 
an often be exploited to avoid unne
essary 
omputations, mak-

ing an algorithm almost k times faster when it operates on a graph that has

k automorphisms.

Graphs that have evolved in the real world tend to be rather di�erent from

the mathemati
ally pristine graphs of Figure 2. For example, here's a familiar

graph that has no symmetry whatsoever, although it does have the virtue of

being planar:

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

(17)

It represents the 
ontiguous United States of Ameri
a, and we'll be using it later

in several examples. The 49 verti
es of this diagram have been labeled with two-

letter postal 
odes for 
onvenien
e, instead of being redu
ed to empty 
ir
les.

Paths and 
y
les. A spanning path of a graph is 
alled a Hamiltonian path,

and a spanning 
y
le is 
alled a Hamiltonian 
y
le, be
ause W. R. Hamilton

invented and sold a puzzle in 1859 whose goal was to �nd su
h paths and 
y
les

on the edges of a dode
ahedron. T. P. Kirkman had independently studied the

problem for polyhedra in general, in Philosophi
al Transa
tions 148 (1858),

145{161. [See Graph Theory 1736{1936 by N. L. Biggs, E. K. Lloyd, and R. J.

Wilson (1998), Chapter 2.℄ The task of �nding a spanning path or 
y
le is,

however, mu
h older| indeed, we 
an legitimately 
onsider it to be the oldest


ombinatorial problem of all, be
ause paths and tours of a knight on a 
hessboard

have a 
ontinuous history going ba
k to ninth-
entury India (see Se
tion 7.3.3).

A graph is 
alled Hamiltonian if it has a Hamiltonian 
y
le. (The Petersen

graph, in
identally, is the smallest 3-regular graph that is neither planar nor

Hamiltonian; see C. de Poligna
, Bull. So
. Math. de Fran
e 27 (1899), 142{145.)

The girth of a graph is the length of its shortest 
y
le; the girth is in�nite if

the graph is a
y
li
 (
ontaining no 
y
les). For example, the six graphs of Fig. 2

have girths (1; 5; 3; 4; 5; 4), respe
tively. It's not diÆ
ult to prove that a graph

of minimum degree k and girth 5 must have at least k

2

+ 1 verti
es. Further

analysis shows in fa
t that this minimum value is a
hievable only if k = 2 (C

5

),

k = 3 (Petersen), k = 7, or perhaps k = 57. (See exer
ises 63 and 65.)
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distan
e

shortest path

triangle inequality

diameter


onne
ted


omponents

5-letter wds

smile

giant 
omponent

distan
e, generalized+

The distan
e d(u; v) between two verti
es u and v is the minimum length

of a path from u to v in the graph; it is in�nite if there's no su
h path. Clearly

d(v; v) = 0, and d(u; v) = d(v; u). We also have the triangle inequality

d(u; v) + d(v; w) � d(u;w): (18)

For if d(u; v) = p and d(v; w) = q and p <1 and q <1, there are paths

u = u

0

���u

1

���� � ����u

p

= v and v = v

0

���v

1

���� � ����v

q

= w; (19)

and we 
an �nd the least subs
ript r su
h that u

r

= v

s

for some s. Then

u

0

���u

1

���� � ����u

r�1

���v

s

���v

s+1

���� � ����v

q

(20)

is a path of length � p+ q from u to w.

The diameter of a graph is the maximum of d(u; v), over all verti
es u and v.

The graph is 
onne
ted if its diameter is �nite. The verti
es of a graph 
an always

be partitioned into 
onne
ted 
omponents, where two verti
es u and v belong to

the same 
omponent if and only if d(u; v) <1.

In the graph words (5757; 0; 0; 0), for example, we have d(tears; smile) = 6,

be
ause (11) is a shortest path from tears to smile. Also d(tears; happy) = 6,

and d(smile; happy) = 10, and d(world; 
ourt) = 6. But d(world; happy) =

1; the graph isn't 
onne
ted. In fa
t, it 
ontains 671 words like aloof, whi
h

have no neighbors and form 
onne
ted 
omponents of order 1 all by themselves.

Word pairs su
h as alpha ��� aloha, droid ��� druid, and opium ��� odium

a

ount for 103 further 
omponents of order 2. Some 
omponents of order 3,

like 
hain ��� 
hair ��� 
hoir, are paths; others, like fgetup; letup; setupg,

are 
y
les. A few more small 
omponents are also present, like the 
urious path

login���logi
���yogi
���yogis���yogas���togas; (21)

whose words have no other neighbors. But the vast majority of all �ve-letter

words belong to a giant 
omponent of order 4493. If you 
an go two steps away

from a given word, the odds are better than 15 to 1 that your word is 
onne
ted

to everything in the giant 
omponent.

Similarly, the graph words (n; 0; 0; 0) has a giant 
omponent of order (3825;

2986; 2056; 1198; 224) when n = (5000; 4000; 3000; 2000; 1000), respe
tively. But

if n is small, there aren't enough edges to provide mu
h 
onne
tivity. For exam-

ple, words (500; 0; 0; 0) has 327 di�erent 
omponents, none of order 15 or more.

The 
on
ept of distan
e 
an be generalized to d(v

1

; v

2

; : : : ; v

k

) for any value

of k, meaning the minimum number of edges in a 
onne
ted subgraph that


ontains the verti
es fv

1

; v

2

; : : : ; v

k

g. For example, d(blood; sweat; tears) turns

out be 15, be
ause the subgraph

blood���brood���broad���bread���tread���treed���tweed

j j

tears���teams���trams���trims���tries���trees tweet

j

sweat���sweet

(22)

has 15 edges, and there's no suitable 14-edge subgraph.
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free tree

Steiner tree

Steiner

Eu
lidean plane

Heinen

Gauss

S
huma
her

Coloring

k-partite

k-
olorable

Four Color Theorem

Guthrie

Appel

Haken

Ko
h

planar

Robertson

Sanders

Seymour

Thomas

bipartite

bigraph

K}onig

subgraph


omplete bipartite graph


omplete k-partite graph

free tree

star graph

We noted in Se
tion 2.3.4.1 that a 
onne
ted graph with fewest edges is


alled a free tree. A subgraph that 
orresponds to the generalized distan
e

d(v

1

; : : : ; v

k

) will always be a free tree. It is misleadingly 
alled a Steiner tree,

be
ause Ja
ob Steiner on
e mentioned the 
ase k = 3 for points fv

1

; v

2

; v

3

g in

the Eu
lidean plane [Crelle 13 (1835), 362{363℄. Franz Heinen had solved that

problem in

�

Uber Systeme von Kr�aften (1834); Gauss extended the analysis to

k = 4 in a letter to S
huma
her (21 Mar
h 1836).

Coloring. A graph is said to be k-partite or k-
olorable if its verti
es 
an be

partitioned into k or fewer parts, with the endpoints of ea
h edge belonging to

di�erent parts|or equivalently, if there's a way to paint its verti
es with at most

k di�erent 
olors, never assigning the same 
olor to two adja
ent verti
es. The fa-

mous Four Color Theorem, 
onje
tured by F. Guthrie in 1852 and �nally proved

with massive 
omputer aid by K. Appel, W. Haken, and J. Ko
h [Illinois J. Math.

21 (1977), 429{567℄, states that every planar graph is 4-
olorable. No simple

proof is known, but spe
ial 
ases like (17) 
an be 
olored at sight (see exer
ise 45);

and O(n

2

) steps suÆ
e to 4-
olor a planar graph in general [N. Robertson, D. P.

Sanders, P. Seymour, and R. Thomas, STOC 28 (1996), 571{575℄.

The 
ase of 2-
olorable graphs is espe
ially important in pra
ti
e. A 2-

partite graph is generally 
alled bipartite, or simply a \bigraph"; every edge of

su
h a graph has one endpoint in ea
h part.

Theorem B. A graph is bipartite if and only if it 
ontains no 
y
le of odd length.

Proof. [See D. K}onig, Math. Annalen 77 (1916), 453{454.℄ Every subgraph of

a k-partite graph is k-partite. Therefore the 
y
le C

n


an be a subgraph of a

bipartite graph only if C

n

itself is a bigraph, in whi
h 
ase n must be even.

Conversely, if a graph 
ontains no odd 
y
les we 
an 
olor its verti
es with

the two 
olors f0; 1g by 
arrying out the following pro
edure: Begin with all

verti
es un
olored. If all neighbors of 
olored verti
es are already 
olored, 
hoose

an un
olored vertex w, and 
olor it 0. Otherwise 
hoose a 
olored vertex u that

has an un
olored neighbor v; assign to v the opposite 
olor. Exer
ise 48 proves

that a valid 2-
oloring is eventually obtained.

The 
omplete bipartite graph K

m;n

is the largest bipartite graph whose

verti
es have two parts of sizes m and n. We 
an de�ne it on the vertex set

f1; 2; : : : ;m+ng by saying that u ��� v whenever 1 � u � m < v � m + n.

In other words, K

m;n

has mn edges, one for ea
h way to 
hoose one vertex in

the �rst part and another in the se
ond part. Similarly, the 
omplete k-partite

graph K

n

1

;:::;n

k

has N = n

1

+ � � � + n

k

verti
es partitioned into parts of sizes

fn

1

; : : : ; n

k

g, and it has edges between any two verti
es that don't belong to the

same part. Here are some examples when N = 6:

;

�

=

;

�

=

: (23)

K

1;5

K

3;3

K

2;2;2

Noti
e that K

1;n

is a free tree; it is popularly 
alled the star graph of order n+1.



18 COMBINATORIAL ALGORITHMS (F0A) 7

P

�
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dire
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ar
s{

ar
s

self-loops

order

size

multiset

simple

initial vertex

�nal vertex

tip

out-degree

d

+

(v)

in-degree

d

�

(v)

sour
e

sink

spanning

indu
ed

isomorphism

Diagrams for digraphs

transitive tournament

K~

n

oriented path

P~

n

oriented 
y
le

C~

n


omplete digraph

J

n

Poirot

Christie


omponents


onne
tivity in a digraph

ar
s as edges

From now on say \digraph" instead of \dire
ted graph."

It is 
lear and short and it will 
at
h on.

| GEORGE P

�

OLYA, letter to Frank Harary (
. 1954)

Dire
ted graphs. In Se
tion 2.3.4.2 we de�ned dire
ted graphs (or digraphs),

whi
h are very mu
h like graphs ex
ept that they have ar
s instead of edges.

An ar
 u ��! v runs from one vertex to another, while an edge u ��� v joins

two verti
es without distinguishing between them. Furthermore, digraphs are

allowed to have self-loops v��!v from a vertex to itself, and more than one ar


u��!v may be present between the same verti
es u and v.

Formally, a digraph D = (V;A) of order n and size m is a set V of n verti
es

and a multiset A of m ordered pairs (u; v), where u 2 V and v 2 V . The ordered

pairs are 
alled ar
s, and we write u��!v when (u; v) 2 A. The digraph is 
alled

simple if A is a
tually a set instead of a general multiset|namely, if there's at

most one ar
 (u; v) for all u and v. Ea
h ar
 (u; v) has an initial vertex u and a

�nal vertex v, also 
alled its \tip." Ea
h vertex has an out-degree d

+

(v), the num-

ber of ar
s for whi
h v is the initial vertex, and an in-degree d

�

(v), the number of

ar
s for whi
h v is the tip. A vertex with in-degree 0 is 
alled a \sour
e"; a vertex

with out-degree 0 is 
alled a \sink." Noti
e that

P

v2V

d

+

(v) =

P

v2V

d

�

(v),

be
ause both sums are equal to m, the total number of ar
s.

Most of the notions we've de�ned for graphs 
arry over to digraphs in a nat-

ural way, if we just insert the word \dire
ted" or \oriented" (or the syllable \di")

when it's ne
essary to distinguish between edges and ar
s. For example, digraphs

have subdigraphs, whi
h 
an be spanning or indu
ed or neither. An isomorphism

between digraphs D = (V;A) and D

0

= (V

0

; A

0

) is a one-to-one 
orresponden
e '

from V to V

0

for whi
h the number of ar
s u��! v in D equals the number of

ar
s '(u)��!'(v) in D

0

, for all u; v 2 V .

Diagrams for digraphs use arrows between the verti
es, instead of unadorned

lines. The simplest and most important digraphs of order n are dire
ted variants

of the graphsK

n

, P

n

, and C

n

, namely the transitive tournament K~

n

, the oriented

path P~

n

, and the oriented 
y
le C~

n

. They 
an be s
hemati
ally indi
ated by the

following diagrams for n = 5:

; ; : (24)

K~

5

P~

5

C~

5

There's also the 
omplete digraph J

n

, whi
h is the largest simple digraph on n

verti
es; it has n

2

ar
s u��!v, one for ea
h 
hoi
e of u and v.

Figure 3 shows a more elaborate diagram, for a digraph of order 17 that

we might 
all \expressly oriented": It is the dire
ted graph des
ribed by Her-


ule Poirot in Agatha Christie's novel Murder on the Orient Express (1934).

Verti
es 
orrespond to the berths of the Stamboul{Calais 
oa
h in that story,

and an ar
 u ��! v means that the o

upant of berth u has 
orroborated the

alibi of the person in berth v. This example has six 
onne
ted 
omponents,

namely f0; 1; 3; 6; 8; 12; 13; 14; 15; 16g, f2g, f4; 5g, f7g, f9g, and f10; 11g, be
ause


onne
tivity in a digraph is determined by treating ar
s as edges.



7 COMBINATORIAL SEARCHING 19


onse
utive

walk

oriented path

oriented 
y
le

dire
ted distan
e d(u; v)

triangle inequality

graph 
an be regarded as a digraph

edges as ar
s

out-degree

in-degree

multigraph

loop

multipairs

parallel (repeated) edges

degrees

{graph theory, introdu
tion to

adja
en
y matrix+

0

1

23

4

5

6

7

8910

11 1213

14 15

16

LEGEND

0: Pierre Mi
hel, the Fren
h 
ondu
tor

1: Her
ule Poirot, the Belgian dete
tive

2: Samuel Edward Rat
hett, the de
eased Ameri
an

3: Caroline Martha Hubbard, the Ameri
an matron

4: Edward Henry Masterman, the British valet

5: Antonio Fos
arelli, the Italian automobile salesman

6: He
tor Ma
Queen, the Ameri
an se
retary

7: Harvey Harris, the Englishman who didn't show up

8: Hildegarde S
hmidt, the German lady's maid

9: (va
an
y)

10: Greta Ohlsson, the Swedish nurse

11: Mary Hermione Debenham, the English governess

12: Helena Maria Andrenyi, the beautiful 
ountess

13: Rudolph Andrenyi, the Hungarian 
ount/diplomat

14: Natalia Dragomiro�, the Russian prin
ess dowager

15: Colonel Arbuthnot, the British oÆ
er from India

16: Cyrus Bettman Hardman, the Ameri
an dete
tive

Fig. 3. A digraph of order 17 and size 18, devised by Agatha Christie.

Two ar
s are 
onse
utive if the tip of the �rst is the initial vertex of the

se
ond. A sequen
e of 
onse
utive ar
s (a

1

; a

2

; : : : ; a

k

) is 
alled a walk of length k;

it 
an be symbolized by showing the verti
es as well as the ar
s:

v

0

a

1

�! v

1

a

2

�! v

2

� � � v

k�1

a

k

�! v

k

: (25)

In a simple digraph it's suÆ
ient merely to spe
ify the verti
es; for example,

1��!0��!8��!14��!8��!3 is a walk in Fig. 3. The walk in (25) is an oriented

path when the verti
es fv

0

; v

1

; : : : ; v

k

g are distin
t; it's an oriented 
y
le when

they are distin
t ex
ept that v

k

= v

0

.

In a digraph, the dire
ted distan
e d(u; v) is the number of ar
s in the short-

est oriented path from u to v, whi
h is also the length of the shortest walk from

u to v. It may di�er from d(v; u); but the triangle inequality (18) remains valid.

Every graph 
an be regarded as a digraph, be
ause an edge u ��� v is

essentially equivalent to a mat
hed pair of ar
s, u��!v and v��!u. The digraph

obtained in this way retains all the properties of the original graph; for example,

the degree of ea
h vertex in the graph be
omes its out-degree in the digraph,

and also its in-degree in the digraph. Furthermore, distan
es remain the same.

A multigraph (V;E) is like a graph ex
ept that its edges E 
an be any

multiset of pairs fu; vg; edges v ��� v that loop from a vertex to itself, whi
h


orrespond to \multipairs" fv; vg, are also permitted. For example,

1 2 3

(26)

is a multigraph of order 3 with six edges, f1; 1g, f1; 2g, f2; 3g, f2; 3g, f3; 3g, and

f3; 3g. The vertex degrees in this example are d(1) = d(2) = 3 and d(3) = 6,

be
ause ea
h loop 
ontributes 2 to the degree of its vertex. An edge loop v���v

be
omes two ar
 loops v��!v when a multigraph is regarded as a digraph.

Representation of graphs and digraphs. Any digraph, and therefore any

graph or multigraph, is 
ompletely des
ribed by its adja
en
y matrix A = (a

uv

),

whi
h has n rows and n 
olumns when there are n verti
es. Ea
h entry a

uv

of

this matrix spe
i�es the number of ar
s from u to v. For example, the adja
en
y

matri
es for K~

3

, P~

3

, C~

3

, J

3

, and (26) are respe
tively

K~

3

=

�

011

001

000

�

; P~

3

=

�

010

001

000

�

; C~

3

=

�

010

001

100

�

; J

3

=

�

111

111

111

�

; A =

�

210

102

024

�

: (27)
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matrix multipli
ation

walks

permutation matrix

0{1 matrix

sparse

Stanford GraphBase

The powerful mathemati
al tools of matrix theory make it possible to prove

many nontrivial results about graphs by studying their adja
en
y matri
es;

exer
ise 65 provides a parti
ularly striking example of what 
an be done. One

of the main reasons is that matrix multipli
ation has a simple interpretation in

the 
ontext of digraphs. Consider the square of A, where the element in row u

and 
olumn v is

(A

2

)

uv

=

X

w2V

a

uw

a

wv

; (28)

by de�nition. Sin
e a

uw

is the number of ar
s from u to w, we see that a

uw

a

wv

is the number of walks of the form u��!w��! v. Therefore (A

2

)

uv

is the total

number of walks of length 2 from u to v. Similarly, the entries of A

k

tell us the

total number of walks of length k between any ordered pair of verti
es, for all

k � 0. For example, the matrix A in (27) satis�es

A =

�

2 1 0

1 0 2

0 2 4

�

; A

2

=

�

5 2 2

2 5 8

2 8 20

�

; A

3

=

�

12 9 12

9 18 42

12 42 96

�

; (29)

there are 12 walks of length 3 from the vertex 1 of the multigraph (26) to vertex 3,

and 18 su
h walks from vertex 2 to itself.

Reordering of the verti
es 
hanges an adja
en
y matrix from A to P

�

AP ,

where P is a permutation matrix (a 0{1 matrix with exa
tly one 1 in ea
h row

and 
olumn), and P

�

= P

T

is the matrix for the inverse permutation. Thus

�

210

102

024

�

;

�

201

042

120

�

;

�

012

120

204

�

;

�

021

240

102

�

;

�

402

021

210

�

; and

�

420

201

012

�

(30)

are all adja
en
y matri
es for (26), and there are no others.

There are more than 2

n(n�1)=2

=n! graphs of order n, when n > 1, and

almost all of them require 
(n

2

) bits of data in their most e
onomi
al en
oding.

Consequently the best way to represent the vast majority of all possible graphs

inside a 
omputer, from the standpoint of memory usage, is essentially to work

with their adja
en
y matri
es.

But the graphs that a
tually arise in pra
ti
al problems have quite di�erent


hara
teristi
s from graphs that are 
hosen at random from the set of all possi-

bilities. A real-life graph usually turns out to be \sparse," having say O(n logn)

edges instead of 
(n

2

), unless n is rather small, be
ause 
(n

2

) bits of data are

diÆ
ult to generate. For example, suppose the verti
es 
orrespond to people,

and the edges 
orrespond to friendships. If we 
onsider 5 billion people, few

of them will have more than 10000 friends. But even if everybody had 10000

friends, on average, the graph would still have only 2:5�10

13

edges, while almost

all graphs of order 5 billion have approximately 6:25� 10

18

edges.

Thus the best way to represent a graph inside a ma
hine usually turns out

to be rather di�erent than to re
ord n

2

values a

uv

of adja
en
y matrix elements.

Instead, the algorithms of the Stanford GraphBase were developed with a data

stru
ture akin to the linked representation of sparse matri
es dis
ussed in Se
tion

2.2.6, though somewhat simpli�ed. That approa
h has proved to be not only

versatile and eÆ
ient, but also easy to use.
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SGB representation of a digraph

sequential

linked allo
ation

node sizes+

standard �elds

utility �elds

NAME

ARCS

vertex variable

TIP

NEXT

ar
 variable

out-degree

multigraph

edges as ar
s+

MATE+

mates+

MATE(a)+

The SGB representation of a digraph is a 
ombination of sequential and

linked allo
ation, using nodes of two basi
 types. Some nodes represent verti
es,

other nodes represent ar
s. (There's also a third type of node, whi
h represents

an entire graph, for algorithms that deal with several graphs at on
e. But ea
h

graph needs only one graph node, so the vertex and ar
 nodes predominate.)

Here's how it works: Every SGB digraph of order n and size m is built

upon a sequential array of n vertex nodes, making it easy to a

ess vertex k

for 0 � k < n. The m ar
 nodes, by 
ontrast, are linked together within a

general memory pool that is essentially unstru
tured. Ea
h vertex node typi
ally

o

upies 32 bytes, and ea
h ar
 node o

upies 20 (and the graph node o

upies

220); but the node sizes 
an be modi�ed without diÆ
ulty. A few �elds of ea
h

node have a �xed, de�nite meaning in all 
ases; the remaining �elds 
an be used

for di�erent purposes in di�erent algorithms or in di�erent phases of a single

algorithm. The �xed-purpose parts of a node are 
alled its \standard �elds,"

and the multipurpose parts are 
alled its \utility �elds."

Every vertex node has two standard �elds 
alled NAME and ARCS. If v is a

variable that points to a vertex node, we'll 
all it a vertex variable. Then NAME(v)

points to a string of 
hara
ters that 
an be used to identify the 
orresponding

vertex in human-oriented output; for example, the 49 verti
es of graph (17) have

names like CA, WA, OR, : : : , RI. The other standard �eld, ARCS(v), is far more

important in algorithms: It points to an ar
 node, the �rst in a singly linked list

of length d

+

(v), with one node for ea
h ar
 that emanates from vertex v.

Every ar
 node has two standard �elds 
alled TIP and NEXT; a variable a that

points to an ar
 node is 
alled an ar
 variable. TIP(a) points to the vertex node

that represents the tip of ar
 a; NEXT(a) points to the ar
 node that represents

the next ar
 whose initial vertex agrees with that of a.

A vertex v with out-degree 0 is represented by letting ARCS(v) = � (the null

pointer). Otherwise if, say, the out-degree is 3, the data stru
ture 
ontains three

ar
 nodes with ARCS(v) = a

1

, NEXT(a

1

) = a

2

, NEXT(a

2

) = a

3

, and NEXT(a

3

) =

�; and the three ar
s from v lead to TIP(a

1

), TIP(a

2

), TIP(a

3

).

Suppose, for example, that we want to 
ompute the out-degree of vertex v,

and store it in a utility �eld 
alled ODEG. It's easy:

Set a ARCS(v) and d 0.

While a 6= �, set d d+ 1 and a NEXT(a).

Set ODEG(v) d.

(31)

When a graph or a multigraph is 
onsidered to be a digraph, as mentioned

above, its edges u���v are ea
h equivalent to two ar
s, u��!v and v��!u. These

ar
s are 
alled \mates"; and they o

upy two ar
 nodes, say a and a

0

, where a

appears in the list of ar
s from u and a

0

appears in the list of ar
s from v. Then

TIP(a) = v and TIP(a

0

) = u. We'll also write

MATE(a) = a

0

and MATE(a

0

) = a; (32)

in algorithms that want to move rapidly from one list to another. However, we

usually won't need to store an expli
it pointer from an ar
 to its mate, or to have
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impli
itly

bitwise AND

portable

C

LOC

graph node

M(g)

N(g)

VERTICES(g)

ID(g)

id

{dire
ted graphs

bipartiteness testing+

a utility �eld 
alled MATE within ea
h ar
 node, be
ause the ne
essary link 
an

be dedu
ed impli
itly when the data stru
ture has been 
onstru
ted 
leverly.

The impli
it-mate tri
k works like this: While 
reating ea
h edge u ��� v

of an undire
ted graph or multigraph, we introdu
e 
onse
utive ar
 nodes for

u��!v and v��!u. For example, if there are 20 bytes per ar
 node, we'll reserve

40 
onse
utive bytes for ea
h new pair. We 
an also make sure that the memory

address of the �rst byte is a multiple of 8. Then if the ar
 node a is in memory

lo
ation �, its mate is in lo
ation

n

�+ 20; if �mod 8 = 0

�� 20; if �mod 8 = 4

o

= �� 20 +

�

40 & ((�& 4)� 1)

�

: (33)

Su
h tri
ks are valuable in 
ombinatorial problems, when operations might

be performed a trillion times, be
ause every way to save 3.6 nanose
onds per

operation will make su
h a 
omputation �nish an hour sooner. But (33) isn't

dire
tly \portable" from one implementation to another. If the size of an ar


node were 
hanged from 20 to 24, for example, we would have to 
hange the

numbers 40, 20, 8, and 4 in (33) to 48, 24, 16, and 8.

The algorithms in this book will make no assumptions about node sizes.

Instead, we'll adopt a 
onvention of the C programming language and its de-

s
endants, so that if a points to an ar
 node, `a+1' denotes a pointer to the ar


node that follows it in memory. And in general

LOC(NODE(a+ k)) = LOC(NODE(a)) + k
; (34)

when there are 
 bytes in ea
h ar
 node. Similarly, if v is a vertex variable, `v+k'

will stand for the kth vertex node following node v; the a
tual memory lo
ation

of that node will be v plus k times the size of a vertex node.

The standard �elds of a graph node g in
lude M(g), the total number of ar
s;

N(g), the total number of verti
es; VERTICES(g), a pointer to the �rst vertex

node in the sequential list of all vertex nodes; ID(g), the graph's identi�
ation,

whi
h is a string like words(5757,0,0,0); and some other �elds needed for the

allo
ation and re
y
ling of memory when the graph grows or shrinks, or for

exporting a graph to external formats that interfa
e with other users and other

graph-manipulation systems. But we will rarely need to refer to any of these

graph node �elds, nor will it be ne
essary to give a 
omplete des
ription of SGB

format here, sin
e we shall des
ribe almost all of the graph algorithms in this


hapter by sti
king to an English-language des
ription at a fairly abstra
t level

instead of des
ending to the bit level of ma
hine programs.

A simple graph algorithm. To illustrate a medium-high-level algorithm of

the kind that will appear later, let's 
onvert the proof of Theorem B into a

step-by-step pro
edure that paints the verti
es of a given graph with two 
olors

whenever that graph is bipartite.

Algorithm B (Bipartiteness testing). Given a graph represented in SGB format,

this algorithm either �nds a 2-
oloring with COLOR(v) 2 f0; 1g in ea
h vertex v,

or it terminates unsu

essfully when no valid 2-
oloring is possible. Here COLOR

is a utility �eld in ea
h vertex node. Another vertex utility �eld, LINK(v), is a
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sta
k

vertex variable

ar
 variable

depth-�rst sear
h

sparse graphs

{ar
s

Stanford GraphBase++

generator routines

roget

Roget

Roget

book

Hugo

novel

bi book

bipartite graph

vertex pointer used to maintain a sta
k of all 
olored verti
es whose neighbors

have not yet been examined. An auxiliary vertex variable s points to the top of

this sta
k. The algorithm also uses variables u, v, w for verti
es and a for ar
s.

The vertex nodes are assumed to be v

0

+ k for 0 � k < n.

B1. [Initialize.℄ Set COLOR(v

0

+ k)  �1 for 0 � k < n. (Now all verti
es are

un
olored.) Then set w  v

0

+ n.

B2. [Done?℄ (At this point all verti
es � w have been 
olored, and so have the

neighbors of all 
olored verti
es.) Terminate the algorithm su

essfully if

w = v

0

. Otherwise set w  w � 1, the next lower vertex node.

B3. [Color w if ne
essary.℄ If COLOR(w) � 0, return to B2. Otherwise set

COLOR(w) 0, LINK(w) �, and s w.

B4. [Sta
k) u.℄ Set u  s, s  LINK(s), a  ARCS(u). (We will examine all

neighbors of the 
olored vertex u.)

B5. [Done with u?℄ If a = �, go to B8. Otherwise set v  TIP(a).

B6. [Pro
ess v.℄ If COLOR(v) < 0, set COLOR(v) 1� COLOR(u), LINK(v) s,

and s v. Otherwise if COLOR(v) = COLOR(u), terminate unsu

essfully.

B7. [Loop on a.℄ Set a NEXT(a) and return to B5.

B8. [Sta
k nonempty?℄ If s 6= �, return to B4. Otherwise return to B2.

This algorithm is a variant of a general graph traversal pro
edure 
alled \depth-

�rst sear
h," whi
h we will study in detail in Se
tion 7.4.1. Its running time is

O(m + n) when there are m ar
s and n verti
es (see exer
ise 70); therefore it

is well adapted to the 
ommon 
ase of sparse graphs. With small 
hanges we


an make it output an odd-length 
y
le whenever it terminates unsu

essfully,

thereby proving the impossibility of a 2-
oloring (see exer
ise 72).

Examples of graphs. The Stanford GraphBase in
ludes a library of more than

three dozen generator routines, 
apable of produ
ing a great variety of graphs

and digraphs for use in experiments. We've already dis
ussed words ; now let's

look at a few of the others, in order to get a feeling for some of the possibilities.

� roget(1022; 0; 0; 0) is a dire
ted graph with 1022 verti
es and 5075 ar
s. The

verti
es represent the 
ategories of words or 
on
epts that P. M. Roget and J. L.

Roget in
luded in their famous 19th-
entury Thesaurus (London: Longmans,

Green, 1879). The ar
s are the 
ross referen
es between 
ategories, as found

in that book. For example, typi
al ar
s are water��!moisture, dis
overy��!

truth, preparation��!learning, vulgarity��!ugliness, wit��!amusement.

� book("jean"; 80; 0; 1; 356; 0; 0; 0) is a graph with 80 verti
es and 254 edges.

The verti
es represent the 
hara
ters of Vi
tor Hugo's Les Mis�erables; the edges


onne
t 
hara
ters who en
ounter ea
h other in that novel. Typi
al edges are

Fantine���Javert, Cosette���Th�enardier.

� bi book("jean"; 80; 0; 1; 356; 0; 0; 0) is a bipartite graph with 80+356 verti
es

and 727 edges. The verti
es represent 
hara
ters or 
hapters in Les Mis�erables;

the edges 
onne
t 
hara
ters with the 
hapters in whi
h they appear (for in-

stan
e, Napoleon���2.1.8, Marius���4.14.4).
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plane miles

planar graph

in�nity

Delaunay triangulation


onvex hull

plane lisa
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i
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bi lisa

bipartite graph
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Gherardini, Lisa

raman

expander graph

regular graph+

Ramanujan graphs

girth

diameter

� plane miles(128; 0; 0; 0; 1; 0; 0) is a planar graph with 129 verti
es and 381

edges. The verti
es represent 128 
ities in the United States or Canada, plus

a spe
ial vertex INF for a \point at in�nity." The edges de�ne the so-
alled

Delaunay triangulation of those 
ities, based on latitude and longitude in a

plane; this means that u ��� v if and only if the smallest 
ir
le that passes

through u and v does not en
lose any other vertex. Edges also run between INF

and all verti
es that lie on the 
onvex hull of all 
ity lo
ations. Typi
al edges are

Seattle, WA��� Van
ouver, BC��� INF; Toronto, ON��� Ro
hester, NY.

� plane lisa(360; 250; 15; 0; 360; 0; 250; 0; 0; 2295000) is a planar graph that has

3027 verti
es and 5967 edges. It is obtained by starting with a digitized image of

Leonardo da Vin
i'sMona Lisa, having 360 rows and 250 
olumns of pixels, then

rounding the pixel intensities to 16 levels of gray from 0 (bla
k) to 15 (white).

The resulting 3027 rookwise 
onne
ted regions of 
onstant brightness are then


onsidered to be neighbors when they share a pixel boundary. (See Fig. 4.)

Fig. 4. A digital rendition of Mona Lisa, with a 
loseup detail (best viewed from afar).

� bi lisa(360; 250; 0; 360; 0; 250; 8192; 0) is a bipartite graph with 360 + 250 =

610 verti
es and 40923 edges. It's another takeo� on Leonardo's famous painting,

this time linking rows and 
olumns where the brightness level is at least 1=8. For

example, the edge r102���
113 o

urs right in the middle of Lisa's \smile."

� raman(31; 23; 3; 1) is a graph with quite a di�erent nature from the SGB

graphs in previous examples. Instead of being linked to language, literature,

or other outgrowths of human 
ulture, it's a so-
alled \Ramanujan expander

graph," based on stri
t mathemati
al prin
iples. Ea
h of its (23

3

�23)=2 = 6072

verti
es has degree 32; hen
e it has 97152 edges. The verti
es 
orrespond to

equivalen
e 
lasses of 2 � 2 matri
es that are nonsingular modulo 23; a typi
al

edge is (2,7;1,1) ��� (4,6;1,3). Ramanujan graphs are important 
hie
y

be
ause they have unusually high girth and low diameter for their size and degree.

This one has girth 4 and diameter 4.
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random graph

pseudorandom
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omponent
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random graph
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digraph, random

random graph
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triangular grid

� raman(5; 37; 4; 1), similarly, is a regular graph of degree 6 with 50616 verti
es

and 151848 edges. It has girth 10, diameter 10, and happens also to be bipartite.

� random graph(1000; 5000; 0; 0; 0; 0; 0; 0; 0; s) is a graph with 1000 verti
es,

5000 edges, and seed s. It \evolved" by starting with no edges, then by repeatedly


hoosing pseudorandom vertex numbers 0 � u; v < 1000 and adding the edge

u���v, unless u = v or that edge was already present. When s = 0, all verti
es

belong to a giant 
omponent of order 999, ex
ept for the isolated vertex 908.

� random graph(1000; 5000; 0; 0; 1; 0; 0; 0; 0; 0) is a digraph with 1000 verti
es

and 5000 ar
s, obtained via a similar sort of evolution. (In fa
t, ea
h of its ar
s

happens to be part also of random graph(1000; 5000; 0; 0; 0; 0; 0; 0; 0; 0).)

� subsets(5; 1;�10; 0; 0; 0;

#

1; 0) is a graph with

�

11

5

�

= 462 verti
es, one for

every �ve-element subset of f0; 1; : : : ; 10g. Two verti
es are adja
ent whenever

the 
orresponding subsets are disjoint; thus, the graph is regular of degree 6,

and it has 1386 edges. We 
an 
onsider it to be a generalization of the Petersen

graph, whi
h has subsets(2; 1;�4; 0; 0; 0;

#

1; 0) as one of its SGB names.

� subsets(5; 1;�10; 0; 0; 0;

#

10; 0) has the same 462 verti
es, but now they are

adja
ent if the 
orresponding subsets have four elements in 
ommon. This graph

is regular of degree 30, and it has 6930 edges.

� parts(30; 10; 30; 0) is another SGB graph with a mathemati
al basis. It has

3590 verti
es, one for ea
h partition of 30 into at most 10 parts. Two partitions

are adja
ent when one is obtained by subdividing a part of the other; this rule

de�nes 31377 edges. The digraph parts(30; 10; 30; 1) is similar, but its 31377 ar
s

point from shorter to longer partitions (for example, 13+7+7+3��!7+7+7+6+3).

� simplex (10; 10; 10; 10; 10; 0; 0) is a graph with 286 verti
es and 1320 edges.

Its verti
es are the integer solutions to x

1

+x

2

+x

3

+x

4

= 10 with x

i

� 0, namely

the \
ompositions of 10 into four nonnegative parts"; they 
an also be regarded

as bary
entri
 
oordinates for points inside a tetrahedron. The edges, su
h as

3,1,4,2���3,0,4,3, 
onne
t 
ompositions that are as 
lose together as possible.

� board(8; 8; 0; 0; 5; 0; 0) and board(8; 8; 0; 0;�2; 0; 0) are graphs on 64 verti
es

whose 168 or 280 edges 
orrespond to the moves of a knight or bishop in 
hess.

And zillions of further examples are obtainable by varying the parameters to the

SGB graph generators. For example, Fig. 5 shows two simple variants of board

and simplex ; the somewhat ar
ane rules of board are explained in exer
ise 75.

board(6; 9; 0; 0; 5; 0; 0)

(Knight moves on a 6 � 9 
hessboard)

simplex(10; 8; 7; 6; 0; 0; 0)

(A trun
ated triangular grid)

Fig. 5. Samples of SGB graphs related to board games.
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Graph algebra. We 
an also obtain new graphs by operating on the graphs

that we already have. For example, if G = (V;E) is any graph, its 
omplement

G = (V;E) is obtained by letting

u���v in G () u 6= v and u /���v in G. (35)

Thus, non-edges be
ome edges, and vi
e versa. Noti
e that G = G, and that K

n

has no edges. The 
orresponding adja
en
y matri
es A and A satisfy

A+A = J � I ; (36)

here J is the matrix of all 1s, and I is the identity matrix, so J and J � I are

respe
tively the adja
en
y matri
es of J

n

and K

n

when G has order n.

Furthermore, every graph G = (V;E) leads to a line graph L(G), whose

verti
es are the edges E; two edges are adja
ent in L(G) if they have a 
ommon

vertex. Thus, for example, the line graph L(K

n

) has

�

n

2

�

verti
es, and it is regular

of degree 2n� 4 when n � 2 (see exer
ise 82). A graph is 
alled k-edge-
olorable

when its line graph is k-
olorable.

Given two graphs G = (U;E) and H = (V; F ), their union G [ H is the

graph (U[V;E[F ) obtained by 
ombining the verti
es and edges. For example,

suppose G and H are the graphs of rook and bishop moves in 
hess; then G[H

is the graph of queen moves, and its oÆ
ial SGB name is

gunion (board (8; 8; 0; 0;�1; 0; 0); board (8; 8; 0; 0;�2; 0; 0); 0; 0): (37)

In the spe
ial 
ase where the vertex sets U and V are disjoint, the union

G[H doesn't require the verti
es to be identi�ed in any 
onsistent way for 
ross-


orrelation; we get a diagram for G[H by simply drawing a diagram of G next

to a diagram of H. This spe
ial 
ase is 
alled the \juxtaposition" or dire
t sum

of G and H, and we shall denote it by G�H. For example, it's easy to see that

K

m

�K

n

�

=

K

m;n

; (38)

and that every graph is the dire
t sum of its 
onne
ted 
omponents.

Equation (38) is a spe
ial 
ase of the general formula

K

n

1

�K

n

2

� � � � �K

n

k

�

=

K

n

1

;n

2

;:::;n

k

; (39)

whi
h holds for 
omplete k-partite graphs whenever k � 2. But (39) fails when

k = 1, be
ause of a s
andalous fa
t: The standard graph-theoreti
 notation

for 
omplete graphs is in
onsistent! Indeed, K

m;n

denotes a 
omplete 2-partite

graph, but K

n

does not denote a 
omplete 1-partite graph. Somehow graph the-

orists have been able to live with this anomaly for de
ades without going berserk.

Another important way to 
ombine disjoint graphs G and H is to form their

join, G���H, whi
h 
onsists of G�H together with all edges u���v for u 2 U

and v 2 V . [See A. A. Zykov, Mat. Sbornik 24 (1949), 163{188, xI.3.℄ And

if G and H are disjoint digraphs, their dire
ted join G��!H is similar, but it

supplements G�H by adding only the one-way ar
s u��!v from U to V .
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dire
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O
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n

K

n
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t

The dire
t sum of two matri
es A and B is obtained by pla
ing B diagonally

below and to the right of A:

A�B =

�

A O

O B

�

; (40)

where ea
h O in this example is a matrix of all zeros, with the proper number of

rows and 
olumns to make everything line up 
orre
tly. Our notation G�H for

the dire
t sum of graphs is easy to remember be
ause the adja
en
y matrix for

G�H is pre
isely the dire
t sum of the respe
tive adja
en
y matri
es A and B for

G and H. Similarly, the adja
en
y matri
es for G���H, G��!H, and G ��H are

A���B =

�

A J

J B

�

; A��!B =

�

A J

O B

�

; A ��B =

�

A O

J B

�

; (41)

respe
tively, where J is an all-1s matrix as in (36). These operations are asso-


iative, and related by 
omplementation:

A� (B � C) = (A�B)� C; A���(B���C) = (A���B)���C ; (42)

A��! (B��!C) = (A��!B)��!C; A �� (B ��C) = (A ��B) ��C ; (43)

A�B = A���B; A���B = A�B ; (44)

A��!B = A ��B; A ��B = A��!B ; (45)

(A� B) + (A���B) = (A��!B) + (A ��B): (46)

Noti
e that, by 
ombining (39) with (42) and (44), we have

K

n

1

;n

2

;:::;n

k

= K

n

1

���K

n

2

��� � � � ���K

n

k

(47)

when k � 2. Also

K

n

= K

1

���K

1

��� � � � ���K

1

and K~

n

= K

1

��!K

1

��!� � ���!K

1

; (48)

with n 
opies of K

1

, showing that K

n

= K

1;1;:::;1

is a 
omplete n-partite graph.

Dire
t sums and joins are analogous to addition, be
ause we haveK

m

�K

n

=

K

m+n

and K

m

���K

n

= K

m+n

. We 
an also 
ombine graphs with algebrai


operations that are analogous to multipli
ation. For example, the Cartesian

produ
t operation forms a graph G H of order mn from a graph G = (U;E) of

order m and a graph H = (V; F ) of order n. The verti
es of G H are ordered

pairs (u; v), where u 2 U and v 2 V ; the edges are (u; v)���(u

0

; v) when u���u

0

in G, together with (u; v)��� (u; v

0

) when v��� v

0

in H. In other words, G H

is formed by repla
ing ea
h vertex of G by a 
opy of H, and repla
ing ea
h edge

of G by edges between 
orresponding verti
es of the appropriate 
opies:

= : (49)
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As usual, the simplest spe
ial 
ases of this general 
onstru
tion turn out to

be espe
ially important in pra
ti
e. When both G and H are paths or 
y
les, we

get \graph-paper graphs," namely the m � n grid P

m

P

n

, the m � n 
ylinder

P

m

C

n

, and the m� n torus C

m

C

n

, illustrated here for m = 3 and n = 4:

P

3

P

4

(3 � 4 grid)

P

3

C

4

(3 � 4 
ylinder)

C

3

C

4

(3 � 4 torus)

(50)

Four other noteworthy ways to de�ne produ
ts of graphs have also proved to

be useful. In ea
h 
ase the verti
es of the produ
t graph are ordered pairs (u; v).

� The dire
t produ
t G
H, also 
alled the \
onjun
tion" of G and H, or their

\
ategori
al produ
t," has (u; v)��� (u

0

; v

0

) when u���u

0

in G and v���v

0

in H.

� The strong produ
t G�H 
ombines the edges of G H with those of G
H.

� The odd produ
t G4H has (u; v)��� (u

0

; v

0

) when we have either u��� u

0

in G or v���v

0

in H, but not both.

� The lexi
ographi
 produ
t G ÆH, also 
alled the \
omposition" of G and H,

has (u; v)���(u

0

; v

0

) when u���u

0

in G, and (u; v)���(u; v

0

) when v���v

0

in H.

All �ve of these operations extend naturally to produ
ts of k � 2 graphs G

1

=

(V

1

; E

1

), : : : , G

k

= (V

k

; E

k

), whose verti
es are the ordered k-tuples (v

1

; : : : ; v

k

)

with v

j

2 V

j

for 1 � j � k. For example, when k = 3, the Cartesian produ
ts

G

1

(G

2

G

3

) and (G

1

G

2

) G

3

are isomorphi
, if we 
onsider the 
ompound

verti
es (v

1

; (v

2

; v

3

)) and ((v

1

; v

2

); v

3

) to be the same as (v

1

; v

2

; v

3

). Therefore

we 
an write this Cartesian produ
t without parentheses, as G

1

G

2

G

3

. The

most important example of a Cartesian produ
t with k fa
tors is the k-
ube,

K

2

K

2

� � � K

2

; (51)

its 2

k

verti
es (v

1

; : : : ; v

k

) are adja
ent when their Hamming distan
e is 1.

In general, suppose v = (v

1

; : : : ; v

k

) and v

0

= (v

0

1

; : : : ; v

0

k

) are k-tuples of

verti
es, where we have v

j

��� v

0

j

in G

j

for exa
tly a of the subs
ripts j, and

v

j

= v

0

j

for exa
tly b of the subs
ripts. Then we have:

� v���v

0

in G

1

� � � G

k

if and only if a = 1 and b = k � 1;

� v���v

0

in G

1


 � � � 
G

k

if and only if a = k and b = 0;

� v���v

0

in G

1

�� � ��G

k

if and only if a+ b = k and a > 0;

� v���v

0

in G

1

4 � � �4G

k

if and only if a is odd.

The lexi
ographi
 produ
t is somewhat di�erent, be
ause it isn't 
ommutative;

in G

1

Æ � � � ÆG

k

we have v���v

0

for v 6= v

0

if and only if v

j

���v

0

j

, where j is the

minimum subs
ript with v

j

6= v

0

j

.

Exer
ises 91{102 explore some of the basi
 properties of graph produ
ts.

See also the book Produ
t Graphs by Wilfried Imri
h and Sandi Klav�zar (2000),

whi
h 
ontains a 
omprehensive introdu
tion to the general theory, in
luding

algorithms for fa
torization of a given graph into \prime" subgraphs.
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degree sequen
es++

graphi
al

Havel (mathemati
ian)

tableaux+


onjugate partitions+

*Graphi
al degree sequen
es. A sequen
e d

1

d

2

: : : d

n

of nonnegative integers

is 
alled graphi
al if there's at least one graph on verti
es f1; 2; : : : ; ng su
h that

vertex k has degree d

k

. We 
an assume that d

1

� d

2

� � � � � d

n

. Clearly d

1

< n

in any su
h graph; and the sum m = d

1

+d

2

+ � � �+d

n

of any graphi
al sequen
e

is always even, be
ause it is twi
e the number of edges. Furthermore, it's easy to

see that the sequen
e 3311 is not graphi
al; therefore graphi
al sequen
es must

also satisfy additional 
onditions. What are they?

A simple way to de
ide if a given sequen
e d

1

d

2

: : : d

n

is graphi
al, and to


onstru
t su
h a graph if one exists, was dis
overed by V. Havel [

�

Casopis pro

P�estov�an�� Matematiky 80 (1955), 477{479℄. We begin with an empty tableau,

having d

k


ells in row k; these 
ells represent \slots" into whi
h we'll pla
e the

neighbors of vertex k in the 
onstru
ted graph. Let 


j

be the number of 
ells in


olumn j; thus 


1

� 


2

� � � � , and when 1 � k � n we have 


j

� k if and only if

d

k

� j. For example, suppose n = 8 and d

1

: : : d

8

= 55544322; then

1

2

3

4

5

6

7

8

(52)

is the initial tableau, and we have 


1

: : : 


5

= 88653. Havel's idea is to pair up

vertex n with d

n

of the highest-degree verti
es. In this 
ase, for example, we


reate the two edges 8���3 and 8���2, and the tableau takes the following form:

1

2 8

3 8

4

5

6

7

8 2 3

. (53)

(We don't want 8���1, be
ause the empty slots should 
ontinue to form a tableau

shape; the 
ells of ea
h 
olumn must be �lled from the bottom up.) Next we set

n  7 and 
reate two further edges, 7��� 1 and 7��� 5. And then 
ome three

more, 6���4, 6���3, 6���2, making the tableau almost half full:

1 7

2 6 8

3 6 8

4 6

5 7

6 2 3 4

7 5 1

8 2 3

. (54)
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majorization

partitions

We've redu
ed the problem to �nding a graph with degree sequen
e d

1

: : : d

5

=

43333; at this point we also have 


1

: : : 


4

= 5551. The reader is en
ouraged to

�ll in the remaining blanks, before looking at the answer in exer
ise 103.

Algorithm H (Graph generator for spe
i�ed degrees). Given d

1

� � � � � d

n

�

d

n+1

= 0, this algorithm 
reates edges between the verti
es f1; : : : ; ng in su
h

a way that exa
tly d

k

edges tou
h vertex k, for 1 � k � n, unless the sequen
e

d

1

: : : d

n

isn't graphi
al. An array 


1

: : : 


d

1

is used for auxiliary storage.

H1. [Set the 
's.℄ Start with k  d

1

and j  0. Then while k > 0 do the follow-

ing operations: Set j  j + 1; while k > d

j+1

, set 


k

 j and k  k � 1.

H2. [Find n.℄ Set n 


1

. Terminate su

essfully if n = 0; terminate unsu

ess-

fully if d

1

� n > 0.

H3. [Loop on j.℄ Set i 1, t d

1

, and r  


t

. Do step H4 for j = d

n

, d

n

� 1,

: : : , 1; then return to H2.

H4. [Generate a new edge.℄ Set 


j

 


j

�1 and k  


t

. Create the edge k���n,

and set d

k

 d

k

� 1, 


t

 k� 1. If k = i, set i r+1, t d

i

, and r  


t

.

(See exer
ise 104.)

When Algorithm H su

eeds, it 
ertainly has 
onstru
ted a graph with the

desired degrees. But when it fails, how 
an we be sure that its mission was

impossible? The key fa
t is based on an important 
on
ept 
alled \majorization":

If d

1

: : : d

n

and d

0

1

: : : d

0

n

are two partitions of the same integer (that is, if d

1

�

� � � � d

n

and d

0

1

� � � � � d

0

n

and d

1

+ � � � + d

n

= d

0

1

+ � � � + d

0

n

), we say that

d

1

: : : d

n

majorizes d

0

1

: : : d

0

n

if d

1

+ � � �+ d

k

� d

0

1

+ � � �+ d

0

k

for 1 � k � n.

Lemma M. If d

1

: : : d

n

is graphi
al and d

1

: : : d

n

majorizes d

0

1

: : : d

0

n

, then

d

0

1

: : : d

0

n

is also graphi
al.

Proof. It is suÆ
ient to prove the 
laim when d

1

: : : d

n

and d

0

1

: : : d

0

n

di�er in

only two pla
es,

d

0

k

= d

k

� [k= i℄ + [k= j ℄ where i < j, (55)

be
ause any sequen
e majorized by d

1

: : : d

n


an be obtained by repeatedly

performing mini-majorizations su
h as this. (Exer
ise 7.2.1.4{55 dis
usses ma-

jorization in detail.)

Condition (55) implies that d

i

> d

0

i

� d

0

i+1

� d

0

j

> d

j

. So any graph

with degree sequen
e d

1

: : : d

n


ontains a vertex v su
h that v��� i and v /��� j.

Deleting the edge v��� i and adding the edge v��� j yields a graph with degree

sequen
e d

0

1

: : : d

0

n

, as desired.

Corollary H. Algorithm H su

eeds whenever d

1

: : : d

n

is graphi
al.

Proof. We may assume that n > 1. Suppose G is any graph on f1; : : : ; ng with

degree sequen
e d

1

: : : d

n

, and let G

0

be the subgraph indu
ed by f1; : : : ; n� 1g;

in other words, obtain G

0

by removing vertex n and the d

n

edges that it tou
hes.

The degree sequen
e d

0

1

: : : d

0

n�1

of G

0

is obtained from d

1

: : : d

n�1

by redu
ing

some d

n

of the entries by 1 and sorting them into nonin
reasing order. By
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network

words

plane lisa

pixel

board

bishop

Stanford GraphBase

miles

plane miles

highways

e
on


ow of money

games

football


olleges

universities

Stanford Cardinal

Golden Bears

ris


dire
ted a
y
li
 graph

dag

de�nition, d

0

1

: : : d

0

n�1

is graphi
al. The new degree sequen
e d

00

1

: : : d

00

n�1

produ
ed

by the strategy of steps H3 and H4 is designed to be majorized by every su
h

d

0

1

: : : d

0

n�1

, be
ause it redu
es the largest possible d

n

entries by 1. Thus the new

d

00

1

: : : d

00

n�1

is graphi
al. Algorithm H, whi
h sets d

1

: : : d

n�1

 d

00

1

: : : d

00

n�1

, will

therefore su

eed by indu
tion on n.

The running time of Algorithm H is roughly proportional to the number

of edges generated, whi
h 
an be of order n

2

. Exer
ise 105 presents a faster

method, whi
h de
ides in O(n) steps whether or not a given sequen
e d

1

: : : d

n

is graphi
al (without 
onstru
ting any graph).

Beyond graphs. When the verti
es and/or ar
s of a graph or digraph are

de
orated with additional data, we 
all it a network. For example, every vertex of

words (5757; 0; 0; 0) has an asso
iated rank, whi
h 
orresponds to the popularity

of the 
orresponding �ve-letter word. Every vertex of plane lisa (360; 250; 15;

0; 360; 0; 250; 0; 0; 2295000) has an asso
iated pixel density, between 0 and 15.

Every ar
 of board (8; 8; 0; 0;�2; 0; 0) has an asso
iated length, whi
h re
e
ts

the distan
e of a pie
e's motion on the board: A bishop's move from 
orner to


orner has length 7. The Stanford GraphBase in
ludes several further generators

that were not mentioned above, be
ause they are primarily used to generate

interesting networks, rather than to generate graphs with interesting stru
ture:

� miles(128; 0; 0; 0; 0; 127; 0) is a network with 128 verti
es, 
orresponding to

the same North Ameri
an 
ities as the graph plane miles des
ribed earlier. But

miles, unlike plane miles, is a 
omplete graph with

�

128

2

�

edges. Every edge has

an integer length, whi
h represents the distan
e that a 
ar or tru
k would have

needed to travel in 1949 when going from one given 
ity to another. For example,

`Van
ouver, BC' is 3496 miles from `West Palm Bea
h, FL' in the miles network.

� e
on(81; 0; 0; 0) is a network with 81 verti
es and 4902 ar
s. Its verti
es

represent se
tors of the United States e
onomy, and its ar
s represent the 
ow of

money from one se
tor to another during the year 1985, measured in millions of

dollars. For example, the 
ow value from Apparel to Household furniture is 44,

meaning that the furniture industry paid $44,000,000 to the apparel industry in

that year. The sum of 
ows 
oming into ea
h vertex is equal to the sum of 
ows

going out. An ar
 appears only when the 
ow is nonzero. A spe
ial vertex 
alled

Users re
eives the 
ows that represent total demand for a produ
t; a few of these

end-user 
ows are negative, be
ause of the way imported goods are treated by

government e
onomists.

� games(120; 0; 0; 0; 0; 0; 128; 0) is a network with 120 verti
es and 1276 ar
s.

Its verti
es represent football teams at Ameri
an 
olleges and universities. Ar
s

run between teams that played ea
h other during the ex
iting 1990 season,

and they are labeled with the number of points s
ored. For example, the ar


Stanford��! California has value 27, and the ar
 California��! Stanford

has value 25, be
ause the Stanford Cardinal defeated the U. C. Berkeley Golden

Bears by a s
ore of 27{25 on 17 November 1990.

� ris
(16) is a network of an entirely di�erent kind. It has 3240 verti
es and

7878 ar
s, whi
h de�ne a dire
ted a
y
li
 graph or \dag"|namely, a digraph
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oriented 
y
les

A
y
li
: Containing no 
y
les

RISC: Redu
ed Instru
tion Set Computer

gates

Boolean values

AND

OR

XOR

NOT

lat
h

Knuth

Stanford GraphBase: 
omplete guide to

LADDERS

shortest path

TAKE RISC

nano
omputer

ris


hypergraphs+++

hyperedges

edges of a hypergraph+++

r-uniform


omplete r-uniform hypergraph

K

(r)

n

indu
ed


omplement H of an r-uniform hypergraph

k-
oloring of a hypergraph

family of sets

set system, see hypergraph

triple system

0{1 matri
es++

that 
ontains no oriented 
y
les. The verti
es represent gates that have Boolean

values; an ar
 su
h as Z45 ��! R0:7~ means that the value of gate Z45 is an

input to gate R0:7~. Ea
h gate has a type 
ode (AND, OR, XOR, NOT, lat
h,

or external input); ea
h ar
 has a length, denoting an amount of delay. The

network 
ontains the 
omplete logi
 for a miniature RISC 
hip that is able to

obey simple 
ommands governing sixteen registers, ea
h 16 bits wide.

Complete details about all the SGB generators 
an be found in the author's

book The Stanford GraphBase (New York: ACM Press, 1993), together with

dozens of short example programs that explain how to manipulate the graphs and

networks that the generators produ
e. For example, a program 
alled LADDERS

shows how to �nd a shortest path between one �ve-letter word and another. A

program 
alled TAKE RISC demonstrates how to put a nano
omputer through

its pa
es by simulating the a
tions of a network built from the gates of ris
(16).

Hypergraphs. Graphs and networks 
an be utterly fas
inating, but they aren't

the end of the story by any means. Lots of important 
ombinatorial algorithms

are designed to work with hypergraphs, whi
h are more general than graphs

be
ause their edges are allowed to be arbitrary subsets of the verti
es.

For example, we might have seven verti
es, identi�ed by nonzero binary

strings v = a

1

a

2

a

3

, together with seven edges, identi�ed by bra
keted nonzero

binary strings e = [b

1

b

2

b

3

℄, with v 2 e if and only if (a

1

b

1

+a

2

b

2

+a

3

b

3

) mod 2 = 0.

Ea
h of these edges 
ontains exa
tly three verti
es:

[001℄ = f010; 100; 110g; [010℄ = f001; 100; 101g; [011℄ = f011; 100; 111g;

[100℄ = f001; 010; 011g; [101℄ = f010; 101; 111g;

[110℄ = f001; 110; 111g; [111℄ = f011; 101; 110g: (56)

And by symmetry, ea
h vertex belongs to exa
tly three edges. (Edges that


ontain three or more verti
es are sometimes 
alled \hyperedges," to distinguish

them from the edges of an ordinary graph. But it's OK to 
all them just \edges.")

A hypergraph is said to be r-uniform if every edge 
ontains exa
tly r verti
es.

Thus (56) is a 3-uniform hypergraph, and a 2-uniform hypergraph is an ordinary

graph. The 
omplete r-uniform hypergraph K

(r)

n

has n verti
es and

�

n

r

�

edges.

Most of the basi
 
on
epts of graph theory 
an be extended to hypergraphs

in a natural way. For example, if H = (V;E) is a hypergraph and if U � V , the

subhypergraph H j U indu
ed by U has the edges fe j e 2 E and e � U g. The


omplement H of an r-uniform hypergraph has the edges of K

(r)

n

that aren't

edges of H. A k-
oloring of a hypergraph is an assignment of 
olors to the

verti
es so that no edge is mono
hromati
. And so on.

Hypergraphs go by many other names, be
ause the same properties 
an be

formulated in many di�erent ways. For example, every hypergraph H = (V;E)

is essentially a family of sets, be
ause ea
h edge is a subset of V . A 3-uniform

hypergraph is also 
alled a triple system. A hypergraph is also equivalent to

a matrix B of 0s and 1s, with one row for ea
h vertex v and one 
olumn for

ea
h edge e; row v and 
olumn e of this matrix 
ontains the value b

ve

= [v 2 e℄.
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in
iden
e matrix

bipartite graph


onne
ted


y
le

dual

transposing

regular

distin
t 
olumns

Boolean fun
tion

Matrix B is 
alled the in
iden
e matrix of H, and we say that \v is in
ident

with e" when v 2 e. Furthermore, a hypergraph is equivalent to a bipartite

graph, with vertex set V [ E and with the edge v ��� e whenever v is in
ident

with e. The hypergraph is said to be 
onne
ted if and only if the 
orresponding

bipartite graph is 
onne
ted. A 
y
le of length k in a hypergraph is de�ned to

be a 
y
le of length 2k in the 
orresponding bipartite graph.

For example, the hypergraph (56) 
an be de�ned by an equivalent in
iden
e

matrix or an equivalent bipartite graph as follows:

[001℄ [010℄ [011℄ [100℄ [101℄ [110℄ [111℄

001 0 1 0 1 0 1 0

010 1 0 0 1 1 0 0

011 0 0 1 1 0 0 1

100

0

B

B

B

B

B

B

B

�

1 1 1 0 0 0 0

1

C

C

C

C

C

C

C

A

101 0 1 0 0 1 0 1

110 1 0 0 0 0 1 1

111 0 0 1 0 1 1 0

[001℄

010

[100℄

001[010℄

101

[101℄

111

[110℄

110

[111℄ 011

[011℄

100

(57)

It 
ontains 28 
y
les of length 3, su
h as

[101℄���101��� [010℄���001��� [100℄���010��� [101℄: (58)

The dual H

T

of a hypergraph H is obtained by inter
hanging the roles

of verti
es and edges, but retaining the in
iden
e relation. In other words, it


orresponds to transposing the in
iden
e matrix. Noti
e, for example, that the

dual of an r-regular graph is an r-uniform hypergraph.

In
iden
e matri
es and bipartite graphs might 
orrespond to hypergraphs in

whi
h some edges o

ur more than on
e, be
ause distin
t 
olumns of the matrix

might be equal. When a hypergraph H = (V;E) does not have any repeated

edges, it 
orresponds also to yet another 
ombinatorial obje
t, namely a Boolean

fun
tion. For if, say, the vertex set V is f1; 2; : : : ; ng, the fun
tion

h(x

1

; x

2

; : : : ; x

n

) =

�

fj j x

j

= 1g 2 E

�

(59)


hara
terizes the edges of H. For example, the Boolean formula

(x

1

� x

2

� x

4

) ^ (x

2

� x

3

� x

5

) ^ (x

3

� x

4

� x

6

) ^ (x

4

� x

5

� x

7

)

^ (x

5

� x

6

� x

1

) ^ (x

6

� x

7

� x

2

) ^ (x

7

� x

1

� x

3

) ^ (�x

1

_ �x

2

_ �x

3

)

(60)

is another way to des
ribe the hypergraph of (56) and (57).

The fa
t that 
ombinatorial obje
ts 
an be viewed in so many ways 
an

be mind-boggling. But it's also extremely helpful, be
ause it suggests di�erent

ways to solve equivalent problems. When we look at a problem from di�erent

perspe
tives, our brains naturally think of di�erent ways to atta
k it. Sometimes

we get the best insights by thinking about how to manipulate rows and 
olumns

in a matrix. Sometimes we make progress by imagining verti
es and paths, or

by visualizing 
lusters of points in spa
e. Sometimes Boolean algebra is just the

thing. If we're stu
k in one domain, another might 
ome to our res
ue.
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over

independent

stable

orthogonal

dot produ
t

Berge

minimal

maximal


ontiguous United States

di
tionaries of English

minimal versus minimum+

maximal versus maximum+

optimal versus optimum

Covering and independen
e. If H = (V;E) is a graph or hypergraph, a set

U of verti
es is said to 
over H if every edge 
ontains at least one member of U .

A set W of verti
es is said to be independent (or \stable") in H if no edge is


ompletely 
ontained in W .

From the standpoint of the in
iden
e matrix, a 
overing is a set of rows

whose sum is nonzero in every 
olumn. And in the spe
ial 
ase that H is a

graph, every 
olumn of the matrix 
ontains just two 1s; hen
e an independent

set in a graph 
orresponds to a set of rows that are mutually orthogonal| that

is, a set for whi
h the dot produ
t of any two di�erent rows is zero.

These 
on
epts are opposite sides of the same 
oin. If U 
overs H, then

W = V n U is independent in H; 
onversely, if W is independent in H, then

U = V nW 
overs H. Both statements are equivalent to saying that the indu
ed

hypergraph H jW has no edges.

This dual relationship between 
overing and independen
e, whi
h was per-

haps �rst noted by Claude Berge [Pro
. National A
ad. S
i. 43 (1957), 842{844℄,

is somewhat paradoxi
al. Although it's logi
ally obvious and easy to verify, it's

also intuitively surprising. When we look at a graph and try to �nd a large

independent set, we tend to have rather di�erent thoughts from when we look at

the same graph and try to �nd a small vertex 
over; yet both goals are the same.

A 
overing set U is minimal if U n u fails to be a 
over for all u 2 U .

Similarly, an independent set W is maximal if W [w fails to be independent for

all w =2 W . Here, for example, is a minimal 
over of the 49-vertex graph of the


ontiguous United States, (17), and the 
orresponding maximal independent set:

Minimal vertex 
over,

with 38 verti
es

Maximal independent set,

with 11 verti
es

(61)

A 
overing is 
alled minimum if it has the smallest possible size, and an

independent set is 
alledmaximum if it has the largest possible size. For example,

with graph (17) we 
an do mu
h better than (61):

Minimum vertex 
over,

with 30 verti
es

Maximum independent set,

with 19 verti
es

(62)

Noti
e the subtle distin
tion between \minimal" and \minimum" here: In gen-

eral (but in 
ontrast to most di
tionaries of English), people who work with


ombinatorial algorithms use `-al' words like \minimal" or \optimal" to refer
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lo
ally

globally

maximum independent set

NP-
omplete

bipartite graph

dual

mat
hing

line graph

�(H)

independen
e number

stability number


hromati
 number


lique number


lique

independent set


omplementary graph


lique 
over


over

in
iden
e matrix

exa
t 
over

{graphs

to 
ombinatorial 
on�gurations that are lo
ally best, in the sense that small


hanges don't improve them. The 
orresponding `-um' words, \minimum" or

\optimum," are reserved for 
on�gurations that are globally best, 
onsidered

over all possibilities. It's easy to �nd solutions to any optimization problem

that are merely optimal, in the weak lo
al sense, by 
limbing repeatedly until

rea
hing the top of a hill. But it's usually mu
h harder to �nd solutions that

are truly optimum. For example, we'll see in Se
tion 7.9 that the problem of

�nding a maximum independent set in a given graph belongs to a 
lass of diÆ
ult

problems that are 
alled NP-
omplete.

Even when a problem is NP-
omplete, we needn't despair. We'll dis
uss

te
hniques for �nding minimum 
overs in several parts of this 
hapter, and those

methods work �ne on smallish problems; the optimum solution in (62) was found

in less than a se
ond, after examining only a tiny fra
tion of the 2

49

possibilities.

Furthermore, spe
ial 
ases of NP-
omplete problems often turn out to be simpler

than the general 
ase. In Se
tion 7.5.1 we'll see that a minimum vertex 
over 
an

be dis
overed qui
kly in any bipartite graph, or in any hypergraph that is the dual

of a graph. And in Se
tion 7.5.5 we'll study eÆ
ient ways to dis
over a maximum

mat
hing, whi
h is a maximum independent set in the line graph of a given graph.

The problem of maximizing the size of an independent set o

urs suÆ
iently

often that it has a
quired a spe
ial notation: If H is any hypergraph, the number

�(H) = max

�

jW j

�

�

W is an independent set of verti
es in H

	

(63)

is 
alled the independen
e number (or the stability number) of H. Similarly,

�(H) = minfk j H is k-
olorableg (64)

is 
alled the 
hromati
 number of H. Noti
e that �(H) is the size of a mini-

mum 
overing of H by independent sets, be
ause the verti
es that re
eive any

parti
ular 
olor must be independent a

ording to our de�nitions.

These de�nitions of �(H) and �(H) apply in parti
ular to the 
ase when

H is an ordinary graph, but of 
ourse we usually write �(G) and �(G) in su
h

situations. Graphs have another important number 
alled their 
lique number,

!(G) = max

�

jXj

�

�

X is a 
lique in G

	

; (65)

where a \
lique" is a set of mutually adja
ent verti
es. Clearly

!(G) = �(G); (66)

be
ause a 
lique in G is an independent set in the 
omplementary graph. Sim-

ilarly we 
an see that �(G) is the minimum size of a \
lique 
over," whi
h is a

set of 
liques that exa
tly 
overs all of the verti
es.

Several instan
es of \exa
t 
over problems" were mentioned earlier in this

se
tion, without an explanation of exa
tly what su
h a problem really signi�es.

Finally we're ready for the de�nition: Given the in
iden
e matrix of a hyper-

graph H, an exa
t 
over of H is a set of rows whose sum is (1 1 : : : 1). In other

words, an exa
t 
over is a set of verti
es that tou
hes ea
h hyperedge exa
tly

on
e; an ordinary 
over is only required to tou
h ea
h hyperedge at least on
e.
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Langford pairs

Skolem

Fibona

i string

Godfrey

well-balan
ed

planar

Langford triples

magi
 square

Gr�
o-Latin

Hebrew

Euler

addition table

intruders

EXERCISES

1. [25 ℄ Suppose n = 4m � 1. Constru
t arrangements of Langford pairs for the

numbers f1; 1; : : : ; n; ng, with the property that we also obtain a solution for n = 4m

by 
hanging the �rst `2m�1' to `4m' and appending `2m�1 4m' at the right. Hint:

Put the m� 1 even numbers 4m�4, 4m�6, : : : , 2m at the left.

2. [18 ℄ For whi
h n 
an f0; 0; 1; 1; : : : ; n�1; n�1g be arranged as Langford pairs?

3. [22 ℄ Suppose we arrange the numbers f0; 0; 1; 1; : : : ; n�1; n�1g in a 
ir
le, instead

of a straight line, with distan
e k between the two k's. Do we get solutions that are

essentially distin
t from those of exer
ise 2?

4. [M20 ℄ (T. Skolem, 1957.) Show that the Fibona

i string S

1

= babbababbabba : : :

of exer
ise 1.2.8{36 leads dire
tly to an in�nite sequen
e 0012132453674 : : : of Langford

pairs for the set of all nonnegative integers, if we simply repla
e the a's and b's

independently by 0, 1, 2, et
., from left to right.

x 5. [HM22 ℄ If a permutation of f1; 1; 2; 2; : : : ; n; ng is 
hosen at random, what is the

probability that the two k's are exa
tly k positions apart, given k? Use this formula

to guess the size of the Langford numbers L

n

in (1).

x 6. [M28 ℄ (M. Godfrey, 2002.)Let f(x

1

; : : : ; x

2n

) =

Q

n

k=1

(x

k

x

n+k

P

2n�k�1

j=1

x

j

x

j+k+1

):

a) Prove that

P

x

1

;:::;x

2n

2f�1;+1g

f(x

1

; : : : ; x

2n

) = 2

2n+1

L

n

.

b) Explain how to evaluate this sum in O(4

n

n) steps. How many bits of pre
ision

are needed for the arithmeti
?


) Gain a fa
tor of eight by exploiting the identities

f(x

1

; : : : ; x

2n

) = f(�x

1

; : : : ;�x

2n

) = f(x

2n

; : : : ; x

1

) = f(x

1

;�x

2

; : : : ; x

2n�1

;�x

2n

):

7. [M22 ℄ Prove that every Langford pairing of f1; 1; : : : ; 16; 16g must have seven

un
ompleted pairs at some point, when read from left to right.

8. [23 ℄ The simplest Langford sequen
e is not only well-balan
ed; it's planar, in the

sense that its pairs 
an be 
onne
ted up without 
rossing lines as in (2):

2 23 31 1

:

Find all of the planar Langford pairings for whi
h n � 8.

9. [24 ℄ (Langford triples.) In how many ways 
an f1; 1; 1; 2; 2; 2; : : : ; 9; 9; 9g be ar-

ranged in a row so that 
onse
utive k's are k apart, for 1 � k � 9?

10. [M20 ℄ Explain how to 
onstru
t a magi
 square dire
tly from Fig. 1. (Convert

ea
h 
ard into a number between 1 and 16, in su
h a way that the rows, 
olumns, and

main diagonals all sum to 34.)

11. [20 ℄ Extend (5) to a \Hebrai
-Gr�
o-Latin" square by appending one of the

letters f�; A; B; Cg to the two-letter string in ea
h 
ompartment. No letter pair (Latin,

Greek), (Latin, Hebrew), or (Greek, Hebrew) should appear in more than one pla
e.

x 12. [M21 ℄ (L. Euler.) Let L

ij

= (i+j) mod n for 0 � i; j < n be the addition table for

integers mod n. Prove that a latin square orthogonal to L exists if and only if n is odd.

13. [M25 ℄ A 10� 10 square 
an be divided into four quarters of size 5� 5. A 10� 10

latin square formed from the digits f0; 1; : : : ; 9g has k \intruders" if its upper left

quarter has exa
tly k elements � 5. (See exer
ise 14(e) for an example with k = 3.)

Prove that the square has no orthogonal mate unless there are at least three intruders.
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mutually orthogonal

Ryser

order n

Order of a latin square

latin square

transversals

orthogonal mates

exa
t 
over problem

n-ary

orthogonal

orthogonal array

orthogonal ve
tors

dot produ
t

geometri
 net

parallel

orthogonal array

geometri
 net

Error-
orre
ting 
odes+

Hamming distan
e+

14. [29 ℄ Find all orthogonal mates of the following latin squares:

(a)

3145926870

2819763504

9452307168

6208451793

8364095217

5981274036

4627530981

0576148329

1730689452

7093812645

;

(b)

2718459036

0287135649

7524093168

1435962780

6390718425

4069271853

3102684597

9871546302

8956307214

5643820971

;

(
)

0572164938

6051298473

4867039215

1439807652

8324756091

7203941586

5610473829

9148625307

2795380164

3986512740

;

(d)

1680397425

8346512097

9805761342

2754689130

0538976214

4963820571

7192034658

6219405783

3471258906

5027143869

;

(e)

7823456019

8234067195

2340178956

3401289567

4012395678

5678912340

6789523401

0195634782

1956740823

9567801234

:

15. [50 ℄ Find three 10� 10 latin squares that are mutually orthogonal to ea
h other.

16. [48 ℄ (H. J. Ryser, 1967.) A latin square is said to be of \order n" if it has n rows,

n 
olumns, and n symbols. Does every latin square of odd order have a transversal?

17. [25 ℄ Let L be a latin square with elements L

ij

for 0 � i; j < n. Show that the

problems of (a) �nding all the transversals of L, and (b) �nding all the orthogonal

mates of L, are spe
ial 
ases of the general exa
t 
over problem.

18. [M23 ℄ The string x

1

x

2

: : : x

N

is 
alled \n-ary" if ea
h element x

j

belongs to the

set f0; 1; : : : ; n�1g of n-ary digits. Two strings x

1

x

2

: : : x

N

and y

1

y

2

: : : y

N

are said to

be orthogonal if the N pairs (x

j

; y

j

) are distin
t for 1 � j � N . (Consequently, two

n-ary strings 
annot be orthogonal if their length N ex
eeds n

2

.) An n-ary matrix

with m rows and n

2


olumns whose rows are orthogonal to ea
h other is 
alled an

orthogonal array of order n and depth m.

Find a 
orresponden
e between orthogonal arrays of depth m and lists of m � 2

mutually orthogonal latin squares. What orthogonal array 
orresponds to exer
ise 11?

x 19. [M25 ℄ Continuing exer
ise 18, prove that an orthogonal array of order n > 1 and

depth m is possible only if m � n + 1. Show that this upper limit is a
hievable when

n is a prime number p. Write out an example when p = 5.

20. [HM20 ℄ Show that if ea
h element k in an orthogonal array is repla
ed by e

2�ki=n

,

the rows be
ome orthogonal ve
tors in the usual sense (their dot produ
t is zero).

x 21. [M21 ℄ A geometri
 net is a system of points and lines that obeys three axioms:

i) Ea
h line is a set of points.

ii) Distin
t lines have at most one point in 
ommon.

iii) If p is a point and L is a line with p =2 L, then there is exa
tly one line M su
h

that p 2M and L \M = ;.

If L \M = ; we say that L is parallel to M , and write L kM .

a) Prove that the lines of a geometri
 net 
an be partitioned into equivalen
e 
lasses,

with two lines in the same 
lass if and only if they are equal or parallel.

b) Show that if there are at least two 
lasses of parallel lines, every line 
ontains the

same number of points as the other lines in its 
lass.


) Furthermore, if there are at least three 
lasses, there are numbers m and n su
h

that all points belong to exa
tly m lines and all lines 
ontain exa
tly n points.

x 22. [M22 ℄ Show that every orthogonal array 
an be regarded as a geometri
 net. Is

the 
onverse also true?

23. [M21 ℄ (Error-
orre
ting 
odes.) The \Hamming distan
e" d(x; y) between two

strings x = x

1

: : : x

N

and y = y

1

: : : y

N

is the number of positions j where x

j

6= y

j

. A
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odewords, b-ary

distan
e of a 
ode

geometri
 net

parity bits

latin square

word square

di
tionaries

palindromes

mirror pairs

alphabeti
 order

lexi
ographi
ally

M
Manus

arithmeti
 progression

perfe
t shu�e

Morris

vowels


onsonants


omplete binary trie

b-ary 
ode with n information digits and r 
he
k digits is a set C(b; n; r) of b

n

strings

x = x

1

: : : x

n+r

, where 0 � x

j

< b for 1 � j � n+r. When a 
odeword x is transmitted

and the message y is re
eived, d(x; y) is the number of transmission errors. The 
ode

is 
alled t-error 
orre
ting if we 
an re
onstru
t the value of x whenever a message y

is re
eived with d(x; y) � t. The distan
e of the 
ode is the minimum value of d(x; x

0

),

taken over all pairs of 
odewords x 6= x

0

.

a) Prove that a 
ode is t-error 
orre
ting if and only if its distan
e ex
eeds 2t.

b) Prove that a single-error 
orre
ting b-ary 
ode with 2 information digits and 2 
he
k

digits is equivalent to a pair of orthogonal latin squares of order b.


) Furthermore, a 
ode C(b; 2; r) with distan
e r+1 is equivalent to a set of r mutually

orthogonal latin squares of order b.

x 24. [M30 ℄ A geometri
 net with N points and R lines leads naturally to the binary


ode C(2;N;R) with 
odewords x

1

: : : x

N

x

N+1

: : : x

N+R

de�ned by the parity bits

x

N+k

= f

k

(x

1

; : : : ; x

N

) = (

P

fx

j

j point j lies on line kg)mod 2:

a) If the net has m 
lasses of parallel lines, prove that this 
ode has distan
e m+ 1.

b) Find an eÆ
ient way to 
orre
t up to t errors with this 
ode, assuming thatm = 2t.

Illustrate the de
oding pro
ess in the 
ase N = 25, R = 30, t = 3.

25. [27 ℄ Find a latin square whose rows and 
olumns are �ve-letter words. (For this

exer
ise you'll need to dig out the big di
tionaries.)

x 26. [25 ℄ Compose a meaningful English senten
e that 
ontains only �ve-letter words.

27. [20 ℄ How many SGB words 
ontain exa
tly k distin
t letters, for 1 � k � 5?

28. [20 ℄ Are there any pairs of SGB word ve
tors that di�er by�1 in ea
h 
omponent?

29. [20 ℄ Find all SGB words that are palindromes (equal to their re
e
tion), or mirror

pairs (like regal lager).

x 30. [20 ℄ The letters of first are in alphabeti
 order from left to right. What is the

lexi
ographi
ally �rst su
h �ve-letter word? What is the last?

31. [21 ℄ (C. M
Manus.) Find all sets of three SGB words that are in arithmeti


progression but have no 
ommon letters in any �xed position. (One su
h example is

fpower; slugs; visitg.)

32. [23 ℄ Does the English language 
ontain any 10-letter words a

0

a

1

: : : a

9

for whi
h

both a

0

a

2

a

4

a

6

a

8

and a

1

a

3

a

5

a

7

a

9

are SGB words?

33. [20 ℄ (S
ot Morris.) Complete the following list of 26 interesting SGB words:

about; ba
on; fa
ed; under; 
hief; : : : ; pizza:

x 34. [21 ℄ For ea
h SGB word that doesn't in
lude the letter y, obtain a 5-bit binary

number by 
hanging the vowels fa; e; i; o; ug to 1 and the other letters to 0. What are

the most 
ommon words for ea
h of the 32 binary out
omes?

x 35. [26 ℄ Sixteen well-
hosen elements of WORDS(1000) lead to the bran
hing pattern

sheep

sheet

shelf

shell

shore

short

shown

shows

stalk

stall

stars

start

steal

steam

steel

steep

;



7 COMBINATORIAL SEARCHING 39


omplete binary trie

trie

symmetries

word 
ube

degree

smile

graphs{

Lehmer

Petersen graph

symmetries

Chv�atal's graph


ontiguous USA+

planar

maximal planar graph


ubi
 graphs

geometri
 net

bipartite graph

girth

diameter

girth

words

giant 
omponent

whi
h is a 
omplete binary trie of words that begin with the letter s. But there's no su
h

pattern of words beginning with a, even if we 
onsider the full 
olle
tion WORDS(5757).

What letters of the alphabet 
an be used as the starting letter of sixteen words

that form a 
omplete binary trie within WORDS(n), given n?

36. [M17 ℄ Explain the symmetries that appear in the word 
ube (10). Also show that

two more su
h 
ubes 
an be obtained by 
hanging only the two words fstove; eventg.

37. [20 ℄ Whi
h verti
es of the graph words (5757; 0; 0; 0) have maximum degree?

38. [22 ℄ Using the digraph rule in (14), 
hange tears to smile in just three steps,

without 
omputer assistan
e.

39. [M00 ℄ Is G n e an indu
ed subgraph of G? Is it a spanning subgraph?

40. [M15 ℄ How many (a) spanning (b) indu
ed subgraphs does a graph G = (V;E)

have, when jV j = n and jEj = e?

41. [M10 ℄ For whi
h integers n do we have (a) K

n

= P

n

? (b) K

n

= C

n

?

42. [15 ℄ (D. H. Lehmer.) Let G be a graph with 13 verti
es, in whi
h every vertex

has degree 5. Make a nontrivial statement about G.

43. [23 ℄ Are any of the following graphs the same as the Petersen graph?

44. [M23 ℄ How many symmetries does Chv�atal's graph have? (See Fig. 2(f).)

45. [20 ℄ Find an easy way to 4-
olor the planar graph (17). Would 3 
olors suÆ
e?

46. [M25 ℄ Let G be a graph with n � 3 verti
es, de�ned by a planar diagram that

is \maximal," in the sense that no additional lines 
an be drawn between nonadja
ent

verti
es without 
rossing an existing edge.

a) Prove that the diagram partitions the plane into regions that ea
h have exa
tly

three verti
es on their boundary. (One of these regions is the set of all points that

lie outside the diagram.)

b) Therefore G has exa
tly 3n� 6 edges.

47. [M22 ℄ Prove that the 
omplete bigraph K

3;3

isn't planar.

48. [M25 ℄ Complete the proof of Theorem B by showing that the stated pro
edure

never gives the same 
olor to two adja
ent verti
es.

49. [18 ℄ Draw diagrams of all the 
ubi
 graphs with at most 6 verti
es.

50. [M24 ℄ Find all bipartite graphs that 
an be 3-
olored in exa
tly 24 ways.

x 51. [M22 ℄ Given a geometri
 net as des
ribed in exer
ise 21, 
onstru
t the bipartite

graph whose verti
es are the points p and the lines L of the net, with p��� L if and

only if p 2 L. What is the girth of this graph?

52. [M16 ℄ Find a simple inequality that relates the diameter of a graph to its girth.

(How small 
an the diameter be, if the girth is large?)

53. [15 ℄ Whi
h of the words world and happy belongs to the giant 
omponent of the

graph words (5757; 0; 0; 0)?
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postal 
odes


omponents

strongly 
onne
ted 
omponents


omplete k-partite graph

multigraph

digraph

simple

tournament

oriented spanning path

K~

n

transitive tournament

out-degree

permutation digraph


omponents

oriented 
y
les

even

odd

permanent

girth

adja
en
y matrix

eigenve
tors

eigenvalues

x 54. [21 ℄ The 49 postal 
odes in graph (17) are AL, AR, AZ, CA, CO, CT, DC, DE, FL, GA,

IA, ID, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV,

NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV, WY, in alphabeti
al order.

a) Suppose we 
onsider two states to be adja
ent if their postal 
odes agree in one

pla
e (namely AL���AR���OR���OH, et
.). What are the 
omponents of this graph?

b) Now form a dire
ted graph with XY ��! YZ (for example, AL ��! LA ��! AR, et
.).

What are the strongly 
onne
ted 
omponents of this digraph? (See Se
tion 2.3.4.2.)


) The United States has additional postal 
odes AA, AE, AK, AP, AS, FM, GU, HI, MH,

MP, PW, PR, VI, besides those in (17). Re
onsider question (b), using all 62 
odes.

55. [M20 ℄ How many edges are in the 
omplete k-partite graph K

n

1

;:::;n

k

?

x 56. [M10 ℄ True or false: A multigraph is a graph if and only if the 
orresponding

digraph is simple.

57. [M10 ℄ True or false: Verti
es u and v are in the same 
onne
ted 
omponent of a

dire
ted graph if and only if either d(u; v) <1 or d(v; u) <1.

58. [M17 ℄ Des
ribe all (a) graphs (b) multigraphs that are regular of degree 2.

x 59. [M23 ℄ A tournament of order n is a digraph on n verti
es that has exa
tly

�

n

2

�

ar
s, either u��!v or v��!u for every pair of distin
t verti
es fu; vg.

a) Prove that every tournament 
ontains an oriented spanning path v

1

��!� � ���!v

n

.

b) Consider the tournament on verti
es f0; 1; 2; 3; 4g for whi
h u��! v if and only if

(u� v) mod 5 � 3. How many oriented spanning paths does it have?


) Is K~

n

the only tournament of order n that has a unique oriented spanning path?

x 60. [M22 ℄ Let u be a vertex of greatest out-degree in a tournament, and let v be any

other vertex. Prove that d(u; v) � 2.

61. [M16 ℄ Constru
t a digraph that has k walks of length k from vertex 1 to vertex 2.

62. [M21 ℄ A permutation digraph is a dire
ted graph in whi
h every vertex has out-

degree 1 and in-degree 1; therefore its 
omponents are oriented 
y
les. If it has

n verti
es and k 
omponents, we 
all it even if n� k is even, odd if n� k is odd.

a) Let G be a dire
ted graph with adja
en
y matrix A. Prove that the number of

spanning permutation digraphs of G is perA, the permanent of A.

b) Interpret the determinant, detA, in terms of spanning permutation digraphs.

63. [M23 ℄ Let G be a graph of girth g in whi
h every vertex has at least d neighbors.

Prove that G has at least N verti
es, where

N =

(

1 +

P

0�k<t

d(d� 1)

k

; if g = 2t+ 1;

1 + (d� 1)

t

+

P

0�k<t

d(d� 1)

k

; if g = 2t+ 2.

x 64. [M21 ℄ Continuing exer
ise 63, show that there's a unique graph of girth 4, mini-

mum degree d, and order 2d, for ea
h d � 2.

x 65. [HM31 ℄ Suppose graph G has girth 5, minimum degree d, and N = d

2

+1 verti
es.

a) Prove that the adja
en
y matrix A of G satis�es the equation A

2

+A = (d�1)I+J .

b) Sin
e A is a symmetri
 matrix, it has N orthogonal eigenve
tors x

j

, with 
orre-

sponding eigenvalues �

j

, su
h that Ax

j

= �

j

x

j

for 1 � j � N . Prove that ea
h

�

j

is either d or (�1�

p

4d� 3)=2.


) Show that if

p

4d� 3 is irrational, then d = 2. Hint: �

1

+ � � �+�

N

= tra
e(A) = 0.

d) And if

p

4d� 3 is rational, d 2 f3; 7; 57g.

66. [M30 ℄ Continuing exer
ise 65, 
onstru
t su
h a graph when d = 7.
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girth

adja
en
y matri
es

out-degree

in-degree

SGB format

analysis of alg

depth-�rst sear
h

MMIX

MMIXAL

bipartite

random graph

roget

graph generator

board


hess, generalized pie
es

wraparound

lexi
ographi
ally


omplete graph

path


y
le

transitive tournament

oriented path

oriented 
y
le

m� n grid

m� n 
ylinder

m� n torus

m� n rook graph

m� n dire
ted torus

null graph

n-
ube

loops

parallel (repeated) edges

multigraphs

diameter


omplement

67. [M48 ℄ Is there a regular graph of degree 57, order 3250, and girth 5?

68. [M20 ℄ How many di�erent adja
en
y matri
es does a graph G on n verti
es have?

x 69. [20 ℄ Extending (31), explain how to 
al
ulate both out-degree ODEG(v) and in-

degree IDEG(v) for all verti
es v in a graph that has been represented in SGB format.

x 70. [M20 ℄ How often is ea
h step of Algorithm B performed, when that algorithm

su

essfully 2-
olors a graph with m ar
s and n verti
es?

71. [26 ℄ Implement Algorithm B for the MMIX 
omputer, using the MMIXAL assembly

language. Assume that, when your program begins, register v0 points to the �rst vertex

node and register n 
ontains the number of verti
es.

x 72. [M22 ℄ When COLOR(v) is set in step B6, 
all u the parent of v; but when COLOR(w)

is set in step B3, say that w has no parent. De�ne the an
estors of vertex v, re
ursively,

to be v together with the an
estors of v's parent (if any).

a) Prove that if v is below u in the sta
k during Algorithm B, the parent of v is an

an
estor of u.

b) Furthermore, if COLOR(v) = COLOR(u) in step B6, v is 
urrently in the sta
k.


) Use these fa
ts to extend Algorithm B so that, if the given graph is not bipartite,

the names of verti
es in a 
y
le of odd length are output.

73. [15 ℄ What's another name for random graph(10; 45; 0; 0; 0; 0; 0; 0; 0; 0)?

74. [21 ℄ What vertex of roget(1022; 0; 0; 0) has the largest out-degree?

75. [22 ℄ The SGB graph generator board(n

1

; n

2

; n

3

; n

4

; p; w; o) 
reates a graph whose

verti
es are the t-dimensional integer ve
tors (x

1

; : : : ; x

t

) for 0 � x

i

< b

i

, determined

by the �rst four parameters (n

1

; n

2

; n

3

; n

4

) as follows: Set n

5

 0 and let j � 0 be min-

imum su
h that n

j+1

� 0. If j = 0, set b

1

 b

2

 8 and t 2; this is the default 8�8

board. Otherwise if n

j+1

= 0, set b

i

 n

i

for 1 � i � j and t = j. Finally, if n

j+1

< 0,

set t  jn

j+1

j, and set b

i

to the ith element of the periodi
 sequen
e (n

1

; : : : ; n

j

;

n

1

; : : : ; n

j

; n

1

; : : : ). (For example, the spe
i�
ation (n

1

; n

2

; n

3

; n

4

) = (2; 3; 5;�7) is

about as tri
ky as you 
an get; it produ
es a 7-dimensional board with (b

1

; : : : ; b

7

) =

(2; 3; 5; 2; 3; 5; 2), hen
e a graph with 2 � 3 � 5 � 2 � 3 � 5 � 2 = 1800 verti
es.)

The remaining parameters (p;w; o), for \pie
e, wrap, and orientation," determine

the ar
s of the graph. Suppose �rst that w = o = 0. If p > 0, we have (x

1

; : : : ; x

t

)��!

(y

1

; : : : ; y

t

) if and only if y

i

= x

i

+ Æ

i

for 1 � i � t, where (Æ

1

; : : : ; Æ

t

) is an integer

solution to the equation Æ

2

1

+ � � �+ Æ

2

t

= jpj. And if p < 0, we allow also y

i

= x

i

+ kÆ

i

for k � 1, 
orresponding to k moves in the same dire
tion.

If w 6= 0, let w = (w

t

: : : w

1

)

2

in binary notation. Then we allow \wraparound,"

y

i

= (x

i

+ Æ

i

) mod b

i

or y

i

= (x

i

+ kÆ

i

) mod b

i

, in ea
h 
oordinate i for whi
h w

i

= 1.

If o 6= 0, the graph is dire
ted; o�sets (Æ

1

; : : : ; Æ

t

) produ
e ar
s only when they are

lexi
ographi
ally greater than (0; : : : ; 0). But if o = 0, the graph is undire
ted.

Find settings of (n

1

; n

2

; n

3

; n

4

; p; w; o) for whi
h board will produ
e the following

fundamental graphs: (a) the 
omplete graph K

n

; (b) the path P

n

; (
) the 
y
le C

n

;

(d) the transitive tournament K~

n

; (e) the oriented path P~

n

; (f) the oriented 
y
le C~

n

;

(g) the m�n grid P

m

P

n

; (h) the m�n 
ylinder P

m

C

n

; (i) the m�n torus C

m

C

n

;

(j) the m� n rook graph K

m

K

n

; (k) the m� n dire
ted torus C~

m

C~

n

; (l) the null

graph K

n

; (m) the n-
ube P

2

� � � P

2

with 2

n

verti
es.

76. [20 ℄ Can board(n

1

; n

2

; n

3

; n

4

; p; w; o) produ
e loops, or parallel (repeated) edges?

77. [M20 ℄ If graph G has diameter � 3, prove that G has diameter � 3.
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self-
omplementary

self-
omplementary graph

diameter


omplement of a simple digraph

line graphs

indu
ed subgraph

regular graph


omponents

Ore

Wilson

Petersen graph

edge-
olorable

wheel


y
les

asso
iative laws


ograph


omplementation

dire
t sum

graphs of order 4

graph algebra++

graph produ
ts+

Cartesian produ
t++

dire
t produ
t+

strong produ
t++

odd produ
t+

lexi
ographi
 produ
t+

digraphs

78. [M26 ℄ Let G = (V;E) be a graph with jV j = n and G

�

=

G. (In other words, G

is self-
omplementary : There's a permutation ' of V su
h that u��� v if and only if

'(u) /���'(v) and u 6= v. We 
an imagine that the edges of K

n

have been painted bla
k

or white; the white edges de�ne a graph that's isomorphi
 to the graph of bla
k edges.)

a) Prove that nmod 4 = 0 or 1. Draw diagrams for all su
h graphs with n < 8.

b) Prove that if nmod 4 = 0, every 
y
le of the permutation ' has a length that is a

multiple of 4.


) Conversely, every permutation ' with su
h 
y
les arises in some su
h graph G.

d) Extend these results to the 
ase nmod 4 = 1.

x 79. [M22 ℄ Given k � 0, 
onstru
t a graph on the verti
es f0; 1; : : : ; 4kg that is both

regular and self-
omplementary.

x 80. [M22 ℄ A self-
omplementary graph must have diameter 2 or 3, by exer
ise 77.

Given k � 2, 
onstru
t self-
omplementary graphs of both possible diameters, when

(a) V = f1; 2; : : : ; 4kg; (b) V = f0; 1; 2; : : : ; 4kg.

81. [20 ℄ The 
omplement of a simple digraph without loops is de�ned by extending

(35) and (36), so that we have u! v in D if and only if u 6= v and u 6! v in D. What

are the self-
omplementary digraphs of order 3?

82. [M21 ℄ Are the following statements about line graphs true or false?

a) If G is 
ontained in G

0

, then L(G) is an indu
ed subgraph of L(G

0

).

b) If G is a regular graph, so is L(G).


) L(K

m;n

) is regular, for all m;n > 0.

d) L(K

m;n;r

) is regular, for all m;n; r > 0.

e) L(K

m;n

)

�

=

K

m

K

n

.

f) L(K

4

)

�

=

K

2;2;2

.

g) L(P

n+1

)

�

=

P

n

.

h) The graphs G and L(G) both have the same number of 
omponents.

83. [16 ℄ Draw the graph L(K

5

).

x 84. [M21 ℄ Is L(K

3;3

) self-
omplementary?

85. [M22 ℄ (O. Ore, 1962.) For whi
h graphs G do we have G

�

=

L(G)?

86. [M20 ℄ (R. J. Wilson.) Find a graph G of order 6 for whi
h G

�

=

L(G).

87. [20 ℄ Is the Petersen graph (a) 3-
olorable? (b) 3-edge-
olorable?

88. [M20 ℄ The graph W

n

= K

1

���C

n�1

is 
alled the wheel of order n,

when n � 4. How many 
y
les does it 
ontain as subgraphs?

W

8

89. [M20 ℄ Prove the asso
iative laws, (42) and (43).

x 90. [M24 ℄ A graph is 
alled a 
ograph if it 
an be 
onstru
ted algebrai
ally from

1-element graphs by means of 
omplementation and/or dire
t sum operations. For

example, there are four nonisomorphi
 graphs of order 3, and they all are 
ographs:

K

3

= K

1

� K

1

� K

1

and its 
omplement, K

3

; K

1;2

= K

1

� K

2

and its 
omplement,

K

1;2

, where K

2

= K

1

�K

1

.

Exhaustive enumeration shows that there are 11 nonisomorphi
 graphs of order 4.

Give algebrai
 formulas to prove that 10 of them are 
ographs. Whi
h one isn't?

x 91. [20 ℄ Draw diagrams for the 4-vertex graphs (a) K

2

K

2

; (b) K

2


K

2

; (
) K

2

�K

2

;

(d) K

2

4K

2

; (e) K

2

ÆK

2

; (f) K

2

ÆK

2

; (g) K

2

ÆK

2

.

92. [21 ℄ The �ve types of graph produ
ts de�ned in the text work �ne for simple

digraphs as well as for ordinary graphs. Draw diagrams for the 4-vertex digraphs

(a) K~

2

K~

2

; (b) K~

2


K~

2

; (
) K~

2

�K~

2

; (d) K~

2

4K~

2

; (e) K~

2

ÆK~

2

.
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words

indu
ed subgraphs

�ve-letter words

degree

dire
t produ
t

adja
en
y matrix

distributive law

dire
t sums

distan
e

king moves


onjugate

graphi
al


onne
ted

degree sequen
e

self-
omplementary graph

simple dire
ted graph

in-degree

out-degree

bipartite graph

93. [15 ℄ Whi
h of the �ve graph produ
ts takes K

m

and K

n

into K

mn

?

94. [10 ℄ Are the SGB words graphs indu
ed subgraphs of P

26

P

26

P

26

P

26

P

26

?

95. [M20 ℄ If vertex u of G has degree d

u

and vertex v of H has degree d

v

, what is

the degree of vertex (u; v) in (a) G H? (b) G
H? (
) G�H? (d) G4H? (e) G ÆH?

x 96. [M22 ℄ Let A be an m �m

0

matrix with a

uu

0

in row u and 
olumn u

0

; let B be

an n � n

0

matrix with b

vv

0

in row v and 
olumn v

0

. The dire
t produ
t A 
 B is an

mn �m

0

n

0

matrix with a

uu

0

b

vv

0

in row (u; v) and 
olumn (u

0

; v

0

). Thus A 
 B is the

adja
en
y matrix of G
H, if A and B are the adja
en
y matri
es of G and H.

Find analogous formulas for the adja
en
y matri
es of (a) G H; (b) G�H;

(
) G4H; (d) G ÆH.

97. [M25 ℄ Find as many interesting algebrai
 relations between graph sums and prod-

u
ts as you 
an. (For example, the distributive law (A�B)
C = (A
C)�(B
C) for

dire
t sums and produ
ts of matri
es implies that (G�G

0

)
H = (G
H)� (G

0


H).

We also have K

m

H = H � � � � �H, with m 
opies of H, et
.)

98. [M20 ℄ If the graph G has k 
omponents and the graph H has l 
omponents, how

many 
omponents are in the graphs G H and G�H?

99. [M20 ℄ Let d

G

(u; u

0

) be the distan
e from vertex u to vertex u

0

in graph G.

Prove that d

G H

((u; v); (u

0

; v

0

)) = d

G

(u; u

0

) + d

H

(v; v

0

), and �nd a similar formula

for d

G�H

((u; v); (u

0

; v

0

)).

100. [M21 ℄ For whi
h 
onne
ted graphs is G
H 
onne
ted?

x 101. [M25 ℄ Find all 
onne
ted graphs G and H su
h that G H

�

=

G
H.

102. [M20 ℄ What's a simple algebrai
 formula for the graph of king moves (whi
h

take one step horizontally, verti
ally, or diagonally) on an m� n board?

103. [20 ℄ Complete tableau (54). Also apply Algorithm H to the sequen
e 866444444.

104. [18 ℄ Explain the manipulation of variables i, t, and r in steps H3 and H4.

105. [M34 ℄ Suppose d

1

� � � � � d

n

� 0, and let 


1

� � � � � 


d

1

be its 
onjugate as in

Algorithm H. Prove that d

1

: : : d

n

is graphi
al if and only if d

1

+ � � �+ d

n

is even and

d

1

+ � � �+ d

k

� 


1

+ � � �+ 


k

� k for 1 � k � s, where s is maximal su
h that d

s

� s.

106. [20 ℄ True or false: If d

1

= � � � = d

n

= d < n and nd is even, Algorithm H


onstru
ts a 
onne
ted graph.

107. [M21 ℄ Prove that the degree sequen
e d

1

: : : d

n

of a self-
omplementary graph

satis�es d

j

+ d

n+1�j

= n� 1 and d

2j�1

= d

2j

for 1 � j � n=2.

x 108. [M23 ℄ Design an algorithm analogous to Algorithm H that 
onstru
ts a simple

dire
ted graph on verti
es f1; : : : ; ng, having spe
i�ed values d

�

k

and d

+

k

for the in-degree

and out-degree of ea
h vertex k, whenever at least one su
h graph exists.

109. [M20 ℄ Design an algorithm analogous to Algorithm H that 
onstru
ts a bipartite

graph on verti
es f1; : : : ;m + ng, having spe
i�ed degrees d

k

for ea
h vertex k when

possible; all edges j���k should have j � m and k > m.

110. [M22 ℄ Without using Algorithm H, show by a dire
t 
onstru
tion that the se-

quen
e d

1

: : : d

n

is graphi
al when n > d

1

� � � � � d

n

� d

1

�1 and d

1

+ � � �+d

n

is even.

x 111. [25 ℄ Let G be a graph on verti
es V = f1; : : : ; ng, with d

k

the degree of k and

max(d

1

; : : : ; d

n

) = d. Prove that there's an integer N with n � N � 2n and a graph H

on verti
es f1; : : : ; Ng, su
h that H is regular of degree d and H jV = G. Explain how

to 
onstru
t su
h a regular graph with N as small as possible.
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network

miles

equidistant 
ities

hypergraph

in
iden
e matrix

multigraph

bipartite graph

in
iden
e matrix


omplete bipartite r-uniform hypergraph

K

(r)

m;n

hyperforest


y
les

degrees

dire
ted hypergraphs

maximal independent sets

triple systems

dual

Petersen graph

Chv�atal graph

kingwise torus

queen graph


omplete k-partite graph

tightly 
olorable

musi
al graph

order

size

girth

diameter

independen
e number


hromati
 number

edge-
hromati
 number


lique number

minimum vertex 
over

maximum mat
hing

regular

planar


onne
ted

dire
ted

free tree

Hamiltonian

x 112. [20 ℄ Does the network miles(128; 0; 0; 0; 0; 127; 0) have three equidistant 
ities?

If not, what three 
ities 
ome 
losest to an equilateral triangle?

113. [05 ℄ When H is a hypergraph with m edges and n verti
es, how many rows and


olumns does its in
iden
e matrix have?

114. [M20 ℄ Suppose the multigraph (26) is regarded as a hypergraph. What is the


orresponding in
iden
e matrix? What is the 
orresponding bipartite graph?

x 115. [M20 ℄ When B is the in
iden
e matrix of a graph G, explain the signi�
an
e of

the symmetri
 matri
es B

T

B and BB

T

.

116. [M17 ℄ Des
ribe the edges of the 
omplete bipartite r-uniform hypergraph K

(r)

m;n

.

117. [M22 ℄ How many nonisomorphi
 1-uniform hypergraphs havem edges and n ver-

ti
es? (Edges may be repeated.) List them all when m = 4 and n = 3.

118. [M20 ℄ A \hyperforest" is a hypergraph that 
ontains no 
y
les. If a hyperforest

hasm edges, n verti
es, and p 
omponents, what's the sum of the degrees of its verti
es?

119. [M18 ℄ What hypergraph 
orresponds to (60) without the �nal term (�x

1

_�x

2

_�x

3

)?

120. [M20 ℄ De�ne dire
ted hypergraphs, by generalizing the 
on
ept of dire
ted graphs.

121. [M19 ℄ Given a hypergraph H = (V;E), let I(H) = (V;F ), where F is the family

of all maximal independent sets ofH. Express �(H) in terms of jV j, jF j, and �(I(H)

T

).

x 122. [M24 ℄ Find a maximum independent set and a minimum 
oloring of the following

triple systems: (a) the hypergraph (56); (b) the dual of the Petersen graph.

123. [17 ℄ Show that the optimum 
olorings of K

n

K

n

are equivalent to the solutions

of a famous 
ombinatorial problem.

124. [M22 ℄ What is the 
hromati
 number of the Chv�atal graph, Fig. 2(f)?

125. [M48 ℄ For what values of g is there a 4-regular, 4-
hromati
 graph of girth g?

x 126. [M22 ℄ Find optimum 
olorings of the \kingwise torus," C

m

�C

n

, when m;n � 3.

127. [M22 ℄ Prove that (a) �(G) + �(G) � n+ 1 and (b) �(G)�(G) � n when G is a

graph of order n, and �nd graphs for whi
h equality holds.

128. [M18 ℄ Express �(G H) in terms of �(G) and �(H), when G and H are graphs.

129. [23 ℄ Des
ribe the maximal 
liques of the 8� 8 queen graph (37).

130. [M20 ℄ How many maximal 
liques are in a 
omplete k-partite graph?

131. [M30 ℄ Let N(n) be the largest number of maximal 
liques that an n-vertex graph


an have. Prove that 3

bn=3


� N(n) � 3

dn=3e

.

x 132. [M20 ℄ We 
all G tightly 
olorable if �(G) = !(G). Prove that �(G�H) =

�(G)�(H) whenever G and H are tightly 
olorable.

133. [21 ℄ The \musi
al graph" illustrated here pro-

vides a ni
e way to review numerous de�nitions

that were given in this se
tion, be
ause its proper-

ties are easily analyzed. Determine its (a) order;

(b) size; (
) girth; (d) diameter; (e) independ-

en
e number, �(G); (f) 
hromati
 number, �(G);

(g) edge-
hromati
 number, �(L(G)); (h) 
lique

number, !(G); (i) algebrai
 formula as a produ
t

of well-known smaller graphs. What is the size

of (j) a minimum vertex 
over? (k) a maximum

mat
hing? Is G (l) regular? (m) planar? (n) 
on-

ne
ted? (o) dire
ted? (p) a free tree? (q) Hamiltonian?




g

d

a

e

b

f

℄




℄

g

℄

d

℄

=e

[

b

[

f

E

[

B

[

F

C

G

D

A

E

B

F

℄

=G

[

D

[

A

[
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automorphisms

random walk

musi
al graph

walk

Cayley digraph

Petersen graph

{graphs

generalized toruses+

translation, tiling by+

tiling of the plane

134. [M22 ℄ How many automorphisms does the musi
al graph have?

x 135. [HM26 ℄ Suppose a 
omposer takes a random walk in the musi
al graph, starting

at vertex C and then making �ve equally likely 
hoi
es at ea
h step. Show that after

an even number of steps, the walk is more likely to end at vertex C than at any other

vertex. What is the exa
t probability of going from C to C in a 12-step walk?

136. [HM23 ℄ A Cayley digraph is a dire
ted graph whose verti
es V are the elements

of a group and whose ar
s are v ��! v�

j

for 1 � j � d and all verti
es v, where

(�

1

; : : : ; �

d

) are �xed elements of the group. A Cayley graph is a Cayley digraph that

is also a graph. Is the Petersen graph a Cayley graph?
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2
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2
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0
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7

11
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5

0

4

8

3

7

11
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2

9

1

5

0

4

8

3

7
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2

9

1

5

0

4

8

3

7

11
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10

2

9

1

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

1 4

8 11

3

7

2

10

6 9 0

5

x 137. [M25 ℄ (Generalized toruses.) An m� n torus 
an be regarded as a tiling of the

plane. For example, we 
an imagine that in�nitely many 
opies of the 3 � 4 torus

in (50) have been pla
ed together gridwise, as indi
ated in the left-hand illustration

above; from ea
h vertex we 
an move north, south, east, or west to another vertex of the

torus. The verti
es have been numbered here so that a northward move from v goes to

(v+4) mod 12, and an eastward move to (v+3) mod 12, et
. The right-hand illustration

shows the same torus, but with a di�erently shaped tile; any way to 
hoose twelve 
ells

numbered f0; 1; : : : ; 11g will tile the plane, with exa
tly the same underlying graph.

Shifted 
opies of a single shape will also tile the plane if they form a generalized

torus, in whi
h 
ell (x; y) 
orresponds to the same vertex as 
ells (x + a; y + b) and

(x + 
; y + d), where (a; b) and (
; d) are integer ve
tors and n = ad � b
 > 0. The

generalized torus will then have n points. These ve
tors (a; b) and (
; d) are (4; 0) and

(0; 3) in the 3�4 example above; and when they are respe
tively (5; 2) and (1; 3) we get

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

0 1 2 3

4 5 6 7 8

9 10 11 12

:

Here n = 13, and a northward move from v goes to (v + 4) mod 13; an eastward move

goes to (v + 1) mod 13.

Prove that if g
d(a; b; 
; d) = 1, the verti
es of su
h a generalized torus 
an always

be assigned integer labels f0; 1; : : : ; n�1g in su
h a way that the neighbors of v are

(v � p) mod n and (v � q) mod n, for some integers p and q.
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indu
ed subgraph

random

proportional

wheel graph

degree sequen
e

Janson

Krato
hv��l

order 4

distin
t rows


ompletion


hromati
 number


oloring

don't 
ares

Boyer

Moore

majority element

138. [HM27 ℄ Continuing exer
ise 137, what is a good way to label k-dimensional

verti
es x = (x

1

; : : : ; x

k

), when integer ve
tors �

j

are given su
h that ea
h ve
tor x

is equivalent to x + �

j

for 1 � j � k? Illustrate your method in the 
ase k = 3,

�

1

= (3; 1; 1), �

2

= (1; 3; 1), �

3

= (1; 1; 3).

x 139. [M22 ℄ Let H be a �xed graph of order h, and let #(H:G) be the number of times

that H o

urs as an indu
ed subgraph of a given graph G. If G is 
hosen at random

from the set of all 2

n(n�1)=2

graphs on the verti
es V = f1; 2; : : : ; ng, what is the average

value of #(H:G) when H is (a) K

h

; (b) P

h

, for h > 1; (
) C

h

, for h > 2; (d) arbitrary?

140. [M30 ℄ A graph G is 
alled proportional if its indu
ed subgraph 
ounts #(K

3

:G),

#(K

3

:G), and #(P

3

:G) ea
h agree with the expe
ted values derived in exer
ise 139.

a) Show that the wheel graph W

8

of exer
ise 88 is proportional in this sense.

b) Prove that G is proportional if and only if #(K

3

:G) =

1

8

�

n

3

�

and the degree

sequen
e d

1

: : : d

n

of its verti
es satis�es the identities

d

1

+ � � �+ d

n

=

�

n

2

�

; d

2

1

+ � � �+ d

2

n

=

n

2

�

n

2

�

: (�)

141. [26 ℄ The 
onditions of exer
ise 140(b) 
an hold only if nmod 16 2 f0; 1; 8g.

Write a program to �nd all of the proportional graphs that have n = 8 verti
es.

142. [M30 ℄ (S. Janson and J. Krato
hv��l, 1991.) Prove that no graph G on 4 or more

verti
es 
an be \extraproportional," in the sense that its subgraph 
ounts #(H:G) agree

with the expe
ted values in exer
ise 139 for ea
h of the eleven nonisomorphi
 graphs H

of order 4. Hint: (n� 3)#(K

3

:G) = 4#(K

4

:G) + 2#(K

1;1;2

:G) + #(K

1

�K

3

:G).

x 143. [M25 ℄ Let A be any matrix withm > 1 distin
t rows, and n � m 
olumns. Prove

that at least one 
olumn of A 
an be deleted, without making any two rows equal.

x 144. [21 ℄ Let X be an m � n matrix whose entries x

ij

are either 0, 1, or �. A

\
ompletion" of X is a matrix X

�

in whi
h every � has been repla
ed by either 0 or 1.

Show that the problem of �nding a 
ompletion with fewest distin
t rows is equivalent

to the problem of �nding the 
hromati
 number of a graph.

x 145. [25 ℄ (R. S. Boyer and J. S. Moore, 1980.) Suppose the array a

1

: : : a

n


ontains a

majority element, namely a value that o

urs more than n=2 times. Design an algorithm

that �nds it after making fewer than n 
omparisons. Hint: If n � 3 and a

n�1

6= a

n

,

the majority element of a

1

: : : a

n

is also the majority element of a

1

: : : a

n�2

.
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Hall

Leahy
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Bang

Simpson

phi

spe
trum

ANSWERS TO EXERCISES

Answer not a fool a

ording to his folly,

lest thou also be like unto him.

| Proverbs 26:4

SECTION 7

1. Following the hint, we'll want the se
ond `4m�4' to be immediately followed by the

�rst `2m�1'. The desired arrangements 
an be dedu
ed from the �rst four examples,

given in hexade
imal notation: 231213, 46171435623725, 86a31b1368597a425b2479,


a8e531f1358a
7db9e6427f2469bd. [R. O. Davies,Math. Gazette 43 (1959), 253{255.℄

2. Su
h arrangements exist if and only if nmod 4 = 0 or 1. This 
ondition is ne
essary

be
ause there must be an even number of odd items. And it is suÆ
ient be
ause we


an pla
e `00' in front of the solutions in the previous exer
ise.

Notes: This question was �rst raised by Marshall Hall in 1951, and solved the

following year by F. T. Leahy, Jr., in unpublished work [Armed For
es Se
urity Agen
y

report 343 (28 January 1952)℄. It was independently posed and resolved by T. Skolem

and T. Bang, Math. S
andinavi
a 5 (1957), 57{58. For other intervals of numbers, see

the 
omplete solution by J. E. Simpson, Dis
rete Math. 44 (1983), 97{104.

3. Yes. For example, the 
y
le (0072362435714165) 
an't be broken up.

4. The kth o

urren
e of b is in position bk�
 from the left, and the kth o

urren
e

of a is in position bk�

2


. Clearly bk�

2


 � bk�
 = k, be
ause �

2

= �+ 1. (The integers

bk�
 form the \spe
trum" of �; see exer
ise 3.13 of CMath.)

5. 2n� k� 1 of the

�

2n

2

�

equally likely pairs of positions satisfy the stated 
ondition.

If these probabilities were independent (but they aren't), the value of 2L

n

would be

�

2n

2; 2; : : : ; 2

�

n

Y

k=1

((2n� 1� k)=

�

2n

2

�

) =

(2n)!

2

n(n� 1)

n!(2n)

n+1

(2n� 1)

n+1

= exp

�

n ln

4n

e

3

+ ln

r

�en

2

+O(n

�1

)

�

:

6. (a) When the produ
ts are expanded, we obtain a polynomial of (2n�2)!=(n�2)!

terms, ea
h of degree 4n. There's a term x

2

1

: : : x

2

2n

for ea
h Langford pairing; every

other term has at least one variable of degree 1. Summing over x

1

; : : : ; x

2n

2 f�1;+1g

therefore 
an
els out all the bad terms, but gives 2

2n

for the good terms. An extra fa
tor

of 2 arises be
ause there are 2L

n

Langford pairings (in
luding left-right reversals).

47
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Gray-
ode

modular arithmeti


organ-pipe order

palindromi


puzzle

RainBones puzzle

Langford

exa
t 
over problem

Brette

Skolem

width

Singmaster

Baron

dan
ing links

exa
t 
over problem

Ibn al-Hajj

Islami
 maths

Arabi
 maths

Doutt�e

(b) Let f

k

=

P

2n�k�1

j=1

x

j

x

j+k+1

be the main part of the kth fa
tor. We 
an run

through all 4

n


ases x

1

; : : : ; x

2n

2 f�1;+1g in Gray-
ode order (Algorithm 7.2.1.1L),

negating only one of the x

j

ea
h time. A 
hange in x

j


auses at most two adjustments

to ea
h f

k

; so ea
h Gray-
ode step 
osts O(n).

We needn't 
ompute the sum exa
tly; it suÆ
es to work mod 2

N

, where 2

N


om-

fortably ex
eeds 2

2n+1

L

n

. Even better, when n = 24, would be to do the 
omputations

mod 2

60

�1, or mod both 2

30

�1 and 2

30

+1. One 
an also save dn=2e bits of pre
ision

by exploiting the fa
t that f

k

� k + 1 (modulo 2).

(
) The third equality is a
tually valid only when nmod 4 = 0 or 3; but those are

the interesting n's. The sum 
an be 
arried out in n phases, where phase p for p < n

involves the 
ases where x

n�1

= x

n+2

, x

n�2

= x

n+3

, : : : , x

n�p+1

= x

n+p

, x

n�p

= x

n

=

x

n+1

= +1, and x

n+p+1

= �1; it has an outer loop that 
hooses (x

n�p+1

; : : : ; x

n�1

) in

all 2

p�1

ways, and an inner loop that 
hooses (x

1

; : : : ; x

n�p�1

; x

n+p+2

; : : : ; x

2n

) in all

2

2n�2p�2

ways. (The inner loop uses Gray binary 
ode, preferably with \organ-pipe

order" to prioritize the subs
ripts so that x

1

and x

2n

vary most rapidly. The outer

loop need not be espe
ially eÆ
ient.) Phase n 
overs the 2

n�1

palindromi
 
ases with

x

j

= x

2n+1�j

for 1 � j < n and x

n

= x

n+1

= +1. If s

p

denotes the sum in phase p,

then s

1

+ � � �+ s

n�1

+

1

2

s

n

= 2

2n�2

L

n

.

A substantial fra
tion of the terms turn out be zero. For example, when n = 16,

zeros appear about 76% of the time (in 408,838,754 
ases out of 2

29

+2

14

). This fa
t 
an

be used to avoid many multipli
ations in the inner loop. (Only f

1

, f

3

, : : : 
an be zero.)

7. Let d

k

be the number of in
omplete pairs after k 
hara
ters have been read; thus

d

0

= d

2n

= 0, and d

k

= d

k�1

� 1 for 1 � k � 2n. The largest su
h sequen
e in

whi
h d

k

never ex
eeds 6 is (0; 1; 2; 3; 4; 5; 6; 5; 6; : : : ; 5; 6; 5; 4; 3; 2; 1; 0). This sequen
e

has

P

2n

k=1

d

k

= 11n � 30. But

P

2n

k=1

d

k

=

P

n

k=1

(k + 1) =

�

n+1

2

�

+ n in any Langford

pairing. Hen
e

�

n+1

2

�

+ n � 11n� 30, and n � 15. (In fa
t, width 6 is also impossible

when n = 15. The largest and smallest possible width are unknown in general.)

8. There are no solutions when n = 4 or n = 7. When n = 8 there are four:

1 13 37 75 58 86 64 42 2

;

1 14 48 86 63 37 75 52 2

;

4 42 27 75 58 86 63 31 1

;

5 52 28 86 63 37 74 41 1

:

(This problem makes a pleasant me
hani
al puzzle, using gadgets of width k + 1 and

height dk=2e for pie
e k. In his original note [Math. Gazette 42 (1958), 228℄, C. Dudley

Langford illustrated similar pie
es, and exhibited a planar solution for n = 12. The

question 
an be 
ast as an exa
t 
over problem, with nonprimary 
olumns representing

pla
es where two gadgets are not allowed to interse
t; see exer
ise 7.2.2.1{00. Jean

Brette has devised a somewhat similar puzzle, based on Skolem's variant of the problem

and using width instead of planarity; he gave a 
opy to David Singmaster in 1992.)

9. Just three ways: 181915267285296475384639743, 191218246279458634753968357,

191618257269258476354938743 (and their reversals). [First found in 1969 by G. Baron;

see Combinatorial Theory and Its Appli
ations (Budapest: 1970), 81{92. The \dan
ing

links" method of Se
tion 7.2.2.1 resolves this question by traversing a sear
h tree that

has only 360 nodes, given an exa
t 
over problem with 132 rows.℄

10. For example, let A = 12, K = 8, Q = 4, J = 0, � = 4, ~ = 3, } = 2, | = 1; add.

[In this 
onne
tion, orthogonal latin squares equivalent to Fig. 1 were impli
itly

present already in medieval Islami
 talismans illustrated by Ibn al-Hajj in his Kitab

Shumus al-Anwar (Cairo: 1322); he also gave a 5�5 example. See E. Doutt�e, Magie
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Ahrens

Andersen

Sauveur

transversals

Mann

e




�

pi, as sour
e of \random" data

random

Parker

Euler

Brown

Hedayat

Ganter

Mathon

Rosa

Weisner

Knuth

et Religion dans l'Afrique du Nord (Algiers: 1909), 193{194, 214, 247; W. Ahrens,

Der Islam 7 (1917), 228{238. See also an arti
le on the history of latin squares being

prepared by Lars D. Andersen.℄

11.

0

B

B

�

d
� aÆA b�B 
�C


�A b�� a
C dÆB

a�B d�C 
Æ� b
A

bÆC 

B d�A a��

1

C

C

A

.

[Joseph Sauveur presented the earliest known ex-

ample of su
h squares in M�emoires de l'A
ad�emie

Royale des S
ien
es (Paris, 1710), 92{138, x83.℄

12. If n is odd, we 
an let M

ij

= (i � j) mod n. But if n is even, there are no

transversals: For if f(t

0

+0) mod n; : : : ; (t

n�1

+n�1) mod ng is a transversal, we have

P

n�1

k=0

t

k

�

P

n�1

k=0

(t

k

+ k) (modulo n), hen
e

P

n�1

k=0

k =

1

2

n(n� 1) is a multiple of n.

13. Repla
e ea
h element l by bl=5
 to get a matrix of 0s and 1s. Let the four quarters

be named (

A

C

B

D

); then A and D ea
h 
ontain exa
tly k 1s, while B and C ea
h 
ontain

exa
tly k 0s. Suppose the original matrix has ten disjoint transversals. If k � 2, at most

four of them go through a 1 in A or D, and at most four go through a 0 in B or C. Thus

at least two of them hit only 0s in A and D, only 1s in B and C. But su
h a transversal

has an even number of 0s (not �ve), be
ause it interse
ts A and D equally often.

Similarly, a latin square of order 4m+2 with an orthogonal mate must have more

than m intruders in ea
h of its (2m+ 1)� (2m+ 1) submatri
es, under all renamings

of the elements. [H. B. Mann, Bull. Amer. Math. So
. (2) 50 (1944), 249{257.℄

14. Cases (b) and (d) have no mates. Cases (a), (
), and (e) have respe
tively 2, 6,

and 12265168(!), of whi
h the lexi
ographi
ally �rst and last are

(a)

0456987213

1305629847

2043798165

3289176504

4518263790

5167432089

6894015372

7920341658

8731504926

9672850431

;

(a)

0691534782

1308257964

2169340578

3250879416

4587902631

5412763890

6945081327

7836425109

8723196045

9074618253

;

(
)

0362498571

1408327695

2673519408

3521970846

4890253167

5736841920

6259784013

7915602384

8147036259

9084165732

;

(
)

0986271435

1354068792

2741853960

3572690814

4630789251

5218947306

6095324178

7869512043

8407136529

9123405687

;

(e)

0214365897

1025973468

2690587143

3857694201

4168730925

5473829016

6942158730

7309216584

8531402679

9786041352

;

(e)

0987645321

1795402638

2506913874

3154067289

4231850967

5348276190

6820394715

7069128543

8412739056

9673581402

:

Notes: Squares (a), (b), (
), and (d) were obtained from the de
imal digits of �, e,


, and �, by dis
arding ea
h digit that is in
onsistent with a 
ompleted latin square.

Although they aren't truly random, they're probably typi
al of 10 � 10 latin squares

in general, roughly half of whi
h appear to have orthogonal mates. Parker 
onstru
ted

square (e) in order to obtain an unusually large number of transversals; it has 5504 of

them. (Euler had studied a similar example of order 6, therefore \just missing" the

dis
overy of a 10� 10 pair.)

15. Parker was dismayed to dis
over that none of the mates of square 14(e) are

orthogonal to ea
h other. With J. W. Brown and A. S. Hedayat [J. Combinatori
s, Inf.

and System S
i. 18 (1993), 113{115℄, he later found two 10�10s that have four disjoint


ommon transversals (but not ten). [See also B. Ganter, R. Mathon, and A. Rosa,

Congressus Numerantium 20 (1978), 383{398; 22 (1979), 181{204.℄ While pursuing

an idea of L. Weisner [Canadian Math. Bull. 6 (1963), 61{63℄, the author a

identally

noti
ed some squares that 
ome even 
loser to a mutually orthogonal trio: The square

below is orthogonal to its transpose; and it has �ve diagonally symmetri
 transver-

sals, in 
ells (0; p

0

), : : : , (9; p

9

) for p

0

: : : p

9

= 0132674598, 2301457689, 3210896745,
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M
Kay

Meynert

Myrvold

Wang

Wilson

Todorov

Brualdi

Ryser

latin square

Gr�
o-Latin squares

Hebrai


Rao

4897065312, and 6528410937, whi
h are almost disjoint: They 
over 49 
ells.

L =

0

B

B

B

B

B

B

B

B

B

B

�

0234567891

3192708546

6528139407

8753241960

1689473025

4970852613

5047986132

9416320758

7361095284

2805614379

1

C

C

C

C

C

C

C

C

C

C

A

?

0

B

B

B

B

B

B

B

B

B

B

�

0368145972

2157690438

3925874160

4283907615

5712489306

6034758291

7891326054

8549061723

9406213587

1670532849

1

C

C

C

C

C

C

C

C

C

C

A

= L

T

:

Extensive 
omputations by B. D. M
Kay, A. Meynert, and W. Myrvold [J. Comb.

Designs 15 (2007), 98{119℄ prove that no 10�10 latin square with nontrivial symmetry

has two mates orthogonal to ea
h other. Three mutually orthogonal latin squares are

known to exist for all orders n > 10 [see S. M. P. Wang and R. M. Wilson, Congressus

Numerantium 21 (1978), 688; D. T. Todorov, Ars Combinatoria 20 (1985), 45{47℄.

16. See R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory (Cambridge

University Press, 1991), x8.2.

17. (a) Let there be 3n 
olumns r

j

, 


j

, v

j

for 0 � j < n, and n

2

rows; row (i; j) has

1 in 
olumns r

i

, 


j

, and v

l

, where l = L

ij

, for 0 � i; j < n.

(b) Let there be 4n

2


olumns r

ij

, 


ij

, x

ij

, y

ij

for 0 � i; j < n, and n

3

�n

2

+n rows;

row (i; j; k) has 1 in 
olumns r

ik

, 


jk

, x

ij

, and y

lk

, where l = L

ij

, for 0 � i; j; k < n

and (i = k or j > 0).

18. Given an orthogonal array A with rows A

i

for 1 � i � m, de�ne latin square

L

i

= (L

ijk

) for 1 � i � m � 2 by setting L

ijk

= A

iq

when A

(m�1)q

= j and A

mq

= k,

for 0 � j; k < n. (The value of q is uniquely determined by the values of j and k.)

Permuting the 
olumns of the array does not 
hange the 
orresponding latin squares.

This 
onstru
tion 
an also be reversed, to produ
e orthogonal arrays of order n

from mutually orthogonal latin squares of order n. In exer
ise 11, for example, we 
an

let a = � = � = 0, b = � = A = 1, 
 = 
 = B = 2, and d = Æ = C = 3, obtaining

A =

0

B

B

B

�

3012210303211230

2310102301323201

0123103223013210

0000111122223333

0123012301230123

1

C

C

C

A

:

(The 
on
ept of an orthogonal array is mathemati
ally \
leaner" than the 
on
ept

of orthogonal latin squares, be
ause it a

ounts better for the underlying symmetries.

Noti
e, for example, that an n�nmatrix L is a latin square if and only if it is orthogonal

to two parti
ular non-latin squares, namely

L ?

0

B

B

�

1 1 : : : 1

2 2 : : : 2

.

.

.

.

.

.

.

.

.

.

.

.

n n : : : n

1

C

C

A

and L ?

0

B

B

�

1 2 : : : n

1 2 : : : n

.

.

.

.

.

.

.

.

.

.

.

.

1 2 : : : n

1

C

C

A

:

Therefore Latin squares, Gr�
o-Latin squares, Hebrai
-Gr�
o-Latin squares, et
., are

equivalent to orthogonal arrays of depth 3, 4, 5, : : : . Moreover, the orthogonal arrays


onsidered here are merely the spe
ial 
ase t = 2 and � = 1 of a more general 
on
ept

of n-ary m � �n

t

arrays having \strength t" and \index �," introdu
ed by C. R. Rao
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Hedayat

Sloane

Stufken

�nite �eld

Moore

proje
tive planes

Hall

equivalen
e relation

transitive law

Bru
k

in Pro
. Edinburgh Math. So
. 8 (1949), 119{125; see the book Orthogonal Arrays by

A. S. Hedayat, N. J. A. Sloane, and J. Stufken (Springer, 1999).)

19. We 
an rearrange the 
olumns so that the �rst row is 0

n

1

n

: : : (n�1)

n

. Then we


an renumber the elements of the other rows so that they begin with 01 : : : (n�1). The

elements in ea
h remaining 
olumn must then be distin
t, in all rows but the �rst.

To a
hieve the upper bound when n = p, let ea
h 
olumn be indexed by two

numbers x and y, where 0 � x; y < p, and put the numbers y, x, (x + y) mod p,

(x+2y) mod p, : : : , (x+(p�1)y) mod p into that 
olumn. For example, when p = 5 we

get the following orthogonal array, equivalent to four mutually orthogonal latin squares:

0

B

B

B

B

�

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3

0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2

0 1 2 3 4 3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1

0 1 2 3 4 4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0

1

C

C

C

C

A

:

[Essentially the same idea works when n is a prime power, using the �nite �eld GF(p

e

);

see E. H. Moore, Ameri
an Journal of Mathemati
s 18 (1896), 264{303, x15(l). These

arrays are equivalent to �nite proje
tive planes; see Marshall Hall, Jr., Combinatorial

Theory (Blaisdell, 1967), Chapters 12 and 13.℄

20. Let ! = e

2�i=n

, and suppose a

1

: : : a

n

2 and b

1

: : : b

n

2 are the ve
tors in di�erent

rows. Then a

1

b

1

+ � � �+ a

n

2

b

n

2

=

P

0�j;k<n

!

j+k

= 0 be
ause

P

n�1

k=0

!

k

= 0.

21. (a) To show that equality-or-parallelism is an equivalen
e relation, we need to

verify the transitive law: If L kM and M k N and L 6= N , then we must have L k N .

Otherwise there would be a point p with L \N = fpg, by (ii); and p would lie on two

di�erent lines parallel to M , 
ontradi
ting (iii).

(b) Let fL

1

; : : : ; L

n

g be a 
lass of parallel lines, and assume that M is a line of

another 
lass. Then ea
h L

j

interse
ts M in a unique point p

j

; and every point of M

is en
ountered in this way, be
ause every point of the geometry lies on exa
tly one line

of ea
h 
lass, by (iii). Thus M 
ontains exa
tly n points.

(
) We've already observed that every point belongs to m lines when there are m


lasses. If lines L, M , and N belong to three di�erent 
lasses, then M and N have the

same number of points as the number of lines in L's 
lass. So there's a 
ommon line

size n, and in fa
t the total number of points is n

2

. (Of 
ourse n might be in�nite.)

22. Given an orthogonal array A of order n and depth m, de�ne a geometri
 net with

n

2

points and m 
lasses of parallel lines by regarding the 
olumns of A as points; line j

of 
lass k is the set of 
olumns where symbol j appears in row k of A.

All �nite geometri
 nets with m � 3 
lasses arise in this way. But a geometri
 net

with only one 
lass is trivially a partition of the points into disjoint subsets. A geometri


net with m = 2 
lasses has nn

0

points (x; x

0

), where there are n lines `x = 
onstant' in

one 
lass and n

0

lines `x

0

= 
onstant' in the other. [For further information, see R. H.

Bru
k, Canadian J. Math. 3 (1951), 94{107; Pa
i�
 J. Math. 13 (1963), 421{457.℄

23. (a) If d(x; y) � t and d(x

0

; y) � t and x 6= x

0

, then d(x; x

0

) � 2t. Thus a 
ode with

distan
e > 2t between 
odewords allows the 
orre
tion of up to t errors|at least in

prin
iple, although the 
omputations might be 
omplex. Conversely, if d(x; x

0

) � 2t

and x 6= x

0

, there's an element y with d(x; y) � t and d(x

0

; y) � t; hen
e we 
an't

re
onstru
t x uniquely when y is re
eived.

(b, 
) Let m = r + 2, and observe that a set of b

2

b-ary m-tuples has Hamming

distan
e � m� 1 between all pairs of elements if and only if it forms the 
olumns of a
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orthogonal array

Golomb

Posner


oding theory

majority

witness bits

Hsiao

Bossen

Chien

anagrams

Chau
er

Leighton

Gordon

b-ary orthogonal array of depth m. [See S. W. Golomb and E. C. Posner, IEEE Trans.

IT-10 (1964), 196{208. The literature of 
oding theory often denotes a 
ode C(b; n; r)

of distan
e d by the symbol (n+ r; b

n

; d)

b

. Thus, a b-ary orthogonal array of depth m

is essentially an (m; b

2

;m� 1)

b


ode.℄

24. (a) Suppose x

j

6= x

0

j

for 1 � j � l and x

j

= x

0

j

for l < j � N . We have x = x

0

if l = 0. Otherwise 
onsider the parity bits that 
orrespond to the m lines through

point 1. At most l�1 of those bits 
orrespond to lines that tou
h the points f2; : : : ; lg.

Hen
e x

0

has at least m� (l�1) parity 
hanges, and d(x; x

0

) � l+(m� (l�1)) = m+1.

(b) Let l

p1

, : : : , l

pm

be the index numbers of the lines through point p. After

re
eiving a message y

1

: : : y

N+R

, 
ompute x

p

for 1 � p � N by taking the majority

value of the m+ 1 \witness bits" fy

p0

; : : : ; y

pm

g, where y

p0

= y

p

and

y

pk

= (y

N+l

pk

+

P

fy

j

j j 6= p and point j lies on line l

pk

g)mod 2; for 1 � k � m:

This method works be
ause ea
h re
eived bit y

j

a�e
ts at most one of the witness bits.

For example, in the 25-point geometry of exer
ise 19, suppose the parity bit

x

26+5i+j

of ea
h 
odeword 
orresponds to line j of row i, for 0 � i � 5 and 0 �

j < 5; thus x

26

= x

1

� x

2

� x

3

� x

4

� x

5

, x

27

= x

6

� x

7

� x

8

� x

9

� x

10

, : : : ,

x

55

= x

5

� x

6

� x

12

� x

18

� x

24

. Given message y

1

: : : y

55

, we de
ode bit x

1

(say) by


omputing the majority of the seven bits y

1

, y

26

�y

2

�y

3

�y

4

�y

5

, y

31

�y

6

�y

11

�y

16

�y

21

,

y

36

� y

10

� y

14

� y

18

� y

22

, y

41

� y

9

� y

12

� y

20

� y

23

, y

46

� y

8

� y

15

� y

17

� y

24

,

y

51

� y

7

� y

13

� y

19

� y

25

. [Se
tion 7.1.2 explains how to 
al
ulate majority fun
tions

eÆ
iently. Noti
e that we 
an eliminate the last 10 bits if we only wish to 
orre
t up to

two errors, and the last 20 if single-error 
orre
tion is suÆ
ient. See M. Y. Hsiao, D. C.

Bossen, and R. T. Chien, IBM J. Resear
h and Development 14 (1970), 390{394.℄

25. By 
onsidering anagrams of fl; e; a; s; tg (see exer
ise 5{21), we're led to the square

stela

telas

elast

laste

astel

;

and the 
y
li
 rotations of its rows. Here telas are Spanish fabri
s; elast is a pre�x

meaning 
exible; and laste is an imperative Chau
erian verb. (Of 
ourse just about

every pronoun
eable 
ombination of �ve letters has been used to spell or misspell

something somewhere, at some point in history.)

26. \every night, young video buffs 
at
h rerun fever forty years after those

great shows first aired." [Robert Leighton, GAMES 16, 6 (De
ember 1992), 34, 47.℄

27. (0; 4; 163; 1756; 3834) for k = (1; 2; 3; 4; 5); mamma and esses give a \full house."

28. Yes, 38 pairs altogether. The \most 
ommon" solution is needs (rank 180) and

offer (rank 384). Only three 
ases di�er 
onsistently by +1 (adder beefs, sheer

tiffs, sneer toffs). Other memorable examples are ghost hints and strut rusts.

One word of the pair ends with the letter s ex
ept in four 
ases, su
h as robed spade.

[See Leonard J. Gordon, Word Ways 23 (1990), 59{61.℄

29. There are 18 palindromes, from level (rank 184) to dewed (rank 5688). Some of

the 34 mirror pairs are `devil lived', `knits stink', `smart trams', `fa
ed de
af'.

30. Among 105 su
h words in the SGB, first, below, floor, begin, 
ells, empty,

and hills are the most 
ommon; abbey and pssst are lexi
ographi
ally �rst and last.

(If you don't like pssst, the next-to-last is mossy.) Only 37 words, from me

a to

zoned, have their letters in reverse order; but they are, of 
ourse, wrong answers.
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Internet

Cohen

Horton

Strahler

poetry


omplete ternary trie

Grant

Di
tionary

Carroll

31. The middle word is the average of the other two, so the extreme words must be


ongruent mod 2; this observation redu
es the number of di
tionary lookups by a fa
tor

of about 32. There are 119 su
h triples in WORDS(5757), but only two in WORDS(2000):

marry, photo, solve; risky, tempo, vague. [Word Ways 25 (1992), 13{15.℄

32. The only reasonably 
ommon example seems to be peopleless.

33. 
hief, fight, right, whi
h, ouija, jokes, ankle, films, hymns, known, 
rops,

pique, quart, first, first, study, mauve, vowel, waxes, proxy, 
razy, pizza. (The

idea is to �nd the most 
ommon word in whi
h x is followed by (x + 1) mod 26, for

x = a (0), x = b (1), : : : , x = z (25). We also minimize the intervening distan
e, thus

preferring ba
on to the more 
ommon word bla
k. In the one 
ase where no su
h word

exists, 
razy seems most rational. See OMNI 16, 8 (May 1994), 94.)

34. The top two (and total number) in ea
h 
ategory are: pssst and pffft (2), s
hwa

and s
hmo (2), threw and throw (36), three and spree (5), whi
h and think (709),

there and these (234), their and great (291), whooo and wheee (3), words and first

(628), large and sin
e (376), water and never (1313), value and radio (84), would

and 
ould (460), house and voi
e (101), quiet and queen (25), queue only (1), ahhhh

and ankhs (4), angle and extra (20), other and after (227), agree and issue (20),

along and using (124), above and alone (92), about and again (58), adieu and aquae

(2), earth and eight (16), eagle and oun
e (8), outer and eaten (42), eerie and

audio (4), (0), ouija and aioli (2), (0), (0); years and every are the most 
ommon of

the 868 omitted words. [To �ll the three holes, Internet usage suggests ooops, ooooh,

and ooooo. See P. M. Cohen, Word Ways 10 (1977), 221{223.℄

35. Consider the 
olle
tion WORDS(n) for n = 1, 2, : : : , 5757. The illustrated trie, rooted

at s, �rst be
omes possible when n rea
hes 978 (the rank of stalk). The next root

letter to support su
h a trie is 
, whi
h a
quires enough bran
hing in its des
endants

when n = 2503 (the rank of 
raze). Subsequent breakthroughs o

ur when n = 2730

(bulks), 3999 (du
ky), 4230 (panty), 4459 (minis), 4709 (whooo), 4782 (lardy), 4824

(herem), 4840 (firma), 4924 (ridgy), 5343 (taxol).

(A breakthrough o

urs when a top-level trie a
quires Horton{Strahler number 4;

see exer
ise 7.2.1.6{124. Amusing sets of words, suggestive of a new kind of poetry, arise

also when the bran
hing is right-to-left instead of left-to-right: bla
k, sla
k, 
ra
k,

tra
k, 
li
k, sli
k, bri
k, tri
k, blank, plank, 
rank, drank, blink, 
link, brink,

drink. In fa
t, right-to-left bran
hing yields a 
omplete ternary trie with 81 leaves:

males, sales, tales, files, miles, piles, holes, : : : , tests, 
osts, hosts, posts.)

36. Denoting the elements of the 
ube by a

ijk

for 1 � i; j; k � 5, the symmetry


ondition is a

ijk

= a

ikj

= a

jik

= a

jki

= a

kij

= a

kji

. In general an n�n�n 
ube has

3n

2

words, obtained by �xing two 
oordinates and letting the third range from 1 to n;

but the symmetry 
ondition means that we need only

�

n+1

2

�

words. Hen
e when n = 5

the number of ne
essary words is redu
ed from 75 to 15. [Je� Grant was able to �nd 75

suitable words in the Oxford English Di
tionary ; see Word Ways 11 (1978), 156{157.℄

Changing (stove; event) to (store; ere
t) or (stole; ele
t) gives two more.

37. The densest part of the graph, whi
h we might 
all its \bare 
ore," 
ontains the

verti
es named bares and 
ores, whi
h ea
h have degree 25.

38. tears ! raise ! aisle ! smile; the se
ond word might also be reals. [Going

from tears to smile as in (11) was one of Lewis Carroll's �rst �ve-letter examples. He

would have been delighted to learn that the dire
ted rule makes it more diÆ
ult to go

from smile to tears, be
ause four steps are needed in that dire
tion.℄
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Kempe

planar

Hamiltonian

girth

shrink any edge

puzzle

utilities

Dudeney


law

39. Always spanning, never indu
ed.

40. (a) 2

e

, (b) 2

n

, one for ea
h subset of E or V .

41. (a) n = 1 and n = 2; P

0

is unde�ned. (b) n = 0 and n = 3.

42. G has 65/2 edges (hen
e it doesn't exist).

43. Yes: The �rst three are isomorphi
 to Fig. 2(e). [The left-hand diagram is, in fa
t,

identi
al to the earliest known appearan
e of the Petersen graph in print: See A. B.

Kempe, Philosophi
al Transa
tions 177 (1886), 1{70, espe
ially Fig. 13 in x59.℄ But

the right-hand graph is de�nitely di�erent; it is planar, Hamiltonian, and has girth 4.

44. Any automorphism must take a 
orner point into a 
orner point, be
ause three

distin
t paths of length 2 
an be found only between 
ertain pairs of non-
orner points.

Therefore the graph has only the eight symmetries of C

4

.

45. All edges of this graph 
onne
t verti
es of the same row or adja
ent rows. Therefore

we 
an use the 
olors 0 and 2 alternately in even-numbered rows, 1 and 3 alternately in

odd-numbered rows. The neighbors of NV form a 5-
y
le, hen
e four 
olors are ne
essary.

46. (a) Every vertex has degree � 2, and its neighbors have a well-de�ned 
y
li
 order


orresponding to the in
oming lines. If u���v and u���w, where v and w are 
y
li
ally


onse
utive neighbors of u, we must have v���w. Thus all points in the vi
inity of any

vertex u belong to a unique triangular region.

(b) The formula holds when n = 3. If n > 3, shrink any edge to a point; this

transformation removes one vertex and three edges. (If u���v shrinks, suppose it was

part of the triangles x��� u��� v ��� x and y ��� u��� v ��� y. We lose vertex v and

edges fx���v; u���v; y���vg; all other edges of the form w���v be
ome w���u.)

47. A planar diagram would divide the plane into regions, with either 4 or 6 verti
es in

the boundary of ea
h region (be
ause K

3;3

has no odd 
y
les). If there are f

4

and f

6

of

ea
h kind, we must have 4f

4

+6f

6

= 18, sin
e there are 9 edges; hen
e (f

4

; f

6

) = (3; 1)

or (0; 3). We 
ould also triangulate the graph by adding f

4

+3f

6

more edges; but then

it would have at least 15 edges, 
ontradi
ting exer
ise 46.

[The fa
t that K

3;3

is nonplanar goes ba
k to a puzzle about 
onne
ting three

houses to three utilities (water, gas, and ele
tri
ity), without 
rossing pipes. Its origin

is unknown; H. E. Dudeney 
alled it \an
ient" in Strand 46 (1913), 110.℄

48. If u, v, w are verti
es and u��� v, we must have d(w; u) 6� d(w; v) (modulo 2);

otherwise shortest paths from w to u and from w to v would yield an odd 
y
le. After

w is 
olored 0, the pro
edure therefore assigns the 
olor d(w; v) mod 2 to ea
h new

un
olored vertex v that is adja
ent to a 
olored vertex u; and every vertex v with

d(w; v) <1 is 
olored before a new w is 
hosen.

49. There are only three: K

4

, K

3;3

, and (whi
h is C

6

).

50. The graph must be 
onne
ted, be
ause the number of 3-
olorings is divisible by

3

r

when there are r 
omponents. It must also be 
ontained in a 
omplete bipartite

graph K

m;n

, whi
h 
an be 3-
olored in 3(2

m

+ 2

n

� 2) ways. Deleting edges from

K

m;n

does not de
rease the number of 
olorings; hen
e 2

m

+ 2

n

� 2 � 8, and we have

fm;ng = f1; 1g, f1; 2g, f1; 3g, or f2; 2g. So the only possibilities are the 
law K

1;3

and

the path P

4

.

51. A 4-
y
le p

1

��� L

1

��� p

2

��� L

2

��� p

1

would 
orrespond to two distin
t lines

fL

1

; L

2

g with two 
ommon points fp

1

; p

2

g, 
ontradi
ting (ii). So the girth is at least 6.

If there's only one 
lass of parallel lines, the girth is 1; if there are two 
lasses, it

is 8. (See answer 22.) Otherwise we 
an �nd a 6-
y
le by making a triangle from three

lines that are 
hosen from di�erent 
lasses.
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line graph

bipartite graph

J

n

strongly 
onne
ted

straight insertion sorting

R�edei

Szele

Landau

Harary

linear subgraphs


omplete bigraph

52. If the diameter is d and the girth is g, then d � bg=2
, unless g =1.

53. happy (whi
h is 
onne
ted to tears and sweat, but not to world).

54. (a) It's a single, highly 
onne
ted 
omponent. (In
identally, this graph is the

line graph of the bipartite graph in whi
h one part 
orresponds to the initial letters

fA; C; D; F; G; : : : ; Wg and the other to the �nal letters fA; C; D; E; H; : : : ; Zg.)

(b) Vertex WY is isolated. The other verti
es with in-degree zero, namely FL, GA,

PA, UT, WA, WI, and WV, form strong 
omponents by themselves; they all pre
ede a giant

strong 
omponent, whi
h is followed by ea
h of the remaining single-vertex strong


omponents with out-degree zero: AZ, DE, KY, ME, NE, NH, NJ, NY, OH, TX.

(
) Now the strong 
omponent fGUg pre
edes fUTg; NH, OH, PA, WA, WI, and WV join

the giant strong 
omponent; fFMg pre
edes it; fAEg and fWYg follow it.

55.

�

N

2

�

�

�

n

1

2

�

� � � � �

�

n

k

2

�

, where N = n

1

+ � � �+ n

k

.

56. True. Note that J

n

is simple, but it doesn't 
orrespond to any multigraph.

57. False, in the 
onne
ted digraph u��!w ��v. (But u and v are in the same strongly


onne
ted 
omponent if and only if d(u; v) <1 and d(v; u) <1; see Se
tion 2.3.4.2.)

58. Ea
h 
omponent is a 
y
le whose order is at least (a) 3 (b) 1.

59. (a) By indu
tion on n, we 
an use straight insertion sorting: Suppose v

1

��!� � ���!

v

n�1

. Then either v

n

��! v

1

or v

n�1

��! v

n

or v

k�1

��! v

n

��! v

k

, where k is minimum

su
h that v

n

��!v

k

. [L. R�edei, A
ta litterarum a
 s
ientiarum 7 (Szeged, 1934), 39{43.℄

(b) 15: 01234, 02341, 02413, and their 
y
li
 shifts. [The number of su
h oriented

paths is always odd; see T. Szele, Matematikai �es Fizikai Lapok 50 (1943), 223{256.℄

(
) Yes. (By indu
tion: If there's only one pla
e to insert v

n

as in part (a), the

tournament is transitive.)

60. Set A = fx j u��!xg, B = fx j x��!vg, C = fx j v��!xg. If v =2 A and A\B = ;

we have jAj+ jBj = jA[Bj � n�2, be
ause u =2 A[B and v =2 A[B. But jBj+ jCj =

n� 1; hen
e jAj < jCj. [H. G. Landau, Bull. Math. Biophysi
s 15 (1953), 148.℄

61. 1��!1, 1��!2, 2��!2; then A =

�

1 1

0 1

�

and A

k

=

�

1 k

0 1

�

for all integers k.

62. (a) Suppose the verti
es are f1; : : : ; ng. Ea
h of the n! terms a

1p

1

: : : a

np

n

in the

expansion of the permanent is the number of spanning permutation digraphs that have

ar
s j��!p

j

. (b) A similar argument shows that detA is the number of even spanning

permutation digraphs minus the number of odd ones. [See F. Harary, SIAM Review 4

(1962), 202{210, where permutation digraphs are 
alled \linear subgraphs."℄

63. Let v be any vertex. If g = 2t+1, at least d(d�1)

k�1

verti
es x satisfy d(v; x) = k,

for 1 � k < t. If g = 2t+ 2 and v

0

is any neighbor of v, there also are at least (d� 1)

t

verti
es x for whi
h d(v; x) = t+ 1 and d(v

0

; x) = t.

64. To a
hieve the lower bound in answer 63, every vertex v must have degree d, and

the d neighbors of v must all be adja
ent to the remaining d� 1 verti
es. This graph

is, in fa
t, K

d;d

.

65. (a) By answer 63, G must be regular of degree d, and there must be exa
tly one

path of length � 2 between any two distin
t verti
es.

(b) We may take �

1

= d, with x

1

= (1 : : : 1)

T

. All other eigenve
tors satisfy

Jx

j

= (0 : : : 0)

T

; hen
e �

2

j

+ �

j

= d� 1 for 1 < j � N .

(
) If �

2

= � � � = �

m

= (�1+

p

4d�3)=2 and �

m+1

= � � � = �

N

= (�1�

p

4d�3)=2,

we must have m� 1 = N �m. With this value we �nd �

1

+ � � �+ �

N

= d� d

2

=2.
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Ho�man

Singleton

Brown

As
hba
her

automorphisms

permutation matri
es

VERTICES(g)

N(g)

(d) If 4d� 3 = s

2

and m is as in (
), the eigenvalues sum to

s

2

+ 3

4

+ (m� 1)

s� 1

2

�

�

(s

2

+ 3)

2

16

+ 1�m

�

s+ 1

2

;

whi
h is 15/32 plus a multiple of s. Hen
e s must be a divisor of 15.

[These results are due to A. J. Ho�man and R. R. Singleton, IBM J. Resear
h and

Development 4 (1960), 497{504, who also proved that the graph for d = 7 is unique.℄

66. Denote the 50 verti
es by [a; b℄ and (a; b) for 0 � a; b < 5, and de�ne three kinds

of edges, using arithmeti
 mod 5:

[a; b℄��� [a+ 1; b℄; (a; b)���(a+ 2; b); (a; b)��� [a+ b
; 
℄ for 0 � a; b; 
 < 5:

[See W. G. Brown, Canadian J. Math. 19 (1967), 644{648; J. London Math. So
. 42

(1967), 514{520. Without the edges of the �rst two kinds, the graph has girth 6 and 
or-

responds to a geometri
 net as in exer
ise 51, using the orthogonal array in answer 19.℄

67. Certain possibilities have been ruled out by Mi
hael As
hba
her in Journal of

Algebra 19 (1971), 538{540.

68. If G has s automorphisms, it has n!=s adja
en
y matri
es, be
ause there are s

permutation matri
es P su
h that P

�

AP = A.

69. First set IDEG(v)  0 for all verti
es v. Then perform (31) for all v, also setting

u TIP(a) and IDEG(u) IDEG(u) + 1 in the se
ond line of that mini-algorithm.

To do something \for all v" using the SGB format, �rst set v  VERTICES(g);

then while v < VERTICES(g) + N(g), do the operation and set v  v + 1.

70. Step B1 is performed on
e (but it takes O(n) units of time). Steps (B2, B3, : : : ,

B8) are performed respe
tively (n+1; n; n;m+n;m;m; n) times, ea
h with O(1) 
ost.

71. Many 
hoi
es are possible. Here we use 32-bit pointers, all relative to a symboli


address Pool, whi
h lies in the Data_Segment. The following de
larations provide one

way to establish 
onventions for dealing with basi
 SGB data stru
tures.

VSIZE IS 32 ;ASIZE IS 24 Node sizes

ARCS IS 0 ;COLOR IS 8 ;LINK IS 12 O�sets of vertex �elds

TIP IS 0 ;NEXT IS 4 O�sets of ar
 �elds

ar
s GREG Pool+ARCS ;
olor GREG Pool+COLOR ;link GREG Pool+LINK

tip GREG Pool+TIP ;next GREG Pool+NEXT

u GREG ;v GREG ;w GREG ;s GREG ;a GREG ;mone GREG -1

AlgB BZ n,Su

ess Exit if the graph is null.

MUL $0,n,VSIZE B1. Initialize.

ADDU v,v0,$0 v  v

0

+ n.

SET w,v0 w  v

0

.

1H STT mone,
olor,w COLOR(w) �1.

ADDU w,w,VSIZE w  w + 1.

CMP $0,w,v

PBNZ $0,1B Repeat until w = v.

0H SUBU w,w,VSIZE w  w � 1.

3H LDT $0,
olor,w B3. Color w if ne
essary.

PBNN $0,2F To B2 if COLOR(w) � 0.

STCO 0,link,w COLOR(w) 0, LINK(w) �.

SET s,w s w.

4H SET u,s B4. Sta
k) u. Set u s.
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utility �eld

J

n

LDTU s,link,s s LINK(s).

LDT $1,
olor,u

NEG $1,1,$1 $1 1� COLOR(u).

LDTU a,ar
s,u a ARCS(u).

5H BZ a,8F B5. Done with u? To B8 if a = �.

5H LDTU v,tip,a v  TIP(a).

6H LDT $0,
olor,v B6. Pro
ess v.

CMP $2,$0,$1 (Here the program is slightly 
lever)

PBZ $2,7F To B7 if COLOR(v) = 1� COLOR(u).

BNN $0,Failure Fail if COLOR(v) = COLOR(u).

STT $1,
olor,v COLOR(v) 1� COLOR(u).

STTU s,link,v LINK(v) s.

SET s,v s v.

7H LDTU a,next,a B7. Loop on a. Set a NEXT(a).

PBNZ a,5B To B5 if a 6= �.

8H PBNZ s,4B B8. Sta
k nonempty? To B4 if s 6= �.

2H CMP $0,w,v0 B2. Done?

PBNZ $0,0B If w 6= v

0

, de
rease w and go to B3.

Su

ess LOC � (Su

essful termination)

72. (a) This 
ondition 
learly remains invariant as verti
es enter or leave the sta
k.

(b) Vertex v has been 
olored but not yet explored, be
ause the neighbors of every

explored vertex have the proper 
olor.

(
) Just before setting s  v in step B6, set PARENT(v)  u, where PARENT is

a new utility �eld. And just before terminating unsu

essfully in that step, do the

following: \Repeatedly output NAME(u) and set u PARENT(u), until u = PARENT(v);

then output NAME(u) and NAME(v)."

73. K

10

. (And random graph(10; 100; 0; 1; 1; 0; 0; 0; 0; 0) is J

10

.)

74. badness has out-degree 22; no other verti
es have out-degree > 20.

75. Let the parameters (n

1

; n

2

; n

3

; n

4

; p; w; o) be respe
tively (a) (n; 0; 0; 0;�1; 0; 0);

(b) (n; 0; 0; 0; 1; 0; 0); (
) (n; 0; 0; 0; 1; 1; 0); (d) (n; 0; 0; 0;�1; 0; 1); (e) (n; 0; 0; 0; 1; 0; 1);

(f) (n; 0; 0; 0; 1; 1; 1); (g) (m;n; 0; 0; 1; 0; 0); (h) (m;n; 0; 0; 1; 2; 0); (i) (m;n; 0; 0; 1; 3; 0);

(j) (m;n; 0; 0;�1; 0; 0); (k) (m;n; 0; 0; 1; 3; 1); (l) (n; 0; 0; 0; 2; 0; 0); (m) (2;�n; 0; 0;1; 0; 0).

76. Yes, for example from C

1

and C

2

in answer 75(
). (But no self-loops 
an o

ur

when p < 0, be
ause ar
s x��!y = x+ kÆ are generated for k = 1, 2, : : : until y is out

of range or y = x.)

77. Suppose x and y are verti
es with d(x; y) > 2. Thus x /���y; and if v is any other

vertex we must have either v /��� x or v /��� y. These fa
ts yield a path of length at

most 3 in G between any two verti
es u and v.

78. (a) The number of edges,

�

n

2

�

=2, must be an integer. The smallest examples are

K

0

, K

1

, P

4

, C

5

, and .

(b) If q is any odd number, we have u���v if and only if '

q

(u) /���'

q

(v). Therefore

'

q


annot have two �xed points, nor 
an it 
ontain a 2-
y
le.

(
) Su
h a permutation of V also de�nes a permutation b' of the edges of K

n

,

taking fu; vg 7! b' = f'(u); '(v)g, and it's easy to see that the 
y
le lengths of b' are

all multiples of 4. If b' has t 
y
les, we obtain 2

t

self-
omplementary graphs by painting

the edges of ea
h 
y
le with alternating 
olors.
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Sa
hs

Ringel

Sa
hs

Ringel


onverse

simple digraphs

self-
onverse

isolated verti
es

Petersen graph

Kowalewski

Menon

triangular grid

Brooks


omplete graph

Petersen

diameter

wheel

(d) In this 
ase ' has a unique �xed point v, and G

0

= Gnv is self-
omplementary.

Suppose ' has r 
y
les in addition to (v); then b' has r 
y
les involving the edges that

tou
h vertex v, and there are 2

r

ways to extend G

0

to a graph G.

[Referen
es: H. Sa
hs, Publi
ationes Mathemati
� 9 (Debre
en, 1962), 270{288;

G. Ringel, Ar
hiv der Mathematik 14 (1963), 354{358.℄

79. Solution 1, by H. Sa
hs, with ' = (1 2 : : : 4k): Let u��� v when u > v > 0 and

u+ v mod 4 � 1; also 0���v when v mod 2 = 0.

Solution 2, with ' = (a

1

b

1




1

d

1

) : : : (a

k

b

k




k

d

k

), where a

j

= 4j � 3, b

j

= 4j � 2,




j

= 4j � 1, and d

j

= 4j: Let 0 ��� b

j

��� a

j

��� 


j

��� d

j

��� 0 for 1 � j � k, and

a

i

���a

j

���b

i

���d

j

���


i

���


j

���d

i

���b

j

���a

i

, for 1 � i < j � k.

80. (Solution by G. Ringel.) Let ' be as in answer 79, solution 2. Let E

0

be the 3k

edges b

j

���a

j

���


j

���d

j

for 1 � j � k; let E

1

be the 8

�

k

2

�

edges between fa

i

; b

i

; 


i

; d

i

g

and fb

j

; d

j

g for 1 � i < j � k; let E

2

be the 8

�

k

2

�

edges between fa

i

; b

i

; 


i

; d

i

g and

fa

j

; 


j

g for 1 � i < j � k. In 
ase (a), E

0

[ E

1

gives diameter 2; E

0

[ E

2

gives diam-

eter 3. Case (b) is similar, but we add 2k edges b

j

���0���d

j

to E

1

, a

j

���0���


j

to E

2

.

81. C~

3

, K~

3

, D = , and D

T

= . (The 
onverse D

T

of a digraph D

is obtained by reversing the dire
tion of its ar
s. There are 16 nonisomorphi
 simple

digraphs of order 3 without loops, 10 of whi
h are self-
onverse, in
luding C~

3

and K~

3

.)

82. (a) True, by de�nition. (b) True: If every vertex has d neighbors, every edge

u���v has d � 1 neighbors u���w and d� 1 neighbors w���v. (
) True: fa

i

; b

j

g has

m+ n� 2 neighbors, for 0 � i < m and 0 � j < n. (d) False: L(K

1;1;2

) has 5 verti
es

and 8 edges. (e) True. (f) True: The only nonadja
ent edges are f0; 1g /��� f2; 3g,

f0; 2g /��� f1; 3g, f0; 3g /��� f1; 2g. (g) True, for all n > 0. (h) False, unless G has no

isolated verti
es.

83. It is the Petersen graph. [A. Kowalewski, Sitzungsberi
hte der Akademie der

Wissens
haften in Wien, Mathematis
h-Nat. Klasse, Abteilung IIa, 126 (1917), 67{90.℄

84. Yes: Let '(fa

u

; b

v

g) = fa

(u+v) mod 3

; b

(u�v) mod 3

g for 0 � u; v < 3.

85. Let the vertex degrees be fd

1

; : : : ; d

n

g. Then G has

1

2

(d

1

+ � � � + d

n

) edges, and

L(G) has

1

2

(d

1

(d

1

�1)+ � � �+d

n

(d

n

�1)). Thus G and L(G) both have exa
tly n edges

if and only if (d

1

�2)

2

+ � � �+(d

n

�2)

2

= 0. Consequently exer
ise 58 gives the answer.

[See V. V. Menon, Canadian Math. Bull. 8 (1965), 7{15.℄

86. If G = then G = = L(G).

87. (a) Yes, easily. [In fa
t, R. L. Brooks has proved that every 
onne
ted graph with

maximum vertex degree d > 2 is d-
olorable, ex
ept for the 
omplete graph K

d+1

; see

Pro
. Cambridge Phil. So
. 37 (1941), 194{197.℄

(b) No. There's essentially only one way to 3-
olor the edges of the outer 5-
y
le

in Fig. 2(e); this for
es a 
on
i
t on the inner 5-
y
le. [Petersen proved this in 1898.℄

88. One 
y
le doesn't use the 
enter vertex, and there are (n�1)(n�2) 
y
les that do

(namely, one for every ordered pair of distin
t verti
es on the rim). We don't 
ount C

0

.

89. Both sides equal

 

A O O

O B O

O O C

!

,

 

A J J

J B J

J J C

!

,

 

A J J

O B J

O O C

!

,

 

A O O

J B O

J J C

!

, respe
tively.

90. K

4

and K

4

; K

1;1;2

and K

1;1;2

; K

2;2

= C

4

and K

2;2

; K

1;3

and K

1;3

; K

1

� K

1;2

and its 
omplement; all graphs K

�

are 
ographs by (47). Missing is P

4

= P

4

. (All


onne
ted subgraphs of a 
ograph have diameter � 2; W

5

is a 
ograph, but not W

6

.)
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Mnemoni
s

notations

Ne�set�ril

graph produ
ts

digraphs

multigraphs

simple digraphs

Krone
ker produ
t

Hensel

Zehfuss

Hurwitz


omplementation

line graph

distributive laws

Wei
hsel

91. (a) ; (b) ; (
) ; (d) ; (e) ; (f) ; (g) . (In general we

have K

2

4H = (K

2

H) [ (K

2


H), and K

2

ÆH = H���H. Thus the 
oin
iden
es

K

2

4H = K

2

H and K

2

ÆH = K

2

�H o

ur if and only if H is a 
omplete graph.)

Mnemoni
s: Our notations G H and G�H ni
ely mat
h diagrams (a) and (
),

as suggested by J. Ne�set�ril, Le
ture Notes in Comp. S
i. 118 (1981), 94{102. His

analogous re
ommendation to write G � H for (b) is also tempting; but it wasn't

adopted here, be
ause hundreds of authors have used G�H to denote G H.

92. (a) ; (b) ; (
) ; (d) ; (e) .

93. K

m

�K

n

= K

m

ÆK

n

�

=

K

mn

.

94. No; they're indu
ed subgraphs of K

26

K

26

K

26

K

26

K

26

.

95. (a) d

u

+d

v

. (b) d

u

d

v

. (
) d

u

d

v

+d

u

+d

v

. (d) d

u

(n�d

v

)+(m�d

u

)d

v

. (e) d

u

n+d

v

.

96. (a)A B = A
I+I
B. (b)A�B = A B+A
B. (
)A4B = A
J+J
B�2A
B.

(d) AÆB = A
J+I
B. (Formulas (a), (b), and (d) de�ne graph produ
ts of arbitrary

digraphs and multigraphs. Formula (
) is valid in general for simple digraphs; but

negative entries 
an o

ur when A and B 
ontain values > 1.)

Histori
al notes: The dire
t produ
t of matri
es is often 
alled the Krone
ker

produ
t, be
ause K. Hensel [Crelle 105 (1889), 329{344℄ said he had heard it in Kro-

ne
ker's le
tures; however, Krone
ker never a
tually published anything about it. Its

�rst known appearan
e was in a paper by J. G. Zehfuss [Zeits
hrift f�ur Math. und Physik

3 (1858), 298{301℄, who proved that det(A
B) = (detA)

n

(detB)

m

when m = m

0

and

n = n

0

. The basi
 formulas (A
B)

T

= A

T


B

T

, (A
B)(A

0


B

0

) = AA

0


BB

0

, and

(A
 B)

�1

= A

�1


 B

�1

are due to A. Hurwitz [Math. Annalen 45 (1894), 381{404℄.

97. Operations on adja
en
y matri
es prove that (G�G

0

) H = (G H)� (G

0

H);

(G � G

0

)�H = (G�H) � (G

0

�H); (G � G

0

) Æ H = (G Æ H) � (G

0

Æ H). Sin
e

G H

�

=

H G, G
H

�

=

H 
G, and G�H

�

=

H�G, we also have right-distributive

laws G (H � H

0

)

�

=

(G H) � (G H

0

); G 
 (H � H

0

)

�

=

(G 
 H) � (G 
 H

0

);

G�(H�H

0

)

�

=

(G�H)� (G�H

0

). The lexi
ographi
 produ
t satis�es G ÆH = GÆH;

alsoK

m

ÆH = H���� � ����H, hen
e K

m

ÆK

n

= K

n;:::;n

. Furthermore GÆK

n

= G�K

n

;

K

m


K

n

= K

m

K

n

= L(K

m;n

).

98. There are kl 
omponents (be
ause of the distributive laws in the previous exer
ise,

and the fa
ts that G H and G�H are 
onne
ted when G and H are 
onne
ted).

99. Every path from (u; v) to (u

0

; v

0

) in G H must use at least d

G

(u; u

0

) \G-steps"

and at least d

H

(v; v

0

) \H-steps"; and that minimum is a
hievable. Similar reasoning

shows that d

G�H

((u; v); (u

0

; v

0

)) = max(d

G

(u; u

0

); d

H

(v; v

0

)).

100. If G and H are 
onne
ted, and if ea
h of them has at least two verti
es, G 
H

is dis
onne
ted if and only if G and H are bipartite. The \if" part is easy; 
onversely,

if there's an odd 
y
le in G, we 
an get from (u; v) to (u

0

; v

0

) as follows: First go to

(u

00

; v

0

), where u

00

is any vertex of G that happens to be expedient. Then walk an even

number of steps in G from u

00

to u

0

, while alternating in H between v

0

and one of its

neighbors. [P. M. Wei
hsel, Pro
. Amer. Math. So
. 13 (1962), 47{52.℄

101. Choose verti
es u and v with maximum degree. Then d

u

+ d

v

= d

u

d

v

by

exer
ise 95; so either G = H = K

1

, or d

u

= d

v

= 2. In the latter 
ase, G = P

m

or C

m

, and H = P

n

or C

n

. But G H is 
onne
ted, so G or H must be nonbipartite,

say G. Then G H is nonbipartite, so H must also be nonbipartite; thus G = C

m

and H = C

n

, with m and n both odd. The shortest 
y
le in C

m

C

n

has length

min(m;n); in C

m


 C

n

it has length max(m;n); hen
e m = n. Conversely, if n � 3
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Miller

planar

Erd}os

Gallai

automorphism

is odd, we have C

n

C

n

�

=

C

n


 C

n

, under the isomorphism that takes (u; v) 7!

((u + v) mod n; (u � v) mod n) for 0 � u; v < n. [D. J. Miller, Canadian J. Math. 20

(1968), 1511{1521.℄

102. P

m

�P

n

. (It is planar only when min(m;n) � 2 or m = n = 3.)

103.

1 2 3 4 5 7

2 1 3 4 6 8

3 1 2 5 6 8

4 1 2 5 6

5 3 4 1 7

6 2 3 4

7 5 1

8 2 3

1 2 3 4 5 6 7 8 9

2 1 3 4 6 8 9

3 1 2 5 6 8 9

4 1 2 5 7

5 3 4 1 7

6 2 3 1 7

7 4 5 6 1

8 2 3 1 9

9 8 2 3 1

104. Edges must be 
reated in a somewhat 
ir
uitous order, to maintain the tableau

shape. Variables r and i mark the starting and ending row in 
olumn t. For example,

the se
ond part of exer
ise 103 begins with i  1, t  8, r  1; then 9��� 1, i  2,

t 6, r  3; then 9���3, 9���2, i 4, t 4, r  8; then 9���8.

105. Noti
e that d

k

� k if and only if 


k

� k. When d

k

� k we have




1

+ � � �+ 


k

= k

2

+min(k; d

k+1

) + min(k; d

k+2

) + � � �+min(k; d

n

);

therefore the 
ondition d

1

+ � � �+ d

k

� 


1

+ � � �+ 


k

� k is equivalent to

d

1

+ � � �+ d

k

� f(k); where f(k) = k(k�1) + min(k; d

k+1

) + � � �+min(k; d

n

). (�)

If k � s we have f(k + 1) � f(k) = 2k � d

k+1

� d

k+1

; hen
e (�) holds for 1 � k � n

if and only if it holds for 1 � k � s. Condition (�) was dis
overed by P. Erd}os and

T. Gallai [Matematikai Lapok 11 (1960), 264{274℄. It is obviously ne
essary, if we


onsider the edges between f1; : : : ; kg and fk+1; : : : ; ng.

Let a

k

= d

1

+ � � �+ d

k

� 


1

�� � �� 


k

+ k, and suppose that a

k

> 0 for some k � s

after steps H3 and H4 have a
ted. Let A

j

, C

j

, D

j

, N , and S be the numbers that


orrespond to a

j

, 


j

, d

j

, n, and s before steps H3 and H4; thus N = n + 1, D

j

=

d

j

+ (0 or 1), et
. We want to prove that A

K

> 0 for some K � S.

Steps H3 and H4 have removed the bottommost q 
ells in 
olumn t, for some

t � S, together with the rightmost 
ells in rows 1 through p, where q + p = D

N

. Thus

A

j

= a

j

for 1 � j � p; furthermore A

j

= a

j

when j � C

t

.

Let k be minimal with a

k

> 0, and let d

k

= d; noti
e that 


k

� d. If d > t we have

k � p, hen
e A

k

= a

k

> 0. Therefore we may assume that d = t� (0 or 1), and D

k

= t.

If k < j � C

t

we have d

j

� D

j

� 1 = t� 1 � d� 1 � 


k

� 1 � 


j

� 1. Therefore

A

K

= a

K

� a

k

when K = C

t

; we may assume that C

t

> S.

Now D

S

= D

S+1

= t, so S = t. Also k = t; otherwise 


k

� S + 1 > t � d.

Therefore s = S and d = t = 


t

. Further analysis shows that the only possibility with

A

t

� 0 is D

j

= t+ [j� t℄ for 1 � j � N = t+ 2. Algorithm H does indeed 
hange this

\good" sequen
e into a \bad" one; but D

1

+ � � �+D

N

= t

2

+ 3t� 1 is odd.

106. False in the trivial 
ases when d � 1 and n � d+ 2. Otherwise true: In fa
t, the

�rst n� 1 edges generated in step H4 
ontain no 
y
les, so they form a spanning tree.

107. The permutation ' of exer
ise 78 takes a vertex of degree d into a vertex of degree

n�1�d. And '

2

is an automorphism that pairs up two verti
es of equal degree, ex
ept

for a possible �xed point of degree (n� 1)=2.

(Conversely, a somewhat intri
ate extension of Algorithm H will 
onstru
t a self-


omplementary graph from every graphi
al sequen
e that satis�es these 
onditions,
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Clapham

Kleitman

majorized


onjugate partition

Fulkerson

Wang

Kleitman

vertex 
onne
tivity

Erd}os

Kelly

Murphy's Law

loop

multihypergraph

adja
en
y matrix

line graph

degree

provided that d

(n�1)=2

= (n � 1)=2 when n is odd. See C. R. J. Clapham and D. J.

Kleitman, J. Combinatorial Theory B20 (1976), 67{74.)

108. We may assume that d

+

1

� � � � � d

+

n

; the in-degrees d

�

k

need not be in any

parti
ular order. Apply Algorithm H to the sequen
e d

1

: : : d

n

= d

+

1

: : : d

+

n

, but with

the following 
hanges: Step H2 be
omes \[Done?℄ Terminate su

essfully if d

1

= n = 0;

terminate unsu

essfully if d

1

> n." After setting i, t, and r in step H3, terminate

unsu

essfully if d

�

n

> 


1

; otherwise do step H4 for 1 � j � d

�

n

, then set n n�1 and

return to H2. In step H5, omit \


j

 


j

� 1," and 
reate the ar
 k��!n instead of the

edge k���n. An argument like Lemma M and Corollary H justi�es this approa
h.

(Exer
ise 7.2.1.4{57 proves that su
h digraphs exist if and only if d

�

1

+ � � �+d

�

n

=

d

+

1

+ � � � + d

+

n

and d

�

1

: : : d

�

n

= fd

0

1

; : : : ; d

0

n

g, where d

0

1

� � � � � d

0

n

and d

0

1

: : : d

0

n

is

majorized by the 
onjugate partition 


1

: : : 


n

= (d

+

1

: : : d

+

n

)

T

. The variant where loops

v��!v are forbidden is harder; see D.R. Fulkerson, Pa
i�
 J. Math. 10 (1960), 831{836.)

109. It's the same as exer
ise 108, if we put d

+

k

= d

k

[k�m℄ and d

�

k

= d

k

[k>m℄.

110. There are p verti
es of degree d = d

1

and q verti
es of degree d�1, where p+q = n.

Case 1, d = 2k + 1. Make u ��� v whenever (u � v) mod n 2 f2; 3; : : : ; k + 1;

n� k � 1; : : : ; n� 3; n� 2g; also add the p=2 edges 1���2, 3���4, : : : , (p�1)���p.

Case 2, d = 2k. Make u��� v whenever (u � v) mod n 2 f2; 3; : : : ; k; n � k; : : : ;

n � 3; n � 2g; also add the edges 1��� 2, : : : , (q�1)��� q, as well as the path or 
y
le

(q = 0? n: q)��� (q+1)��� � � � ��� (n�1)��� n. [D. L. Wang and D. J. Kleitman, in

Networks 3 (1973), 225{239, have proved that su
h graphs are highly 
onne
ted.℄

111. Suppose N = n+n

0

and V

0

= fn+1; : : : ; Ng. We want to 
onstru
t e

k

= d� d

k

edges between k and V

0

, and additional edges within V

0

, so that ea
h vertex of V

0

has

degree d. Let s = e

1

+ � � �+ e

n

. This task is possible only if (i) n

0

� max(e

1

; : : : ; e

n

);

(ii) n

0

d � s; (iii) n

0

d � s+ n

0

(n

0

� 1); and (iv) (n+ n

0

)d is even.

Su
h edges do exist whenever n

0

satis�es (i){(iv): First, s suitable edges be-

tween V and V

0


an be 
reated by 
y
li
ally 
hoosing endpoints (n+1; n+2; : : : ; n+n

0

;

n+1; : : : ), be
ause of (i). This pro
ess assigns either bs=n

0


 or ds=n

0

e edges to ea
h

vertex of V

0

; we have ds=n

0

e � d by (ii), and d � bs=n

0


 � n

0

� 1 by (iii). Therefore

the additional edges needed inside V

0

are 
onstru
tible by exer
ise 110 and (iv).

The 
hoi
e n

0

= n always works. Conversely, if G = K

n

(V ) n f1���2g, 
ondition

(iii) requires n

0

� n when n � 4. [P. Erd}os and P. Kelly, AMM 70 (1963), 1074{1075.℄

112. The uniquely best triangle in the miles data is

Saint Louis, MO

748

��� Toronto, ON

746

��� Winston-Salem, NC

748

��� Saint Louis, MO.

113. By Murphy's Law, it has n rows and m 
olumns; so it's n�m, not m� n.

114. A loop in a multigraph is an edge fa; ag with repeated verti
es, and a multigraph

is a 2-uniform hypergraph. Thus we should allow the in
iden
e matrix of a general hy-

pergraph to have entries greater than 1 when an edge 
ontains a vertex more than on
e.

(A pedant would probably 
all this a \multihypergraph.") With these 
onsiderations

in mind, the in
iden
e matrix and bipartite graph 
orresponding to (26) are

�

210000

011100

001122

�

; :

115. The element in row e and 
olumn f of B

T

B is

P

v

b

ve

b

vf

; so B

T

B is 2I plus the

adja
en
y matrix of L(G). Similarly, BB

T

is D plus the adja
en
y matrix of G, where

D is the diagonal matrix with d

vv

= degree of v. (See exer
ises 2.3.4.2{18, 19, and 20.)
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partitions

bipartite graph

hyperar
s

proje
tive plane

bipartite hypergraph

latin squares

Chv�atal graph

Brinkmann

Meringer

Gr�unbaum

Vesztergombi

116. K

(r)

m;n

= K

(r)

m

�K

(r)

n

, generalizing (38), for all r � 1.

117. The nonisomorphi
 multisets of singleton edges for m = 4 and V = f0; 1; 2g are

ff0g; f0g; f0g; f0gg, ff0g; f0g; f0g; f1gg, ff0g; f0g; f1g; f1gg, and ff0g; f0g; f1g; f2gg.

The answer in general is the number of partitions of m into at most n parts, namely

�

�

m+n

n

�

�

, using the notation explained in Se
tion 7.2.1.4. (Of 
ourse, there's little reason to

think of partitions as 1-uniform hypergraphs, ex
ept when answering strange exer
ises.)

118. Let d be the sum of the vertex degrees. The 
orresponding bipartite graph is

a forest with m + n verti
es, d edges, and p 
omponents. Hen
e d = m + n � p, by

Theorem 2.3.4.1A.

119. Then there's an additional edge, 
ontaining all seven verti
es.

120. We 
ould say that (hyper)ar
s are arbitrary sequen
es of verti
es, or sequen
es

of distin
t verti
es. But most authors seem to de�ne hyperar
s to be A��!v, where A

is an unordered set of verti
es. When the best de�nition is found, it will probably be

the one that has the most important pra
ti
al appli
ations.

121. �(H) = jF j � �(I(H)

T

) is the size of a minimum 
over of V by sets of F .

122. (a) One 
an verify that there are just seven 3-element 
overs, namely the verti
es

of an edge; so there are seven 4-element independent sets, namely the 
omplements of

an edge. We 
an't two-
olor the hypergraph, be
ause one 
olor would need to be used

4 times and the other three 
olors would be an edge. (Hypergraph (56) is essentially

the proje
tive plane with seven points and seven lines.)

(b) Sin
e we're dualizing, let's 
all the verti
es and edges of the Petersen graph

\points" and \lines"; then the verti
es and edges of the dual are lines and points,

respe
tively. Color red the �ve lines that join an outer point to an inner point. The

other ten lines are independent (they don't 
ontain all three of the lines tou
hing any

point); so they 
an be 
olored green. No set of eleven lines 
an be independent, be
ause

no four lines 
an tou
h all ten points. (Thus the Petersen dual is a bipartite hypergraph,

in spite of the fa
t that it 
ontains 
y
les of length 5.)

123. They 
orrespond to n� n latin squares, whose entries are the vertex 
olors.

124. Four 
olors easily suÆ
e. If it were 3-
olorable, there must be four verti
es of

ea
h 
olor, sin
e no �ve verti
es are independent. Then two opposite 
orners must have

the same 
olor, and a 
ontradi
tion arises qui
kly.

125. The Chv�atal graph is the smallest su
h graph with g = 4. G. Brinkmann found

the smallest with g = 5: It has 21 verti
es a

j

, b

j

, 


j

for 0 � j < 7, with edges

a

j

���a

j+2

, a

j

���b

j

, a

j

���b

j+1

, b

j

���


j

, b

j

���


j+2

, 


j

���


j+3

and subs
ripts mod 7.

M. Meringer showed that there must be at least 35 verti
es if g > 5. B. Gr�unbaum


onje
tured that g 
an be arbitrarily large; but no further 
onstru
tions are known.

[See AMM 77 (1970), 1088{1092; Graph Theory Notes of New York 32 (1997), 40{41.℄

126. When m and n are even, both C

m

and C

n

are bipartite, and 4-
oloring is easy.

Otherwise a 4-
oloring is impossible. When m = n = 3, a 9-
oloring is optimum by

exer
ise 93. When m = 3 and n = 4 or 5, at most two verti
es are independent; it's

easy to �nd an optimum 6- or 8-
oloring. Otherwise we obtain a 5-
oloring by painting

vertex (j; k) with (a

j

+ 2b

k

) mod 5, where periodi
 sequen
es ha

j

i and hb

k

i exist with

period lengths m and n, respe
tively, su
h that a

j

� a

j+1

� �1 and b

k

� b

k+1

� �1

for all j and k. [K. Vesztergombi, A
ta Cyberneti
a 4 (1978), 207{212.℄

127. (a) The result is true when n = 1. Otherwise let H = Gnv, where v is any vertex.

Then H = Gnv, and we have �(H)+�(H) � n by indu
tion. Clearly �(G) � �(H)+1
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Nordhaus

Gaddum

Fin
k

join

Erd}os

Moon

Moser


rossings


onne
tivity

and �(G) � �(H) + 1; so there's no problem unless equality holds in all three 
ases.

But that 
an't happen; it implies that �(H) � d and �(H) � n� 1� d, where d is the

degree of v in G. [E. A. Nordhaus and J. W. Gaddum, AMM 63 (1956), 175{177.℄

To get equality, let G = K

a

�K

b

, where ab > 0 and a+b = n. Then we have G =

K

a

���K

b

, �(G) = a, and �(G) = b+1. [All graphs for whi
h equality holds have been

found by H.-J. Fin
k, Wiss. Zeit. der Te
h. Ho
hs
hule Ilmenau 12 (1966), 243{246.℄

(b) A k-
oloring of G has at least dn=ke verti
es of some 
olor; those verti
es form

a 
lique in G. Hen
e �(G)�(G) � �(G)dn=�(G)e � n. Equality holds when G = K

n

.

(From (a) and (b) we dedu
e that �(G)+�(G) � 2

p

n and �(G)�(G) �

1

4

(n+1)

2

.)

128. �(G H) = max(�(G); �(H)). This many 
olors is 
learly ne
essary. And if the

fun
tions a(u) and b(v) 
olor G and H with the 
olors f0; 1; : : : ; k � 1g, we 
an 
olor

G H with 
(u; v) = (a(u) + b(v)) mod k.

129. A 
omplete row or 
olumn (16 
ases); a 
omplete diagonal of length 4 or more

(18 
ases); a 5-
ell pattern f(x; y); (x�a; y�a); (x�a; y+a); (x+a; y�a); (x+a; y+a)g

for a 2 f1; 2; 3g (36+16+4 
ases); a 5-
ell pattern f(x; y); (x�a; y); (x+a; y); (x; y�a);

(x; y+a)g for a 2 f1; 2; 3g (36 + 16 + 4 
ases); a pattern 
ontaining four of those

�ve 
ells, when the �fth lies o� the board (24 + 32 + 24 
ases); or a 4-
ell pattern

f(x; y); (x+a; y); (x; y+a); (x+a; y+a)g for a 2 f1; 3; 5; 7g (49 + 25 + 9 + 1 
ases).

Altogether 310 maximal 
liques, with respe
tively (168; 116; 4; 4; 18) of size (4; 5; 6; 7; 8).

130. If graph G has p maximal 
liques and graph H has q, then the join G���H has

pq, be
ause the 
liques of G���H are simply the unions of 
liques from G and H.

Furthermore, the empty graph K

n

has n maximal 
liques (namely its singleton sets).

Thus the 
omplete k-partite graph with part sizes fn

1

; : : : ; n

k

g, being the join of

empty graphs of those sizes, has n

1

: : : n

k

maximal 
liques.

131. Assume that n > 1. In a 
omplete k-partite graph, the number n

1

: : : n

k

is maxi-

mized when ea
h part has size 3, ex
ept perhaps for one or two parts of size 2. (See exer-


ise 7.2.1.4{68(a).) So we must prove thatN(n) 
annot be larger than this in any graph.

Let m(v) be the number of maximal 
liques that 
ontain vertex v. If u /���v and

m(u) � m(v), 
onstru
t the graph G

0

that is like G ex
ept that u is now adja
ent to

all the neighbors of v instead of to its former neighbors. Every maximal 
lique U in

either graph belongs to one of three 
lasses:

i) u 2 U ; there are m(u) of these in G and m(v) of them in G

0

.

ii) v 2 U ; there are m(v) of these in G and also in G

0

.

iii) u =2 U and v =2 U ; su
h maximal 
liques in G are also maximal in G

0

.

Therefore G

0

has at least as many maximal 
liques as G. And we 
an obtain a 
omplete

k-partite graph by appropriately repeating the pro
ess.

[This argument, due to Paul Erd}os, was presented by J. W. Moon and L. Moser

in Israel J. Math. 3 (1965), 23{25.℄

132. The strong produ
t of 
liques in G andH is a 
lique in G�H, by exer
ise 93; hen
e

!(G�H) � !(G)!(H) = �(G)�(H). On the other hand, 
olorings a(u) and b(v) of G

and H lead to the 
oloring 
(u; v) = (a(u); b(v)) of G�H; hen
e �(G�H) � �(G)�(H).

And !(G�H) � �(G�H).

133. (a) 24; (b) 60; (
) 3; (d) 6; (e) 6; (f) 4; (g) 5; (h) 4; (i) K

2

�C

12

; (j) 18; (k) 12.

(l) Yes, of degree 5. (m) No. [Can it be drawn with fewer than 12 
rossings?℄ (n) Yes;

in fa
t, it is 4-
onne
ted (see Se
tion 7.4.1). (o) Yes; we 
onsider every graph to be

dire
ted, with two ar
s for ea
h edge. (p) Of 
ourse not. (q) Yes, easily.
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Wilson

Watkins

strong produ
t

Holton

Sheehan

raman

[The musi
al graph represents simple modulations between key signatures. It

appears on page 73 of Graphs by R. J. Wilson and J. J. Watkins (1990).℄

134. By rotating and/or swapping the inner and outer verti
es, we 
an �nd an auto-

morphism that takes any vertex into C. If C is �xed, we 
an inter
hange the inner and

outer verti
es of any subset of the remaining 11 pairs, and/or do a left-right re
e
tion.

Therefore there are 24� 2

11

� 2 = 98;304 automorphisms altogether.

135. Let ! = e

2�i=6

, and de�ne the matri
es Q = (q

ij

), S = (s

ij

), where q

ij

=

[j=(i+ 1) mod 12℄ and s

ij

= !

ij

, for 0 � i; j < 12. By exer
ise 96(b), the adja
en
y

matrix of the musi
al graph K

2

�C

12

is A =

�

1 1

1 1

�


(I+Q+Q

�

)�I. Let T be the matrix

�

1 1

1�1

�


 S; then T

�

AT is a diagonal matrix D whose �rst 12 entries are 1 + 4 
os

j�

6

for 0 � j < 12, and whose other 12 entries are �1. Therefore A

2m

= TD

m

T

�

, and it

follows that the number of 2m-step walks from C to (C;G;D;A;E;B;F

℄

) respe
tively is

C

m

=

1

24

(25

m

+ 2(13 + 4

p

3)

m

+ 3

2m+1

+ 2(13� 4

p

3)

m

+ 16);

G

m

=

1

24

(25

m

+

p

3(13 + 4

p

3)

m

�

p

3(13� 4

p

3)

m

� 1);

D

m

=

1

24

(25

m

+ (13 + 4

p

3)

m

+ (13� 4

p

3)

m

� 3);

A

m

=

1

24

(25

m

� 3

2m+1

+ 2);

E

m

=

1

24

(25

m

� (13 + 4

p

3)

m

� (13� 4

p

3)

m

+ 1);

B

m

=

1

24

(25

m

�

p

3(13 + 4

p

3)

m

+

p

3(13� 4

p

3)

m

� 1);

F

℄

m

=

1

24

(25

m

� 2(13 + 4

p

3)

m

+ 3

2m+1

� 2(13� 4

p

3)

m

);

also a

m

=C

m

�1, d

m

=F

m

=e

m

=G

m

, et
. In parti
ular, (C

6

;G

6

;D

6

;A

6

;E

6

;B

6

;F

℄

6

)=

(15462617, 14689116, 12784356, 10106096, 7560696, 5655936, 5015296), so the desired

probability is 15462617=5

12

� 6:33%. Asm!1, the probabilities are all

1

24

+O(0:8

m

).

136. No. Only two Cayley graphs of order 10 are 
ubi
, namelyK

2

C

5

(whose verti
es


an be written fe; �; �

2

; �

3

; �

4

; �; ��; ��

2

; ��

3

; ��

4

g where �

5

= �

2

= (��)

2

= e) and

the graph with verti
es f0; 1; : : : ; 9g and ar
s v ! (v�1) mod 10, v ! (v+5) mod 10.

[See D. A. Holton and J. Sheehan, The Petersen Graph (1993), exer
ise 9.10. In
iden-

tally, the SGB graphs raman (p; q; t; 0) are Cayley graphs.℄

137. Let [x; y℄ denote the label of (x; y); we want [x; y℄ = [x+ a; y + b℄ = [x+ 
; y + d℄

for all x and y. If A is the matrix (

a




b

d

), the operation of adding t times the bottom

row of A to the top row 
hanges A to the matrix A

0

= (

1

0

t

1

)A = (

a

0




0

b

0

d

0

), where

a

0

= a + t
, b

0

= b + td, 


0

= 
, d

0

= d. The new 
ondition [x; y℄ = [x + a

0

; y + b

0

℄ =

[x + 


0

; y + d

0

℄ is equivalent to the old; and g
d(a

0

; b

0

; 


0

; d

0

) = g
d(a; b; 
; d). Similarly

we 
an premultiply A by (

1

t

0

1

) without really 
hanging the problem.

We 
an also operate on 
olumns, repla
ing A by A

00

= A(

1

0

t

1

) = (

a

00




00

b

00

d

00

), where

a

00

= a, b

00

= ta+b, 


00

= 
, d

00

= t
+d. This operation does alter the problem, but only

slightly: If we �nd a labeling that satis�es [[x; y℄℄ = [[x+ a

00

; y + b

00

℄℄ = [[x+ 


00

; y + d

00

℄℄

for all x and y, then we'll have [x; y℄ = [x+a; y+b℄ = [x+
; x+d℄ if [x; y℄ = [[x; y+ tx℄℄.

Similarly we 
an postmultiply A by (

1

t

0

1

); the problem remains almost the same.

A series of su
h row and 
olumn operations will redu
e A to the simple form

UAV = (

1

0

0

n

), where U and V are integer matri
es with detU = detV = 1. And if we

have V = (

�




�

Æ

), a labeling for the redu
ed problem that satis�es the simple 
onditions

[[x; y℄℄ = [[x+ 1; y℄℄ = [[x; y + n℄℄ will provide a solution to the original labeling problem

if we de�ne [x; y℄ = [[�x+ 
y; �x+ Æy℄℄.
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diagonal matrix

determinants

Smith normal form

multigraph

Cayley graphs

Abelian groups

Wong

Coppersmith

Fidu

ia

For
ade

Zito

labeled graphs

unlabeled graphs

isomorphi


automorphisms

Janson

Krato
hv��l

Barbour

Karo�nski

Ru
i�nski

varian
e

Finally, the redu
ed labeling problem is easy: We let [[x; y℄℄ = y mod n. Thus the

desired answer is to set p = �, q = Æ.

138. Pro
eeding as before, but with a k � k matrix A, row and 
olumn operations

will redu
e the problem to a diagonal matrix UAV . The diagonal entries (d

1

; : : : ; d

k

)

are 
hara
terized by the 
ondition that d

1

: : : d

j

is the greatest 
ommon divisor of

the determinants of all j � j submatri
es of A. [This is \Smith normal form"; see

H. J. S. Smith, Philosophi
al Transa
tions 151 (1861), 293{326, x14.℄ If the labeling

[[x℄℄ satis�es the redu
ed problem, the original problem is satis�ed by [x℄ = [[xV ℄℄. The

number of elements in the generalized torus is n = detA = d

1

: : : d

k

.

The redu
ed problem has a simple solution as before if d

1

= � � � = d

k�1

= 1. But

in general the redu
ed labeling will be an r-dimensional ordinary torus of dimensions

(d

k�r+1

; : : : ; d

k

), where d

k�r+1

> d

k�r

= 1. (Here d

0

= 1; we might have r = k.)

In the requested example, we �nd d

1

= 1, d

2

= 2, d

3

= 10, n = 20; indeed,

UAV =

0

�

1 �2 0

0 1 �1

�1 �1 4

1

A

0

�

3 1 1

1 3 1

1 1 3

1

A

0

�

1 5 6

0 1 1

0 0 1

1

A

=

0

�

1 0 0

0 2 0

0 0 10

1

A

:

Ea
h point (x; y; z) now re
eives a two-dimensional label (u; v) = ((5x + y) mod 2;

(6x+ y+ z) mod 10). The six neighbors of (u; v) are ((u� 1) mod 2; v), ((u� 1) mod 2;

(v�1) mod 10), (u; (v�1) mod 10). It's a multigraph, sin
e the �rst two neighbors are

identi
al; but it's not the same as the multigraph C

2

�C

10

, whi
h has degree 8.

[Generalized toruses are essentially the Cayley graphs of Abelian groups; see

exer
ise 136. They have been proposed as 
onvenient inter
onne
tion networks, in

whi
h 
ase it is desirable to minimize the diameter when k and n are given. See C. K.

Wong and D. Coppersmith, JACM 21 (1974), 392{402; C. M. Fidu

ia, R. W. For
ade,

and J. S. Zito, SIAM J. Dis
rete Math. 11 (1998), 157{167.℄

139. (This exer
ise helps 
larify the distin
tion between labeled graphs G, in whi
h the

verti
es have de�nite names, and unlabeled graphs H su
h as those in Fig. 2.) If N

H

is

the number of labeled graphs on f1; 2; : : : ; hg that are isomorphi
 to H, and if U is any

h-element subset of V , the probability that G j U is isomorphi
 to H is N

H

=2

h(h�1)=2

.

Therefore the answer is

�

n

h

�

N

H

=2

h(h�1)=2

. We need only �gure out the value of N

H

,

whi
h is: (a) 1; (b) h!=2; (
) (h� 1)!=2; (d) h!=a, where H has a automorphisms.

140. (a) #(K

3

:W

n

) = n�1 and #(P

3

:W

n

) =

�

n�1

2

�

for n � 5; also #(K

3

:W

8

) = 7.

(b) G is proportional if and only if #(K

3

:G) = #(K

3

:G) =

1

8

�

n

3

�

and #(P

3

:G) =

#(P

3

:G) =

3

8

�

n

3

�

. If G has e edges, we have (n�2)e = 3#(K

3

:G)+2#(P

3

:G)+#(P

3

:G),

be
ause every pair of verti
es appears in n�2 indu
ed subgraphs. If G has degree

sequen
e d

1

: : : d

n

, we have d

1

+ � � �+d

n

= 2e,

�

d

1

2

�

+ � � �+

�

d

n

2

�

= 3#(K

3

:G)+#(P

3

:G),

and d

1

(n�1�d

1

)+� � �+d

n

(n�1�d

n

) = 2#(P

3

:G)+2#(P

3

:G). Therefore a proportional

graph satis�es (�)|unless n = 2. (The exer
ise should have ex
luded that 
ase.)

Conversely, if G satis�es (�) and has the 
orre
t #(K

3

:G), it also has the 
orre
t

#(P

3

:G), #(P

3

:G), and #(K

3

:G).

[Referen
es: S. Janson and J. Krato
hv��l, Random Stru
tures & Algorithms 2

(1991), 209{224. In J. Combinatorial Theory B47 (1989), 125{145, A. D. Barbour,

M. Karo�nski, and A. Ru
i�nski had shown that the varian
e of #(H:G) is proportional

to either n

2h�2

, n

2h�3

, or n

2h�4

, where the �rst 
ase o

urs when H does not have

1

2

�

h

2

�

edges, and the third 
ase o

urs when H is a proportional graph.℄

141. Only 8 degree sequen
es d

1

: : : d

8

satisfy (�): 73333333 (1/2), 65433322 (26/64),

64444222 (2/10), 64443331 (8/22), 55543222 (8/20), 55533331 (2/10), 55444321 (26/64),
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self-
omplementary

Bondy

adja
en
y matrix

Sauerho�

Wegener

Misra

Gries

and 44444440 (1/2). Ea
h degree sequen
e is shown here with statisti
s (N

1

=N), where

N nonisomorphi
 graphs have that sequen
e and N

1

of them are proportional. The last

three 
ases are 
omplements of the �rst three. No graph of order 8 is both proportional

and self-
omplementary. Maximally symmetri
 examples of the �rst �ve 
ases are W

8

,

; ; ; and :

142. The hint follows as in the previous answer; (n� 3)#(K

3

:G) and (n� 3)#(P

3

:G)


an also be expressed in terms of four-vertex 
ounts. Furthermore, a graph with e

edges has

�

e

2

�

= #(P

3

� G) +#(K

2

�K

2

� G), be
ause any two edges form either P

3

or K

2

�K

2

; in this formula, #(P

3

� G) 
ounts not-ne
essarily-indu
ed subgraphs.

We have #(P

3

� G) = #(P

3

:G) + 3#(K

3

:G), and a similar formula expresses

#(K

2

�K

2

� G) in terms of indu
ed 
ounts. Thus an extraproportional graph must

be proportional and satisfy e =

1

2

�

n

2

�

, #(P

3

� G) =

3

4

�

n

3

�

, #(K

2

�K

2

� G) =

3

4

�

n

4

�

.

But these values 
ontradi
t the formula for

�

e

2

�

.

143. Consider the graph whose verti
es are the rows of A, and whose edges u ��� v

signify that rows u and v agree ex
ept in one 
olumn, j. Label su
h an edge j.

If the graph 
ontains a 
y
le, delete any edge of the 
y
le, and repeat the pro
ess

until no 
y
les remain. Noti
e that the label on every deleted edge appears elsewhere in

its 
y
le; hen
e the deletions don't a�e
t the set of edge labels. But we're left with fewer

than m � n edges, by Theorem 2.3.4.1A; so there are fewer than n di�erent labels.

[See J. A. Bondy, J. Combinatorial Theory B12 (1972), 201{202.℄

144. Let G be the graph on verti
es f1; : : : ;mg, with edges i ��� j if and only if

� 6= x

il

6= x

jl

6= � for some l. This graph is k-
olorable if and only if there is a 
ompletion

with at most k distin
t rows. Conversely, if G is a graph on verti
es f1; : : : ; ng, with

adja
en
y matrix A, the n � n matrix X = A + �(J � I � A) has the property that

i��� j if and only if � 6= x

il

6= x

jl

6= � for some l. [See M. Sauerho� and I. Wegener,

IEEE Trans. CAD-15 (1996), 1435{1437.℄

145. Set 
 0 and repeat the following operations for 1 � j � n: If 
 = 0, set x a

j

and 
  1; otherwise if x = a

j

, set 
  
 + 1; otherwise set 
  
 � 1. Then x is

the answer. The idea is to keep tra
k of a possible majority element x, whi
h o

urs


 times in nondis
arded elements; we dis
ard a

j

and one x whenever �nding x 6= a

j

.

[See Automated Reasoning (Kluwer, 1991), 105{117. Extensions to �nd all elements

that o

ur more than n=k times, in O(n log k) steps, have been dis
ussed by J. Misra

and D. Gries, S
ien
e of Computer Programming 2 (1982), 143{152.℄
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^, see smile.

0{1 matri
es, 20, 32{35, 44, 46, see also

Adja
en
y matri
es.

�(H) (independen
e number of a graph

or hypergraph), 35, 44.


 (Euler's 
onstant), as sour
e of

\random" data, 49.

� (
ir
le ratio), as sour
e of \random"

data, 49.

� (golden ratio), 47.

as sour
e of \random" data, 49.

�(H) (
hromati
 number of a graph or

hypergraph), 35, 44, 46.

!(G) (
lique number of a graph), 35, 44.

Abelian (
ommutative) groups, 65.

A
y
li
: Containing no 
y
les, 15, 31{32.

Addition table modulo n, 36.

Adja
en
y lists, 21{22.

Adja
en
y matri
es, 19{20, 26, 27,

40{41, 43, 61, 66.

Adja
ent verti
es, 13.

Ahrens, Wilhelm Ernst Martin Georg, 49.

All-0s matrix, 27, 58.

All-1s matrix, 26, 27, 58, 59.

Alphabeti
 order, 38.

Anagrams, 52.

Analysis of algorithms, 41.

AND gates, 32, 33.

AND operation, bitwise, 22.

Andersen, Lars D�vling, 49.

Appel, Kenneth Ira, 17.

Apportionment, 8.

Arabi
 mathemati
s, 48{49.

Ar
 lists, 21{22.

Ar
 variables, 21, 23.

Ar
s, 18{23.

as edges, 18.

ARCS(v) (�rst ar
 of a vertex), 21.

Arithmeti
 progressions, 38.

As
hba
her, Mi
hael George, 56.

Asso
iative laws, 27, 28, 42.

Automorphisms, 14{15, 39, 45, 56,

60, 65{66.

Ba
h, Johann Sebastian, x.

Bang, Th�ger Sophus Vilhelm, 47.

Barbour, Andrew David, 65.

Barnard, Robert, 10.

Baron, Gerd, 48.

Bary
entri
 
oordinates, 25.

Bassanio of Veni
e, 1.

Bears, California Golden, 31.

Berge, Claude, 34.

bi book graphs, 23.

bi lisa graphs, 24.

Biggs, Norman Linstead, 15.

Bigraphs, 17, see Bipartite graphs.

Bipartite graphs, 17, 22{25, 35, 39,

41, 43, 55, 62.


orresponding to hypergraphs, 33, 44.

Bipartite hypergraphs, 62.

Bipartiteness testing, 22{23.

Bishop moves on a 
hessboard, 25, 26, 31.

Bitwise AND operation, 22.

board graphs, 25, 26, 31, 41.

Bondy, John Adrian, 14, 66.

book graphs, 23.

Boolean fun
tions, 33.

Boolean values, 32.

Bose, Raj Chandra (r;j 
<d¨ bsu), 5.

Bossen, Douglas Craig, 52.

Boyer, Robert Stephen, 46.

Brette, Jean, 48.

Brewster, George, 9.

Brinkmann, Gunnar, 62.

Brooks, Rowland Leonard, 58.

Brown, John Wesley, 49.

Brown, William Gordon, 56.

Brualdi, Ri
hard Anthony, 50.

Bru
k, Ri
hard Hubert, 51.

Bui, Alain, 2.

C language, 22.

C

n

(
y
le of order n), 13, 28, 39, 41.

C~

n

(oriented 
y
le of order n), 18, 41.

California Golden Bears, 31.

Cardinal, Stanford, 31.

Carroll, Lewis (= Dodgson, Charles

Lutwidge), 10{12, 53.

Cartesian produ
t of graphs, 27{28,

42{44, 59.

Categori
al produ
t of graphs, 28, see

Dire
t produ
t of graphs.

Cayley, Arthur, digraphs, 45.

graphs, 45, 65.

Censorship, 10{11.

Chambers, Ephraim, v.

Chau
er, Geo�rey, 52.

Chessboard-like graphs,

bishop moves, 25, 26, 31.

generalized pie
e moves, 41.

king moves, 43.

knight moves, 15, 25.

67
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queen moves, 26, 44.

rook moves, 26, 41.

Chien, Robert Tien Wen ( ), 52.

Christie Mallowan, Agatha Mary Clarissa

Miller, 18{19.

Chromati
 index, see Edge-
hromati


number.

Chromati
 number �(G), 35, 44, 46.

Chv�atal, V�a
lav, 14.

graph, 14, 39, 44, 62.

Clapham, Christopher Robert Jasper, 61.

Clausen, Thomas, 5.

Claw graph, 54.

Clique 
overs, 35.

Clique number !(G), 35, 44.

Cliques, 35, 44.

Clustering, vii.

CMath: Con
rete Mathemati
s, a book

by R. L. Graham, D. E. Knuth,

and O. Patashnik.

Codewords, b-ary, 38.

Coding theory, 52.

Cographs, 42.

Cohen, Philip Mi
hael, 53.

Colleges, 31.

Coloring of graphs, 17, 35, 42, 44, 46.

Coloring of hypergraphs, 32, 35, 44.

Combinatorial explosion, v.

Combinatori
s, 1{7, see also Graphs.

Commutative laws, 28.

Complement, of a graph, 26, 27, 35,

41, 42, 59.

of a simple digraph, 42.

of an r-uniform hypergraph, 32.

Complete bigraphs (K

m;n

), 17, 26,

39, 42, 55.

Complete binary tries, 38{39.

Complete bipartite graphs, 17, 26,

39, 42, 55.

Complete digraphs (J

n

), 18, 55, 57.

Complete graphs (K

n

), 13, 26{27,

39, 41{43, 58.

Complete k-partite graphs, 17, 26{27,

40, 44.

Complete r-uniform hypergraphs, 32.

bipartite, 44.

Complete ternary tries, 53.

Complete tripartite graphs (K

m;n;r

), 17, 42.

Completion of a matrix, 46.

Components, 16, 18, 26, 40, 42, 43.

Composition of graphs, 28, see

Lexi
ographi
 produ
t of graphs.

Compositions of an integer, 25.

Conjugate of a partition, 29{30, 43, 61.

Conjun
tion of graphs, 28, see

Dire
t produ
t of graphs.

Conne
ted digraphs, 18.

Conne
ted graphs, 16, 33, 43, 44.

Conne
tivity of a graph, viii, 63.

Conse
utive ar
s, 19.

Consonants, 38.

Contiguous United States of Ameri
a,

15, 34, 39{40.

Converse of a digraph, 58.

Convex hull of points, 24.

Coppersmith, Don, 65.

Cover, Thomas Merrill, 13.

Covering problems, 11.

exa
t, 2, 7, 8, 35, 37, 48.

minimum, 34{35, 44.

Crett�e de Palluel, Fran�
ois, 8.

Crossings in a diagram, 14, 63.

Cube graphs (k-
ubes), 28, 41.

Cubi
 graphs, 14, 39, 64.

Cy
le graph C

n

, 13, 28, 39, 41.

Cy
les, 13, 28, 39, 41, 42, 44.

in a hypergraph, 33.

of a permutation, 40, 42.

oriented, 18, 19, 32, 40, 41.

Cylinders, 28, 41.

d

+

(v) (out-degree of v), 18.

d

�

(v) (in-degree of v), 18.

d(u; v) (distan
e in a graph), 16, 43.

dire
ted, 19.

generalized, 16{17.

da Vin
i, Leonardo, 9, 24.

Dags (dire
ted a
y
li
 graphs), 31{32.

Dan
ing links method, 2, 7, 8, 11, 48.

Davies, Roy Osborne, 2, 47.

de Palluel, Fran�
ois Crett�e, 8.

de Poligna
, Camille Armand Jules

Marie, 15.

Dean, Je�rey Adgate, iv.

Degree of a vertex, 14, 19, 39, 43, 44, 61.

Degree sequen
es, 29{31, 43, 46, 65{66.

Delaunay, Boris Nikolaevi
h (Delone, Boris

Nikolaeviq), triangulation, 24.

Depth-�rst sear
h, 23, 41.

Determinants, 40, 59, 65.

Diagonal matri
es, 64, 65.

Diagrams for digraphs, 18{19, 42.

Diagrams for graphs, 14{15, 26{28, 39, 42.

Diameter of a graph, 16, 24, 39, 41,

42, 44, 58.

Di
tionaries of English, 10, 34, 38, 53.

Digitized image, 24.

Digraphs, 18, see Dire
ted graphs.

Dire
t produ
t of graphs, 28, 42{43.

Dire
t produ
t of matri
es, 43.

Dire
t sum of graphs, 26{27, 42, 43.

Dire
t sum of matri
es, 27, 43.

Dire
ted a
y
li
 graphs, 31{32.

Dire
ted distan
e d(u; v), 19.
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Dire
ted graphs, 12, 18{22, 40, 42, 59.


omplete, 18, 55, 57.


omponents of, 18.


onverse of, 58.

random, 25.

representation of, 19{22.

strong 
omponents of, 40, 55.

Dire
ted hypergraphs, 44.

Dire
ted join of digraphs, 26{27.

Disjoint graphs, 26.

Disjoint sets, 25.

Distan
e d(u; v) in a graph, 16, 43.

generalized, 16{17.

Distan
e of a 
ode, 38.

Distin
t 
olumns, 33.

Distin
t rows, 46.

Distributive laws, 43, 59.

Dode
ahedron, 15.

Dodgson, Charles Lutwidge (= Lewis

Carroll), 10{12, 53.

Don't 
ares, 46.

Dot produ
t of ve
tors, 12, 34, 37.

Doublets game, 11.

Doutt�e, Edmond, 48.

Doyle, Arthur Conan, 1.

Dual of a hypergraph, 33, 35, 44.

Dudeney, Henry Ernest, 54.

e, as sour
e of \random" data, 49.

e
on graphs, 31.

Edge-
hromati
 number �(L(G)), 44.

Edges as ar
s, 19, 21{22.

Edges of a hypergraph, 32{35.

Eigenvalues of a matrix, 40.

Eigenve
tors of a matrix, 40.

Ele
toral distri
ts, 8.

Empty graphs (K

n

), 26, 27, 41{43, 46, 63.

English language, 9{10.

Equidistant 
ities, 44.

Equivalen
e relations, 45{46, 51.

Erd}os, P�al (= Paul), 60, 61, 63.

Error-
orre
ting 
odes, 37{38.

Eu
lidean distan
e, 10, 12.

Eu
lidean plane, 17.

Euler, Leonhard (E�ler�, Leonard� =

��ler, Leonard), 3{7, 36, 49.

Even permutations, 40.

Evolution of random graphs, 25.

Exa
t 
over problems, 2, 7, 8, 35, 37, 48.

Expander graphs, 24.

Fa
torization of a graph, 28.

Families of sets, 32, see Hypergraphs.

Fibona

i strings, 36.

Fidu

ia, Charles Mi
hael, 65.

Final vertex of an ar
, 18.

Fin
k, Hans-Joa
him, 63.

Finite �elds, 51.

Five-letter words, iv, 9{12, 16, 38{39, 43.

Flows of money, 31.

Floyd, Robert W, Lemma, vi.

Folland, Gerald Budge, iii.

Football s
ores, 31.

For
ade, Rodney Warring, 65.

Four Color Theorem, 17.

Free trees, 17, 44.

Frequen
y of usage in English, 10.

Fulkerson, Delbert Ray, 61.

Gaddum, Jerry William, 63.

Gallai, Tibor, 60.

games graphs, 31.

Ganter, Bernhard, 49.

Gardner, Martin, 9, 11.

Gates, networks of, 32.

Gau� (= Gauss), Johann Frideri
h Carl

(= Carl Friedri
h), 5, 17.

Generalized toruses, 45{46.

Generator routines, 23{26, 30{32, 41.

Geometri
 nets, 37{39.

Gherardini, Lisa, seeMona Lisa.

Giant 
omponent of a graph, 16, 25, 39, 55.

Girth of a graph, 15, 24, 39{41, 44.

Globally optimum solutions, 34{35.

Godfrey, Mi
hael John, 36.

Golden Bears, California, 31.

Golomb, Solomon Wolf, 52.

Google, iv.

Gordon, Leonard Joseph, 52.

Gr�
o-Latin squares, 4{5, 8, 36, 50.

Graham, Ronald Lewis, 68.

Grant, Je�rey Lloydd Jagton, 53.

Graph theory, introdu
tion to, 13{19.

Graph-paper graphs, 28.

Graphi
al degree sequen
es, 29{31,

43, 46, 65{66.

Graphs, 11{35, 39{45.

algebra of, 26{28, 42{45.

bipartite, see Bipartite graphs.


omplete, 13, 26{27, 39, 41{43, 58.

empty (null), 26, 27, 41{43, 46, 63.

generators for, 23{26, 30{32, 41.

labeled versus unlabeled, 15, 16, 65.

of orders 3 and 4, 42, 46.

produ
ts of, 27{28, 42{44, 59.

random, 25, 41, 46.

regarded as digraphs, 19{22.

regular, 14, 24{25, 33, 40{44.

representation of, 19{22.

Gray, Frank, binary 
ode, 48.

Grid graphs, 28, 41.

triangular, 25, 58.

Gries, David Joseph, 66.

Groth, Edward John, Jr., 8.

Gr�unbaum, Branko, 62.

gunion (union of SGB graphs), 26.

Guthrie, Fran
is, 17.
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Haken, Wolfgang, 17.

Hall, Marshall, Jr., ix, 47, 51.

Hamilton, William Rowan, 15.


y
les and paths, 15.

Hamiltonian graphs, 15, 44, 54.

Hamming, Ri
hard Wesley, distan
e,

12, 28, 37{38.

Harary, Frank, iv, 18, 55.

Havel, V�a
lav (mathemati
ian), 29.

Havel, V�a
lav (playwright and

statesman), 8.

Hebrai
-Gr�
o-Latin squares, 36, 50.

Hebrew letters, 36.

Hedayat, Samad (= Abdossamad,

xÚm�Ó �Ì�¿m�q«), 49, 51.

Heinen, Franz, 17.

Hensel, Kurt Wilhelm Sebastian, 59.

Highways, 31.

Ho�man, Alan Jerome, 56.

Holmes, Thomas Sherlo
k S
ott, 1.

Holton, Derek Alan, 64.

Homer (�Omhro
), 9.

Horton, Robert Elmer, 53.

Hsiao, Ben Mu-Yue ( = ), 52.

Hugo, Vi
tor Marie, 23.

Hurwitz, Adolf, 59.

Hyperar
s, 62.

Hyperedges, 32.

Hyperforests, 44.

Hypergraphs, 32{35, 44.

I (identity matrix), 26, 59.

IBM Type 650 
omputer, v.

Ibn al-H

.

�ajj, Muh

.

ammad ibn Muh

.

ammad

(}n�¿m Ñp �Ì�Ë Ñp �Ì�Ë), 48.

id of an SGB graph, 12, 22.

ID(g), 22.

Identity matrix, 26.

Image, digitized, 24.

Impli
it data stru
ture, 21{22.

Imri
h, Wilfried, 28.

In-degree of a vertex, 18, 19, 41, 43.

In
iden
e matrix of a graph or hypergraph,

33, 35, 44.

Independen
e number �(H) of a graph

or hypergraph, 35, 44.

Independent verti
es, 34, 35, 44.

Indu
ed subgraphs, 13, 18, 39, 42, 43, 46.

Indu
ed subhypergraphs, 32.

In�nity, point at, 24.

Initial vertex of an ar
, 18.

Integer programming, vii.

Internet, ii{iv, viii, ix, 10, 53.

Intruders, 36.

Inverse permutation, 20.

Inverter gates, 32.

Islami
 mathemati
s, 48{49.

Isolated verti
es: Verti
es of degree 0,

25, 55, 58.

Isomorphi
 graphs, 13{15, 28, 39, 65{66.

dire
ted, 18.

J (all-ones matrix), 26, 27, 58, 59.

J

n

(
omplete digraph of order n), 18, 55, 57.

Jaillet, Christophe Andr�e Georges, 2.

Janson, Carl Svante, 46, 65.

Johnson, Samuel, v.

Join of graphs, 26{27, 63.

Juxtaposition of graphs, 26, see Dire
t

sum of graphs.

k-
olorable graphs or hypergraphs, 17,

32, 35, 42, 44.

k-
ubes, 28, 41.

k-edge-
olorable graphs, 26, 42, 44.

k-partite graphs or hypergraphs, 17,

32, 35, 42, 44.


omplete, 17, 26{27, 40, 44.

K

n

(
omplete graph of order n), 13,

26{27, 41{43, 58.

K

(r)

n

(
omplete r-uniform hypergraph), 32.

K~

n

(transitive tournament of order n),

18, 27, 40, 41.

K

3;3

(utilities graph), 17, 39, 42, 51.

K

m;n

(
omplete bipartite graph), 17,

26, 39, 42, 55.

K

(r)

m;n

(
omplete r-uniform bipartite

hypergraph), 44.

K

n

1

;:::;n

k

(
omplete k-partite graph),

17, 26, 40, 44.

Karo�nski, Mi
ha l, 65.

Kelly, Paul Joseph, 61.

Kempe, Alfred Bray, 54.

Kernel of a graph, see Maximal

independent sets.

King moves on a 
hessboard, 43.

Kingwise torus, 44.

Kirkman, Thomas Penyngton, 15.

Klav�zar, Sandi, 28.

Kleitman, Daniel J (Isaiah Solomon), 61.

Knight moves on a 
hessboard, 15, 25.

Knuth, Donald Ervin ( ), i, iv, ix,

x, 7, 9{10, 12, 32, 49, 68.

Ko
h, John Allen, 17.

K}onig, D�enes, 17.

Kowalewski, Arnold, 58.

Kraje
ki, Mi
ha�el, 2.

Krato
hv��l, Jan, 46, 65.

Krone
ker, Leopold, produ
t, 59.

L(G) (line graph of G), 26, 42.

Labeled graphs, 15, 65.

LADDERS program, 32.

Landau, Hyman Garshin, 55.

Langford, Charles Dudley, 7, 9, 48.

pairs, 1{3, 8, 36.

triples, 36.

Lat
h gates, 32.

Latin squares, 3{8, 36{38, 50, 62.
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Leahy, Fran
is Theodore, Jr. (= Ted), 47.

Lehmer, Derri
k Henry, 39.

Leighton, Robert Eri
, 52.

Leonardo da Vin
i, 9, 24.

Lexi
ographi
 order, 3, 38, 41.

Lexi
ographi
 produ
t of graphs, 28,

42{43, 59.

Lillywaite, Peregrine, 10.

Line graph of a graph, 26, 35, 42, 55, 59, 61.

Linear programming, vii.

Linear subgraphs, 55.

Linked allo
ation, 21.

Lloyd, Edward Keith, 15.

LOC (memory lo
ation), 22.

Lo
ally optimal solutions, 34{35.

Loops from a vertex to itself, 13, 18,

19, 41, 61.

Loyd, Walter (= \Sam Loyd, Jr."), 1.

m�n 
ylinders, 28, 41.

m�n grids, 28, 41.

m�n rook graphs, 26, 41.

m�n toruses, 28, 41.

dire
ted, 41.

M(g) (the number of ar
s in an SGB

graph), 22.

Ma
Neish, Harris Franklin, 5.

Magi
 squares, 36.

Majority element, 46.

Majority fun
tion, 52.

Majorization, 30, 61.

Mann, Henry Berthold, 49.

Mat
hing in a graph, 35, 44.

MATE (the 
onverse ar
), 21{22.

Mates of ar
s, 21{22.

Mathon, Rudolf Anton, 49.

Matrix multipli
ation, 20, 59.

Maximal 
liques, 44.

Maximal independent sets, 34, 44.

Maximal planar graphs, 39.

Maximal versus maximum, 34{35.

Maximum independent sets, 34{35.

Maximum mat
hings, 44.

M
Kay, Brendan Damien, 50.

M
Manus, Christopher DeCormis, 38.

Mems: Memory a

esses, 2, 6.

Menon, Vairelil Vishwanath, 58.

Meringer, Markus Reinhard, 62.

opqrstuq, 12.

Meyer, Albert Ronald da Silva, viii.

Meynert, Alison, 50.

miles graphs, 31, 44.

Miller, Donald John, 60.

Minimal versus minimum, 34{35.

Minimum vertex 
overs, 34{35, 44.

MIP-years, 2.

Mirror pairs, 38.

Misra, Jayadev (jYedb miS[), 66.

MMIX 
omputer, ii, viii, 41.

MMIXAL assembly language, 41.

Mnemoni
s, 59.

Modular arithmeti
, 48.

Mona Lisa, 9, 24, 31.

Moon, John Wesley, 63.

Moore, Eliakim Hastings, 51.

Moore, J Strother, 46.

Morris, S
ot Anderson, 38.

Moser, Leo, 63.

Multigraphs, 13, 19{21, 40, 41, 44, 59, 65.

Multihypergraphs, 61.

Multipairs, 19.

Multisets, 18.

Murphy's Law, 61.

Musi
al graph, 44, 45.

Mutually orthogonal latin squares, 37{38.

Myrvold, Wendy Joanne, 50.

n-ary strings, 37.

N(g) (the number of verti
es in an SGB

graph), 22, 56.

NAME(v) (the name of a vertex), 21.

Nano
omputer simulation, 32.

Neighboring verti
es, 13.

Ne�set�ril, Jaroslav, 59.

Networks: Graphs or digraphs together

with auxiliary data, 31{32, 44.

NEXT(a) (the next ar
 with the same

initial vertex), 21.

Nodes in SGB format, 21{23, 56.

Nordhaus, Edward Alfred, 63.

NOT gates, 32, 33.

Notation, 26, 59.

G (
omplementation), 26, 32, 42.

G

�

=

G

0

(isomorphism), 14.

G j V

0

(indu
ed subgraph), 13.

G n e (edge removal), 13.

G n v (vertex removal), 13.

Novels, 9, 23.

NP-
omplete problems, viii, 35.

Null graphs (K

n

), 26, 27, 41{43, 46, 63.

O (all-zeros matrix), 27.

Odd permutations, 40.

Odd produ
t of graphs, 28, 42{43, 59.

Optimal versus optimum, 34{35.

OR gates, 32, 33.

Order of a graph, 13, 18, 44.

Order of a latin square, 37.

Order of an orthogonal array, 37.

Ore, �ystein, ix, 42.

Organ-pipe order, 48.

Oriented 
y
les, 18, 19, 32, 40, 41.

Oriented paths, 18, 19, 41.

spanning, 40.

Orthogonal arrays, 37, 52.

generalized, 50{51.

Orthogonal latin squares, 3{8, 36{38.

Orthogonal strings, 37.

Orthogonal ve
tors, 34, 37.
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Out-degree of a vertex, 18, 19, 21,

40, 41, 43.

Ozanam, Ja
ques, 3, 7, 9.

P

n

(path of order n), 13, 28, 39.

P~

n

(oriented path of order n), 18, 41.

Paige, Lowell J., 5{7.

Palindromes, 38, 48.

Palluel, Fran�
ois Crett�e de, 8.

Papadimitriou, Christos Harilaos

(Papadhmhtr�ou, Qr�sto
 Qaril�ou), ix.

Parallel edges of a multigraph, 19, 41.

Parallel lines, 37.

Parity bits, 38.

Parker, Ernest Tilden, 5{7, 49.

Partitions of an integer, 25, 30, 62.

parts graphs, 25.

Pas
al, Blaise, iii.

Patashnik, Oren, 68.

Path graph P

n

, 13, 28, 39.

Paths in a graph, 13, 41.

oriented, 18, 19, 41.

shortest, viii, 12, 16, 32.

Perfe
t shu�es, 38.

Permanent of a matrix, 40.

Permutation digraphs, 40.

Permutation matri
es, 20, 56.

Petersen, Julius Peter Christian, 5, 14, 58.

graph, 14, 15, 25, 39, 42, 44, 45, 58.

Phi (�), 47.

as sour
e of \random" data, 49.

Pi (�), as sour
e of \random" data, 49.

Pixels, 24, 31.

Planar graphs, 14, 15, 17, 24, 39, 44, 54, 60.

Planar Langford pairings, 36.

plane lisa graphs, 24, 31.

plane miles graphs, 24, 31.

Playing 
ards, 3{4.

Poetry, 53.

Pohl, Ira Sheldon, 3.

Poirot, Her
ule, 18.

Poligna
, Camille Armand Jules Marie

de, 15.

P�olya, Gy�orgy (= George), 18.

Polyhedral 
ombinatori
s, vii.

Portable programs, 22.

Posner, Edward Charles, 52.

Postal 
odes, 15, 40.

Prime graphs, 28.

Produ
ts of digraphs and multigraphs, 59.

Produ
ts of graphs, 27{28, 42{44.

Proje
tive planes, 51, 62.

Pseudorandom numbers, 12, 25.

Puzzles, 1, 3, 7{9, 15, 48, 54.

Queen moves on a 
hessboard, 26, 44.

r-uniform hypergraphs, 32.

RainBones puzzle, 48.

raman graphs, 24, 64.

Ramanujan Iyengar, Srinivasa

(ÿ��W��W�WÈ{h I�axWm),

graphs, 24.

random graph graphs, 25, 41.

Random graphs, 25, 41, 46.

Random walks, 45.

Rao, Calyampudi Radhakrishna

(�Gi®	a�Ô �S g�Y�G��ç£� g�k�Ò), 50{51.

Re
reations, 7{9.

R�edei, L�aszl�o, 55.

Regular graphs, 14, 24{25, 33, 40{44.

Representation of graphs and digraphs,

19{22.

Restri
tion of a graph, 13.

Ringel, Gerhard, 58.

ris
 graphs, 31{32.

RISC: Redu
ed Instru
tion Set

Computer, 32.

Robertson, George Neil, 17.

roget graphs, 23, 41.

Roget, John Lewis, 23.

Roget, Peter Mark, 9, 23.

Rook moves on a 
hessboard, 26, 41.

Rookwise 
onne
ted pixels, 24.

Rosa, Alexander, 49.

Ru
i�nski, Andrzej, 65.

Ryser, Herbert John, 37, 50.

Sa
hs, Horst, 58.

Sanders, Daniel Preston, 17.

Sauerho�, Martin, 66.

Sauveur, Joseph, 49.

S
andalous fa
t, 26.

S
huma
her, Heinri
h Christian, 5, 17.

S
rabble

R


, 10.

Sear
h trees, 6.

Seed value for pseudorandom numbers,

12, 25.

Self-
omplementary graphs, 42, 43, 66.

Self-
onverse graphs, 58.

Self-loops, 13, 18, 19, 41, 61.

Semide�nite programming, vii.

Sequential algorithms, vii.

Sequential allo
ation, 21.

Set systems, 32, see Hypergraphs.

Seymour, Paul Douglas, 17.

SGB, 9, see Stanford GraphBase.

Shakespeare (= Shakspere), William, 1.

Sheehan, John, 64.

Sheep, 8.

Shortest paths in a graph, viii, 12, 16, 32.

Shrikhande, Sharad
handra Shankar

(frd
�

}

d f

�

kr �FK

�

w�), 5.

Shrinking an edge, 54.

Simple digraphs, 18, 19, 40, 43, 58, 59.

Simple graphs, see Graphs.
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simplex graphs, 25.

Simpson, James Edward, 47.

Singleton, Robert Ri
hmond, 56.

Singmaster, David Breyer, 48.

Sink vertex, 18.

Size of a digraph, 18.

Size of a graph, 13, 44.

Skolem, Albert Thoralf, ix, 8, 36, 47, 48.

Sloane, Neil James Alexander, 51.

smile, 11, 16, 24, 39.

Smith, Henry John Stephen, normal

form, 65.

Sour
e vertex, 18.

Spanning subgraphs, 13, 15, 18, 39.

Sparse graphs, 20, 23.

Spe
trum of an irrational number, 47.

Spheres, vii.

Stability number �(H) of a graph or

hypergraph, 35.

Stable sets, 34, see Independent verti
es.

Sta
k stru
ture, 23, 41.

Standard �elds in SGB format, 21.

Stanford Cardinal, 31.

Stanford GraphBase, ii, iv, viii, 9{12,

20, 23{26, 31.


omplete guide to, 32.

format for digraphs and graphs, 21{22, 41.

Stanley, Ri
hard Peter, 13.

Star graphs, 17.

Steiner, Ja
ob, 17.

trees, vii, 17.

triple systems, 8.

Sto
kmeyer, Larry Joseph, viii.

Strahler, Arthur Newell, 53.

Straight insertion sorting, 55.

Strong produ
t of graphs, 28, 42{44, 59, 64.

Strongly 
onne
ted graphs, 40, 55.

Stufken, John, 51.

Subgraphs, 13, 17.

subsets graphs, 25.

Subwords, 12.

SWAC 
omputer, 5{6.

Symmetri
 matri
es, 40, 44.

Symmetries of a graph, 14{15, 39,

45, 60, 65{66.

Szele, Tibor, 55.

Tableaux, 29{30, 43.

TAKE RISC program, 32.

Tarjan, Robert Endre, 1.

Tarry, Gaston, 5.

Taylor, Brook, series, 13.

Tensor produ
t of graphs, see

Dire
t produ
t of graphs.

Terminology, 13.

Tetrahedron, 25.

T

E

X, 12.

Theory meets pra
ti
e, vii, 13.

Thomas, Robin, 17.

Thue, Axel, ix.

Tightly 
olorable graphs, 44.

Tilings of the plane, 45.

Tip of an ar
, 18.

TIP(a) (�nal vertex), 21.

Todorov, Dobromir Todorov (Todorov,

Dobromir Todorov), 50.

Tolstoy, Leo Nikolaevi
h, (Tolsto�, Lev

Nikolaeviq), 9.

Tompkins, Charles Brown, 5{7.

Toruses, 28, 41.

generalized, 45{46.

kingwise, 44.

Tournaments, 40.

transitive, 18, 27, 40, 41.

Transitive laws, 51.

Translation, tiling by, 45{46.

Transposing a matrix, 20, 33, 50.

Transversals of a latin square, 6{7, 37, 49.

Traveling Salesrep Problem, viii.

Triangle inequality, 16, 19.

Triangular grids, 25, 58.

Tries, 38{39.

Triple systems, 8, 32, 44.

Trivalent graphs, 14, 39, 64.

Union of graphs, 26, see also Dire
t

sum of graphs.

United States of Ameri
a, 
ontiguous,

15, 34, 39{40.

UNIVAC 1206 Military Computer, 5.

Universities, 31.

Unlabeled graphs, 14, 65.

Utilities, 54.

Utility �elds in SGB format, 21, 57.

Valen
y, see Degree of a vertex.

Varian
e, 65.

Vertex 
onne
tivity, 61.

Vertex 
overs, minimum, 34{35, 44.

Vertex variables, 21, 23.

VERTICES(g) (the �rst vertex node), 22, 56.

Vesztergombi, Katalin, 62.

Vin
i, Leonardo da, 9, 24.

Vowels, 38.

W

n

(wheel graph of order n), 42, 46, 58, 66.

Walks in a graph, 19{20, 40, 45.

Wang, Da-Lun ( ), 61.

Wang, Shinmin Patri
k ( ), 50.

Watkins, John Jaeger, 64.

Wegener, Ingo Werner, 66.

Wei
hsel, Paul Morris, 59.

Weisner, Louis, 49.

Well-balan
ed Langford pairings, 2, 36.

Werni
ke, August Ludwig Paul, 5.

Wheel graphs, 42, 46, 58, 66.

Width of a Langford pairing, 3, 48.

Wilson, Ri
hard Mi
hael, 50.

Wilson, Robin James, iv, 15, 42, 64.
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Witness bits, 52.

Wong, Chak-Kuen ( ), 65.

Word 
ubes, 11, 39.

Word ladders, 11{12, 32.

Word squares, 11, 38.

words graphs, 12{13, 31, 39, 42.

WORDS(n), the n most 
ommon �ve-letter

words of English, 10{12.

Wraparound, 41.

XOR gates, 32, 33.

Zehfuss, Johann Georg, 59.

Zito, Jennifer Snyder, 65.

Zykov, Aleksander Aleksandrovi
h (Zykov,

Aleksandr Aleksandroviq), 26.


