
THE ART OF

COMPUTER PROGRAMMING

PRE-FASCICLE 2A

A DRAFT OF SECTION 7.2.1.1:

GENERATING ALL n -TUPLES

DONALD E. KNUTH Stanford University

ADDISON{WESLEY

6

77

-1

Internet page http://www-
s-fa
ulty.stanford.edu/~knuth/tao
p.html
ontains

urrent information about this book and related books.

See also http://www-
s-fa
ulty.stanford.edu/~knuth/sgb.html for information

about The Stanford GraphBase, in
luding downloadable software for dealing with the

graphs used in many of the examples in Chapter 7.

Copyright

 2001 by Addison{Wesley

All rights reserved. No part of this publi
ation may be reprodu
ed, stored in a retrieval

system, or transmitted, in any form, or by any means, ele
troni
, me
hani
al, photo-

opying, re
ording, or otherwise, without the prior
onsent of the publisher, ex
ept

that the oÆ
ial ele
troni
 �le may be used to print single
opies for personal (not

ommer
ial) use.

Zeroth printing (revision 14), 10 De
ember 2004

-2

PREFACE

I am grateful to all my friends,

and re
ord here and now my most espe
ial appre
iation

to those friends who, after a de
ent interval,

stopped asking me, \How's the book
oming?"

| PETER J. GOMES, The Good Book (1996)

This booklet
ontains draft material that I'm
ir
ulating to experts in the

�eld, in hopes that they
an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for

ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet rea
hed a very mature state. Beware: This material has

not yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3

were at the time of their �rst printings. And those
arefully-
he
ked volumes,

alas, were subsequently found to
ontain thousands of mistakes.

Given this
aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be dis
ouraged from reading the material
arefully.

I did try to make it both interesting and authoritative, as far as it goes. But the

�eld is so vast, I
annot hope to have surrounded it enough to
orral it
ompletely.

Therefore I beg you to let me know about any de�
ien
ies you dis
over.

To put the material in
ontext, this is Se
tion 7.2.1.1 of a long, long
hapter

on
ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namely

Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will

begin with a short review of graph theory, with emphasis on some highlights

of signi�
ant graphs in The Stanford GraphBase (from whi
h I will be drawing

many examples). Then
omes Se
tion 7.1, whi
h deals with the topi
 of bitwise

manipulations. (I drafted about 60 pages about that subje
t in 1977, but those

pages need extensive revision; meanwhile I've de
ided to work for awhile on the

material that follows it, so that I
an get a better feel for how mu
h to
ut.)

Se
tion 7.2 is about generating all possibilities, and it begins with Se
tion 7.2.1:

Generating Basi
 Combinatorial Patterns. That sets the stage for the main

ontents of this booklet, Se
tion 7.2.1.1, where I get the ball rolling at last by

dealing with the generation of n-tuples. Then will
ome Se
tion 7.2.1.2 (about

permutations), Se
tion 7.2.1.3 (about
ombinations), et
. Se
tion 7.2.2 will deal

with ba
ktra
king in general. And so it will go on, if all goes well; an outline of

the entire Chapter 7 as
urrently envisaged appears on the tao
p webpage that

is
ited on page ii.

iii

-3

iv PREFACE

Even the apparently lowly topi
 of n-tuple generation turns out to be sur-

prisingly ri
h, with ties to Se
tions 1.2.4, 1.3.3, 2.3.1, 2.3.4.2, 3.2.2, 3.5, 4.1,

4.3.1, 4.5.2, 4.5.3, 4.6.1, 4.6.2, 4.6.4, 5.2.1, and 6.3 of the �rst three volumes.

I strongly believe in building up a �rm foundation, so I have dis
ussed this topi

mu
h more thoroughly than I will be able to do with material that is newer or

less basi
. To my surprise, I
ame up with 112 exer
ises, a new re
ord, even

though|believe it or not| I had to eliminate quite a bit of the interesting

material that appears in my �les.

Some of the material is new, to the best of my knowledge, although I will not

be at all surprised to learn that my own little \dis
overies" have been dis
overed

before. Please look, for example, at the exer
ises that I've
lassed as resear
h

problems (rated with diÆ
ulty level 46 or higher), namely exer
ises 43, 46, 47,

53, 55, and 62. Are these problems still open? The question in exer
ise 53

might not have been posed previously, but it seems to deserve attention. Other

problems, like exer
ises 66 and 83, suggest additional resear
h topi
s. Please let

me know if you know of a solution to any of these intriguing problems. And of

ourse if no solution is known today but you do make progress on any of them

in the future, I hope you'll let me know.

I urgently need your help also with respe
t to some exer
ises that I made

up as I was preparing this material. I
ertainly don't like to get
redit for things

that have already been published by others, and most of these results are quite

natural \fruits" that were just waiting to be \plu
ked." Therefore please tell

me if you know who I should have
redited, with respe
t to the ideas found in

exer
ises 15, 16, 31, 37, 38, 69, 73, 76, 86, 87, 89, 90, and/or 109.

I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is

�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, if

you �nd a better solution to an exer
ise, I'll a
tually reward you with immortal

glory instead of mere money, by publishing your name in the eventual book:�)

I wish to thank Yoi
hi Harigu
hi for helping me to build and rebuild the

omputer on whi
h this book was written. And I also want to thank Frank

Ruskey for bravely foisting this material on
ollege students, and for providing

valuable feedba
k about his
lassroom experien
es.

Cross referen
es to yet-unwritten material sometimes appear as `00'; this

impossible value is a pla
eholder for the a
tual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

August 2001 (revised, September 2001)

-4

7.2.1.1 GENERATING ALL n-TUPLES 1

7.2. GENERATING ALL POSSIBILITIES

All present or a

ounted for, sir.

| Traditional Ameri
an military saying

All present and
orre
t, sir.

| Traditional British military saying

7.2.1. Generating Basi
 Combinatorial Patterns

Our goal in this se
tion is to study methods for running through all of the

possibilities in some
ombinatorial universe, be
ause we often fa
e problems

in whi
h an exhaustive examination of all
ases is ne
essary or desirable. For

example, we might want to look at all permutations of a given set.

Some authors
all this the task of enumerating all of the possibilities; but

that's not quite the right word, be
ause \enumeration" most often means that

we merely want to
ount the total number of
ases, not that we a
tually want

to look at them all. If somebody asks you to enumerate the permutations of

f1; 2; 3g, you are quite justi�ed in replying that the answer is 3! = 6; you needn't

give the more
omplete answer f123; 132; 213; 231; 312; 321g.

Other authors speak of listing all the possibilities; but that's not su
h a great

word either. No sensible person would want to make a list of the 10! = 3;628;800

permutations of f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g by printing them out on thousands of

sheets of paper, nor even by writing them all in a
omputer �le. All we really

want is to have them present momentarily in some data stru
ture, so that a

program
an examine ea
h permutation one at a time.

So we will speak of generating all of the
ombinatorial obje
ts that we need,

and visiting ea
h obje
t in turn. Just as we studied algorithms for tree traversal

in Se
tion 2.3.1, where the goal was to visit every node of a tree, we turn now

to algorithms that systemati
ally traverse a
ombinatorial spa
e of possibilities.

He's got 'em on the list|

he's got 'em on the list;

And they'll none of 'em be missed|

they'll none of 'em be missed.

| WILLIAM S. GILBERT, The Mikado (1885)

7.2.1.1. Generating all n-tuples. Let's start small, by
onsidering how to

run through all 2

n

strings that
onsist of n binary digits. Equivalently, we want

to visit all n-tuples (a

1

; : : : ; a

n

) where ea
h a

j

is either 0 or 1. This task is

also, in essen
e, equivalent to examining all subsets of a given set fx

1

; : : : ; x

n

g,

be
ause we
an say that x

j

is in the subset if and only if a

j

= 1.

Of
ourse su
h a problem has an absurdly simple solution. All we need to

do is start with the binary number (0 : : : 00)

2

= 0 and repeatedly add 1 until

we rea
h (1 : : : 11)

2

= 2

n

� 1. We will see, however, that even this utterly trivial

problem has astonishing points of interest when we look into it more deeply. And

our study of n-tuples will pay o� later when we turn to the generation of more

diÆ
ult kinds of patterns.

1

2 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

In the �rst pla
e, we
an see that the binary-notation tri
k extends to other

kinds of n-tuples. If we want, for example, to generate all (a

1

; : : : ; a

n

) in whi
h

ea
h a

j

is one of the de
imal digits f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g, we
an simply
ount

from (0 : : : 00)

10

= 0 to (9 : : : 99)

10

= 10

n

� 1 in the de
imal number system.

And if we want more generally to run through all
ases in whi
h

0 � a

j

< m

j

for 1 � j � n; (1)

where the upper limits m

j

might be di�erent in di�erent
omponents of the

ve
tor (a

1

; : : : ; a

n

), the task is essentially the same as repeatedly adding unity

to the number

h

a

1

;

m

1

;

a

2

;

m

2

;

: : : ;

: : : ;

a

n

m

n

i

(2)

in a mixed-radix number system; see Eq. 4.1{(9) and exer
ise 4.3.1{9.

We might as well pause to des
ribe the pro
ess more formally:

Algorithm M (Mixed-radix generation). This algorithm visits all n-tuples

that satisfy (1), by repeatedly adding 1 to the mixed-radix number in (2) until

over
ow o

urs. Auxiliary variables a

0

and m

0

are introdu
ed for
onvenien
e.

M1. [Initialize.℄ Set a

j

 0 for 0 � j � n, and set m

0

 2.

M2. [Visit.℄ Visit the n-tuple (a

1

; : : : ; a

n

). (The program that wants to examine

all n-tuples now does its thing.)

M3. [Prepare to add one.℄ Set j n.

M4. [Carry if ne
essary.℄ If a

j

= m

j

� 1, set a

j

 0, j j � 1, and repeat this

step.

M5. [In
rease, unless done.℄ If j = 0, terminate the algorithm. Otherwise set

a

j

 a

j

+ 1 and go ba
k to step M2.

Algorithm M is simple and straightforward, but we shouldn't forget that

nested loops are even simpler, when n is a fairly small
onstant. When n = 4,

we
ould for example write out the following instru
tions:

For a

1

= 0, 1, : : : , m

1

� 1 (in this order) do the following:

For a

2

= 0, 1, : : : , m

2

� 1 (in this order) do the following:

For a

3

= 0, 1, : : : , m

3

� 1 (in this order) do the following:

For a

4

= 0, 1, : : : , m

4

� 1 (in this order) do the following:

Visit (a

1

; a

2

; a

3

; a

4

):

(3)

These instru
tions are equivalent to Algorithm M, and they are easily expressed

in any programming language.

Gray binary
ode. Algorithm M runs through all (a

1

; : : : ; a

n

) in lexi
ographi

order, as in a di
tionary. But there are many situations in whi
h we prefer to visit

those n-tuples in some other order. The most famous alternative arrangement is

the so-
alled Gray binary
ode, whi
h lists all 2

n

strings of n bits in su
h a way

2

7.2.1.1 GENERATING ALL n-TUPLES 3

Fig. 10.

0

0

0

0

0

0

0

�

0

0

0

1

00

��

0

0

1

0

0

0

1

�

0

0

1

1

0

�

�

�

0

1

0

0

0

1

0

�

0

1

0

1

0

1

�

�

0

1

1

0

0

1

1

�

0

1

1

1

�

�

�

�

1

0

0

0

1

0

0

�

1

0

0

1

10

��

1

0

1

0

1

0

1

�

1

0

1

1

1

�

�

�

1

1

0

0

1

1

0

�

1

1

0

1

1

1

�

�

1

1

1

0

1

1

1

�

1

1

1

1

�

�

�

�

(a) Lexi
ographi
 binary
ode.

0

0

0

0

0

0

0

�

0

0

0

1

00

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

�

1

0

0

1

1

0

0

1

1

�

0

1

1

1

0

1

�

1

0

1

0

1

0

1

0

�

0

1

0

0

�

1

0

0

1

1

0

0

1

1

0

�

1

1

0

1

11

�

1

1

1

1

1

1

1

1

�

1

1

1

0

1

�

1

0

1

0

1

0

1

0

1

�

1

0

1

1

1

0

�

1

1

0

0

1

1

0

0

�

1

0

0

0

�

0

0

0

(b) Gray binary
ode.

that only one bit
hanges ea
h time, in a simple and regular way. For example,

the Gray binary
ode for n = 4 is

0000; 0001; 0011; 0010; 0110; 0111; 0101; 0100;

1100; 1101; 1111; 1110; 1010; 1011; 1001; 1000: (4)

Su
h
odes are espe
ially important in appli
ations where analog information

is being
onverted to digital or vi
e versa. For example, suppose we want to

identify our
urrent position on a rotating disk that has been divided into 16

se
tors, using four sensors that ea
h distinguish bla
k from white. If we use

lexi
ographi
 order to mark the tra
ks from 0000 to 1111, as in Fig. 10(a), wildly

ina

urate measurements
an o

ur at the boundaries between se
tors; but the

ode in Fig. 10(b) never gives a bad reading.

Gray binary
ode
an be de�ned in many equivalent ways. For example,

if �

n

stands for the Gray binary sequen
e of n-bit strings, we
an de�ne �

n

re
ursively by the two rules

�

0

= �;

�

n+1

= 0�

n

; 1�

R

n

:

(5)

Here � denotes the empty string, 0�

n

denotes the sequen
e �

n

with 0 pre�xed to

ea
h string, and 1�

R

n

denotes the sequen
e �

n

in reverse order with 1 pre�xed

to ea
h string. Sin
e the last string of �

n

equals the �rst string of �

R

n

, it is
lear

from (5) that exa
tly one bit
hanges in every step of �

n+1

if �

n

enjoys the same

property.

Another way to de�ne the sequen
e �

n

= g(0), g(1), : : : , g(2

n

� 1) is to give

an expli
it formula for its individual elements g(k). Indeed, sin
e �

n+1

begins

with 0�

n

, the in�nite sequen
e

�

1

= g(0); g(1); g(2); g(3); g(4); : : :

= (0)

2

; (1)

2

; (11)

2

; (10)

2

; (110)

2

; : : :

(6)

is a permutation of all the nonnegative integers, if we regard ea
h string of 0s

and 1s as a binary integer with optional leading 0s. Then �

n

onsists of the �rst

2

n

elements of (6),
onverted to n-bit strings by inserting 0s at the left if needed.

3

4 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

When k = 2

n

+ r, where 0 � r < 2

n

, relation (5) tells us that g(k) is equal

to 2

n

+ g(2

n

� 1� r). Therefore we
an prove by indu
tion on n that the integer

k whose binary representation is (: : : b

2

b

1

b

0

)

2

has a Gray binary equivalent g(k)

with the representation (: : : a

2

a

1

a

0

)

2

, where

a

j

= b

j

� b

j+1

; for j � 0. (7)

(See exer
ise 6.) For example, g

�

(111001000011)

2

�

= (100101100010)

2

. Con-

versely, if g(k) = (: : : a

2

a

1

a

0

)

2

is given, we
an �nd k = (: : : b

2

b

1

b

0

)

2

by inverting

the system of equations (7), obtaining

b

j

= a

j

� a

j+1

� a

j+2

� � � � ; for j � 0; (8)

this in�nite sum is really �nite be
ause a

j+t

= 0 for all large t.

One of the many pleasant
onsequen
es of Eq. (7) is that g(k)
an be
om-

puted very easily with bitwise arithmeti
:

g(k) = k � bk=2
: (9)

Similarly, the inverse fun
tion in (8) satis�es

g

[�1℄

(l) = l � bl=2
 � bl=4
 � � � � ; (10)

this fun
tion, however, requires more
omputation (see exer
ise 7.1{00). We
an

also dedu
e from (7) that, if k and k

0

are any nonnegative integers,

g(k � k

0

) = g(k)� g(k

0

): (11)

Yet another
onsequen
e is that the (n+1)-bit Gray binary
ode
an be written

�

n+1

= 0�

n

; (0�

n

)�110 : : : 0;

this pattern is evident, for example, in (4). Comparing with (5), we see that

reversing the order of Gray binary
ode is equivalent to
omplementing the �rst

bit:

�

R

n

= �

n

� 1

n�1

z }| {

0 : : : 0: (12)

The exer
ises below show that the fun
tion g(k) de�ned in (7), and its inverse

g

[�1℄

de�ned in (8), have many further properties and appli
ations of interest.

Sometimes we think of these as fun
tions taking binary strings to binary strings;

at other times we regard them as fun
tions from integers to integers, via binary

notation, with leading zeros irrelevant.

Gray binary
ode is named after Frank Gray, a physi
ist who be
ame fa-

mous for helping to devise the method long used for
ompatible
olor television

broad
asting [Bell System Te
h. J. 13 (1934), 464{515℄. He invented �

n

for

appli
ations to pulse
ode modulation, a method for analog transmission of dig-

ital signals [see Bell System Te
h. J. 30 (1951), 38{40; U.S. Patent 2632058 (17

Mar
h 1953); W. R. Bennett, Introdu
tion to Signal Transmission (1971), 238{

240℄. But the idea of \Gray binary
ode" was known long before he worked on it;

for example, it appeared in U.S. Patent 2307868 by George Stibitz (12 January

1943). More signi�
antly, �

5

was used in a telegraph ma
hine demonstrated

in 1878 by

�

Emile Baudot, after whom the term \baud" was later named. At

4

7.2.1.1 GENERATING ALL n-TUPLES 5

about the same time, a similar but less systemati

ode for telegraphy was

independently devised by Otto S
h�a�ler [see Journal T�el�egraphique 4 (1878),

252{253; Annales T�el�egraphiques 6 (1879), 361, 382{383℄.*

In fa
t, Gray binary
ode is impli
itly present in a
lassi
 toy that has

fas
inated people for
enturies, now generally known as the \Chinese ring puzzle"

in English, although Englishmen used to
all it the \tiring irons." Figure 11

shows a seven-ring example. The
hallenge is to remove the rings from the bar,

and the rings are interlo
ked in su
h a way that only two basi
 types of move are

possible (although this may not be immediately apparent from the illustration):

a) The rightmost ring
an be removed or repla
ed at any time;

b) Any other ring
an be removed or repla
ed if and only if the ring to its right

is on the bar and all rings to the right of that one are o�.

We
an represent the
urrent state of the puzzle in binary notation, writing 1

if a ring is on the bar and 0 if it is o�; thus Fig. 11 shows the rings in state

1011000. (The se
ond ring from the left is en
oded as 0, be
ause it lies entirely

above the bar.)

Fig. 11.

The Chinese ring puzzle.

A Fren
h magistrate named Louis Gros demonstrated an expli
it
onne
tion

between Chinese rings and binary numbers, in a booklet
alled Th�eorie du

Baguenodier [si
℄ (Lyon: Aim�e Vingtrinier, 1872) that was published anony-

mously. If the rings are in state a

n�1

: : : a

0

, and if we de�ne the binary number

k = (b

n�1

: : : b

0

)

2

by Eq. (8), he showed that exa
tly k more steps are ne
essary

and suÆ
ient to solve the puzzle. Thus Gros is the true inventor of Gray binary

ode.

Certainly no home should be without

this fas
inating, histori
, and instru
tive puzzle.

| HENRY E. DUDENEY (1901)

When the rings are in any state other than 00 : : : 0 or 10 : : : 0, exa
tly two

moves are possible, one of type (a) and one of type (b). Only one of these moves

advan
es toward the desired goal; the other is a step ba
kward that will need to

be undone. A type (a) move
hanges k to k � 1; thus we want to do it when

k is odd, sin
e this will de
rease k. A type (b) move from a position that ends

in (10

j�1

)

2

for 1 � j < n
hanges k to k � (1

j+1

)

2

= k � (2

j+1

� 1). When k

* Some authors have asserted that Gray
ode was invented by Elisha Gray, who developed a

printing telegraph ma
hine at the same time as Baudot and S
h�a�ler. Su
h
laims are untrue,

although Elisha did get a raw deal with respe
t to priority for inventing the telephone [see

L. W. Taylor, Amer. Physi
s Tea
her 5 (1937), 243{251℄.

5

6 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

is even, we want k � (2

j+1

� 1) to equal k � 1, whi
h means that k must be a

multiple of 2

j

but not a multiple of 2

j+1

; in other words,

j = �(k); (13)

where � is the \ruler fun
tion" of Eq. 7.1{(00). Therefore the rings follow a ni
e

pattern when the puzzle is solved properly: If we number them 0, 1, : : : , n � 1

(starting at the free end), the sequen
e of ring moves on or o� the bar is the

sequen
e of numbers that ends with : : : , �(4), �(3), �(2), �(1).

Going ba
kwards, su

essively putting rings on or o� until we rea
h the

ultimate state 10 : : : 0 (whi
h, as John Wallis observed in 1693, is more diÆ
ult to

rea
h than the supposedly harder state 11 : : : 1), yields an algorithm for
ounting

in Gray binary
ode:

Algorithm G (Gray binary generation). This algorithm visits all binary n-

tuples (a

n�1

; : : : ; a

1

; a

0

) by starting with (0; : : : ; 0; 0) and
hanging only one bit

at a time, also maintaining a parity bit a

1

su
h that

a

1

= a

n�1

� � � � � a

1

� a

0

: (14)

It su

essively
omplements bits �(1), �(2), �(3), : : : , �(2

n

� 1) and then stops.

G1. [Initialize.℄ Set a

j

 0 for 0 � j < n; also set a

1

 0.

G2. [Visit.℄ Visit the n-tuple (a

n�1

; : : : ; a

1

; a

0

).

G3. [Change parity.℄ Set a

1

 1� a

1

.

G4. [Choose j.℄ If a

1

= 1, set j 0. Otherwise let j � 1 be minimum su
h

that a

j�1

= 1. (After the kth time we have performed this step, j = �(k).)

G5. [Complement
oordinate j.℄ Terminate if j = n; otherwise set a

j

 1� a

j

and return to G2.

The parity bit a

1

omes in handy if we are
omputing a sum like

X

000

�X

001

�X

010

+X

011

�X

100

+X

101

+X

110

�X

111

or

X

;

�X

a

�X

b

+X

ab

�X

+X

a

+X

b

�X

ab

;

where the sign depends on the parity of a binary string or the number of elements

in a subset. Su
h sums arise frequently in \in
lusion-ex
lusion" formulas su
h

as Eq. 1.3.3{(29). The parity bit is also ne
essary, for eÆ
ien
y: Without it we

ould not easily
hoose between the two ways of determining j, whi
h
orrespond

to performing a type (a) or type (b) move in the Chinese ring puzzle. But the

most important feature of Algorithm G is that step G5 makes only a single

oordinate
hange. Therefore only a simple
hange is usually needed to the

terms X that we are summing, or to whatever other stru
tures we are
on
erned

with as we visit ea
h n-tuple.

It is impossible, of
ourse, to remove all ambiguity in the lowest-order digit

ex
ept by a s
heme like one the Irish railways are said to have used

of removing the last
ar of every train

be
ause it is too sus
eptible to
ollision damage.

| G. R. STIBITZ and J. A. LARRIVEE, Mathemati
s and Computers (1957)

6

7.2.1.1 GENERATING ALL n-TUPLES 7

Fig. 12. Walsh fun
tions w

k

(x) for

0 � k < 8, with the analogous trigo-

nometri
 fun
tions

p

2
os k�x shown

in gray for
omparison.

w (x)

0

w (x)

1

w (x)

2

w (x)

3

w (x)

4

w (x)

5

w (x)

6

w (x)

7

x = 0

x =

1

4

x =

1

2

x =

3

4

x = 1

Another key property of Gray binary
ode was dis
overed by J. L. Walsh

in
onne
tion with an important sequen
e of fun
tions now known as Walsh

fun
tions [see Amer. J. Math. 45 (1923), 5{24℄. Let w

0

(x) = 1 for all real

numbers x, and

w

k

(x) = (�1)

b2x
dk=2e

w

bk=2

(2x); for k > 0. (15)

For example, w

1

(x) = (�1)

b2x

hanges sign whenever x is an integer or an

integer plus

1

2

. It follows that w

k

(x) = w

k

(x+1) for all k, and that w

k

(x) = �1

for all x. More signi�
antly, w

k

(0) = 1 and w

k

(x) has exa
tly k sign
hanges in

the interval (0 : : 1), so that it approa
hes (�1)

k

as x approa
hes 1 from the left.

Therefore w

k

(x) behaves rather like a trigonometri
 fun
tion
os k�x or sin k�x,

and we
an represent other fun
tions as a linear
ombination of Walsh fun
tions

in mu
h the same way as they are traditionally represented as Fourier series. This

fa
t, together with the simple dis
rete nature of w

k

(x), makes Walsh fun
tions

extremely useful in
omputer
al
ulations related to information transmission,

image pro
essing, and many other appli
ations.

Figure 12 shows the �rst eight Walsh fun
tions together with their trigono-

metri

ousins. Engineers
ommonly
all w

k

(x) the Walsh fun
tion of sequen
y

k, by analogy with the fa
t that
os k�x and sin k�x have frequen
y k=2. [See,

for example, the book Sequen
y Theory: Foundations and Appli
ations (New

York: A
ademi
 Press, 1977), by H. F. Harmuth.℄

7

8 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Although Eq. (15) may look formidable at �rst glan
e, it a
tually provides an

easy way to see by indu
tion why w

k

(x) has exa
tly k sign
hanges as
laimed. If

k is even, say k = 2l, we have w

2l

(x) = w

l

(2x) for 0 � x <

1

2

; the e�e
t is simply

to
ompress the fun
tion w

l

(x) into half the spa
e, so w

2l

(x) has a

umulated

l sign
hanges so far. Then w

2l

(x) = (�1)

l

w

l

(2x) = (�1)

l

w

l

(2x � 1) in the

range

1

2

� x < 1; this
on
atenates another
opy of w

l

(2x),
ipping the sign if

ne
essary to avoid a sign
hange at x =

1

2

. The fun
tion w

2l+1

(x) is similar, but

it for
es a sign
hange when x =

1

2

.

What does this have to do with Gray binary
ode? Walsh dis
overed that

his fun
tions
ould all be expressed neatly in terms of simpler fun
tions
alled

Radema
her fun
tions [Hans Radema
her, Math. Annalen 87 (1922), 112{138℄,

r

k

(x) = (�1)

b2

k

x

; (16)

whi
h take the value (�1)

�k

when (: : :

2

1

0

:

�1

�2

: : :)

2

is the binary represen-

tation of x. Indeed, we have w

1

(x) = r

1

(x), w

2

(x) = r

1

(x)r

2

(x), w

3

(x) = r

2

(x),

and in general

w

k

(x) =

Y

j�0

r

j+1

(x)

b

j

�b

j+1

when k = (b

n�1

: : : b

1

b

0

)

2

. (17)

(See exer
ise 33.) Thus the exponent of r

j+1

(x) in w

k

(x) is the jth bit of the

Gray binary number g(k), a

ording to (7), and we have

w

k

(x) = r

�(k)+1

(x)w

k�1

(x); for k > 0. (18)

Equation (17) implies the handy formula

w

k

(x)w

k

0

(x) = w

k�k

0

(x); (19)

whi
h is mu
h simpler than the
orresponding produ
t formulas for sines and

osines. This identity follows easily be
ause r

j

(x)

2

= 1 for all j and x, hen
e

r

j

(x)

a�b

= r

j

(x)

a+b

. It implies in parti
ular that w

k

(x) is orthogonal to w

k

0

(x)

when k 6= k

0

, in the sense that the average value of w

k

(x)w

k

0

(x) is zero. We also

an use (17) to de�ne w

k

(x) for fra
tional values of k like 1=2 or 13=8.

TheWalsh transform of 2

n

numbers (X

0

; : : : ; X

2

n

�1

) is the ve
tor de�ned by

the equation (x

0

; : : : ; x

2

n

�1

)

T

= W

n

(X

0

; : : : ; X

2

n

�1

)

T

, where W

n

is the 2

n

� 2

n

matrix having w

j

(k=2

n

) in row j and
olumn k, for 0 � j; k < 2

n

. For example,

Fig. 12 tells us that the Walsh transform when n = 3 is

0

B

B

B

B

B

B

B

B

B

�

x

000

x

001

x

010

x

011

x

100

x

101

x

110

x

111

1

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

�

X

000

X

001

X

010

X

011

X

100

X

101

X

110

X

111

1

C

C

C

C

C

C

C

C

C

A

: (20)

8

7.2.1.1 GENERATING ALL n-TUPLES 9

(Here 1 stands for �1, and the subs
ripts are
onveniently regarded as binary

strings 000{111 instead of as the integers 0{7.) The Hadamard transform is

de�ned similarly, but with the matrix H

n

in pla
e of W

n

, where H

n

has (�1)

j�k

in row j and
olumn k; here `j �k' denotes the dot produ
t a

n�1

b

n�1

+ � � �+a

0

b

0

of the binary representations j = (a

n�1

: : : a

0

)

2

and k = (b

n�1

: : : b

0

)

2

. For

example, the Hadamard transform for n = 3 is

0

B

B

B

B

B

B

B

B

B

�

x

0

000

x

0

001

x

0

010

x

0

011

x

0

100

x

0

101

x

0

110

x

0

111

1

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

�

X

000

X

001

X

010

X

011

X

100

X

101

X

110

X

111

1

C

C

C

C

C

C

C

C

C

A

: (21)

This is the same as the dis
rete Fourier transform on an n-dimensional
ube,

Eq. 4.6.4{(38), and we
an evaluate it qui
kly \in pla
e" by adapting the method

of Yates dis
ussed in Se
tion 4.6.4:

Given First step Se
ond step Third step

X

000

X

000

+X

001

X

000

+X

001

+X

010

+X

011

X

000

+X

001

+X

010

+X

011

+X

100

+X

101

+X

110

+X

111

X

001

X

000

�X

001

X

000

�X

001

+X

010

�X

011

X

000

�X

001

+X

010

�X

011

+X

100

�X

101

+X

110

�X

111

X

010

X

010

+X

011

X

000

+X

001

�X

010

�X

011

X

000

+X

001

�X

010

�X

011

+X

100

+X

101

�X

110

�X

111

X

011

X

010

�X

011

X

000

�X

001

�X

010

+X

011

X

000

�X

001

�X

010

+X

011

+X

100

�X

101

�X

110

+X

111

X

100

X

100

+X

101

X

100

+X

101

+X

110

+X

111

X

000

+X

001

+X

010

+X

011

�X

100

�X

101

�X

110

�X

111

X

101

X

100

�X

101

X

100

�X

101

+X

110

�X

111

X

000

�X

001

+X

010

�X

011

�X

100

+X

101

�X

110

+X

111

X

110

X

110

+X

111

X

100

+X

101

�X

110

�X

111

X

000

+X

001

�X

010

�X

011

�X

100

�X

101

+X

110

+X

111

X

111

X

110

�X

111

X

100

�X

101

�X

110

+X

111

X

000

�X

001

�X

010

+X

011

�X

100

+X

101

+X

110

�X

111

Noti
e that the rows of H

3

are a permutation of the rows of W

3

. This is true in

general, so we
an obtain the Walsh transform by permuting the elements of the

Hadamard transform. Exer
ise 36 dis
usses the details.

Going faster. When we're running through 2

n

possibilities, we usually want

to redu
e the
omputation time as mu
h as possible. Algorithm G needs to

omplement only one bit a

j

per visit to (a

n�1

; : : : ; a

0

), but it loops in step G4

while
hoosing an appropriate value of j. Another approa
h has been suggested

by Gideon Ehrli
h [JACM 20 (1973), 500{513℄, who introdu
ed the notion of

loopless
ombinatorial generation: With a loopless algorithm, the number of

operations performed between su

essive visits is required to be bounded in

advan
e, so there never is a long wait before a new pattern has been generated.

We learned some tri
ks in Se
tion 7.1 about qui
k ways to determine the

number of leading or trailing 0s in a binary number. Those methods
ould be

used in step G4 to make Algorithm G loopless, assuming that n isn't unreason-

ably large. But Ehrli
h's method is quite di�erent, and mu
h more versatile,

so it provides us with a new weapon in our arsenal of te
hniques for eÆ
ient

omputation. Here is how his approa
h
an be used to generate binary n-tuples

[see Bitner, Ehrli
h, and Reingold, CACM 19 (1976), 517{521℄:

9

10 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Algorithm L (Loopless Gray binary generation). This algorithm, like Algo-

rithm G, visits all binary n-tuples (a

n�1

; : : : ; a

0

) in the order of the Gray binary

ode. But instead of maintaining a parity bit, it uses an array of \fo
us pointers"

(f

n

; : : : ; f

0

), whose signi�
an
e is dis
ussed below.

L1. [Initialize.℄ Set a

j

 0 and f

j

 j for 0 � j < n; also set f

n

 n. (A

loopless algorithm is allowed to have loops in its initialization step, as long

as the initial setup is reasonably eÆ
ient; after all, every program needs to

be loaded and laun
hed.)

L2. [Visit.℄ Visit the n-tuple (a

n�1

; : : : ; a

1

; a

0

).

L3. [Choose j.℄ Set j f

0

, f

0

 0. (If this is the kth time we are performing

the present step, j is now equal to �(k).) Terminate if j = n; otherwise set

f

j

 f

j+1

and f

j+1

 j + 1.

L4. [Complement
oordinate j.℄ Set a

j

 1� a

j

and return to L2.

For example, the
omputation pro
eeds as follows when n = 4. Elements a

j

have

been underlined in this table if the
orresponding bit b

j

is 1 in the binary string

b

3

b

2

b

1

b

0

su
h that a

3

a

2

a

1

a

0

= g(b

3

b

2

b

1

b

0

):

a

3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

a

2

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

a

1

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

a

0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

f

3

3 3 3 3 3 3 3 3 4 4 4 4 3 3 3 3

f

2

2 2 2 2 3 3 2 2 2 2 2 2 4 4 2 2

f

1

1 1 2 1 1 1 3 1 1 1 2 1 1 1 4 1

f

0

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Although the binary number k = (b

n�1

: : : b

0

)

2

never appears expli
itly in Al-

gorithm L, the fo
us pointers f

j

represent it impli
itly in a
lever way, so that

we
an repeatedly form g(k) = (a

n�1

: : : a

0

)

2

by
omplementing bit a

�(k)

as we

should. Let's say that a

j

is passive when it is underlined, a
tive otherwise. Then

the fo
us pointers satisfy the following invariant relations:

1) If a

j

is passive and a

j�1

is a
tive, then f

j

is the smallest index j

0

> j su
h

that a

j

0

is a
tive. (Bits a

n

and a

�1

are
onsidered to be a
tive for purposes

of this rule, although they aren't really present in the algorithm.)

2) Otherwise f

j

= j.

Thus, the rightmost element a

j

of a blo
k of passive elements a

i�1

: : : a

j+1

a

j

,

with de
reasing subs
ripts, has a fo
us f

j

that points to the element a

i

just to

the left of that blo
k. All other elements a

j

have f

j

pointing to themselves.

In these terms, the �rst two operations `j f

0

, f

0

 0' in step L3 are

equivalent to saying, \Set j to the index of the rightmost a
tive element, and

a
tivate all elements to the right of a

j

." Noti
e that if f

0

= 0, the operation

f

0

 0 is redundant; but it doesn't do any harm. The other two operations of L3,

`f

j

 f

j+1

, f

j+1

 j + 1', are equivalent to saying, \Make a

j

passive," be
ause

we know that a

j

and a

j�1

are both a
tive at this point in the
omputation.

10

7.2.1.1 GENERATING ALL n-TUPLES 11

(Again the operation f

j+1

 j + 1 might be harmlessly redundant.) The net

e�e
t of a
tivation and passivation is therefore equivalent to
ounting in binary

notation, as in Algorithm M, with 1-bits passive and 0-bits a
tive.

Algorithm L is almost blindingly fast, be
ause it does only �ve assignment

operations and one test for termination between ea
h visit to a generated n-tuple.

But we
an do even better. In order to see how, let's
onsider an appli
ation

to re
reational linguisti
s: Rudolph Castown, in Word Ways 1 (1968), 165{

169, noted that all 16 of the ways to intermix the letters of sins with the

orresponding letters of fate produ
e words that are found in a suÆ
iently large

di
tionary of English: sine, sits, site, et
.; and all but three of those words

(namely fane, fite, and sats) are suÆ
iently
ommon as to be unquestionably

part of standard English. Therefore it is natural to ask the analogous question

for �ve-letter words: What two strings of �ve letters will produ
e the maximum

number of words in the Stanford GraphBase, when letters in
orresponding

positions are swapped in all 32 possible ways?

To answer this question, we need not examine all

�

26

2

�

5

= 3;625;908;203;125

essentially di�erent pairs of strings; it suÆ
es to look at all

�

5757

2

�

= 16;568;646

pairs of words in the GraphBase, provided that at least one of those pairs

produ
es at least 17 words, be
ause every set of 17 or more �ve-letter words

obtainable from two �ve-letter strings must
ontain two that are \antipodal"

(with no
orresponding letters in
ommon). For every antipodal pair, we want

to determine as rapidly as possible whether the 32 possible subset-swaps produ
e

a signi�
ant number of English words.

Every 5-letter word
an be represented as a 25-bit number using 5 bits per

letter, from "a" = 00000 to "z" = 11001. A table of 2

25

bits or bytes will then

determine qui
kly whether a given �ve-letter string is a word. So the problem

is redu
ed to generating the bit patterns of the 32 potential words obtainable

by mixing the letters of two given words, and looking those patterns up in the

table. We
an pro
eed as follows, for ea
h pair of 25-bit words w and w

0

:

W1. [Che
k the di�eren
e.℄ Set z w � w

0

. Reje
t the word pair (w;w

0

) if

�

(z�m)�z�m

�

^m

0

6= 0, wherem = 2

20

+2

15

+2

10

+2

5

+1 andm

0

= 2

5

m;

this test eliminates
ases where w and w

0

have a
ommon letter in some

position. (See 7.1{(00); it turns out that 10,614,085 of the 16,568,646 word

pairs have no su
h
ommon letters.)

W2. [Form individual masks.℄ Set m

0

 z ^ (2

5

� 1), m

1

 z ^ (2

10

� 2

5

),

m

2

 z ^ (2

15

� 2

10

), m

3

 z ^ (2

20

� 2

15

), and m

4

 z ^ (2

25

� 2

20

), in

preparation for the next step.

W3. [Count words.℄ Set l 1 and A

0

 w; the variable l will
ount how many

words starting with w we have found so far. Then perform the operations

swap(4) de�ned below.

W4. [Print a re
ord-setting solution.℄ If l ex
eeds or equals the
urrent maxi-

mum, print A

j

for 0 � j < l.

The heart of this high-speed method is the sequen
e of operations swap(4), whi
h

should be expanded inline (for example with a ma
ro-pro
essor) to eliminate all

11

12 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

unne
essary overhead. It is de�ned in terms of the basi
 operation

sw(j): Set w w �m

j

. Then if w is a word, set A

l

 w and l l + 1.

Given sw(j), whi
h
ips the letters in position j, we de�ne

swap(0) = sw(0);

swap(1) = swap(0); sw(1); swap(0);

swap(2) = swap(1); sw(2); swap(1);

swap(3) = swap(2); sw(3); swap(2);

swap(4) = swap(3); sw(4); swap(3):

(22)

Thus swap(4) expands into a sequen
e of 31 steps sw(0), sw(1), sw(0), sw(2),

: : : , sw(0) = sw(�(1)), sw(�(2)), : : : , sw(�(31)); these steps will be used 10

million times. We
learly gain speed by embedding the ruler fun
tion values

�(k) dire
tly into our program, instead of re
omputing them repeatedly for ea
h

word pair via Algorithm M, G, or L.

The winning pair of words generates a set of 21, namely

du
ks du
ky du
es dunes dunks dinks dinky

dines di
es di
ey di
ky di
ks pi
ks pi
ky

pines piney pinky pinks punks punky pu
ks

(23)

If, for example, w = du
ks and w

0

= piney, then m

0

= s � y, so the �rst

operation sw(0)
hanges du
ks to du
ky, whi
h is seen to be a word. The next

operation sw(1) applies m

1

, whi
h is k� e in the next-to-last letter position, so

it produ
es the nonword du
ey. Another appli
ation of sw(0)
hanges du
ey to

du
es (a legal term generally followed by the word te
um). And so on. All word

pairs
an be pro
essed by this method in at most a few se
onds.

Further streamlining is also possible. For example, on
e we have found

a pair that yields k words, we
an reje
t later pairs as soon as they generate

33 � k nonwords. But the method we've dis
ussed is already quite fast, and it

demonstrates the fa
t that even the loopless Algorithm L
an be beaten.

Fans of Algorithm L may, of
ourse,
omplain that we have speeded up

the pro
ess only in the small spe
ial
ase n = 5, while Algorithm L solves the

generation problem for n in general. A similar idea does, however, work also

for general values of n > 5: We
an expand out a program so that it rapidly

generates all 32 settings of the rightmost bits a

4

a

3

a

2

a

1

a

0

, as above; then we
an

apply Algorithm L after every 32 steps, using it to generate su

essive
hanges

to the other bits a

n�1

: : : a

5

. This approa
h redu
es the amount of unne
essary

work done by Algorithm L by nearly a fa
tor of 32.

Other binary Gray
odes. The Gray binary
ode g(0), g(1), : : : , g(2

n

� 1) is

only one of many ways to traverse all possible n-bit strings while
hanging only

a single bit at ea
h step. Let us say that, in general, a \Gray
y
le" on binary

n-tuples is any sequen
e (v

0

; v

1

; : : : ; v

2

n

�1

) that in
ludes every n-tuple and has

the property that v

k

di�ers from v

(k+1) mod 2

n

in just one bit position. Thus,

in the terminology of graph theory, a Gray
y
le is an oriented Hamiltonian

12

7.2.1.1 GENERATING ALL n-TUPLES 13

Fig. 13.

0

0

0

0

0

0

0

�

0

0

0

1

00

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

0

1

0

�

0

1

0

1

0

1

�

1

0

1

1

1

�

1

1

1

1

1

1

1

1

1

1

�

1

1

1

0

11

�

0

1

1

0

0

1

1

0

�

1

1

0

1

1

�

0

1

1

0

0

1

1

0

�

1

1

0

1

1

1

0

1

�

1

0

1

0

1

0

�

0

1

0

0

0

�

0

0

0

(a) Complementary Gray
ode.

0

0

0

0

0

0

0

�

0

0

0

1

00

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

�

1

0

0

1

1

0

0

1

1

�

0

1

1

1

�

1

1

1

1

1

1

1

1

�

1

1

1

0

1

1

1

0

�

1

1

0

0

1

1

�

0

1

1

1

0

1

�

101

0

1

0

1

0

1

0

�

0

1

0

0

�

1

0

0

1

1

0

0

1

1

�

0

1

1

1

0

1

�

1

0

1

0

1

0

1

0

�

0

1

0

0

0

�

0

0

0

(b) Balan
ed Gray
ode.

y
le on the n-
ube. We
an assume that subs
ripts have been
hosen so that

v

0

= 0 : : : 0.

If we think of the v's as binary numbers, there are integers Æ

0

: : : Æ

2

n

�1

su
h

that

v

(k+1) mod 2

n

= v

k

� 2

Æ

k

; for 0 � k < 2

n

; (24)

this so-
alled \delta sequen
e" is another way to des
ribe a Gray
y
le. For

example, the delta sequen
e for standard Gray binary when n = 3 is 01020102;

it is essentially the ruler fun
tion Æ

k

= �(k+1) of (13), but the �nal value Æ

2

n

�1

is n� 1 instead of n, so that the
y
le
loses. The individual elements Æ

k

always

lie in the range 0 � Æ

k

< n, and they are
alled \
oordinates."

Let d(n) be the number of di�erent delta sequen
es that de�ne an n-bit

Gray
y
le, and let
(n) be the number of \
anoni
al" delta sequen
es in whi
h

ea
h
oordinate k appears before the �rst appearan
e of k + 1. Then d(n) =

n!
(n), be
ause every permutation of the
oordinate numbers in a delta sequen
e

obviously produ
es another delta sequen
e. The only possible
anoni
al delta

sequen
es for n � 3 are easily seen to be

00; 0101; 01020102 and 01210121: (25)

Therefore
(1) =
(2) = 1,
(3) = 2; d(1) = 1, d(2) = 2, and d(3) = 12. A

straightforward
omputer
al
ulation, using te
hniques for the enumeration of

Hamiltonian
y
les that we will study later, establishes the next values,

(4) = 112;

(5) = 15;109;096;

d(4) = 2688;

d(5) = 1;813;091;520:

(26)

No simple pattern is evident, and the numbers grow quite rapidly (see exer-

ise 45); therefore it's a fairly safe bet that nobody will ever know the exa
t

values of
(8) and d(8).

Sin
e the number of possibilities is so huge, people have been en
ouraged

to look for Gray
y
les that have additional useful properties. For example,

Fig. 13(a) shows a 4-bit Gray
y
le in whi
h every string a

3

a

2

a

1

a

0

is diametri
ally

opposite to its
omplement a

3

a

2

a

1

a

0

. Su
h
oding s
hemes are possible whenever

the number of bits is even (see exer
ise 49).

13

14 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

An even more interesting Gray
y
le, found by G. C. Tootill [Pro
. IEE 103,

Part B Supplement (1956), 435℄, is shown in Fig. 13(b). This one has the same

number of
hanges in ea
h of the four
oordinate tra
ks, hen
e all
oordinates

share equally in the a
tivities. Gray
y
les that are balan
ed in a similar way
an

in fa
t be
onstru
ted for all larger values of n, by using the following versatile

method to extend a
y
le from n bits to n+ 2 bits:

Theorem D. Let �

1

j

1

�

2

j

2

: : : �

l

j

l

be a delta sequen
e for an n-bit Gray
y
le,

where ea
h j

k

is a single
oordinate, ea
h �

k

is a possibly empty sequen
e of

oordinates, and l is odd. Then

�

1

(n+1)�

R

1

n�

1

j

1

�

2

n�

R

2

(n+1)�

2

j

2

�

3

(n+1)�

R

3

n�

3

: : : j

l�1

�

l

(n+1)�

R

l

n�

l

(n+1)�

R

l

j

l�1

�

R

l�1

: : : �

R

2

j

1

�

R

1

n

(27)

is the delta sequen
e of an (n+ 2)-bit Gray
y
le.

For example, if we start with the sequen
e 01020102 for n = 3 and let the three

underlined elements be j

1

, j

2

, j

3

, the new sequen
e (27) for a 5-bit
y
le is

01410301020131024201043401020103: (28)

Proof. Let �

k

have length m

k

and let v

kt

be the vertex rea
hed if we start at

0 : : : 0 and apply the
oordinate
hanges �

1

j

1

: : : �

k�1

j

k�1

and the �rst t of �

k

.

We need to prove that all verti
es 00v

kt

, 01v

kt

, 10v

kt

, and 11v

kt

o

ur when (27)

is used, for 1 � k � l and 0 � t � m

k

. (The leftmost
oordinate is n+1.)

Starting with 000 : : : 0 = 00v

10

, we pro
eed to obtain the verti
es

00v

11

; : : : ; 00v

1m

1

; 10v

1m

1

; : : : ; 10v

10

; 11v

10

; : : : ; 11v

1m

1

;

then j

1

yields 11v

20

, whi
h is followed by

11v

21

; : : : ; 11v

2m

2

; 10v

2m

2

; : : : ; 10v

20

; 00v

20

; : : : ; 00v

2m

2

;

then
omes 00v

30

, et
., and we eventually rea
h 11v

lm

l

. The glorious �nale then

uses the third line of (27) to generate all the missing verti
es 01v

lm

l

, : : : , 01v

10

and take us ba
k to 000 : : : 0.

The transition
ounts (

0

; : : : ;

n�1

) of a delta sequen
e are de�ned by letting

j

be the number of times Æ

k

= j. For example, (28) has transition
ounts

(12; 8; 4; 4; 4), and it arose from a sequen
e with transition
ounts (4; 2; 2). If we

hoose the original delta sequen
e
arefully and underline appropriate elements

j

k

, we
an obtain transition
ounts that are as equal as possible:

Corollary B. For all n � 1, there is an n-bit Gray
y
le with transition
ounts

(

0

;

1

; : : : ;

n�1

) that satisfy the
ondition

j

j

�

k

j � 2 for 0 � j < k < n. (29)

(This is the best possible balan
e
ondition, be
ause ea
h

j

must be an even

number, and we must have

0

+

1

+ � � � +

n�1

= 2

n

. Indeed,
ondition (29)

14

7.2.1.1 GENERATING ALL n-TUPLES 15

holds if and only if n� r of the
ounts are equal to 2q and r are equal to 2q+2,

where q = b2

n�1

=n
 and r = 2

n�1

mod n.)

Proof. Given a delta sequen
e for an n-bit Gray
y
le with transition
ounts

(

0

; : : : ;

n�1

), the
ounts for
y
le (27) are obtained by starting with the values

(

0

0

; : : : ;

0

n�1

;

0

n

;

0

n+1

) = (4

0

; : : : ; 4

n�1

; l+1; l+1), then subtra
ting 2 from

0

j

k

for 1 � k < l and subtra
ting 4 from

0

j

l

. For example, when n = 3 we
an obtain

a balan
ed 5-bit Gray
y
le having transition
ounts (8 � 2; 16 � 10; 8; 6; 6) =

(6; 6; 8; 6; 6) if we apply Theorem D to the delta sequen
e 01210121. Exer
ise 51

works out the details for other values of n.

Another important
lass of n-bit Gray
y
les in whi
h ea
h of the
oordinate

tra
ks has equal responsibility arises when we
onsider run lengths, namely the

distan
es between
onse
utive appearan
es of the same Æ value. Standard Gray

binary
ode has run length 2 in the least signi�
ant position, and this
an lead to

a loss of a

ura
y when pre
ise measurements need to be made [see, for example,

the dis
ussion by G. M. Lawren
e and W. E. M
Clinto
k, Pro
. SPIE 2831

(1996), 104{111℄. But all runs have length 4 or more in the remarkable 5-bit

Gray
y
le whose delta sequen
e is

(0123042103210423)

2

: (30)

Let r(n) be the maximum value r su
h that an n-bit Gray
y
le
an be

found in whi
h all runs have length � r. Clearly r(1) = 1, and r(2) = r(3) =

r(4) = 2; and it is easy to see that r(n) must be less than n when n > 2, hen
e

(30) proves that r(5) = 4. Exhaustive
omputer sear
hes establish the values

r(6) = 4 and r(7) = 5. Indeed, a fairly straightforward ba
ktra
k
al
ulation

for the
ase n = 7 needs a tree of only about 60 million nodes to determine

that r(7) < 6, and exer
ise 61(a)
onstru
ts a 7-bit
y
le with no run shorter

than 5. The exa
t values of r(n) are unknown for n � 8; but r(10) is almost

ertainly 8, and interesting
onstru
tions are known by whi
h we
an prove that

r(n) = n�O(logn) as n!1. (See exer
ises 60{64.)

*Binary Gray paths. We have de�ned an n-bit Gray
y
le as a way to arrange

all binary n-tuples into a sequen
e (v

0

; v

1

; : : : ; v

2

n

�1

) with the property that

v

k

is adja
ent to v

k+1

in the n-
ube for 0 � k < 2

n

, and su
h that v

2

n

�1

is

also adja
ent to v

0

. The
y
li
 property is ni
e, but not always essential; and

sometimes we
an do better without it. Therefore we say that an n-bitGray path,

also
ommonly
alled a Gray
ode, is any sequen
e that satis�es the
onditions

of a Gray
y
le ex
ept that the last element need not be adja
ent to the �rst. In

other words, a Gray
y
le is a Hamiltonian
y
le on the verti
es of the n-
ube,

but a Gray
ode is simply a Hamiltonian path on that graph.

The most important binary Gray paths that are not also Gray
y
les are

n-bit sequen
es (v

0

; v

1

; : : : ; v

2

n

�1

) that are monotoni
, in the sense that

�(v

k

) � �(v

k+2

) for 0 � k < 2

n

� 2. (31)

(Here, as elsewhere, we use � to denote the \weight" or the \sideways sum" of a

binary string, namely the number of 1s that it has.) Trial and error shows that

15

16 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

(a) (b) (
) (d) (e) (f) (g)

Fig. 14. Examples of

8-bit Gray
odes:

a) standard;

b) balan
ed;

)
omplementary;

d) long-run;

e) nonlo
al;

f) monotoni
;

g) trend-free.

16

7.2.1.1 GENERATING ALL n-TUPLES 17

there are essentially only two monotoni
 n-bit Gray
odes for ea
h n � 4, one

starting with 0

n

and the other starting with 0

n�1

1. The two for n = 3 are

000; 001; 011; 010; 110; 100; 101; 111; (32)

001; 000; 010; 110; 100; 101; 111; 011: (33)

The two for n = 4 are slightly less obvious, but not really diÆ
ult to dis
over.

Sin
e �(v

k+1

) = �(v

k

) � 1 whenever v

k

is adja
ent to v

k+1

, we obviously

an't strengthen (31) to the requirement that all n-tuples be stri
tly sorted by

weight. But relation (31) is strong enough to determine the weight of ea
h v

k

,

given k and the weight of v

0

, be
ause we know that exa
tly

�

n

j

�

of the n-tuples

have weight j.

Figure 14 summarizes our dis
ussions so far, by illustrating seven of the

zillions of Gray
odes that make a grand tour through all 256 of the possible

8-bit bytes. Bla
k squares represent ones and white squares represent zeros.

Figure 14(a) is the standard Gray binary
ode, while Fig. 14(b) is balan
ed with

exa
tly 256=8 = 32 transitions in ea
h
oordinate position. Fig. 14(
) is a Gray

ode analogous to Fig. 13(a), in whi
h the bottom 128
odes are
omplements

of the top 128. In Fig. 14(d), the transitions in ea
h
oordinate position never

o

ur
loser than �ve steps apart; in other words, all run lengths are at least 5.

The
y
le in Fig. 14(e) is nonlo
al in the sense of exer
ise 59. Fig. 14(f) shows

a monotoni
 path for n = 8; noti
e how bla
k it gets near the bottom. Finally,

Fig. 14(g) illustrates a Gray
ode that is totally nonmonotoni
, in the sense that

the
enter of gravity of the bla
k squares lies exa
tly at the halfway point in ea
h

olumn. Standard Gray binary
ode has this property in seven of the
oordinate

positions, but Fig. 14(g) a
hieves perfe
t bla
k-white weight balan
e in all eight.

Su
h
odes are
alled trend-free; they are important in the design of agri
ultural

and other experiments (see exer
ises 75 and 76).

Carla Savage and Peter Winkler [J. Combinatorial Theory A70 (1995), 230{

248℄ found an elegant way to
onstru
t monotoni
 binary Gray
odes for all n > 0.

Su
h paths are ne
essarily built from subpaths P

nj

in whi
h all transitions are

between n-tuples of weights j and j + 1. Savage and Winkler de�ned suitable

subpaths re
ursively by letting P

10

= 0; 1 and, for all n > 0,

P

(n+1)j

= 1P

�

n

n(j�1)

; 0P

nj

; (34)

P

nj

= ; if j < 0 or j � n. (35)

Here �

n

is a permutation of the
oordinates that we will spe
ify later, and the

notation P

�

means that every element a

n�1

: : : a

1

a

0

of the sequen
e P is repla
ed

by b

n�1

: : : b

1

b

0

, where b

j�

= a

j

. (We don't de�ne P

�

by letting b

j

= a

j�

,

be
ause we want (2

j

)

�

to be 2

j�

.) It follows, for example, that

P

20

= 0P

10

= 00; 01 (36)

be
ause P

1(�1)

is va
uous; also

P

21

= 1P

�

1

10

= 10; 11 (37)

17

18 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

be
ause P

11

is va
uous and �

1

must be the identity permutation. In general,

P

nj

is a sequen
e of n-bit strings
ontaining exa
tly

�

n�1

j

�

strings of weight j

interleaved with

�

n�1

j

�

strings of weight j + 1.

Let �

nj

and !

nj

be the �rst and last elements of P

nj

. Then we easily �nd

!

nj

= 0

n�j�1

1

j+1

, for 0 � j < n; (38)

�

n0

= 0

n

, for n > 0; (39)

�

nj

= 1�

�

n�1

(n�1)(j�1)

, for 1 � j < n. (40)

In parti
ular, �

nj

always has weight j, and !

nj

always has weight j+1. We will

de�ne permutations �

n

of f0; 1; : : : ; n� 1g so that both of the sequen
es

P

n0

; P

R

n1

; P

n2

; P

R

n3

; : : : (41)

and P

R

n0

; P

n1

; P

R

n2

; P

n3

; : : : (42)

are monotoni
 binary Gray paths for n = 1, 2, 3, : : : . In fa
t, the monotoni
ity

is
lear, so only the Grayness is in doubt; and the sequen
es (41), (42) link up

ni
ely be
ause the adja
en
ies

�

n0

����

n1

���� � �����

n(n�1)

; !

n0

���!

n1

���� � ����!

n(n�1)

(43)

follow immediately from (34), regardless of the permutations �

n

. Thus the

ru
ial point is the transition at the
omma in formula (34), whi
h makes P

(n+1)j

a Gray subpath if and only if

!

�

n

n(j�1)

= �

nj

for 0 < j < n. (44)

For example, when n = 2 and j = 1 we need (01)

�

2

= �

21

= 10, by (38){

(40); hen
e �

2

must transpose
oordinates 0 and 1. The general formula (see

exer
ise 71) turns out to be

�

n

= �

n

�

2

n�1

; (45)

where �

n

is the n-
y
le (n�1 : : : 1 0). The �rst few
ases are therefore

�

1

= (0);

�

2

= (0 1);

�

3

= (0 2 1);

�

4

= (0 3);

�

5

= (0 4 3 2 1);

�

6

= (0 5 2 4 1 3);

no simple \
losed form" for the magi
 permutations �

n

is apparent. Exer
ise 73

shows that the Savage{Winkler
odes
an be generated eÆ
iently.

Nonbinary Gray
odes. We have studied the
ase of binary n-tuples in

great detail, be
ause it is the simplest, most
lassi
al, most appli
able, and

most thoroughly explored part of the subje
t. But of
ourse there are numerous

appli
ations in whi
h we want to generate (a

1

; : : : ; a

n

) with
oordinates in the

more general ranges 0 � a

j

< m

j

, as in Algorithm M. Gray
odes apply ni
ely

to this
ase as well.

Consider, for example, de
imal digits, where we want 0 � a

j

< 10 for

ea
h j. Is there a de
imal way to
ount that is analogous to the Gray binary

ode,
hanging only one digit at a time? Yes; in fa
t, two natural s
hemes are

18

7.2.1.1 GENERATING ALL n-TUPLES 19

available. In the �rst,
alled re
e
ted Gray de
imal, the sequen
e for
ounting

up to a thousand with 3-digit strings has the form

000; 001; : : : ; 009; 019; 018; : : : ; 011; 010; 020; 021; : : : ; 091; 090; 190; 191; : : : ; 900;

with ea
h
oordinate moving alternately from 0 up to 9 and then ba
k down from

9 to 0. In the se
ond,
alled modular Gray de
imal, the digits always in
rease

by 1 mod 10, therefore they \wrap around" from 9 to 0:

000; 001; : : : ; 009; 019; 010; : : : ; 017; 018; 028; 029; : : : ; 099; 090; 190; 191; : : : ; 900:

In both
ases the digit that
hanges on step k is determined by the radix-ten

ruler fun
tion �

10

(k), the largest power of 10 that divides k. Therefore ea
h

n-tuple of digits o

urs exa
tly on
e: We generate 10

j

di�erent settings of the

rightmost j digits before
hanging any of the others, for 1 � j � n.

In general, the re
e
ted Gray
ode in any mixed-radix system
an be re-

garded as a permutation of the nonnegative integers, a fun
tion that maps an

ordinary mixed-radix number

k =

h

b

n�1

;

m

n�1

;

: : : ;

: : : ;

b

1

;

m

1

;

b

0

m

0

i

= b

n�1

m

n�2

: : :m

1

m

0

+ � � �+ b

1

m

0

+ b

0

(46)

into its re
e
ted-Gray equivalent

ĝ(k) =

h

a

n�1

;

m

n�1

;

: : : ;

: : : ;

a

1

;

m

1

;

a

0

m

0

i

= a

n�1

m

n�2

: : :m

1

m

0

+ � � �+ a

1

m

0

+ a

0

; (47)

just as (7) does this in the spe
ial
ase of binary numbers. Let

A

j

=

h

a

n�1

;

m

n�1

;

: : : ;

: : : ;

a

j

m

j

i

; B

j

=

h

b

n�1

;

m

n�1

;

: : : ;

: : : ;

b

j

m

j

i

; (48)

with A

n

= B

n

= 0, so that when 0 � j < n we have

A

j

= m

j

A

j+1

+ a

j

and B

j

= m

j

B

j+1

+ b

j

: (49)

The rule
onne
ting the a's and b's is not diÆ
ult to derive by indu
tion:

a

j

=

�

b

j

; if B

j+1

is even;

m

j

� 1� b

j

; if B

j+1

is odd.

(50)

(Here we are numbering the
oordinates of the n-tuples (a

n�1

; : : : ; a

1

; a

0

) and

(b

n�1

; : : : ; b

1

; b

0

) from right to left, for
onsisten
y with (7) and the
onven-

tions of mixed-radix notation in Eq. 4.1{(9). Readers who prefer notations like

(a

1

; : : : ; a

n

)
an
hange j to n � j in all the formulas if they wish.) Going the

other way, we have

b

j

=

�

a

j

; if a

j+1

+ a

j+2

+ � � � is even;

m

j

� 1� a

j

; if a

j+1

+ a

j+2

+ � � � is odd.

(51)

Curiously, rule (50) and its inverse in (51) are exa
tly the same when all of the

radi
esm

j

are odd. In Gray ternary
ode, for example, whenm

0

= m

1

= � � � = 3,

we have ĝ

�

(10010211012)

3

�

= (12210211010)

3

and also ĝ

�

(12210211010)

3

�

=

19

20 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

(10010211012)

3

. Exer
ise 78 proves (50) and (51), and dis
usses similar formulas

that hold in the modular
ase.

We
an in fa
t generate su
h Gray sequen
es looplessly, generalizing Algo-

rithms M and L:

Algorithm H (Loopless re
e
ted mixed-radix Gray generation). This algorithm

visits all n-tuples (a

n�1

; : : : ; a

0

) su
h that 0 � a

j

< m

j

for 0 � j < n,
hanging

only one
oordinate by �1 at ea
h step. It maintains an array of fo
us pointers

(f

n

; : : : ; f

0

) to
ontrol the a
tions as in Algorithm L, together with an array of

dire
tions (o

n�1

; : : : ; o

0

). We assume that ea
h radix m

j

is � 2.

H1. [Initialize.℄ Set a

j

 0, f

j

 j, and o

j

 1, for 0 � j < n; also set f

n

 n.

H2. [Visit.℄ Visit the n-tuple (a

n�1

; : : : ; a

1

; a

0

).

H3. [Choose j.℄ Set j f

0

and f

0

 0. (As in Algorithm L, j was the rightmost

a
tive
oordinate; all elements to its right have now been rea
tivated.)

H4. [Change
oordinate j.℄ Terminate if j = n; otherwise set a

j

 a

j

+ o

j

.

H5. [Re
e
t?℄ If a

j

= 0 or a

j

= m

j

� 1, set o

j

 �o

j

, f

j

 f

j+1

, and

f

j+1

 j + 1. (Coordinate j has thus be
ome passive.) Return to H2.

A similar algorithm generates the modular variation (see exer
ise 77).

*Subforests. An interesting and instru
tive generalization of Algorithm H,

dis
overed by Y. Koda and F. Ruskey [J. Algorithms 15 (1993), 324{340℄, sheds

further light on the subje
t of Gray
odes and loopless generation. Suppose we

have a forest of n nodes, and we want to visit all of its \prin
ipal subforests,"

namely all subsets of nodes S su
h that if x is in S and x is not a root, the

parent of x is also in S. For example, the 7-node forest has 33 su
h subsets,

orresponding to the bla
k nodes in the following 33 diagrams:

(52)

Noti
e that if we read the top row from left to right, the middle row from right

to left, and the bottom row from left to right, the status of exa
tly one node

hanges at ea
h step.

If the given forest
onsists of degenerate nonbran
hing trees, the prin
ipal

subforests are equivalent to mixed-radix numbers. For example, a forest like

has 3 � 2 � 4 � 2 prin
ipal subforests,
orresponding to 4-tuples (x

1

; x

2

; x

3

; x

4

)

su
h that 0 � x

1

< 3, 0 � x

2

< 2, 0 � x

3

< 4, and 0 � x

4

< 2; the value of x

j

is the number of nodes sele
ted in the jth forest. When the algorithm of Koda

20

7.2.1.1 GENERATING ALL n-TUPLES 21

and Ruskey is applied to su
h a forest, it will visit the subforests in the same

order as the re
e
ted Gray
ode on radi
es (3; 2; 4; 2).

Algorithm K (Loopless re
e
ted subforest generation). Given a forest whose

nodes are (1; : : : ; n) when arranged in postorder, this algorithm visits all binary

n-tuples (a

1

; : : : ; a

n

) su
h that a

p

� a

q

whenever p is a parent of q. (Thus,

a

p

= 1 means that p is a node in the
urrent subforest.) Exa
tly one bit a

j

hanges between one visit and the next. Fo
us pointers (f

0

; f

1

; : : : ; f

n

) analogous

to those of Algorithm L are used together with additional arrays of pointers

(l

0

; l

1

; : : : ; l

n

) and (r

0

; r

1

; : : : ; r

n

), whi
h represent a doubly linked list
alled the

\
urrent fringe." The
urrent fringe
ontains all nodes of the
urrent subforest

and their
hildren; r

0

points to its leftmost node and l

0

to its rightmost.

An auxiliary array (

0

;

1

; : : : ;

n

) de�nes the forest as follows: If p has no

hildren,

p

= 0; otherwise

p

is the leftmost (smallest)
hild of p. Also

0

is the

leftmost root of the forest itself. When the algorithm begins, we assume that

r

p

= q and l

q

= p whenever p and q are
onse
utive
hildren of the same family.

Thus, for example, the forest in (52) has the postorder numbering

1

2

3

4 5

6

7

;

therefore we should have (

0

; : : : ;

7

) = (2; 0; 1; 0; 0; 0; 4; 3) and r

2

= 7, l

7

= 2,

r

3

= 6, l

6

= 3, r

4

= 5, and l

5

= 4 at the beginning of step K1 in this
ase.

K1. [Initialize.℄ Set a

j

 0 and f

j

 j for 1 � j � n, thereby making the initial

subforest empty and all nodes a
tive. Set f

0

 0, l

0

 n, r

n

 0, r

0

0

,

and l

0

 0, thereby putting all roots into the
urrent fringe.

K2. [Visit.℄ Visit the subforest de�ned by (a

1

; : : : ; a

n

).

K3. [Choose p.℄ Set q l

0

, p f

q

. (Now p is the rightmost a
tive node of the

fringe.) Also set f

q

 q (thereby a
tivating all nodes to p's right).

K4. [Che
k a

p

.℄ Terminate the algorithm if p = 0. Otherwise go to K6 if a

p

= 1.

K5. [Insert p's
hildren.℄ Set a

p

 1. Then, if

p

6= 0, set q r

p

, l

q

 p � 1,

r

p�1

 q, r

p

p

, l

p

 p (thereby putting p's
hildren to the right of p

in the fringe). Go to K7.

K6. [Delete p's
hildren.℄ Set a

p

 0. Then, if

p

6= 0, set q r

p�1

, r

p

 q,

l

q

 p (thereby removing p's
hildren from the fringe).

K7. [Make p passive.℄ (At this point we know that p is a
tive.) Set f

p

 f

l

p

and f

l

p

 l

p

. Return to K2.

The reader is en
ouraged to play through this algorithm on examples like (52),

in order to understand the beautiful me
hanism by whi
h the fringe grows and

shrinks at just the right times.

21

22 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

*Shift register sequen
es. A
ompletely di�erent way to generate all n-tuples of

m-ary digits is also possible: We
an generate one digit at a time, and repeatedly

work with the n most re
ently generated digits, thus passing from one n-tuple

(x

0

; x

1

; : : : ; x

n�1

) to another one (x

1

; : : : ; x

n�1

; x

n

) by shifting an appropriate

new digit in at the right. For example, Fig. 15 shows how all 5-bit numbers
an

be obtained as blo
ks of 5
onse
utive bits in a
ertain
y
li
 pattern of length 32.

This general idea has already been dis
ussed in some of the exer
ises of Se
tions

2.3.4.2 and 3.2.2, and we now are ready to explore it further.

Fig. 15.

A de Bruijn
y
le

for 5-bit numbers.

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

00100

0

1

0

0

0

1

0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

0

1

1

0

0

1

1

0

0

1

1

1

0

1

1

1

0

1

1

1

0

1

11010

1

0

1

0

1

0

1

0

1

1

1

0

1

1

0

0

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

0

0

1

1

0

0

0

1

0

0

0

0

Algorithm S (Generi
 shift register generation). This algorithm visits all n-

tuples (a

1

; : : : ; a

n

) su
h that 0 � a

j

< m for 1 � j � n, provided that a suitable

fun
tion f is used in step S3.

S1. [Initialize.℄ Set a

j

 0 for �n < j � 0 and k 1.

S2. [Visit.℄ Visit the n-tuple (a

k�n

; : : : ; a

k�1

). Terminate if k = m

n

.

S3. [Advan
e.℄ Set a

k

 f(a

k�n

; : : : ; a

k�1

), k k + 1, and return to S2.

Every fun
tion f that makes Algorithm S valid
orresponds to a
y
le of

m

n

radix-m digits su
h that every
ombination of n digits o

urs
onse
utively

in the
y
le. For example, the
ase m = 2 and n = 5 illustrated in Fig. 15

orresponds to the binary
y
le

00000100011001010011101011011111; (53)

and the �rst m

2

digits of the in�nite sequen
e

0011021220313233041424344 : : : (54)

yield an appropriate
y
le for n = 2 and arbitrary m. Su
h
y
les are
ommonly

alled m-ary de Bruijn
y
les, be
ause N. G. de Bruijn treated the binary
ase

for arbitrary n in Indagationes Mathemati
� 8 (1946), 461{467.

Exer
ise 2.3.4.2{23 proves that exa
tly m!

m

n�1

=m

n

fun
tions f have the

required properties. That's a huge number, but only a few of those fun
tions are

known to be eÆ
iently
omputable. We will dis
uss three kinds of f that appear

to be the most useful.

22

7.2.1.1 GENERATING ALL n-TUPLES 23

Table 1

PARAMETERS FOR ALGORITHM A

3 : 1 8 : 1; 5 13 : 1; 3 18 : 7 23 : 5 28 : 3

4 : 1 9 : 4 14 : 1; 11 19 : 1; 5 24 : 1; 3 29 : 2

5 : 2 10 : 3 15 : 1 20 : 3 25 : 3 30 : 1; 15

6 : 1 11 : 2 16 : 2; 3 21 : 2 26 : 1; 7 31 : 3

7 : 1 12 : 3; 4 17 : 3 22 : 1; 7 27 : 1; 7 32 : 1; 27

The entries `n : s' or `n : s; t' mean that the polynomials x

n

+ x

s

+ 1 or x

n

+ (x

s

+ 1)(x

t

+ 1)

are primitive modulo 2. Additional values up to n = 168 have been tabulated by W. Stahnke,

Math. Comp. 27 (1973), 977{980.

The �rst important
ase o

urs when m is a prime number, and f is the

almost-linear re
urren
e

f(x

1

; : : : ; x

n

) =

8

>

<

>

:

1

; if (x

1

; x

2

; : : : ; x

n

) = (0; 0; : : : ; 0);

0; if (x

1

; x

2

; : : : ; x

n

) = (1; 0; : : : ; 0);

(

1

x

1

+

2

x

2

+ � � �+

n

x

n

) modm; otherwise.

(55)

Here the
oeÆ
ients (

1

; : : : ;

n

) must be su
h that

x

n

�

n

x

n�1

� � � � �

2

x�

1

(56)

is a primitive polynomial modulo m, in the sense dis
ussed following Eq. 3.2.2{

(9). The number of su
h polynomials is '(m

n

� 1)=n, large enough to allow us

to �nd one in whi
h only a few of the
's are nonzero. [This
onstru
tion goes

ba
k to a pioneering paper of Willem Mantel, Nieuw Ar
hief voor Wiskunde (2)

1 (1897), 172{184.℄

For example, suppose m = 2. We
an generate binary n-tuples with a very

simple loopless pro
edure:

Algorithm A (Almost-linear bit-shift generation). This algorithm visits all n-

bit ve
tors, by using either a spe
ial o�set s [Case 1℄ or two spe
ial o�sets s and t

[Case 2℄, as found in Table 1.

A1. [Initialize.℄ Set (x

0

; x

1

; : : : ; x

n�1

) (1; 0; : : : ; 0) and k 0, j s. In

Case 2, also set i t and h s+ t.

A2. [Visit.℄ Visit the n-tuple (x

k�1

; : : : ; x

0

; x

n�1

; : : : ; x

k+1

; x

k

).

A3. [Test for end.℄ If x

k

6= 0, set r 0; otherwise set r r + 1, and go to A6

if r = n� 1. (We have just seen r
onse
utive zeros.)

A4. [Shift.℄ Set k (k � 1) mod n and j (j � 1) mod n. In Case 2 also set

i (i� 1) mod n and h (h� 1) mod n.

A5. [Compute a new bit.℄ Set x

k

 x

k

� x

j

[Case 1℄ or x

k

 x

k

� x

j

� x

i

� x

h

[Case 2℄. Return to A2.

A6. [Finish.℄ Visit (0; : : : ; 0) and terminate.

Appropriate o�set parameters s and possibly t almost
ertainly exist for all n,

be
ause primitive polynomials are so abundant; for example, eight di�erent

hoi
es of (s; t) would work when n = 32, and Table 1 merely lists the smallest.

23

24 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

However, a rigorous proof of existen
e in all
ases lies well beyond the present

state of mathemati
al knowledge.

Our �rst
onstru
tion of de Bruijn
y
les, in (55), was algebrai
, relying for

its validity on the theory of �nite �elds. A similar method that works when m

is not a prime number appears in exer
ise 3.2.2{21. Our next
onstru
tion, by

ontrast, will be purely
ombinatorial. In fa
t, it is strongly related to the idea

of modular Gray m-ary
odes.

Algorithm R (Re
ursive de Bruijn
y
le generation). Suppose f() is a
oroutine

that will output the su

essive digits of an m-ary de Bruijn
y
le of length m

n

,

beginning with n zeros, when it is invoked repeatedly. This algorithm is a similar

oroutine that outputs a
y
le of lengthm

n+1

, provided that n � 2. It maintains

three private variables x, y, and t; variable x should initially be zero.

R1. [Output.℄ Output x. Go to R3 if x 6= 0 and t � n.

R2. [Invoke f .℄ Set y f().

R3. [Count ones.℄ If y = 1, set t t+ 1; otherwise set t 0.

R4. [Skip one?℄ If t = n and x 6= 0, go ba
k to R2.

R5. [Adjust x.℄ Set x (x+ y) modm and return to R1.

For example, let m = 3 and n = 2. If f() produ
es the in�nite 9-
y
le

001102122 001102122 0 : : : ; (57)

then Algorithm R will produ
e the following in�nite 27-
y
le at step R1:

y = 001021220011110212200102122 001 : : :

t = 001001000012340010000100100 001 : : :

x = 000110102220120020211122121 0001 : : :

The proof that Algorithm R works
orre
tly is interesting and instru
tive (see

exer
ise 93). And the proof of the next algorithm, whi
h doubles the window

size n, is even more so (see exer
ise 95).

Algorithm D (Doubly re
ursive de Bruijn
y
le generation). Suppose f()

and f

0

() are
oroutines that ea
h will output the su

essive digits of an m-ary

de Bruijn
y
le of length m

n

when invoked repeatedly, beginning with n zeros.

(The two
y
les are identi
al, but they must be generated by independent
orou-

tines, be
ause we will
onsume their values at di�erent rates.) This algorithm is

a similar
oroutine that outputs a
y
le of length m

2n

. It maintains six private

variables x, y, t, x

0

, y

0

, and t

0

; variables x and x

0

should initially be m.

The spe
ial parameter r must be set to a
onstant value su
h that

0 � r � m and g
d(m

n

� r; m

n

+ r) = 2: (58)

The best
hoi
e is usually r = 1 when m is odd and r = 2 when m is even.

D1. [Possibly invoke f .℄ If t 6= n or x � r, set y f().

D2. [Count repeats.℄ If x 6= y, set x y and t 1. Otherwise set t t+ 1.

D3. [Output from f .℄ Output the
urrent value of x.

24

7.2.1.1 GENERATING ALL n-TUPLES 25

D4. [Invoke f

0

.℄ Set y

0

 f

0

().

D5. [Count repeats.℄ If x

0

6= y

0

, set x

0

 y

0

and t

0

 1. Otherwise set t

0

 t

0

+1.

D6. [Possibly reje
t f

0

.℄ If t

0

= n and x

0

< r and either t < n or x

0

< x, go to

D4. If t

0

= n and x

0

< r and x

0

= x, go to D3.

D7. [Output from f

0

.℄ Output the
urrent value of x

0

. Return to D3 if t

0

= n

and x

0

< r; otherwise return to D1.

The basi
 idea of Algorithm D is to output from f() and f

0

() alternately, making

spe
ial adjustments when either sequen
e generates n
onse
utive x's for x < r.

For example, when f() and f

0

() produ
e the 9-
y
le (57), we take r = 1 and get

t in step D2: 12 31211112 12312111 12123121 11121231 21111212 : : :

x in step D3: 00001102122 00011021 22000110 21220001 102122000 : : :

t

0

in step D6: 121211112121211112121211112121211112121211112121 : : :

x

0

in step D7: 0 11021220 11021220 11021220 11021220 11021220 1 : : : ;

so the 81-
y
le produ
ed in steps D3 and D7 is 00001011012 : : : 2222 00001 : : : .

The
ase m = 2 of Algorithm R was dis
overed by Abraham Lempel [IEEE

Trans.C-19 (1970), 1204{1209℄; Algorithm D was not dis
overed until more than

25 years later [C. J. Mit
hell, T. Etzion, and K. G. Paterson, IEEE Trans. IT-

42 (1996), 1472{1478℄. By using them together, starting with simple
oroutines

for n = 2 based on (54), we
an build up an interesting family of
ooperating

oroutines that will generate a de Bruijn
y
le of lengthm

n

for any desiredm � 2

and n � 2, using only O(logn) simple
omputations for ea
h digit of output.

(See exer
ise 96.) Furthermore, in the simplest
ase m = 2, this
ombination

\R&D method" has the property that its kth output
an be
omputed dire
tly,

as a fun
tion of k, by doing O(n logn) simple operations on n-bit numbers.

Conversely, given any n-bit pattern �, the position of � in the
y
le
an also be

omputed in O(n logn) steps. (See exer
ises 97{99.) No other family of binary

de Bruijn
y
les is presently known to have the latter property.

Our third
onstru
tion of de Bruijn
y
les is based on the theory of prime

strings, whi
h will be of great importan
e to us when we study pattern mat
hing

in Chapter 9. Suppose
 = �� is the
on
atenation of two strings; we say that

� is a pre�x of
 and � is a suÆx. A pre�x or suÆx of
 is
alled proper if its

length is positive but less than the length of
. Thus � is a proper suÆx of ��

if and only if � 6= � and � 6= �.

De�nition P. A string is prime if it is nonempty and (lexi
ographi
ally) less

than all of its proper suÆxes.

For example, 01101 is not prime, be
ause it is greater than 01; but 01102 is

prime, be
ause it is less than 1102, 102, 02, and 2. (We assume that strings are

omposed of letters, digits, or other symbols from a linearly ordered alphabet.

Lexi
ographi
 or di
tionary order is the normal way to
ompare strings, so we

write � < � and say that � is less than � when � is lexi
ographi
ally less than �.

In parti
ular, we always have � � ��, and � < �� if and only if � 6= �.)

25

26 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Prime strings have often been
alled Lyndon words, be
ause they were

introdu
ed by R. C. Lyndon [Trans. Amer. Math. So
. 77 (1954), 202{215℄;

Lyndon
alled them \standard sequen
es." The simpler term \prime" is justi�ed

be
ause of the fundamental fa
torization theorem in exer
ise 101. We will,

however,
ontinue to pay respe
t to Lyndon impli
itly by often using the letter �

to denote strings that are prime.

Several of the most important properties of prime strings were derived by

Chen, Fox, and Lyndon in an important paper on group theory [Annals of Math.

68 (1958), 81{95℄, in
luding the following easy but basi
 result:

Theorem P. A nonempty string that is less than all its
y
li
 shifts is prime.

(The
y
li
 shifts of a

1

: : : a

n

are a

2

: : : a

n

a

1

, a

3

: : : a

n

a

1

a

2

, : : : , a

n

a

1

: : : a

n�1

.)

Proof. Suppose
 = �� is not prime, be
ause � 6= � and
 � � 6= �; but suppose

 is also less than its
y
li
 shift ��. Then the
onditions � �
 < �� imply

that
 = �� for some string � < �. Therefore, if
 is also less than its
y
li

shift ��, we have � < � < �� < ��. But that is impossible, be
ause � and �

have the same length.

Let L

m

(n) be the number ofm-ary primes of length n. Every string a

1

: : : a

n

,

together with its
y
li
 shifts, yields d distin
t strings for some divisor d of n,

orresponding to exa
tly one prime of length d. For example, from 010010 we

get also 100100 and 001001 by
y
li
 shifting, and the smallest of the periodi

parts f010; 100; 001g is the prime 001. Therefore we must have

X

dnn

dL

m

(d) = m

n

; for all m;n � 1. (59)

This family of equations
an be solved for L

m

(n) using exer
ise 4.5.3{28(a), and

we obtain

L

m

(n) =

1

n

X

dnn

�(d)m

n=d

: (60)

During the 1970s, Harold Fredri
ksen and James Maiorana dis
overed a

beautifully simple way to generate all of the m-ary primes of length n or less,

in in
reasing order [Dis
rete Math. 23 (1978), 207{210℄. Before we are ready to

understand their algorithm, we need to
onsider the n-extension of a nonempty

string �, namely the �rst n
hara
ters of the in�nite string ��� : : : . For example,

the 10-extension of 123 is 1231231231. In general if j�j = k, its n-extension is

�

bn=k

�

0

, where �

0

is the pre�x of � whose length is nmod k.

De�nition Q. A string is preprime if it is a nonempty pre�x of a prime, on

some alphabet.

Theorem Q. A string of length n > 0 is preprime if and only if it is the n-

extension of a prime string � of length k � n. This prime string is uniquely

determined.

Proof. See exer
ise 105.

26

7.2.1.1 GENERATING ALL n-TUPLES 27

Theorem Q states, in essen
e, that there is a one-to-one
orresponden
e between

primes of length � n and preprimes of length n. The following algorithm

generates all of the m-ary instan
es, in in
reasing order.

Algorithm F (Prime and preprime string generation). This algorithm visits

all m-ary n-tuples (a

1

; : : : ; a

n

) su
h that the string a

1

: : : a

n

is preprime. It also

identi�es the index j su
h that a

1

: : : a

n

is the n-extension of the prime a

1

: : : a

j

.

F1. [Initialize.℄ Set a

1

 � � � a

n

 0 and j 1; also set a

0

 �1.

F2. [Visit.℄ Visit (a

1

; : : : ; a

n

) with index j.

F3. [Prepare to in
rease.℄ Set j n. Then if a

j

= m � 1, de
rease j until

�nding a

j

< m� 1.

F4. [Add one.℄ Terminate if j = 0. Otherwise set a

j

 a

j

+ 1. (Now a

1

: : : a

j

is

prime, by exer
ise 105(a).)

F5. [Make n-extension.℄ For k j + 1, : : : , n (in this order) set a

k

 a

k�j

.

Return to F2.

For example, Algorithm F visits 32 ternary preprimes when m = 3 and n = 4:

0

^

000 0011

^

0022

^

0111

^

0122

^

0212

^

1

^

111 12

^

12

0001

^

0012

^

01

^

01 0112

^

02

^

02 022

^

0 1112

^

122

^

1

0002

^

002

^

0 0102

^

012

^

0 021

^

0 0221

^

112

^

1 1222

^

001

^

0 0021

^

011

^

0 0121

^

0211

^

0222

^

1122

^

2

^

222

(61)

(The digits pre
eding `

^

' are the prime strings 0, 0001, 0002, 001, 0011, : : : , 2.)

Theorem Q explains why this algorithm is
orre
t, be
ause steps F3 and F4

obviously �nd the smallest m-ary prime of length � n that ex
eeds the previous

preprime a

1

: : : a

n

. Noti
e that after a

1

in
reases from 0 to 1, the algorithm

pro
eeds to visit all the (m� 1)-ary primes and preprimes, in
reased by 1 : : : 1.

Algorithm F is quite beautiful, but what does it have to do with de Bruijn

y
les? Here now
omes the pun
h line: If we output the digits a

1

, : : : , a

j

in

step F2 whenever j is a divisor of n, the sequen
e of all su
h digits forms a de

Bruijn
y
le! For example, in the
ase m = 3 and n = 4, the following 81 digits

are output:

0 0001 0002 0011 0012 0021 0022 01 0102 0111 0112

0121 0122 02 0211 0212 0221 0222 1 1112 1122 12 1222 2: (62)

(We omit the primes 001, 002, 011, : : : , 122 of (61) be
ause their length does

not divide 4.) The reasons underlying this almost magi
al property are explored

in exer
ise 108. Noti
e that the
y
le has the
orre
t length, by (59).

There is a sense in whi
h the outputs of this pro
edure are a
tually equiva-

lent to the \granddaddy" of all de Bruijn
y
le
onstru
tions that work for all m

and n, namely the
onstru
tion �rst published by M. H. Martin in Bull. Amer.

Math. So
. 40 (1934), 859{864: Martin's original
y
le for m = 3 and n = 4

was 2222122202211 : : : 10000, the twos'
omplement of (62). In fa
t, Fredri
ksen

and Maiorana dis
overed Algorithm F almost by a

ident while looking for a

27

28 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

simple way to generate Martin's sequen
e. The expli
it
onne
tion between

their algorithm and preprime strings was not noti
ed until many years later,

when Ruskey, Savage, and Wang
arried out a
areful analysis of the running

time [J. Algorithms 13 (1992), 414{430℄. The prin
ipal results of that analysis

appear in exer
ise 107, namely

i) The average value of n� j in steps F3 and F5 is approximately 1=(m� 1).

ii) The total running time to produ
e a de Bruijn
y
le like (62) is O(m

n

).

EXERCISES

1. [10 ℄ Explain how to generate all n-tuples (a

1

; : : : ; a

n

) in whi
h l

j

� a

j

� u

j

, given

lower bounds l

j

and upper bounds u

j

for ea
h
oordinate. (Assume that l

j

� u

j

.)

2. [15 ℄ What is the 1000000th n-tuple visited by Algorithm M if n = 10 and m

j

= j

for 1 � j � n? Hint: [

0;

1;

0;

2;

1;

3;

2;

4;

3;

5;

0;

6;

2;

7;

7;

8;

1;

9;

0

10

℄ = 1000000.

x 3. [M20 ℄ How many times does Algorithm M perform step M4?

x 4. [18 ℄ On most
omputers it is faster to
ount down to 0 rather than up to m.

Revise Algorithm M so that it visits all n-tuples in the opposite order, starting with

(m

1

� 1; : : : ;m

n

� 1) and �nishing with (0; : : : ; 0).

x 5. [20 ℄ Algorithms su
h as the \fast Fourier transform" (exer
ise 4.6.4{14) often

end with an array of answers in bit-re
e
ted order, having A[(b

0

: : : b

n�1

)

2

℄ in the pla
e

where A[(b

n�1

: : : b

0

)

2

℄ is desired. What is a good way to rearrange the answers into

proper order? [Hint: Re
e
t Algorithm M.℄

6. [M17 ℄ Prove (7), the basi
 formula for Gray binary
ode.

7. [20 ℄ Figure 10(b) shows the Gray binary
ode for a disk that is divided into 16

se
tors. What would be a good Gray-like
ode to use if the number of se
tors were 12

or 60 (for hours or minutes on a
lo
k), or 360 (for degrees in a
ir
le)?

8. [15 ℄ What's an easy way to run through all n-bit strings of even parity,
hanging

only two bits at ea
h step?

9. [16 ℄ What move should follow Fig. 11, when solving the Chinese ring puzzle?

x 10. [M21 ℄ Find a simple formula for the total number of steps A

n

or B

n

in whi
h a

ring is (a) removed or (b) repla
ed, in the shortest pro
edure for removing n Chinese

rings. For example, A

3

= 4 and B

3

= 1.

11. [M22 ℄ (H. J. Purkiss, 1865.) The two smallest rings of the Chinese ring puzzle

an a
tually be taken on or o� the bar simultaneously. How many steps does the puzzle

require when su
h a

elerated moves are permitted?

x 12. [25 ℄ The
ompositions of n are the sequen
es of positive integers that sum to n.

For example, the
ompositions of 4 are 1111, 112, 121, 13, 211, 22, 31, and 4. An integer

n has exa
tly 2

n�1

ompositions,
orresponding to all subsets of the points f1; : : : ; n�1g

that might be used to break the interval (0 : : n) into integer-sized subintervals.

a) Design a loopless algorithm to generate all
ompositions of n, representing ea
h

omposition as a sequential array of integers s

1

s

2

: : : s

j

.

b) Similarly, design a loopless algorithm that represents the
ompositions impli
itly

in an array of pointers q

0

q

1

: : : q

t

, where the elements of the
omposition are

(q

0

� q

1

)(q

1

� q

2

) : : : (q

t�1

� q

t

) and we have q

0

= n, q

t

= 0. For example, the

omposition 211 would be represented under this s
heme by the pointers q

0

= 4,

q

1

= 2, q

2

= 1, q

3

= 0, and with t = 3.

28

7.2.1.1 GENERATING ALL n-TUPLES 29

13. [21 ℄ Continuing the previous exer
ise,
ompute also the multinomial
oeÆ
ient

C =

�

n

s

1

;:::;s

j

�

for use as the
omposition s

1

: : : s

j

is being visited.

14. [20 ℄ Design an algorithm to generate all strings a

1

: : : a

j

su
h that 0 � j � n and

0 � a

i

< m

i

for 1 � i � j, in lexi
ographi
 order. For example, if m

1

= m

2

= n = 2,

your algorithm should su

essively visit �, 0, 00, 01, 1, 10, 11.

x 15. [25 ℄ Design a loopless algorithm to generate the strings of the previous exer
ise.

All strings of the same length should be visited in lexi
ographi
 order as before, but

strings of di�erent lengths
an be intermixed in any
onvenient way. For example,

0, 00, 01, �, 10, 11, 1 is an a

eptable order when m

1

= m

2

= n = 2.

16. [23 ℄ A loopless algorithm obviously
annot generate all binary ve
tors (a

1

; : : : ; a

n

)

in lexi
ographi
 order, be
ause the number of
oordinates a

j

that need to
hange

between su

essive visits is not bounded. Show, however, that loopless lexi
ographi

generation does be
ome possible if a linked representation is used instead of a sequential

one: Suppose there are 2n + 1 nodes f0; 1; : : : ; 2ng, ea
h
ontaining a LINK �eld. The

binary n-tuple (a

1

; : : : ; a

n

) is represented by letting

LINK(0) = 1 + na

1

;

LINK(j � 1 + na

j�1

) = j + na

j

; for 1 < j � n;

LINK(n+ na

n

) = 0;

the other n LINK �elds
an have any
onvenient values.

17. [20 ℄ A well-known
onstru
tion
alled the Karnaugh map [M. Karnaugh, Amer.

Inst. Ele
t. Eng. Trans. 72, part I (1953), 593{599℄ uses Gray binary
ode in two

dimensions to display all 4-bit numbers in a 4� 4 torus:

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

(The entries of a torus \wrap around" at the left and right and also at the top and

bottom|just as if they were tiles, repli
ated in�nitely often in a plane.) Show that,

similarly, all 6-bit numbers
an be arranged in an 8�8 torus so that only one
oordinate

hanges when we move north, south, east, or west from any point.

x 18. [20 ℄ The Lee weight of a ve
tor u = (u

1

; : : : ; u

n

), where ea
h
omponent satis�es

0 � u

j

< m

j

, is de�ned to be

�

L

(u) =

n

X

j=1

min(u

j

;m

j

� u

j

);

and the Lee distan
e between two su
h ve
tors u and v is

d

L

(u; v) = �

L

(u� v); where u� v = ((u

1

� v

1

) modm

1

; : : : ; (u

n

� v

n

) modm

n

):

(This is the minimum number of steps needed to
hange u to v if we adjust some

omponent u

j

by �1 (modulo m

j

) in ea
h step.)

A quaternary ve
tor has m

j

= 4 for 1 � j � n, and a binary ve
tor has all m

j

= 2.

Find a simple one-to-one
orresponden
e between quaternary ve
tors u = (u

1

; : : : ; u

n

)

and binary ve
tors u

0

= (u

0

1

; : : : ; u

0

2n

), with the property that �

L

(u) = �(u

0

) and

d

L

(u; v) = �(u

0

� v

0

).

29

30 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

19. [21 ℄ (The o
ta
ode.) Let g(x) = x

3

+ 2x

2

+ x� 1.

a) Use one of the algorithms in this se
tion to evaluate

P

z

u

0

z

u

1

z

u

2

z

u

3

z

u

4

z

u

5

z

u

6

z

u

1

,

summed over all 256 polynomials

(v

0

+v

1

x+v

2

x

2

+v

3

x

3

)g(x) mod 4 = u

0

+u

1

x+u

2

x

2

+u

3

x

3

+u

4

x

4

+u

5

x

5

+u

6

x

6

for 0 � v

0

; v

1

; v

2

; v

3

< 4, where u

1

is
hosen so that 0 � u

1

< 4 and (u

0

+ u

1

+

u

2

+ u

3

+ u

4

+ u

5

+ u

6

+ u

1

) mod 4 = 0.

b) Constru
t a set of 256 16-bit numbers that di�er from ea
h other in at least six

di�erent bit positions. (Su
h a set, �rst dis
overed by Nordstrom and Robinson

[Information and Control 11 (1967), 613{616℄, is essentially unique.)

20. [M36 ℄ The 16-bit
odewords in the previous exer
ise
an be used to transmit 8

bits of information, allowing transmission errors to be
orre
ted if any one or two bits

are
orrupted; furthermore, mistakes will be dete
ted (but not ne
essarily
orre
table)

if any three bits are re
eived in
orre
tly. Devise an algorithm that either �nds the

nearest
odeword to a given 16-bit number u

0

or determines that at least three bits of

u

0

are erroneous. How does your algorithm de
ode the number (1100100100001111)

2

?

[Hint: Use the fa
ts that x

7

� 1 (modulo g(x) and 4), and that every quaternary

polynomial of degree < 3 is
ongruent to x

j

+ 2x

k

(modulo g(x) and 4) for some

j; k 2 f0; 1; 2; 3; 4; 5; 6;1g, where x

1

= 0.℄

21. [M30 ℄ A t-sub
ube of an n-
ube
an be represented by a string like ��10��0�,

ontaining t asterisks and n � t spe
i�ed bits. If all 2

n

binary n-tuples are written in

lexi
ographi
 order, the elements belonging to su
h a sub
ube appear in 2

t

0

lusters

of
onse
utive entries, where t

0

is the number of asterisks that lie to the left of the

rightmost spe
i�ed bit. (In the example given, n = 8, t = 5, and t

0

= 4.) But if the

n-tuples are written in Gray binary order, the number of
lusters might be redu
ed.

For example, the (n� 1)-sub
ubes � : : : �0 and � : : : �1 o

ur in only 2

n�2

+1 and 2

n�2

lusters, respe
tively, when Gray binary order is used, not in 2

n�1

of them.

a) Explain how to
ompute C(�), the number of Gray binary
lusters of the sub
ube

de�ned by a given string � of asterisks, 0s, and 1s. What is C(��10��0�)?

b) Prove that C(�) always lies between 2

t

0

�1

and 2

t

0

, in
lusive.

) What is the average value of C(�), over all 2

n�t

�

n

t

�

possible t-sub
ubes?

x 22. [22 ℄ A \right sub
ube" is a sub
ube su
h as 0110�� in whi
h all the asterisks

appear after all the spe
i�ed digits. Any binary trie (Se
tion 6.3)
an be regarded as a

way to partition a
ube into disjoint right sub
ubes, as in Fig. 16(a). If we inter
hange

the left and right subtries of every right subtrie, pro
eeding downward from the root,

we obtain a Gray binary trie, as in Fig. 16(b).

Prove that if the \lieves" of a Gray binary trie are traversed in order, from left to

right,
onse
utive lieves
orrespond to adja
ent sub
ubes. (Sub
ubes are adja
ent if

they
ontain adja
ent verti
es. For example, 00�� is adja
ent to 011� be
ause the �rst

ontains 0010 and the se
ond
ontains 0110; but 011� is not adja
ent to 10��.)

Fig. 16.

00��

010� 011� 100�

1010 1011

11��

(a) Normal binary trie.

00��

010�011� 100�

1010 1011

11��

(b) Gray binary trie.

30

7.2.1.1 GENERATING ALL n-TUPLES 31

23. [20 ℄ Suppose g(k)� 2

j

= g(l). What is a simple way to �nd l, given j and k?

24. [M21 ℄ Consider extending the Gray binary fun
tion g to all 2-adi
 integers (see

exer
ise 4.1{31). What is the
orresponding inverse fun
tion g

[�1℄

?

x 25. [M25 ℄ Prove that if g(k) and g(l) di�er in t > 0 bits, and if 0 � k; l < 2

n

, then

d2

t

=3e � jk � lj � 2

n

� d2

t

=3e.

26. [25 ℄ (Frank Ruskey.) For whi
h integers N is it possible to generate all of the

nonnegative integers less than N in su
h a way that only one bit of the binary repre-

sentation
hanges at ea
h step?

x 27. [20 ℄ Let S

0

= f1g and S

n+1

= 1=(2 + S

n

) [1=(2� S

n

); thus, for example,

S

2

=

8

>

>

<

>

>

:

1

2 +

1

2 + 1

;

1

2 +

1

2� 1

;

1

2�

1

2 + 1

;

1

2�

1

2� 1

9

>

>

=

>

>

;

=

�

3

7

;

1

3

;

3

5

; 1

�

;

and S

n

has 2

n

elements that lie between

1

3

and 1. Compute the 10

10

th smallest element

of S

100

.

28. [M27 ℄ A median of n-bit strings f�

1

; : : : ; �

t

g, where �

k

has the binary represen-

tation �

k

= a

k(n�1)

: : : a

k0

, is a string �̂ = a

n�1

: : : a

0

whose bits a

j

for 0 � j < n

agree with the majority of the bits a

kj

for 1 � k � t. (If t is even and the bits

�

kj

are half 0 and half 1, the median bit a

j

an be either 0 or 1.) For example, the

strings f0010; 0100; 0101; 1110g have two medians, 0100 and 0110, whi
h we
an denote

by 01�0.

a) Find a simple way to des
ribe the medians of G

t

= fg(0); : : : ; g(t� 1)g, the �rst t

Gray binary strings, when 0 < t � 2

n

.

b) Prove that if � = a

n�1

: : : a

0

is su
h a median, and if 2

n�1

< t < 2

n

, then the

string � obtained from � by
omplementing any bit a

j

is also an element of G

t

.

29. [M24 ℄ If integer values k are transmitted as n-bit Gray binary
odes g(k) and

re
eived with errors des
ribed by a bit pattern p = (p

n�1

: : : p

0

)

2

, the average numeri
al

error is

1

2

n

2

n

�1

X

k=0

�

�

�

(g

[�1℄

(k)� p)� k

�

�

�

;

assuming that all values of k are equally likely. Show that this sum is equal to

P

2

n

�1

k=0

j(k � p) � kj=2

n

, just as if Gray binary
ode were not used, and evaluate it

expli
itly.

x 30. [M27 ℄ (Gray permutation.) Design a one-pass algorithm to repla
e the array

elements (X

0

;X

1

;X

2

; : : : ; X

2

n

�1

) by (X

g(0)

;X

g(1)

;X

g(2)

; : : : ;X

g(2

n

�1)

), using only a

onstant amount of auxiliary storage. Hint: Considering the fun
tion g(n) as a per-

mutation of all nonnegative integers, show that the set

L = f0; 1; (10)

2

; (100)

2

; (100�)

2

; (100�0)

2

; (100�0�)

2

; : : : g

is the set of
y
le leaders (the smallest elements of the
y
les).

31. [HM35 ℄ (Gray �elds.) Let f

n

(x) = g(r

n

(x)) denote the operation of re
e
ting

the bits of an n-bit binary string as in exer
ise 5 and then
onverting to Gray binary

ode. For example, the operation f

3

(x) takes (001)

2

7! (110)

2

7! (010)

2

7! (011)

2

7!

(101)

2

7! (111)

2

7! (100)

2

7! (001)

2

, hen
e all of the nonzero possibilities appear in

31

32 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

a single
y
le. Therefore we
an use f

3

to de�ne a �eld of 8 elements, with � as the

addition operator and with multipli
ation de�ned by the rule

f

[j℄

3

(1)� f

[k℄

3

(1) = f

[j+k℄

3

(1) = f

[j℄

3

(f

[k℄

3

(1)):

The fun
tions f

2

, f

5

, and f

6

have the same ni
e property. But f

4

does not, be
ause

f

4

((1011)

2

) = (1011)

2

.

Find all n � 100 for whi
h f

n

de�nes a �eld of 2

n

elements.

32. [M20 ℄ True or false: Walsh fun
tions satisfy w

k

(�x) = (�1)

k

w

k

(x).

x 33. [M20 ℄ Prove the Radema
her-to-Walsh law (17).

34. [M21 ℄ The Paley fun
tions p

k

(x) are de�ned by

p

0

(x) = 1 and p

k

(x) = (�1)

b2x
k

p

bk=2

(2x):

Show that p

k

(x) has a simple expression in terms of Radema
her fun
tions, analogous

to (17), and relate Paley fun
tions to Walsh fun
tions.

35. [HM23 ℄ The 2

n

� 2

n

Paley matrix P

n

is obtained from Paley fun
tions just as

the Walsh matrix W

n

is obtained from Walsh fun
tions. (See (20).) Find interesting

relations between P

n

,W

n

, and the Hadamard matrix H

n

. Prove that all three matri
es

are symmetri
.

36. [21 ℄ Spell out the details of an eÆ
ient algorithm to
ompute the Walsh transform

(x

0

; : : : ; x

2

n

�1

) of a given ve
tor (X

0

; : : : ;X

2

n

�1

).

37. [HM23 ℄ Let z

kl

be the lo
ation of the lth sign
hange in w

k

(x), for 1 � l � k and

0 < z

kl

< 1. Prove that jz

kl

� l=(k + 1)j = O((log k)=k).

x 38. [M25 ℄ Devise a ternary generalization of Walsh fun
tions.

x 39. [HM30 ℄ (J. J. Sylvester.) The rows of (

a

b

b

�a

) are orthogonal to ea
h other and

have the same magnitude; therefore the matrix identity

(A B)

�

a

2

+ b

2

0

0 a

2

+ b

2

��

A

B

�

=

(A B)

�

a b

b �a

��

a b

b �a

��

A

B

�

=

(Aa+Bb Ab� Ba)

�

aA+ bB

bA� aB

�

implies the sum-of-two-squares identity (a

2

+ b

2

)(A

2

+B

2

) = (aA+ bB)

2

+(bA�aB)

2

.

Similarly, the matrix

0

B

B

�

a b
 d

b �a d �

d
 �b �a

 �d �a b

1

C

C

A

leads to the sum-of-four-squares identity

(a

2

+b

2

+

2

+d

2

)(A

2

+B

2

+C

2

+D

2

) = (aA+bB+
C+dD)

2

+(bA�aB+dC�
D)

2

+ (dA+
B � bC � aD)

2

+ (
A� dB � aC + bD)

2

:

a) Atta
h the signs of the matrix H

3

in (21) to the symbols fa; b;
; d; e; f; g; hg,

obtaining a matrix with orthogonal rows and a sum-of-eight-squares identity.

b) Generalize to H

4

and higher-order matri
es.

x 40. [21 ℄ Would the text's �ve-letter word
omputation s
heme produ
e
orre
t an-

swers also if the masks in step W2 were
omputed as m

j

= x^ (2

5j

� 1) for 0 � j < 5?

32

7.2.1.1 GENERATING ALL n-TUPLES 33

41. [25 ℄ If we restri
t the �ve-letter word problem to the most
ommon 3000 words|

thereby eliminating du
ky, du
es, dunks, dinks, dinky, di
es, di
ey, di
ky, di
ks,

pi
ky, pinky, punky, and pu
ks from (23)|how many valid words
an still be gener-

ated from a single pair?

42. [35 ℄ (M. L. Fredman.) Algorithm L uses �(n logn) bits of auxiliary memory for

fo
us pointers as it de
ides what Gray binary bit a

j

should be
omplemented next.

On ea
h step L3 it examines �(logn) of the auxiliary bits, and it o

asionally
hanges

(logn) of them.

Show that, from a theoreti
al standpoint, we
an do better: The n-bit Gray binary

ode
an be generated by
hanging at most 2 auxiliary bits between visits. (We still

allow ourselves to examine O(logn) of the auxiliary bits on ea
h step, so that we know

whi
h of them should be
hanged.)

43. [47 ℄ Determine d(6), the number of 6-bit Gray
y
les.

44. [M37 ℄ Show that arbitrary delta sequen
es for Gray
y
les on n� 1 or n� 2 bits

an be used to
onstru
t a large number of delta sequen
es for n-bit Gray
y
les with

the property that exa
tly (a) one or (b) two of the
oordinate names o

ur only twi
e.

45. [M25 ℄ Prove that the sequen
e d(n) has doubly exponential growth: There is a

onstant A > 1 su
h that d(n) =
(A

2

n

).

46. [HM48 ℄ Determine the asymptoti
 behavior of d(n)

1=2

n

as n!1.

47. [M46 ℄ (Silverman, Vi
kers, and Sampson.) Let S

k

= fg(0); : : : ; g(k � 1)g be the

�rst k elements of the standard Gray binary
ode, and let H(k; v) be the number

of Hamiltonian paths in S

k

that begin with 0 and end with v. Prove or disprove:

H(k; v) � H(k; g(k � 1)) for all v 2 S

k

that are adja
ent to g(k).

48. [36 ℄ Prove that d(n) � 4(n=2)

2

n

if the
onje
ture in the previous exer
ise is true.

[Hint: Let d(n; k) be the number of n-bit Gray
y
les that begin with g(0) : : : g(k� 1);

the
onje
ture implies that d(n) �

n1

: : :

n(k�1)

d(n; k), where

nk

is the number of

verti
es adja
ent to g(k � 1) in the n-
ube but not in S

k

.℄

49. [20 ℄ Prove that for all n � 1 there is a 2n-bit Gray
y
le in whi
h v

k+2

2n�1

is the

omplement of v

k

, for all k � 0.

x 50. [21 ℄ Find a
onstru
tion like that of Theorem D but with l even.

51. [M24 ℄ Complete the proof of Corollary B to Theorem D.

52. [M20 ℄ Prove that if the transition
ounts of an n-bit Gray
y
le satisfy

0

�

1

�

� � � �

n�1

, we must have

0

+ � � �+

j�1

� 2

j

, with equality when j = n.

53. [M46 ℄ If the numbers (

0

; : : : ;

n�1

) are even and satisfy the
ondition of the

previous exer
ise, is there always an n-bit Gray
y
le with these transition
ounts?

54. [M20 ℄ (H. S. Shapiro, 1953.) Show that if a sequen
e of integers (a

1

; : : : ; a

2

n

)
on-

tains only n distin
t values, then there is a subsequen
e whose produ
t a

k+1

a

k+2

: : : a

l

is a perfe
t square, for some 0 � k < l � 2

n

. However, this
on
lusion might not be

true if we disallow the
ase l = 2

n

.

55. [47 ℄ (F. Ruskey and C. Savage, 1993.) If (v

0

; : : : ; v

2

n

�1

) is an n-bit Gray
y
le,

the pairs f fv

2k

; v

2k+1

g j 0 � k < 2

n�1

g form a perfe
t mat
hing between the verti
es

of even and odd parity in the n-
ube. Conversely, does every su
h perfe
t mat
hing

arise as \half" of some n-bit Gray
y
le?

56. [M30 ℄ (E. N. Gilbert, 1958.) Say that two Gray
y
les are equivalent if their delta

sequen
es
an be made equal by permuting the
oordinate names, or by reversing the

33

34 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

y
le and/or starting the
y
le at a di�erent pla
e. Show that the 2688 di�erent 4-bit

Gray
y
les fall into just 9 equivalen
e
lasses.

57. [32 ℄ Consider a graph whose verti
es are the 2688 possible 4-bit Gray
y
les,

where two su
h
y
les are adja
ent if they are related by one of the following simple

transformations:

Before After Type 1 After Type 2 After Type 3 After Type 4

(Type 1
hanges arise when the
y
le
an be broken into two parts and reassembled

with one part reversed. Types 2, 3, and 4 arise when the
y
le
an be broken into three

parts and reassembled after reversing 0, 1, or 2 of the parts. The parts need not have

equal size. Su
h transformations of Hamiltonian
y
les are often possible.)

Write a program to dis
over whi
h 4-bit Gray
y
les are transformable into ea
h

other, by �nding the
onne
ted
omponents of the graph; restri
t
onsideration to only

one of the four types at a time.

x 58. [21 ℄ Let � be the delta sequen
e of an n-bit Gray
y
le, and obtain � from � by

hanging q o

urren
es of 0 to n, where q is odd. Prove that �� is the delta sequen
e

of an (n+ 1)-bit Gray
y
le.

59. [22 ℄ The 5-bit Gray
y
le of (30) is nonlo
al in the sense that no 2

t

onse
utive

elements belong to a single t-sub
ube, for 1 < t < n. Prove that nonlo
al n-bit Gray

y
les exist for all n � 5. [Hint: See the previous exer
ise.℄

60. [20 ℄ Show that the run-length-bound fun
tion satis�es r(n+ 1) � r(n).

61. [M30 ℄ Show that r(m + n) � r(m) + r(n) � 1 if (a) m = 2 and 2 < r(n) < 8; or

(b) m � n and r(n) � 2

m�3

.

62. [46 ℄ Does r(8) = 6?

63. [30 ℄ (Luis Goddyn.) Prove that r(10) � 8.

x 64. [HM35 ℄ (L. Goddyn and P. Gvozdjak.) An n-bit Gray stream is a sequen
e of

permutations (�

0

; �

1

; : : : ; �

l�1

) where ea
h �

k

is a permutation of the verti
es of the

n-
ube, taking every vertex to one of its neighbors.

a) Suppose (u

0

; : : : ; u

2

m

�1

) is an m-bit Gray
y
le and (�

0

; �

1

; : : : ; �

2

m

�1

) is an n-bit

Gray stream. Let v

0

= 0 : : : 0 and v

k+1

= v

k

�

k

, where �

k

= �

kmod 2

m

if k � 2

m

.

Under what
onditions is the sequen
e

W = (u

0

v

0

; u

0

v

1

; u

1

v

1

; u

1

v

2

; : : : ; u

2

m+n�1

�1

v

2

m+n�1

�1

; u

2

m+n�1

�1

v

2

m+n�1

)

an (m+ n)-bit Gray
y
le?

b) Show that if m is suÆ
iently large, there is an n-bit Gray stream satisfying the

onditions of (a) for whi
h all run lengths of the sequen
e (v

0

; v

1

; : : :) are � n� 2.

) Apply these results to prove that r(n) � n�O(logn).

65. [30 ℄ (Brett Stevens.) In Samuel Be
kett's play Quad, the stage begins and ends

empty; n a
tors enter and exit one at a time, running through all 2

n

possible subsets,

and the a
tor who leaves is always the one whose previous entran
e was earliest. When

n = 4, as in the a
tual play, some subsets are ne
essarily repeated. Show, however,

that there is a perfe
t pattern with exa
tly 2

n

entran
es and exits when n = 5.

34

7.2.1.1 GENERATING ALL n-TUPLES 35

66. [40 ℄ Is there a perfe
t Be
kett{Gray pattern for 8 a
tors?

67. [20 ℄ Sometimes it is desirable to run through all n-bit binary strings by
hanging

as many bits as possible from one step to the next, for example when testing a physi
al

ir
uit for reliable behavior in worst-
ase
onditions. Explain how to traverse all binary

n-tuples in su
h a way that ea
h step
hanges n or n� 1 bits, alternately.

68. [21 ℄ Rufus Q. Perverse de
ided to
onstru
t an anti-Gray ternary
ode, in whi
h

ea
h n-trit number di�ers from its neighbors in every digit position. Is su
h a
ode

possible for all n?

x 69. [M25 ℄ Modify the de�nition of Gray binary
ode (7) by letting

h(k) = (: : : (b

6

� b

5

)(b

5

� b

4

)(b

4

� b

3

� b

2

� b

0

)(b

3

� b

0

)(b

2

� b

1

� b

0

)b

1

)

2

;

when k = (: : : b

5

b

4

b

3

b

2

b

1

b

0

)

2

.

a) Show that the sequen
e h(0), h(1), : : : , h(2

n

� 1) runs through all n-bit numbers

in su
h a way that exa
tly 3 bits
hange ea
h time, when n > 3.

b) Generalize this rule to obtain sequen
es in whi
h exa
tly t bits
hange at ea
h

step, when t is odd and n > t.

70. [21 ℄ How many monotoni
 n-bit Gray
odes exist for n = 5 and n = 6?

71. [M22 ℄ Derive (45), the re
urren
e that de�nes the Savage{Winkler permutations.

72. [20 ℄ What is the Savage{Winkler
ode from 00000 to 11111?

x 73. [32 ℄ Design an eÆ
ient algorithm to
onstru
t the delta sequen
e of an n-bit

monotoni
 Gray
ode.

74. [M25 ℄ (Savage and Winkler.) How far apart
an adja
ent verti
es of the n-
ube

be, in a monotoni
 Gray
ode?

75. [32 ℄ Find all 5-bit Gray paths v

0

, : : : , v

31

that are trend-free, in the sense that

P

31

k=0

k(�1)

v

kj

= 0 in ea
h
oordinate position j.

76. [M25 ℄ Prove that trend-free n-bit Gray
odes exist for all n � 5.

77. [21 ℄ Modify Algorithm H in order to visit mixed-radix n-tuples in modular Gray

order.

78. [M26 ℄ Prove the
onversion formulas (50) and (51) for re
e
ted mixed-radix Gray

odes, and derive analogous formulas for the modular
ase.

x 79. [M22 ℄ When is the last n-tuple of the (a) re
e
ted (b) modular mixed-radix Gray

ode adja
ent to the �rst?

80. [M20 ℄ Explain how to run through all divisors of a number, given its prime

fa
torization p

e

1

1

: : : p

e

t

t

, repeatedly multiplying or dividing by a single prime at ea
h

step.

81. [M21 ℄ Let (a

0

; b

0

), (a

1

; b

1

), : : : , (a

m

2

�1

; b

m

2

�1

) be the 2-digit m-ary modular

Gray
ode. Show that, if m > 2, every edge (x; y)���(x; (y + 1) modm) and (x; y)���

((x+ 1) modm; y) o

urs in one of the two
y
les

(a

0

; b

0

)���(a

1

; b

1

)���� � ����(a

m

2

�1

; b

m

2

�1

)���(a

0

; b

0

);

(b

0

; a

0

)���(b

1

; a

1

)���� � ����(b

m

2

�1

; a

m

2

�1

)���(b

0

; a

0

):

x 82. [M25 ℄ (G. Ringel, 1956.) Use the previous exer
ise to dedu
e that there exist four

8-bit Gray
y
les that, together,
over all edges of the 8-
ube.

83. [41 ℄ Can four balan
ed 8-bit Gray
y
les
over all edges of the 8-
ube?

35

36 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

x 84. [25 ℄ (Howard L. Dy
kman.) Figure 17 shows a fas
inating puzzle
alled Loony

Loop or the Gordian Knot, in whi
h the obje
t is to remove a
exible
ord from the

rigid loops that surround it. Show that the solution to this puzzle is inherently related

to the re
e
ted Gray ternary
ode.

Fig. 17. The Loony Loop puzzle.

x 85. [M25 ℄ (Dana Ri
hards.) If � = (�

0

; : : : ; �

t�1

) is a sequen
e of t strings of length n

and �

0

= (�

0

0

; : : : ; �

0

t

0

�1

) is a sequen
e of t

0

strings of length n

0

, the boustrophedon

produ
t ���

0

is the sequen
e of tt

0

strings of length n+ n

0

that begins

(�

0

�

0

0

; : : : ; �

0

�

0

t

0

�1

; �

1

�

0

t

0

�1

; : : : ; �

1

�

0

0

; �

2

�

0

0

; : : : ; �

2

�

0

t

0

�1

; �

3

�

0

t

0

�1

; : : :)

and ends with �

t�1

�

0

0

if t is even, �

t�1

�

0

t

0

�1

if t is odd. For example, the basi
 de�nition

of Gray binary
ode in (5)
an be expressed in this notation as �

n

= (0; 1)��

n�1

when

n > 0. Prove that the operation� is asso
iative, hen
e �

m+n

= �

m

��

n

.

x 86. [26 ℄ De�ne an in�nite Gray
ode that runs through all possible nonnegative

integer n-tuples (a

1

; : : : ; a

n

) in su
h a way that max(a

1

; : : : ; a

n

) � max(a

0

1

; : : : ; a

0

n

)

when (a

1

; : : : ; a

n

) is followed by (a

0

1

; : : : ; a

0

n

).

87. [27 ℄ Continuing the previous exer
ise, de�ne an in�nite Gray
ode that runs

through all integer n-tuples (a

1

; : : : ; a

n

), in su
h a way that max(ja

1

j; : : : ; ja

n

j) �

max(ja

0

1

j; : : : ; ja

0

n

j) when (a

1

; : : : ; a

n

) is followed by (a

0

1

; : : : ; a

0

n

).

x 88. [25 ℄ After Algorithm K has terminated in step K4, what would happen if we

immediately restarted it in step K2?

x 89. [25 ℄ (Gray
ode for Morse
ode.) The Morse
ode words of length n (exer
ise

4.5.3{32) are strings of dots and dashes, where n is the number of dots plus twi
e the

number of dashes.

a) Show that it is possible to generate all Morse
ode words of length n by su

essively

hanging a dash to two dots or vi
e versa. For example, the path for n = 3 must

be

q

,

q q q

,

q

or its reverse.

b) What string follows

q q q q q

in your sequen
e for n = 15?

90. [26 ℄ For what values of n
an the Morse
ode words be arranged in a
y
le, under

the ground rules of exer
ise 89? [Hint: The number of
ode words is F

n+1

.℄

x 91. [34 ℄ Design a loopless algorithm to visit all binary n-tuples (a

1

; : : : ; a

n

) su
h that

a

1

� a

2

� a

3

� a

4

� � � � . [The number of su
h n-tuples is F

n+2

.℄

92. [M30 ℄ Is there an in�nite sequen
e �

n

whose �rst m

n

elements form an m-ary

de Bruijn
y
le, for all m? [The
ase n = 2 is solved in (54).℄

x 93. [M28 ℄ Prove that Algorithm R outputs a de Bruijn
y
le as advertised.

94. [22 ℄ What is the output of Algorithm D when m = 5, n = 1, and r = 3, if the

oroutines f() and f

0

() generate the trivial
y
les 01234 01234 01 : : :?

36

7.2.1.1 GENERATING ALL n-TUPLES 37

x 95. [M23 ℄ Suppose an in�nite sequen
e a

0

a

1

a

2

: : : of period p is interleaved with an

in�nite sequen
e b

0

b

1

b

2

: : : of period q to form the in�nite
y
li
 sequen
e

0

1

2

3

4

5

: : : = a

0

b

0

a

1

b

1

a

2

b

2

: : : :

a) Under what
ir
umstan
es does

0

1

2

: : : have period pq? (The \period" of a

sequen
e a

0

a

1

a

2

: : : , for the purposes of this exer
ise, is the smallest integer p > 0

su
h that a

k

= a

k+p

for all k � 0.)

b) Whi
h 2n-tuples would o

ur as
onse
utive outputs of Algorithm D if step D6

were
hanged to say simply \If t

0

= n and x

0

< r, go to D4"?

) Prove that Algorithm D outputs a de Bruijn
y
le as advertised.

x 96. [M23 ℄ Suppose a family of
oroutines has been set up to generate a de Bruijn

y
le of length m

n

using Algorithms R and D, based re
ursively on simple
oroutines

for the base
ase n = 2.

a) How many
oroutines of ea
h type will there be?

b) What is the maximum number of
oroutine a
tivations needed to get one top-level

digit of output?

97. [M29 ℄ The purpose of this exer
ise is to analyze the de Bruijn
y
les
onstru
ted

by Algorithms R and D in the important spe
ial
ase m = 2. Let f

n

(k) be the (k+1)st

bit of the 2

n

-
y
le, so that f

n

(k) = 0 for 0 � k < n. Also let j

n

be the index su
h that

0 � j

n

< 2

n

and f

n

(k) = 1 for j

n

� k < j

n

+ n.

a) Write out the
y
les (f

n

(0) : : : f

n

(2

n

� 1)) for n = 2, 3, 4, and 5.

b) Prove that, for all even values of n, there is a number Æ

n

= �1 su
h that we have

f

n+1

(k) �

�

�f

n

(k); if 0 < k � j

n

or 2

n

+ j

n

< k � 2

n+1

,

1 + �f

n

(k + Æ

n

); if j

n

< k � 2

n

+ j

n

,

where the
ongruen
e is modulo 2. (In this formula �f stands for the summation

fun
tion �f(k) =

P

k�1

j=0

f(j).) Hen
e j

n+1

= 2

n

� Æ

n

when n is even.

) Let (

n

(0)

n

(1) : : :

n

(2

2n

� 5)) be the
y
le produ
ed when the simpli�ed version

of Algorithm D in exer
ise 95(b) is applied to f

n

(). Where do the (2n� 1)-tuples

1

2n�1

and (01)

n�1

0 o

ur in this
y
le?

d) Use the results of (
) to express f

2n

(k) in terms of f

n

().

e) Find a (somewhat) simple formula for j

n

as a fun
tion of n.

98. [M34 ℄ Continuing the previous exer
ise, design an eÆ
ient algorithm to
ompute

f

n

(k), given n � 2 and k � 0.

x 99. [M23 ℄ Exploit the te
hnology of the previous exer
ises to design an eÆ
ient

algorithm that lo
ates any given n-bit string in the
y
le (f

n

(0)f

n

(1) : : : f

n

(2

n

� 1)).

100. [40 ℄ Do the de Bruijn
y
les of exer
ise 97 provide a useful sour
e of pseudo-

random bits when n is large?

x 101. [M30 ℄ (Unique fa
torization of strings into nonin
reasing primes.)

a) Prove that if � and �

0

are prime, then ��

0

is prime if � < �

0

.

b) Consequently every string �
an be written in the form

� = �

1

�

2

: : : �

t

; �

1

� �

2

� � � � � �

t

; where ea
h �

j

is prime.

) In fa
t, only one su
h fa
torization is possible. Hint: Show that �

t

must be the

lexi
ographi
ally smallest nonempty suÆx of �.

d) True or false: �

1

is the longest prime pre�x of �.

e) What are the prime fa
tors of 3141592653589793238462643383279502884197?

37

38 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

102. [HM28 ℄ Dedu
e the number of m-ary primes of length n from the unique fa
-

torization theorem in the previous exer
ise.

103. [M20 ℄ Use Eq. (59) to prove Fermat's theorem that m

p

� m (modulo p).

104. [17 ℄ A

ording to formula (60), about 1=n of all n-letter words are prime. How

many of the 5757 �ve-letter GraphBase words are prime? Whi
h of them is the smallest

nonprime? The largest prime?

105. [M31 ℄ Let � be a preprime string of length n on an in�nite alphabet.

a) Show that if the �nal letter of � is in
reased, the resulting string is prime.

b) If � has been fa
tored as in exer
ise 101, show that it is the n-extension of �

1

.

) Furthermore �
annot be the n-extension of two di�erent primes.

x 106. [M30 ℄ By reverse-engineering Algorithm F, design an algorithm that visits all

m-ary primes and preprimes in de
reasing order.

107. [HM30 ℄ Analyze the running time of Algorithm F.

108. [M35 ℄ Let �

1

< � � � < �

t

be the m-ary prime strings whose lengths divide n, and

let a

1

: : : a

n

be any m-ary string. The obje
t of this exer
ise is to prove that a

1

: : : a

n

appears in �

1

: : : �

t

�

1

�

2

; hen
e �

1

: : : �

t

is a de Bruijn
y
le (sin
e it has length m

n

).

For
onvenien
e we may assume that m = 10 and that strings
orrespond to de
imal

numbers; the same arguments will apply for arbitrary m � 2.

a) Show that if a

1

: : : a

n

= �� is distin
t from all its
y
li
 shifts, and if �� = �

k

is

prime, then �� is a substring of �

k

�

k+1

, unless � = 9

j

for some j � 1.

b) Where does �� appear in �

1

: : : �

t

if �� is prime and �
onsists of all 9s? Hint:

Show that if a

n+1�l

: : : a

n

= 9

l

in step F2 for some l > 0, and if j is not a divisor

of n, the previous step F2 had a

n�l

: : : a

n

= 9

l+1

.

) Now
onsider n-tuples of the form (��)

d

, where d > 1 is a divisor of n and

�� = �

k

is prime.

d) Where do 899135, 997879, 913131, 090909, 909090, and 911911 o

ur when n=6?

e) Is �

1

: : : �

t

the lexi
ographi
ally least m-ary de Bruijn
y
le of length m

n

?

109. [M22 ℄ An m-ary de Bruijn torus of size m

2

�m

2

for 2� 2 windows is a matrix

of m-ary digits a

ij

su
h that ea
h of the m

4

submatri
es

�

a

ij

a

i(j+1)

a

(i+1)j

a

(i+1)(j+1)

�

; 0 � i; j < m

2

is di�erent, where subs
ripts wrap around modulo m

2

. Thus every possible m-ary 2�2

submatrix o

urs exa
tly on
e; Ian Stewart [Game, Set, and Math (Oxford: Bla
kwell,

1989), Chapter 4℄ has therefore
alled it an m-ary ourotorus. For example,

0

B

B

�

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1

C

C

A

is a binary ourotorus; indeed, it is essentially the only su
h matrix when m = 2, ex
ept

for shifting and/or transposition.

Consider the in�nite matrix A whose entry in row i = (: : : a

2

a

1

a

0

)

2

and
olumn

j = (: : : b

2

b

1

b

0

)

2

is a

ij

= (: : :

2

1

0

)

2

, where

0

= (a

0

� b

0

)(a

1

� b

1

)� b

1

;

k

= (a

2k

a

0

� b

2k

)b

0

� (a

2k+1

a

0

� b

2k+1

)(b

0

� 1); for k > 0:

Show that the upper left 2

2n

� 2

2n

submatrix of A is a 2

n

-ary ourotorus for all n � 0.

38

7.2.1.1 GENERATING ALL n-TUPLES 39

110. [M25 ℄ Continuing the previous exer
ise,
onstru
t m-ary ourotoruses for all m.

111. [20 ℄ We
an obtain the number 100 in twelve ways by inserting + and � signs

into the sequen
e 123456789; for example, 100 = 1 + 23 � 4 + 5 + 6 + 78 � 9 =

123� 45� 67 + 89 = �1 + 2� 3 + 4 + 5 + 6 + 78 + 9.

a) What is the smallest positive integer that
annot be represented in su
h a way?

b) Consider also inserting signs into the 10-digit sequen
e 9876543210.

x 112. [25 ℄ Continuing the previous exer
ise, how far
an we go by inserting signs into

12345678987654321? For example, 100 = �1234� 5� 6 + 7898� 7� 6543� 2� 1.

39

ANSWERS TO EXERCISES

All that heard him were astonished

at his understanding and answers.

| Luke 2:47

SECTION 7.2.1.1

1. Let m

j

= u

j

� l

j

+1, and visit (a

1

+ l

1

; : : : ; a

n

+ l

n

) instead of visiting (a

1

; : : : ; a

n

)

in Algorithm M. Or,
hange `a

j

 0' to `a

j

 l

j

' and `a

j

= m

j

� 1' to `a

j

= u

j

' in

that algorithm, and set l

0

 0, u

0

 1 in step M1.

2. (0; 0; 1; 2; 3; 0; 2; 7; 0; 9).

3. Step M4 is performed m

1

m

2

: : :m

k

times when j = k; therefore the total is

P

n

k=0

Q

k

j=1

m

j

= m

1

: : :m

n

(1 + 1=m

n

+ 1=m

n

m

n�1

+ � � � + 1=m

n

: : :m

1

). If all m

j

are 2 or more, this is less than 2m

1

: : :m

n

. [Thus, we should keep in mind that fan
y

Gray-
ode methods, whi
h
hange only one digit per visit, a
tually redu
e the total

number of digit
hanges by at most a fa
tor of 2.℄

4. N1. [Initialize.℄ Set a

j

 m

j

� 1 for 0 � j � n, where m

0

= 2.

N2. [Visit.℄ Visit the n-tuple (a

1

; : : : ; a

n

).

N3. [Prepare to subtra
t one.℄ Set j n.

N4. [Borrow if ne
essary.℄ If a

j

= 0, set a

j

 m

j

� 1, j j � 1, and repeat this

step.

N5. [De
rease, unless done.℄ If j = 0, terminate the algorithm. Otherwise set

a

j

 a

j

� 1 and go ba
k to step N2.

5. Bit re
e
tion is easy on a ma
hine like MMIX, but on other
omputers we
an

pro
eed as follows:

R1. [Initialize.℄ Set j k 0.

R2. [Swap.℄ Inter
hange A[j + 1℄ $ A[k + 2

n�1

℄. Also, if j > k, inter
hange

A[j℄$ A[k℄ and A[j + 2

n�1

+ 1℄$ A[k + 2

n�1

+ 1℄.

R3. [Advan
e k.℄ Set k k + 2, and terminate if k � 2

n�1

.

R4. [Advan
e j.℄ Set h 2

n�2

. If j � h, repeatedly set j j � h and h h=2

until j < h. Then set j j+h. (Now j = (b

0

: : : b

n�1

)

2

if k = (b

n�1

: : : b

0

)

2

.)

Return to R2.

6. If g((0b

n�1

: : : b

1

b

0

)

2

) = (0(b

n�1

) : : : (b

2

�b

1

)(b

1

�b

0

))

2

then g((1b

n�1

: : : b

1

b

0

)

2

) =

2

n

+ g((0b

n�1

: : : b

1

b

0

)

2

) = (1(b

n�1

) : : : (b

2

� b

1

)(b

1

� b

0

))

2

, where b = b� 1.

40

40

7.2.1.1 ANSWERS TO EXERCISES 41

7. To a

ommodate 2r se
tors one
an use g(k) for 2

n

� r � k < 2

n

+ r, where

n = dlg re, be
ause g(2

n

� r) � g(2

n

+ r � 1) = 2

n

by (5). [G. C. Tootill, Pro
. IEE

103, Part B Supplement (1956), 434.℄ See also exer
ise 26.

8. Use Algorithm G with n n�1 and in
lude the parity bit a

1

at the right. (This

yields g(0), g(2), g(4), : : : .)

9. Repla
e the rightmost ring, sin
e �(1011000) is odd.

10. A

n

+B

n

= g

[�1℄

(2

n

� 1) = b2

n+1

=3
 and A

n

= B

n

+ n. Hen
e A

n

= b2

n

=3+ n=2

and B

n

= b2

n

=3� n=2
.

Histori
al notes: The early Japanese mathemati
ian Yoriyuki Arima (1714{1783)

treated this problem in his Sh�uki Sanp�o (1769), Problem 44, observing that the n-

ring puzzle redu
es to an (n � 1)-ring puzzle after a
ertain number of steps. Let

C

n

= A

n

� A

n�1

= B

n

� B

n�1

+ 1 be the number of rings removed during this

redu
tion. Arima noti
ed that C

n

= 2C

n�1

� [n even℄; thus he
ould
ompute A

n

=

C

1

+ C

2

+ � � �+ C

n

for n = 9 without a
tually knowing the formula C

n

= d2

n�1

=3e.

More than two
enturies earlier, Cardano had already mentioned the \
ompli
ati

annuli" in his De Subtilitate Libri XXI (Nuremberg: 1550), Book 15. He wrote that

they are \useless yet admirably subtle," stating erroneously that 95 moves are needed

to remove seven rings and 95 more to put them ba
k. John Wallis devoted seven

pages to this puzzle in the Latin edition of his Algebra 2 (Oxford: 1693), Chapter 111,

presenting detailed but nonoptimum methods for the nine-ring
ase. He in
luded the

operation of sliding a ring through the bar as well as putting it on or o�, and he hinted

that short
uts were available, but he did not attempt to �nd a shortest solution.

11. The solution to S

n

= S

n�2

+ 1 + S

n�2

+ S

n�1

when S

1

= S

2

= 1 is S

n

=

2

n�1

� [n even℄. [Math. Quest. Edu
ational Times 3 (1865), 66{67.℄

12. (a) The theory of n � 1 Chinese rings proves that Gray binary
ode yields the

ompositions in a
onvenient order (4, 31, 211, 22, 112, 1111, 121, 13):

A1. [Initialize.℄ Set t 0, j 1, s

1

 n. (We assume that n > 1.)

A2. [Visit.℄ Visit s

1

: : : s

j

. Then set t 1� t, and go to A4 if t = 0.

A3. [Odd step.℄ If s

j

> 1, set s

j

 s

j

� 1, s

j+1

 1, j j + 1; otherwise set

j j � 1 and s

j

 s

j

+ 1. Return to A2.

A4. [Even step.℄ If s

j�1

> 1, set s

j�1

 s

j�1

� 1, s

j+1

 s

j

, s

j

 1, j j + 1;

otherwise set j j � 1, s

j

 s

j+1

, s

j�1

 s

j�1

+ 1 (but terminate if

j � 1 = 0). Return to A2.

(b) Now q

1

, : : : , q

t�1

represent rings on the bar:

B1. [Initialize.℄ Set t 1, q

0

 n. (We assume that n > 1.)

B2. [Visit.℄ Set q

t

 0 and visit (q

0

� q

1

) : : : (q

t�1

� q

t

). Go to B4 if t is even.

B3. [Odd step.℄ If q

t�1

= 1, set t t � 1; otherwise set q

t

 1 and t t + 1.

Return to step B2.

B4. [Even step.℄ If q

t�2

= q

t�1

+1, set q

t�2

 q

t�1

and t t� 1 (but terminate

if t = 2); otherwise set q

t

 q

t�1

, q

t�1

 q

t

+1, t t+1. Return to B2.

These algorithms [see J. Misra, ACM Trans. Math. Software 1 (1975), 285℄ are loopless

even in their initialization steps.

13. In step A1, also set C 1. In step A3, set C s

j

C if s

j

> 1, otherwise

C C=(s

j�1

+1). In step A4, set C s

j�1

C if s

j�1

> 1, otherwise C C=(s

j�2

+1).

41

42 ANSWERS TO EXERCISES 7.2.1.1

Similar modi�
ations apply to steps B1, B3, B4. SuÆ
ient pre
ision is needed to

a

ommodate the value C = n! for the
omposition 1 : : : 1; we are stret
hing the

de�nition of looplessness by assuming that arithmeti
 operations take unit time.

14. S1. [Initialize.℄ Set j 0.

S2. [Visit.℄ Visit the string a

1

: : : a

j

.

S3. [Lengthen.℄ If j < n, set j j + 1, a

j

 0, and return to S2.

S4. [In
rease.℄ If a

j

< m

j

� 1, set a

j

 a

j

+ 1 and return to S2.

S5. [Shorten.℄ Set j j � 1, and return to S4 if j > 0.

15. T1. [Initialize.℄ Set j 0.

T2. [Even visit.℄ If j is even, visit the string a

1

: : : a

j

.

T3. [Lengthen.℄ If j < n, set j j + 1, a

j

 0, and return to T2.

T4. [Odd visit.℄ If j is odd, visit the string a

1

: : : a

j

.

T5. [In
rease.℄ If a

j

< m

j

� 1, set a

j

 a

j

+ 1 and return to T2.

T6. [Shorten.℄ Set j j � 1, and return to T4 if j > 0.

This algorithm is loopless, although it may appear at �rst glan
e to
ontain loops; at

most four steps separate
onse
utive visits. The basi
 idea is related to exer
ise 2.3.1{5

and to \prepostorder" traversal (Algorithm 7.2.1.6Q).

16. Suppose LINK(j � 1) = j + nb

j

for 1 � j � n and LINK(j � 1 + n) = j + n(1� b

j

)

for 1 < j � n. These links represent (a

1

; : : : ; a

n

) if and only if g(b

1

: : : b

n

) = a

1

: : : a

n

,

so we
an use a loopless Gray binary generator to a
hieve the desired result.

17. Put the
on
atenation of 3-bit
odes (g(j); g(k)) in row j and
olumn k, for 0 �

j; k < 8. [It is not diÆ
ult to prove that this is essentially the only solution, ex
ept

for permuting and/or
omplementing
oordinates and/or rotating rows, be
ause the

oordinate that
hanges when moving north or south depends only on the row, and a

similar statement applies to
olumns. Karnaugh's isomorphism between the 4-
ube and

the 4� 4 torus
an be tra
ed ba
k to The Design of Swit
hing Cir
uits by W. Keister,

A. E. Rit
hie, and S. H. Washburn (1951), page 174. In
identally, Keister went on to

design an ingenious variant of Chinese rings
alled SpinOut, and a generalization
alled

The Hexade
imal Puzzle, U.S. Patents 3637215{3637216 (1972).℄

18. Use 2-bit Gray
ode to represent the digits u

j

= (0; 1; 2; 3) respe
tively as the bit

pairs u

0

2j�1

u

0

2j

= (00; 01; 11; 10). [C. Y. Lee introdu
ed his metri
 in IEEE Trans. IT-4

(1958), 77{82. A similar m=2-bit en
oding works for even values of m; for example,

when m = 8 we
an represent (0; 1; 2; 3; 4; 5; 6; 7) by (0000; 0001; 0011; 0111; 1111; 1110;

1100; 1000). But su
h a s
heme leaves out some of the binary patterns when m > 4.℄

19. (a) A modular Gray quaternary algorithm needs slightly less
omputation than

Algorithm M, but it doesn't matter be
ause 256 is so small. The result is z

8

0

+ z

8

1

+

z

8

2

+ z

8

3

+ 14(z

4

0

z

4

2

+ z

4

1

z

4

3

) + 56z

0

z

1

z

2

z

3

(z

2

0

+ z

2

2

)(z

2

1

+ z

2

3

).

(b) Repla
ing (z

0

; z

1

; z

2

; z

3

) by (1; z; z

2

; z) gives 1 + 112z

6

+ 30z

8

+ 112z

10

+ z

16

;

thus all of the nonzero Lee weights are � 6. Now use the
onstru
tion in the previous

exer
ise to
onvert ea
h (u

0

; u

1

; u

2

; u

3

; u

4

; u

5

; u

6

; u

1

) into a 16-bit number.

20. Re
over the quaternary ve
tor (u

0

; u

1

; u

2

; u

3

; u

4

; u

5

; u

6

; u

1

) from u

0

, and use Al-

gorithm 4.6.1D to �nd the remainder of u

0

+ u

1

x+ � � �+ u

6

x

6

divided by g(x), mod 4;

that algorithm
an be used in spite of the fa
t that the
oeÆ
ients do not belong to a

�eld, be
ause g(x) is moni
. Express the remainder as x

j

+ 2x

k

(modulo g(x) and 4),

and let d = (k � j) mod 7, s = (u

0

+ � � �+ u

6

+ u

1

) mod 4.

42

7.2.1.1 ANSWERS TO EXERCISES 43

Case 1, s = 1: If k =1, the error was x

j

(in other words, the
orre
t ve
tor has

u

j

 (u

j

� 1) mod 4); otherwise there were three or more errors.

Case 2, s = 3: If j = k the error was �x

j

; otherwise � 3 errors o

urred.

Case 3, s = 0: If j = k = 1, no errors were made; if j = 1 and k < 1,

at least four errors were made. Otherwise the errors were x

a

� x

b

, where a = (j +

(1;6;5;2;3;1;4;0))mod 7 a

ording as d = (0;1;2;3;4;5;6;1), and b = (j+2d) mod 7.

Case 4, s = 2: If j =1 the errors were 2x

k

. Otherwise the errors were

x

j

+ x

1

, if k =1;

�x

j

� x

1

, if d = 0;

x

a

+ x

b

, if d 2 f1; 2; 4g; a = (j � 3d) mod 7; b = (j � 2d) mod 7;

�x

a

� x

b

, if d 2 f3; 5; 6g; a = (j � 3d) mod 7; b = (j � d) mod 7:

Given u

0

= (1100100100001111)

2

, we have u = (2; 0; 3; 1; 0; 0; 2; 2) and 2 + 3x

2

+

x

3

+ 2x

6

� 1 + 3x + 3x

2

� x

5

+ 2x

6

; also s = 2. Thus the errors are x

2

+ x

3

, and

the nearest errorfree
odeword is (2; 0; 2; 0; 0; 0; 2; 2). Algorithm 4.6.1D tells us that

2+2x

2

+2x

6

� (2+2x+2x

3

)g(x) (modulo 4); so the eight information bits
orrespond

to (v

0

; v

1

; v

2

; v

3

) = (2; 2; 0; 2). [A more intelligent algorithm would also say, \Aha: The

�rst 16 bits of �."℄

For generalizations to other eÆ
ient
oding s
hemes based on quaternary ve
tors,

see the
lassi
 paper by Hammons, Kumar, Calderbank, Sloane, and Sol�e, IEEE Trans.

IT-40 (1994), 301{319.

21. (a) C(�) = 1, C(0�) = C(1�) = C(�), and C(��) = 2C(�) � [10 : : : 02�℄.

Iterating this re
urren
e gives C(�) = 2

t

� 2

t�1

e

t

� 2

t�2

e

t�1

� � � � � 2

0

e

1

, where

e

j

= [10 : : : 02�

j

℄ and �

j

is the suÆx of � following the jth asterisk. In the example

we have �

1

= �10��0�, �

2

= 10��0�, : : : , �

5

= �; thus e

1

= 0, e

2

= 1, e

3

= 1, e

4

= 0,

and e

5

= 1 (by
onvention), hen
e C(��10��0�) = 2

5

� 2

4

� 2

2

� 2

1

= 10.

(b) We may remove trailing asterisks so that t = t

0

. Then e

t

= 1 implies e

t�1

=

� � � = e

1

= 0. [The
ase C(�) = 2

t

0

�1

o

urs if and only if � ends in 10

j

�

k

.℄

(
) To
ompute the sum of C(�) over all t-sub
ubes, note that

�

n

t

�

lusters begin at

the n-tuple 0 : : : 0, and

�

n�1

t

�

begin at ea
h su

eeding n-tuple (namely one
luster for

ea
h t-sub
ube
ontaining that n-tuple and spe
ifying the bit that
hanged). Thus the

average is (

�

n

t

�

+(2

n

�1)

�

n�1

t

�

)=2

n�t

�

n

t

�

= 2

t

(1� t=n)+2

t�n

(t=n). [The formula in (
)

holds for any n-bit Gray path, but (a) and (b) are spe
i�
 to the re
e
ted Gray binary

ode. These results are due to C. Faloutsos, IEEE Trans. SE-14 (1988), 1381{1393.℄

22. Let ��

j

and ��

k

be
onse
utive lieves of a Gray binary trie, where � and � are

binary strings and j � k. Then the last k � j bits of � are a string �

0

su
h that �

and ��

0

are
onse
utive elements of Gray binary
ode, hen
e adja
ent. [Interesting

appli
ations of this property to
ube-
onne
ted message-passing
on
urrent
omputers

are dis
ussed in A VLSI Ar
hite
ture for Con
urrent Data Stru
tures by William J.

Dally (Kluwer, 1987), Chapter 3.℄

23. 2

j

= g(k) � g(l) = g(k � l) implies that l = k � g

[�1℄

(2

j

) = k � (2

j+1

� 1). In

other words, if k = (b

n�1

: : : b

0

)

2

we have l = (b

n�1

: : : b

j+1

b

j

: : : b

0

)

2

.

24. De�ning g(k) = k�bk=2
 as usual, we �nd g(k) = g(�1� k); hen
e there are two

2-adi
 integers k su
h that g(k) has a given 2-adi
 value l. One of them is even, the

other is odd. We
an
onveniently de�ne g

[�1℄

to be the solution that is even; then

(8) is repla
ed by b

j

= a

j�1

� � � � � a

0

, for j � 0. For example, g

[�1℄

(1) = �2 by this

de�nition; when l is a normal integer, the \sign" of g

[�1℄

(l) is the parity of l.

43

44 ANSWERS TO EXERCISES 7.2.1.1

25. Let p = k � l; exer
ise 7.1{00 tells us that 2

blg p
+1

� p � jk � lj � p. We

have �(g(p)) = �(g(k) � g(l)) = t if and only if there are positive integers j

1

, : : : , j

t

su
h that p = (1

j

1

0

j

2

1

j

3

: : : (0 or 1)

j

t

)

2

. The largest possible p < 2

n

o

urs when

j

1

= n + 1 � t and j

2

= � � � = j

t

= 1, yielding p = 2

n

� d2

t

=3e. The smallest possible

2

blg p
+1

� p = (1

j

2

0

j

3

: : : (1 or 0)

j

t

)

2

+ 1 o

urs when j

2

= � � � = j

t

= 1, yielding

p = d2

t

=3e. [C. K. Yuen, IEEE Trans. IT-20 (1974), 668; S. R. Cavior, IEEE Trans.

IT-21 (1975), 596.℄

26. Let N = 2

n

t

+ � � � + 2

n

1

where n

t

> � � � > n

1

� 0; also, let �

n

be any Gray
ode

for f0; 1; : : : ; 2

n

� 1g that begins at 0 and ends at 1, ex
ept that �

0

is simply 0. Use

�

R

n

t

; 2

n

t

+�

n

t�1

; : : : ; 2

n

t

+ � � �+2

n

3

+�

R

n

2

; 2

n

t

+ � � �+2

n

2

+�

n

1

; if t is even;

�

n

t

; 2

n

t

+�

R

n

t�1

; : : : ; 2

n

t

+ � � �+2

n

3

+�

R

n

2

; 2

n

t

+ � � �+2

n

2

+�

n

1

; if t is odd.

27. In general, if k = (b

n�1

: : : b

0

)

2

, the (k + 1)st largest element of S

n

is equal to

1/(2� (�1)

a

n�1

/(2� � � � =(2� (�1)

a

1

=(2� (�1)

a

0

)) : : :));

orresponding to the sign pattern g(k) = (a

n�1

: : : a

0

)

2

. Thus we
an
ompute any ele-

ment of S

n

in O(n) steps, given its rank. Setting k = 2

100

�10

10

and n = 100 yields the

answer 373065177=1113604409. [Whenever f(x) is a positive and monotoni
 fun
tion,

the 2

n

elements f(�f(: : :�f(�x) : : :)) are ordered a

ording to Gray binary
ode, as

observed by H. E. Salzer, CACM 16 (1973), 180. In this parti
ular
ase there is, how-

ever, another way to get the answer, be
ause we also have S

n

= ==2;�2; : : : ;�2;�1==

using the notation of Se
tion 4.5.3;
ontinued fra
tions in this form are ordered by

omplementing alternate bits of k.℄

28. (a) As t = 1, 2, : : : , bit a

j

of median(G

t

) runs through the periodi
 sequen
e

0; : : : ; 0; �; 1; : : : ; 1; �; 0; : : : ; 0; �; : : :

with asterisks at every 2

1+j

th step. Thus the strings that
orrespond to the binary

representations of b(t � 1)=2
 and bt=2
 are medians. And those strings are in fa
t

\extreme"
ases, in the sense that all medians agree with the
ommon bits of b(t�1)=2

and bt=2
, hen
e asterisks appear where they disagree. For example, when t = 100 =

(01100100)

2

and n = 8, we have median(G

100

) = 001100��.

(b) Sin
e G

2t

= 2G

t

[(2G

t

+ 1), we may assume that t = (a

n�2

: : : a

1

a

0

1)

2

is

odd. If � is g(p) and � is g(q) in Gray binary, we have p = (p

n�1

: : : p

0

)

2

and q =

(p

n�1

: : : p

j+1

p

j

: : : p

0

)

2

; and a

n�1

a

n�2

= 01 = p

n�1

p

n�2

. We
annot have p < t � q,

be
ause this would imply that j = n � 1 and p

n�3

= p

n�4

= � � � = p

0

= 1. [See A. J.

Bernstein, K. Steiglitz, and J. E. Hop
roft, IEEE Trans. IT-12 (1966), 425{430.℄

29. Assuming that p 6= 0, let l = blg p
 and S

a

= fs j 2

l

a � s < 2

l

(a + 1)g for

0 � a < 2

n�l

. Then (k � p)� k has a
onstant sign for all k 2 S

a

, and

X

k2S

a

�

�

�

(k � p)� k

�

�

�

= 2

l

jS

a

j = 2

2l

:

Also g

[�1℄

(g(k)� p) = k � g

[�1℄

(p), and blg g

[�1℄

(p)
 = blg p
. Therefore

1

2

n

2

n

�1

X

k=0

�

�

�

g

[�1℄

(g(k)� p)� k

�

�

�

=

1

2

n

2

n�l

�1

X

a=0

X

k2S

a

�

�

�

(k� g

[�1℄

(p))� k

�

�

�

=

1

2

n

2

n�l

�1

X

a=0

2

2l

= 2

l

:

[See Morgan M. Bu
hner, Jr., Bell System Te
h. J. 48 (1969), 3113{3130.℄

44

7.2.1.1 ANSWERS TO EXERCISES 45

30. The
y
le
ontaining k > 1 has length 2

blg lg k
+1

, be
ause it is easy to show from

Eq. (7) that if k = (b

n�1

: : : b

0

)

2

we have

g

[2

l

℄

(k) = (

n�1

: : :

0

)

2

; where

j

= b

j

� b

j+l+1

.

To permute all elements k su
h that blg k
 = t, there are two
ases: If t is a power of 2,

the
y
le
ontaining 2bk=2
 also
ontains 2bk=2
+1, so we must double the
y
le leaders

for t � 1. Otherwise the
y
le
ontaining 2bk=2
 is disjoint from the
y
le
ontaining

2bk=2
 + 1, so L

t

= (2L

t�1

) [(2L

t�1

+ 1) = (L

t�1

�)

2

. This argument, dis
overed by

J�org Arndt in 2001, establishes the hint and yields the following algorithm:

P1. [Initialize.℄ Set t 1, m 0. (We may assume that n � 2.)

P2. [Loop through leaders.℄ Set r m. Perform Algorithm Q with k = 2

t

+ r;

then if r > 0, set r (r�1)^m and repeat until r = 0. [See exer
ise 7.1{00.℄

P3. [In
rease lg k.℄ Set t t+ 1. Terminate if t is now equal to n; otherwise set

m 2m+ [t ^ (t� 1) 6=0℄ and return to P2.

Q1. [Begin a
y
le.℄ Set s X

k

, l k, j l � bl=2
.

Q2. [Follow the
y
le.℄ If j 6= k set X

l

 X

j

, l j, j l � bl=2
, and repeat

until j = k. Then set X

l

 s.

31. We get a �eld from f

n

if and only if we get one from f

[2℄

n

, whi
h takes (a

n�1

: : : a

0

)

2

to ((a

n�1

� a

n�2

)(a

n�1

� a

n�3

)(a

n�2

� a

n�4

) : : : (a

2

� a

0

)(a

1

))

2

. Let

n

(x) be the

hara
teristi
 polynomial of the matrix A de�ning this transformation, mod 2; then

1

(x) = x+ 1,

2

(x) = x

2

+ x+ 1, and

j+1

(x) = x

j

(x) +

j�1

(x). Sin
e

n

(A) is the

zero matrix, by the Cayley{Hamilton theorem, a �eld is obtained if and only if

n

(x) is

a primitive polynomial, and this
ondition
an be tested as in Se
tion 3.2.2. The �rst

su
h values of n are 1, 2, 3, 5, 6, 9, 11, 14, 23, 26, 29, 30, 33, 35, 39, 41, 51, 53, 65, 69,

74, 81, 83, 86, 89, 90, 95.

[Running the re
urren
e ba
kwards shows that

�j�1

(x) =

j

(x), hen
e

j

(x)

divides

(2j+1)k+j

(x); for example,

3k+1

(x) is always a multiple of x+1. All numbers n

of the form 2jk+ j+ k are therefore ex
luded when j > 0 and k > 0. The polynomials

18

(x),

50

(x),

98

(x), and

99

(x) are irredu
ible but not primitive.℄

32. Mostly true, but false at the points where w

k

(x)
hanges sign. (Walsh originally

suggested that w

k

(x) should be zero at su
h points; but the
onvention adopted here

is better, be
ause it makes simple formulas like (15){(19) valid for all x.)

33. By indu
tion on k, we have

w

k

(x) = w

bk=2

(2x) = r

1

(2x)

b

1

+b

2

r

2

(2x)

b

2

+b

3

: : : = r

1

(x)

b

0

+b

1

r

2

(x)

b

1

+b

2

r

3

(x)

b

2

+b

3

: : :

for 0 � x <

1

2

, be
ause r

j

(2x) = r

j+1

(x) and r

1

(x) = 1 in this range. And when

1

2

� x < 1,

w

k

(x) = (�1)

dk=2e

w

bk=2

(2x� 1) = r

1

(x)

b

0

+b

1

r

1

(2x� 1)

b

1

+b

2

r

2

(2x� 1)

b

2

+b

3

: : :

= r

1

(x)

b

0

+b

1

r

2

(x)

b

1

+b

2

r

3

(x)

b

2

+b

3

: : :

be
ause dk=2e � b

0

+ b

1

(modulo 2) and r

j

(2x� 1) = r

j+1

(x�

1

2

) = r

j+1

(x) for j � 1.

34. p

k

(x) =

Q

j�0

r

b

j

j+1

; hen
e w

k

(x) = p

k

(x)p

bk=2

(x) = p

g(k)

(x). [R. E. A. C. Paley,

Pro
. London Math. So
. (2) 34 (1932), 241{279.℄

45

46 ANSWERS TO EXERCISES 7.2.1.1

35. If j = (a

n�1

: : : a

0

)

2

and k = (b

n�1

: : : b

0

)

2

, the element in row j and
olumn k is

(�1)

f(j;k)

, where f(j; k) is the sum of all a

r

b

s

su
h that: r = s (Hadamard); r+s = n�1

(Paley); r + s = n or n� 1 (Walsh).

Let R

n

, F

n

, and G

n

be permutation matri
es for the permutations that take

j = (a

n�1

: : : a

0

)

2

to k = (a

0

: : : a

n�1

)

2

, k = 2

n

� 1 � j = (a

n�1

: : : a

0

)

2

, and k =

g

[�1℄

(j) = ((a

n�1

) : : : (a

n�1

� � � � � a

0

))

2

, respe
tively. Then, using the Krone
ker

produ
t of matri
es, we have the re
ursive formulas

R

n+1

=

�

R

n

 (1 0)

R

n

 (0 1)

�

; F

n+1

= F

n

�

0 1

1 0

�

; G

n+1

=

�

G

n

0

0 G

n

F

n

�

;

H

n+1

= H

n

�

1 1

1 1

�

; P

n+1

=

�

P

n

 (1 1)

P

n

 (1 1)

�

; W

n+1

=

�

W

n

 (1 1)

F

n

W

n

 (1 1)

�

:

Thus W

n

= G

T

n

P

n

= P

n

G

n

; H

n

= P

n

R

n

= R

n

P

n

; and P

n

= W

n

G

T

n

= G

n

W

n

=

H

n

R

n

= R

n

H

n

.

36. W1. [Hadamard transform.℄ For k = 0, 1, : : : , n� 1, repla
e the pair (X

j

;X

j+2

k

)

by (X

j

+X

j+2

k

; X

j

�X

j+2

k

) for all j with bj=2

k

 even, 0 � j < 2

n

. (These

operations e�e
tively set X

T

 H

n

X

T

.)

W2. [Bit reversal.℄ Apply the algorithm of exer
ise 5 to the ve
tor X. (These

operations e�e
tively set X

T

 R

n

X

T

, in the notation of exer
ise 35.)

W3. [Gray binary permutation.℄ Apply the algorithm of exer
ise 30 to the ve
-

tor X. (These operations e�e
tively set X

T

 G

T

n

X

T

.)

If n has one of the spe
ial values in exer
ise 31, it may be faster to
ombine steps W2

and W3 into a single permutation step.

37. If k = 2

e

1

+� � �+2

e

t

with e

1

> � � � > e

t

� 0, the sign
hanges o

ur at S

e

1

[� � �[S

e

t

,

where

S

0

=

n

1

2

o

; S

1

=

n

1

4

;

3

4

o

; : : : ; S

e

=

n

2j + 1

2

e

�

�

�

0 � j < 2

e

o

:

Therefore the number of sign
hanges in (0 : : x) is

P

t

j=1

b2

e

j

x+

1

2

. Setting x = l=(k+1)

gives l+O(t)
hanges; so the lth is at a distan
e of at mostO(�(k))=2

blg k

from l=(k+1).

[This argument makes it plausible that in�nitely many pairs (k; l) exist with

jz

kl

� l=(k + 1)j =
((log k)=k). But no expli
it
onstru
tion of su
h \bad" pairs

is immediately apparent.℄

38. Let t

0

(x) = 1 and t

k

(x) = !

b3x
d2k=3e

t

bk=3

(3x), where ! = e

2�i=3

. Then t

k

(x)

winds around the origin

2

3

k times as x in
reases from 0 to 1. If s

k

(x) = !

b3

k

x

is the

ternary analog of the Radema
her fun
tion r

k

(x), we have t

k

(x) =

Q

j�0

s

j+1

(x)

b

j

�b

j+1

when k = (b

n�1

: : : b

0

)

3

, as in the modular ternary Gray
ode.

39. Let's
all the symbols fx

0

; x

1

; : : : ; x

7

g instead of fa; b;
; d; e; f; g; hg. We want to

�nd a permutation p of f0; 1; : : : ; 7g su
h that the matrix with (�1)

j�k

x

p(j)�k

in row j

and
olumn k has orthogonal rows; this
ondition is equivalent to requiring that

(j + j

0

) � (p(j) + p(j

0

)) � 1 (modulo 2), for 0 � j < j

0

< 8.

One solution is p(0) : : : p(7) = 0 1 7 2 5 6 3 4, yielding the identity (a

2

+ b

2

+

2

+ d

2

+

e

2

+ f

2

+ g

2

+ h

2

)(A

2

+B

2

+C

2

+D

2

+E

2

+ F

2

+G

2

+H

2

) = A

2

+ B

2

+ C

2

+D

2

+

46

7.2.1.1 ANSWERS TO EXERCISES 47

E

2

+ F

2

+ G

2

+H

2

, where

0

B

B

B

B

B

B

B

B

B

�

A

B

C

D

E

F

G

H

1

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

�

a b
 d e f g h

b �a d �
 f �e h �g

h g �f �e d
 �b �a

 �d �a b g �h �e f

f e h g �b �a �d �

g �h e �f �
 d �a b

d
 �b �a �h �g f e

e �f �g h �a b
 �d

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

�

A

B

C

D

E

F

G

H

1

C

C

C

C

C

C

C

C

C

A

:

[This identity was dis
overed by C. F. Degen, M�emoires de l'A
ad. S
i. St. Petersbourg

(5) 8 (1818), 207{219. The related o
tonions are dis
ussed in an interesting survey by

J. C. Baez, Bull. Amer. Math. So
. 39 (2002), 145{205.℄

(b) There is no 16� 16 solution. The
losest one
an
ome is

p(0) : : : p(15) = 0 1 11 2 14 15 13 4 9 10 7 12 5 6 3 8;

whi
h fails if and only if j � j

0

= 5. (See Philos. Mag. 34 (1867), 461{475. In x9, x10,

x11, and x13 of this paper, Sylvester stated and proved the basi
 results about what

has somehow
ome to be known as the Hadamard transform|although Hadamard

himself gave
redit to Sylvester [Bull. des S
ien
es Math�ematiques (2) 17 (1893), 240{

246℄. Moreover, Sylvester introdu
ed transforms of m

n

elements in x14, using mth

roots of unity.)

40. Yes; this
hange would in fa
t run through the swapped subsets in lexi
ographi

binary order rather than in Gray binary order. (Any 5 � 5 matrix of 0s and 1s that

is nonsingular mod 2 will generate all 32 possibilities when we run through all linear

ombinations of its rows.) The most important thing is the appearan
e of the ruler

fun
tion, or some other Gray
ode delta sequen
e, not the fa
t that only one a

j

hanges

per step, in
ases like this where any number of the a

j

an be
hanged simultaneously

at the same
ost.

41. At most 16; for example, fired, fires, finds, fines, fined, fares, fared, wares,

wards, wands, wanes, waned, wines, winds, wires, wired. We also get 16 from pa
ed/

links and paled/mints; perhaps also from a word mixed with an antipodal nonword.

42. Suppose n � 2

2

r

+ r+1, and let s = 2

r

. We use an auxiliary table of 2

r+s

bits f

jk

for 0 � j < 2

s

and 0 � k < s, representing fo
us pointers as in Algorithm L, together

with an auxiliary s-bit \register" j = (j

s�1

: : : j

0

)

2

and an (r+2)-bit \program
ounter"

p = (p

r+1

: : : p

0

)

2

. At ea
h step we examine the program
ounter and possibly the j

register and one of the f bits; then, based on the bits seen, we
omplement a bit of the

Gray
ode,
omplement a bit of the program
ounter, and possibly
hange a j or f bit,

thereby emulating step L3 with respe
t to the most signi�
ant n� r � 2 bits.

For example, here is the
onstru
tion when r = 1:

p

2

p

1

p

0

Change Set

0 0 0 a

0

; p

0

j

0

 f

00

0 0 1 a

1

; p

1

j

1

 f

01

o

j f

0

0 1 1 a

0

; p

0

f

00

 0

0 1 0 a

2

; p

2

f

01

 0

o

f

0

 0

p

2

p

1

p

0

Change Set

1 1 0 a

0

; p

0

f

j0

 f

(j+1)0

1 1 1 a

1

; p

1

f

j1

 f

(j+1)1

o

f

j

 f

j+1

1 0 1 a

0

; p

0

f

(j+1)0

 (j+1)

0

1 0 0 a

j+3

; p

2

f

(j+1)1

 (j+1)

1

o

f

j+1

 j+1

The pro
ess stops when it attempts to
hange bit a

n

.

47

48 ANSWERS TO EXERCISES 7.2.1.1

[In fa
t, we need
hange only one auxiliary bit per step if we allow ourselves to

examine some Gray binary bits as well as the auxiliary bits, be
ause p

r

: : : p

0

= a

r

: : : a

0

,

and we
an set f

0

 0 in a more
lever way when j doesn't have its �nal value 2

s

� 1.

This
onstru
tion, suggested by Fredman in 2001, improves on another that he had

published in SICOMP 7 (1978), 134{146. With a more elaborate
onstru
tion it is

possible to redu
e the number of auxiliary bits to O(n).℄

43. This number was estimated by Silverman, Vi
kers, and Sampson [IEEE Trans. IT-

29 (1983), 894{901℄ to be about 7� 10

22

. Exa
t
al
ulation might be feasible be
ause

every 6-bit Gray
y
le has only �ve or fewer segments that lie in a 5-
ube
orresponding

to at least one of the six
oordinates. (In unpublished work, Steve Winker had used a

similar idea to evaluate d(5) in less than 15 minutes on a \generi
"
omputer in 1972.)

44. All (n + 1)-bit delta sequen
es with just two o

urren
es of the
oordinate j are

produ
ed by the following
onstru
tion: Let Æ

1

: : : Æ

2

n

�1

and "

1

: : : "

2

n

�1

be n-bit delta

sequen
es for Gray paths, with 2

Æ

1

� � � � � 2

Æ

2

n

�1

= 2

"

1

� � � � � 2

"

2

n

�1

. Form the
y
le

Æ

k+1

: : : Æ

2

n

�1

n "

1

: : : "

2

n

�1

n Æ

1

: : : Æ

k

for some k with 0 � k < 2

n

, then inter
hange n$ j.

All (n + 2)-bit delta sequen
es with just two o

urren
es of
oordinates h and j

(with h before j) are, similarly, produ
ed from four n-bit sequen
es Æ

1

: : : Æ

2

n

�1

, : : : ,

�

1

: : : �

2

n

�1

where 2

Æ

1

� � � � � 2

�

2

n

�1

= 0, by inter
hanging n$ h and n+ 1$ j in

Æ

k+1

: : : Æ

2

n

�1

n "

1

: : : "

2

n

�1

(n+1)�

1

: : : �

2

n

�1

n�

1

: : : �

2

n

�1

(n+1)Æ

1

: : : Æ

k

:

Let a(n) and b(n) be the number of n-bit
y
les de�ned in parts (a) and (b); then

(a(1); : : : ; a(5))=(1; 0; 0; 1920; 318996480) and (b(1); : : : ; b(5))=(0; 2; 12; 384; 4200960).

The
onstru
tions above prove that a(n+1)+2b(n+1) = 2

n

(n+1)A(n) and b(n+2) =

2

n

(n+2)(n+1)B(n), if there are A(n) and B(n) ways to
hoose the respe
tive sequen
es

Æ, ", �, and �. If we restri
t ourselves to
ases where the Gray paths are extendible to

Gray
y
les, with Æ

0

= "

0

= �

0

= �

0

, we get a

0

(n + 1) and b

0

(n + 2) sequen
es where

a

0

(n+ 1) + 2b

0

(n+ 1) = 2

n

(n+ 1)d(n)

2

=n and b

0

(n+ 2) = 2

n

(n+ 2)(n+ 1)d(n)

4

=n

3

.

45. We have d(n+1) � 2

n

d(n)

2

=n, be
ause 2

n

d(n)

2

=n is a lower bound on the number

of (n+1)-bit delta sequen
es with exa
tly two appearan
es of 0. Hen
e d(n+1)

1=2

n+1

>

d(n)

1=2

n

; and d(n) �

5

32

�

2

n

for n � 5, where � = (

32

5

d(5))

1=32

� 2:06.

Indeed, we
an establish even faster growth by using the previous exer
ise, be
ause

d(n + 1) � a

0

(n + 1) + b

0

(n + 1) and b

0

(n + 1) �

25

64

(n + 1)d(n)

2

=n for n � 5. Hen
e

d(n+1) � (2

n

�

25

64

)(n+1)d(n)

2

=n for n � 5, and iteration of this relation shows that

lim

n!1

d(n)

1=2

n

� d(5)

1=32

1

Y

n=5

�

2

n

�

25

64

�

1=2

n+1

�

n+ 1

n

�

1=2

n+1

� 2:3606:

[See R. J. Douglas, Dis
. Math. 17 (1977), 143{146; M. Mollard, European J. Comb.

9 (1988), 49{52.℄ The true value of this limit, however, is probably 1.

46. Leo Moser (unpublished) has
onje
tured that it is � n=e. So far only an upper

bound of about n=

p

2 has been established; see the referen
es in the previous answer.

48. If d(n; k; v) of the
y
les begin with g(0) : : : g(k � 1)v, the
onje
ture implies that

d(n; k; v) � d(n; k; g(k)), be
ause the reverse of a Gray
y
le is a Gray
y
le. Thus the

48

7.2.1.1 ANSWERS TO EXERCISES 49

hint follows from d(n) = d(n; 1) and

d(n; k) =

X

v

f d(n; k; v) j v���g(k � 1); v =2 S

k

g �

nk

d(n; k; g(k)) = d(n; k + 1):

Finally, d(n; 2

n

) = 1, hen
e d(n) �

Q

2

n

�1

k=1

nk

=

Q

n

k=1

k

(

n

k

)

= n

Q

n�1

k=1

(k(n�k))

(

n

k

)

=2

�

n

Q

n�1

k=1

(n=2)

(

n

k

)

= n(n=2)

2

n

�2

. [IEEE Trans. IT-29 (1983), 894{901.℄

49. Take any Hamiltonian path P from 0 : : : 0 to 1 : : : 1 in the (2n � 1)-
ube, su
h

as the Savage{Winkler
ode, and use 0P , 1P . (All su
h
y
les are obtained by this

onstru
tion when n = 1 or n = 2, but many more possibilities exist when n > 2.)

50. �

1

(n+1)�

R

1

n�

1

j

1

�

2

n�

R

2

(n+1)�

2

: : : j

l�1

�

l

n�

R

l

(n+1)�

l

n�

R

l

j

l�1

: : : j

1

�

R

1

n.

51. We
an assume that n > 3 and that we have an n-bit Gray
y
le with transition

ounts

j

= 2b(2

n�1

+ j)=n
; we want to
onstru
t an (n+ 2)-bit
y
le with transition

ounts

0

j

= 2b(2

n+1

+ j)=(n + 2)
. If 2

n+1

mod (n + 2) � 2, we
an use Theorem D

with l = 2b2

n+1

=(n+ 2)
+ 1, underlining b

j

opies of j where b

j

= 4b(2

n�1

+ j)=n
 �

b(2

n+1

+j)=(n+2)
� [j=0℄ and putting an underlined 0 last. This is always easy to do

be
ause jb

j

�2

n+2

=n(n+2)j < 5. A similar
onstru
tion works if 2

n+1

mod (n+2) � n,

with l = 2b2

n+1

=(n+2)
�1 and b

j

= 4b(2

n�1

+j)=n
�b(2

n+1

+j+2)=(n+2)
�[j=0℄.

In fa
t, 2

n+1

mod (n+2) is always � n [see K. Kedlaya, Ele
troni
 J. Combinatori
s 3

(1996),
omment on #R25 (9 April 1997)℄. The basi
 idea of this proof is due to J. P.

Robinson and M. Cohn [IEEE Trans. C-30 (1981), 17{23℄.

52. The number of di�erent
ode patterns in the smallest j
oordinate positions is at

most

0

+ � � �+

j�1

.

53. Noti
e that Theorem D produ
es only
y
les with

j

=

j+1

for some j, so it

annot produ
e the
ounts (2; 4; 6; 8; 12). The extension in exer
ise 50 gives also

j

=

j+1

� 2, but it
annot produ
e (6; 10; 14; 18; 22; 26; 32). The sets of numbers

satisfying the
onditions of exer
ise 52 are pre
isely those obtainable by starting with

f2; 2; 4; : : : ; 2

n�1

g and repeatedly repla
ing some pair f

j

;

k

g for whi
h

j

<

k

by the

pair f

j

+ 2;

k

� 2g.

54. Suppose the values are fp

1

; : : : ; p

n

g, and let x

jk

be the number of times p

j

o

urs

in (a

1

; : : : ; a

k

). We must have (x

1k

; : : : ; x

nk

) � (x

1l

; : : : ; x

nl

) (modulo 2) for some k < l.

But if the p's are prime numbers, varying as the delta sequen
e of an n-bit Gray
y
le,

the only solution is k = 0 and l = 2

n

. [AMM 60 (1953), 418; 83 (1976), 54.℄

56. [Bell System Te
h. J. 37 (1958), 815{826.℄ The 112
anoni
al delta sequen
es yield

Class Example t

A 0102101302012023 2

B 0102303132101232 2

C 0102030130321013 2

Class Example t

D 0102013201020132 4

E 0102032021202302 4

F 0102013102010232 4

Class Example t

G 0102030201020302 8

H 0102101301021013 8

I 0102013121012132 1

Here B is the balan
ed
ode (Fig. 13(b)), G is standard Gray binary (Fig. 10(b)), and

H is the
omplementary
ode (Fig. 13(a)). Class H is also equivalent to the modular

(4; 4) Gray
ode under the
orresponden
e of exer
ise 18. A
lass with t automorphisms

orresponds to 32� 24=t of the 2688 di�erent delta sequen
es Æ

0

Æ

1

: : : Æ

15

.

Similarly (see exer
ise 7.2.3{00), the 5-bit Gray
y
les fall into 237,675 di�erent

equivalen
e
lasses.

57. With Type 1 only, 480 verti
es are isolated, namely those of
lasses D, F , G in the

previous answer. With Type 2 only, the graph has 384
omponents, 288 of whi
h are

49

50 ANSWERS TO EXERCISES 7.2.1.1

isolated verti
es of
lasses F and G. There are 64
omponents of size 9, ea
h
ontaining

3 verti
es from E and 6 from A; 16
omponents of size 30, ea
h with 6 from H and 24

from C; and 16
omponents of size 84, ea
h with 12 fromD, 24 from B, 48 from I. With

Type 3 (or Type 4) only, the entire graph is
onne
ted. [Similarly, all 91,392 of the 4-bit

Gray paths are
onne
ted if path �� is
onsidered adja
ent to path �

R

�. Vi
kers and

Silverman, IEEE Trans. C-29 (1980), 329{331, have
onje
tured that Type 3
hanges

will suÆ
e to
onne
t the graph of n-bit Gray
y
les for all n � 3.℄

58. If some nonempty substring of �� involves ea
h
oordinate an even number of

times, that substring
annot have length j�j, so some
y
li
 shift of � has a pre�x

with the same evenness property. But then � doesn't de�ne a Gray
y
le, be
ause we

ould
hange ea
h n of
 ba
k to 0.

59. If � is nonlo
al in exer
ise 58, so is ��, provided that q > 1 and that 0 o

urs

more than q + 1 times in �. Therefore, starting with the � of (30) but with 0 and 1

inter
hanged, we obtain nonlo
al
y
les for n � 5 in whi
h
oordinate 0
hanges exa
tly

6 times. [Mark Ramras, Dis
rete Math. 85 (1990), 329{331.℄ On the other hand, a 4-

bit Gray
y
le
annot be nonlo
al be
ause it always has a run of length 2; if Æ

k

= Æ

k+2

,

elements fv

k�1

; v

k

; v

k+1

; v

k+2

g form a 2-sub
ube.

60. Use the
onstru
tion of exer
ise 58 with q = 1.

61. The idea is to interleave an m-bit
y
le U = (u

0

; u

1

; u

2

; : : :) with an n-bit
y
le

V = (v

0

; v

1

; v

2

; : : :), by forming
on
atenations

W = (u

i

0

v

j

0

; u

i

1

v

j

1

; u

i

2

v

j

2

; : : :); i

k

= a

0

+ � � �+ a

k�1

; j

k

= a

0

+ � � �+ a

k�1

;

where a

0

a

1

a

2

: : : is a periodi
 string of
ontrol bits ��� : : : ; we advan
e to the next

element of U when a

k

= 0, otherwise to the next element of V .

If � is any string of length 2

m

� 2

n

,
ontaining s bits that are 0 and t = 2

m

� s

bits that are 1, W will be an (m + n)-bit Gray
y
le if s and t are odd. For we have

i

k+l

� i

k

(modulo 2

m

) and j

k+l

� j

k

(modulo 2

n

) only if l is a multiple of 2

m

, sin
e

i

k

+ j

k

= k. Suppose l = 2

m

; then j

k+l

= j

k

+ t
, so
 is a multiple of 2

n

.

(a) Let � = 0111; then runs of length 8 o

ur in the left 2 bits and runs of length

� b

4

3

r(n)
 o

ur in the right n bits.

(b) Let s be the largest odd number � 2

m

r(m)=(r(m)+ r(n)). Also let t = 2

m

� s

and a

k

= b(k + 1)t=2

m

 � bkt=2

m

, so that i

k

= dks=2

m

e and j

k

= bkt=2

m

. If

a run of length l o

urs in the left m bits, we have i

k+l+1

� i

k

+ r(m) + 1, hen
e

l+1 > 2

m

r(m)=s � r(m) + r(n). And if it o

urs in the right n bits we have j

k+l+1

�

j

k

+ r(n) + 1, hen
e

l + 1 > 2

m

r(n)=t > 2

m

r(n)=(2

m

r(n)=(r(m) + r(n)) + 2)

= r(m) + r(n)�

2(r(m) + r(n))

2

2

m

r(n) + 2(r(m) + r(n))

> r(m) + r(n)� 1

be
ause r(m) � r(n).

The
onstru
tion often works also in less restri
ted
ases. See the paper that

introdu
ed the study of Gray-
ode runs: L. Goddyn, G. M. Lawren
e, and E. Nemeth,

Utilitas Math. 34 (1988), 179{192.

63. Set a

k

 kmod 4 for 0 � k < 2

10

, ex
ept that a

k

= 4 when k mod 16 = 15 or

k mod 64 = 42 or k mod 256 = 133. Also set (j

0

; j

1

; j

2

; j

3

; j

4

) (0; 2; 4; 6; 8). Then

for k = 0, 1, : : : , 1023, set Æ

k

 j

a

k

and j

a

k

 1 + 4a

k

� j

a

k

. (This
onstru
tion

generalizes the method of exer
ise 61.)

50

7.2.1.1 ANSWERS TO EXERCISES 51

64. (a) Ea
h element u

k

appears together with fv

k

; v

k+2

m

; : : : ; v

k+2

m

(2

n�1

�1)

g and

fv

k+1

; v

k+1+2

m

; : : : ; v

k+1+2

m

(2

n�1

�1)

g. Thus the permutation �

0

: : : �

2

m

�1

must be a

2

n�1

-
y
le
ontaining the n-bit verti
es of even parity, times an arbitrary permutation

of the other verti
es. This
ondition is also suÆ
ient.

(b) Let �

j

be the permutation that takes v 7! v � 2

j

, and let �

j

(u;w) be the

permutation (uw)�

j

. If u�w = 2

i

+2

j

then �

j

(u;w) takes u 7! u�2

i

and w 7! w�2

i

,

while v 7! v � 2

j

for all other verti
es v, so it takes ea
h vertex to a neighbor.

If S is any set � f0; : : : ; n� 1g, let �(S) be the stream of all permutations �

j

for

all j 2 f0; : : : ; n� 1g nS, in in
reasing order of j, repeated twi
e; for example, if n = 5

we have �(f1; 2g) = �

0

�

3

�

4

�

0

�

3

�

4

. Then the Gray stream

�(i; j; u) = �(fi; jg)�

j

(u; u�2

i

�2

j

)�(fi; jg)�

j

�(fjg)

onsists of 6n � 8 permutations whose produ
t is the transposition (u u�2

i

�2

j

).

Moreover, when this stream is applied to any n-bit vertex v, its runs all have length

n� 2 or more.

We may assume that n � 5. Let Æ

0

: : : Æ

2

n

�1

be the delta sequen
e for an n-bit

Gray
y
le (v

0

; v

1

; : : : ; v

2

n

�1

) with all runs of length 3 or more. Then the produ
t of

all permutations in

� =

2

n�1

�1

Y

k=1

(�(Æ

2k�1

; Æ

2k

; v

2k�1

) �(Æ

2k

; Æ

2k+1

; v

2k

))

is (v

1

v

3

)(v

2

v

4

) : : : (v

2

n

�3

v

2

n

�1

)(v

2

n

�2

v

0

) = (v

2

n

�1

: : : v

1

)(v

2

n

�2

: : : v

0

), so it satis�es

the
y
le
ondition of (a).

Moreover, all powers (�(;)�)

t

produ
e runs of length � n � 2 when applied to

any vertex v. By repeating individual fa
tors �(fi; jg) or �(fjg) in � as many times

as we wish, we
an adjust the length of �(;)�, obtaining 2n+ (2

n�1

� 1)(12n� 16) +

2(n�2)a+2(n�1)b for any integers a; b � 0; thus we
an in
rease its length to exa
tly

2

m

, provided that 2

m

� 2n+(2

n�1

�1)(12n�16)+2(n

2

�5n+6), by exer
ise 5.2.1{ 21.

(
) The bound r(n) � n � 4 lgn + 8
an be proved for n � 5 as follows. First

we observe that it holds for 5 � n < 33 by the methods of exer
ises 60{63. Then we

observe that every integer N � 33
an be written as N = m+n or N = m+n+1, for

some m � 20, where

n = m� b4 lgm
+ 10:

If m � 20, 2

m

is suÆ
iently large for the
onstru
tion in part (b) to be valid; hen
e

r(N) � r(m+ n) � 2min(r(m); n� 2) � 2(m� b4 lgm
+ 8)

= m+ n+ 1� b4 lg(m+ n)� 1 + �
+ 8

� N � 4 lgN + 8

where � = 4 lg(2m=(m + n)) < 1. [Ele
troni
 Journal of Combinatori
s 10 (2003),

#R27, 1{10.℄ Re
ursive use of (b) gives, in fa
t, r(1024) � 1000.

65. A
omputer sear
h reveals that eight essentially di�erent patterns (and their

reverses) are possible. One of them has the delta sequen
e 01020314203024041234

214103234103, and it is
lose to two of the others.

66. (Solution by Mark Cooke.) One suitable delta sequen
e is 012345607012132435

65760710213534626701537412362567017314262065701342146560573102464537

57102043537614073630464273703564027132750541210275641502403654250136

51

52 ANSWERS TO EXERCISES 7.2.1.1

02541615604312576032572043157624321760452041751635476703564757062543

7242132624161523417514367143164314. (Solutions for n > 8 are still unknown.)

67. Let v

2k+1

= v

2k

and v

2k

= 0u

k

, where (u

0

; u

1

; : : : ; u

2

n

�1

) is any (n� 1)-bit Gray

y
le. [See Robinson and Cohn, IEEE Trans. C-30 (1981), 17{23.℄

68. Yes. The simplest way is probably to take (n� 1)-trit modular Gray ternary
ode

and add 0 : : : 0, 1 : : : 1, 2 : : : 2 to ea
h string (modulo 3). For example, when n = 3 the

ode is 000, 111, 222, 001, 112, 220, 002, 110, 221, 012, 120, 201, : : : , 020, 101, 212.

69. (a) We need only verify the
hange in h when bits b

j�1

: : : b

0

are simultaneously

omplemented, for j = 1, 2, : : : ; and these
hanges are respe
tively (1110)

2

, (1101)

2

,

(0111)

2

, (1011)

2

, (10011)

2

, (100011)

2

, : : : . To prove that every n-tuple o

urs, note

that 0 � h(k) < 2

n

when 0 � k < 2

n

and n > 3; also h

[�1℄

((a

n�1

: : : a

0

)

2

) =

(b

n�1

: : : b

0

)

2

, where b

0

= a

0

� a

1

� a

2

� � � � , b

1

= a

0

, b

2

= a

2

� a

3

� a

4

� � � � ,

b

3

= a

0

� a

1

� a

3

� � � � , and b

j

= a

j

� a

j+1

� � � � for j � 4.

(b) Let h(k) = (: : : a

2

a

1

a

0

)

2

where a

j

= b

j

� b

j+1

� b

0

[j� t℄� b

t�1

[t� 1� j� t℄.

70. As in (32) and (33), we
an remove a fa
tor of n! by assuming that the strings of

weight 1 o

ur in order. Then there are 14 solutions for n = 5 starting with 00000, and

21 starting with 00001. When n = 6 there are 46,935 of ea
h type (related by reversal

and
omplementation). When n = 7 the number is mu
h, mu
h larger, yet very small

by
omparison with the total number of 7-bit Gray
odes.

71. Suppose that �

n(j+1)

di�ers from �

nj

in
oordinate t

j

, for 0 � j < n � 1. Then

t

j

= j�

n

, by (44) and (38). Now Eq. (34) tells us that t

0

= n� 1; and if 0 < j < n� 1

we have t

j

= ((j � 1)�

n�1

)�

n�1

by (40). Thus t

j

= j�

n

�

2

n�1

for 0 � j < n � 1, and

the value of (n� 1)�

n

is whatever is left. (Notations for permutations are notoriously

onfusing, so it is always wise to
he
k a few small
ases
arefully.)

72. The delta sequen
e is 0102132430201234012313041021323.

73. Let Q

nj

= P

R

nj

and denote the sequen
es (41), (42) by S

n

and T

n

. Thus S

n

=

P

n0

Q

n1

P

n2

: : : and T

n

= Q

n0

P

n1

Q

n2

: : : , if we omit the
ommas; and we have

S

n+1

= 0P

n0

0Q

n1

1Q

�

n0

1P

�

n1

0P

n2

0Q

n3

1Q

�

n2

1P

�

n3

0P

n4

: : : ;

T

n+1

= 0Q

n0

1P

�

n0

0P

n1

0Q

n2

1Q

�

n1

1P

�

n2

0P

n3

0Q

n4

1Q

�

n3

: : : ;

where � = �

n

, revealing a reasonably simple joint re
ursion between the delta sequen
es

�

n

and E

n

of S

n

and T

n

. Namely, if we write

�

n

= �

1

a

1

�

2

a

2

: : : �

n�1

a

n�1

�

n

; E

n

=

1

b

1

2

b

2

: : :

n�1

b

n�1

n

;

where ea
h �

j

and

j

is a string of length 2

�

n�1

j�1

�

� 1, the next sequen
es are

�

n+1

= �

1

a

1

�

2

n

1

� b

1

�

2

� n �

3

a

3

�

4

n

3

� b

3

�

4

� n : : :

E

n+1

=

1

n �

1

� n

2

b

2

3

n �

2

� a

2

� �

3

� n

4

b

4

5

n �

4

� a

4

� �

5

� n : : :

For example, we have �

3

= 01 0 2 1 0 1 and E

3

= 02 1 2 0 2 1, if we underline the a's

and b's to distinguish them from the �'s and 's; and

�

4

= 0 1 0 2 1 3 0� 2� 1� 2� 0� 3 1 3 1� = 0 1 0 2 1 3 2 1 0 1 2 3 1 3 0;

E

4

= 0 3 0� 3 1 2 0 2 1 3 0� 2� 1� 0� 1� = 0 3 2 3 1 2 0 2 1 3 2 1 0 2 0;

here a

3

�

4

and b

3

4

are empty. Elements have been underlined for the next step.

Thus we
an
ompute the delta sequen
es in memory as follows. Here p[j℄ = j�

n

for 1 � j < n; s

k

= Æ

k

, t

k

= "

k

, and u

k

= [Æ

k

and "

k

are underlined℄, for 0 � k < 2

n

�1.

52

7.2.1.1 ANSWERS TO EXERCISES 53

R1. [Initialize.℄ Set n 1, p[0℄ 0, s

0

 t

0

 u

0

 0.

R2. [Advan
e n.℄ Perform Algorithm S below, whi
h
omputes the arrays s

0

, t

0

,

and u

0

for the next value of n; then set n n+ 1.

R3. [Ready?℄ If n is suÆ
iently large, the desired delta sequen
e �

n

is in array s

0

;

terminate. Otherwise keep going.

R4. [Compute �

n

.℄ Set p

0

[0℄ = n� 1, and p

0

[j℄ = p[p[j � 1℄℄ for 1 � j < n.

R5. [Prepare to advan
e.℄ Set p[j℄ p

0

[j℄ for 0 � j < n; set s

k

 s

0

k

, t

k

 t

0

k

,

and u

k

 u

0

k

for 0 � k < 2

n

� 1. Return to R2.

In the following steps, \Transmit stu�(l; j) while u

j

= 0" is an abbreviation for \If

u

j

= 0, repeatedly stu�(l; j), l l + 1, j j + 1, until u

j

6= 0."

S1. [Prepare to
ompute �

n+1

.℄ Set j k l 0 and u

2

n

�1

 �1.

S2. [Advan
e j.℄ Transmit s

0

l

 s

j

and u

0

l

 0 while u

j

= 0. Then go to S5 if

u

j

< 0.

S3. [Advan
e j and k.℄ Set s

0

l

 s

j

, u

0

l

 1, l l+ 1, j j + 1. Then transmit

s

0

l

 s

j

and u

0

l

 0 while u

j

= 0. Then set s

0

l

 n, u

0

l

 0, l l + 1. Then

transmit s

0

l

 p[t

k

℄ and u

0

l

 0 while u

k

= 0. Then set s

0

l

 p[t

k

℄, u

0

l

 1,

l l + 1, k k + 1. And on
e again transmit s

0

l

 p[t

k

℄ and u

0

l

 0 while

u

k

= 0.

S4. [Done with �

n+1

?℄ If u

k

< 0, go to S6. Otherwise set s

0

l

 n, u

0

l

 0,

l l + 1, j j + 1, k k + 1, and return to S2.

S5. [Finish �

n+1

.℄ Set s

0

l

 n, u

0

l

 1, l l+1. Then transmit s

0

l

 p[t[k℄℄ and

u

0

l

 0 while u

k

= 0.

S6. [Prepare to
ompute E

n+1

.℄ Set j k l 0. Transmit t

0

l

 t

k

while

u

k

= 0. Then set t

0

l

 n, l l + 1.

S7. [Advan
e j.℄ Transmit t

0

l

 p[s

j

℄ while u

j

= 0. Then terminate if u

j

< 0;

otherwise set t

0

l

 n, l l + 1, j j + 1, k k + 1.

S8. [Advan
e k.℄ Transmit t

0

l

 t

k

while u

k

= 0. Then go to S10 if u

k

< 0.

S9. [Advan
e k and j.℄ Set t

0

l

 t

k

, l l + 1, k k + 1. Then transmit t

0

l

 t

k

while u

k

= 0. Then set t

0

l

 n, l l + 1. Then transmit t

0

l

 p[s

j

℄ while

u

j

= 0. Then set t

0

l

 p[s

j

℄, l l + 1, j j + 1. Return to S7.

S10. [Finish E

n+1

.℄ Set t

0

l

 n, l l+1. Then transmit t

0

l

 p[s

j

℄ while u

j

= 0.

To generate the monotoni
 Savage{Winkler
ode for fairly large n, one
an �rst generate

�

10

and E

10

, say, or even �

20

and E

20

. Using these tables, a suitable re
ursive pro-

edure will then be able to rea
h higher values of n with very little
omputational

overhead per step, on the average.

74. If the monotoni
 path is v

0

, : : : , v

2

n

�1

and if v

k

has weight j, we have

2

X

t>0

�

n

j � 2t

�

+ ((j + �(v

0

)) mod 2) � k � 2

X

t�0

�

n

j � 2t

�

+ ((j + �(v

0

)) mod 2)� 2:

Therefore the maximum distan
e between verti
es of respe
tive weights j and j + 1

is 2(

�

n�1

j�1

�

+

�

n�1

j

�

+

�

n�1

j+1

�

) � 1. The maximum value, approximately 3 � 2

n

=

p

2�n,

o

urs when j is approximately n=2. [This is only about three times the smallest value

a
hievable in any ordering of the verti
es, whi
h is

P

n�1

j=0

�

j

bj=2

�

by exer
ise 7.10{00.℄

53

54 ANSWERS TO EXERCISES 7.2.1.1

75. There are only �ve essentially distin
t solutions, all of whi
h turn out in fa
t to

be Gray
y
les. The delta sequen
es are

0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 1 2 1 0 3 2 1 0 4 0 1 2 3 0 1 2 (1)

0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 1 3 0 1 2 3 0 1 4 1 0 3 2 1 0 3 (1)

0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 2 0 3 2 1 0 3 2 4 2 3 0 1 2 3 0 (2)

0 1 2 3 0 1 2 4 2 3 0 1 2 3 0 2 0 1 2 3 0 1 2 4 2 3 0 1 2 3 0 (2)

0 1 2 3 4 1 0 1 2 1 0 3 0 1 4 3 2 1 0 3 0 1 4 1 0 1 2 3 4 1 0 (3)

76. If v

0

, : : : , v

2

n

�1

is trend-free, so is the (n+1)-bit
y
le 0v

0

, 1v

0

, 1v

1

, 0v

1

, 0v

2

, 1v

2

,

: : : , 1v

2

n

�1

, 0v

2

n

�1

. Figure 14(g) shows a somewhat more interesting
onstru
tion,

whi
h generalizes the �rst solution of exer
ise 75 to an (n+ 2)-bit
y
le

00�

00R

; 01�

0R

; 11�

0

; 10�

00

; 10�; 11�

000

; 01�

000R

; 00�

R

where � is the n-bit sequen
e g(1), : : : , g(2

n�1

) and �

0

= �� g(1), �

00

= �� g(2

n�1

),

�

000

= �� g(2

n�1

+ 1). [An n-bit trend-free design that is almost a Gray
ode, having

just four steps in whi
h �(v

k

� v

k+1

) = 2, was found for all n � 3 by C. S. Cheng,

Pro
. Berkeley Conf. Neyman and Kiefer 2 (Hayward, Calif.: Inst. of Math. Statisti
s,

1985), 619{633.℄

77. Repla
e the array (o

n�1

; : : : ; o

0

) by an array of sentinel values (s

n�1

; : : : ; s

0

), with

s

j

 m

j

� 1 in step H1. Set a

j

 (a

j

+ 1) modm

j

in step H4. If a

j

= s

j

in step H5,

set s

j

 (s

j

� 1) modm

j

, f

j

 f

j+1

, f

j+1

 j + 1.

78. For (50), noti
e that B

j+1

is the number of times re
e
tion has o

urred in

oordinate j, be
ause we bypass
oordinate j on steps that are multiples of m

j

: : :m

0

.

Hen
e, if b

j

< m

j

, an in
rease of b

j

by 1
auses a

j

to in
rease or de
rease by 1 as

appropriate. Furthermore, if b

i

= m

i

� 1 for 0 � i < j,
hanging all these b

i

to 0 when

in
rementing b

j

will in
rease ea
h of B

0

, : : : , B

j

by 1, thereby leaving the values a

0

,

: : : , a

j�1

un
hanged in (50).

For (51), note that B

j

= m

j

B

j+1

+ b

j

� m

j

B

j+1

+a

j

+(m

j

�1)B

j+1

� a

j

+B

j+1

(modulo 2); hen
e B

j

� a

j

+ a

j+1

+ � � � , and (51) is obviously equivalent to (50).

In the modular Gray
ode for general radi
es (m

n�1

; : : : ;m

0

), let

�g(k) =

h

a

n�1

;

m

n�1

;

: : : ;

: : : ;

a

2

;

m

2

;

a

1

;

m

1

;

a

0

m

0

i

when k is given by (46). Then a

j

= (b

j

� B

j+1

) modm

j

, be
ause
oordinate j has

in
reased modulo m

j

exa
tly B

j

� B

j+1

times if we start at (0; : : : ; 0). The inverse

fun
tion, whi
h determines the b's from the modular Gray a's, is b

j

= (a

j

+ a

j+1

+

a

j+2

+ � � �) modm

j

in the spe
ial
ase that ea
h m

j

is a divisor of m

j+1

(for example,

if all m

j

are equal). But the inverse has no simple form in general; it
an be
omputed

by using the re
urren
es b

j

= (a

j

+ B

j+1

) modm

j

, B

j

= m

j

B

j+1

+ b

j

for j = n � 1,

: : : , 0, starting with B

n

= 0.

[Re
e
ted Gray
odes for radix m > 2 were introdu
ed by Ivan Flores in IRE

Trans. EC-5 (1956), 79{82; he derived (50) and (51) in the
ase that all m

j

are

equal. Modular Gray
odes with general mixed radi
es were impli
itly dis
ussed by

Joseph Rosenbaum in AMM 45 (1938), 694{696, but without the
onversion formulas;

onversion formulas when all m

j

have a
ommon value m were published by Martin

Cohn, Info. and Control 6 (1963), 70{78.℄

54

7.2.1.1 ANSWERS TO EXERCISES 55

79. (a) The last n-tuple always has a

n�1

= m

n�1

� 1, so it is one step from (0; : : : ; 0)

only if m

n�1

= 2. And this
ondition suÆ
es to make the �nal n-tuple (1; 0; : : : ; 0).

[Similarly, the �nal subforest output by Algorithm K is adja
ent to the initial one if

and only if the leftmost tree is an isolated vertex.℄

(b) The last n-tuple is (m

n�1

�1; 0; : : : ; 0) if and only ifm

n�1

: : :m

j+1

modm

j

= 0

for 0 � j < n� 1, be
ause b

j

= m

j

� 1 and B

j

= m

n�1

: : :m

j

� 1.

80. Run through p

a

1

1

: : : p

a

t

t

using re
e
ted Gray
ode with radi
es m

j

= e

j

+ 1.

81. The �rst
y
le
ontains the edge from (x; y) to (x; (y + 1) modm) if and only if

(x+ y) modm 6= m� 1 if and only if the se
ond
y
le
ontains the edge from (x; y) to

((x+ 1) modm; y).

82. There are two 4-bit Gray
y
les (u

0

; : : : ; u

15

) and (v

0

; : : : ; v

15

) that
over all edges

of the 4-
ube. (Indeed, the non-edges of
lasses A, B, D, H, and I in exer
ise 56 form

Gray
y
les, in the same
lasses as their
omplements.) Therefore with 16-ary modular

Gray
ode we
an form the four desired
y
les (u

0

u

0

; u

0

u

1

; : : : ; u

0

u

15

; u

1

u

15

; : : : ; u

15

u

0

),

(u

0

u

0

; u

1

u

0

; : : : ; u

15

u

0

; u

15

u

1

; : : : ; u

0

u

15

), (v

0

v

0

; : : : ; v

15

v

0

), (v

0

v

0

; : : : ; v

0

v

15

).

In a similar way we
an show that n=2 edge-disjoint n-bit Gray
y
les exist when

n is 16, 32, 64, et
. [Abhandlungen Math. Sem. Hamburg 20 (1956), 13{16.℄ J. Aubert

and B. S
hneider [Dis
rete Math. 38 (1982), 7{16℄ have proved that the same property

holds for all even values of n � 4, but no simple
onstru
tion is known.

83. Mark Cooke found the following totally unsymmetri
 solution in De
ember, 2002:

(1) 2737465057320265612316546743610525106052042416314372145101421737

2506246064173213107351607103156205713172463452102434643207054702

4147356146737625047350745130620656415073123731427376432561240264

3016735467532402524637475217640270736065105215106073575463253105;

(2) 0616713417232175171671540460247164742473202531621673531632736052

6710141503047313570615453627623241426465272021632075363710750740

3157674761545652756510451024023107353424651230406545306213710537

2620501752453406703437343531502602463045627674152752406021610434;

(3) 3701063751507131236243765735103012042353747207410473621617247324

6505132565057121565024570473247421427640231034362703262764130574

0560620341745613151756314702721725205613212604053506260460173642

6717641743513401245360241730636545061563027414535676432625745051;

(4) 6706546435672147236210405432054510737405170532145431636430504673

4560621206416201320742373627204506473140171020514126107452343672

1320452752353410515426370601363567307105420163151210535061731236

4272537165617217542510760215462375452674257037346403647376271657.

(Ea
h of these delta sequen
es should start from the same vertex of the
ube.) Is there

a symmetri
al way to do the job?

84. Calling the initial position (2; 2), the 8-step solution in Fig. A-1 shows how the

sequen
e progresses down to (0; 0). In the �rst move, for example, the front half of the

ord passes around and behind the right
omb, then through the large right loop. The

middle line should be read from right to left. The generalization to n pairs of loops

would, similarly, take 3

n

� 1 steps.

[The origin of this delightful puzzle is obs
ure. The Book of Ingenious & Diaboli
al

Puzzles by Jerry Slo
um and Ja
k Botermans (1994) shows a 2-loop version
arved from

horn, probably made in China about 1850 [page 101℄, and a modern 6-loop version

55

56 ANSWERS TO EXERCISES 7.2.1.1

Step 0: (2; 2) Step 1: (2; 1) Step 2: (2; 0)

Step 5: (1; 2) Step 4: (1; 1) Step 3: (1; 0)

Step 6: (0; 2) Step 7: (0; 1) Step 8: (0; 0)

Fig. A-1.

made in Malaysia about 1988 [page 93℄. Slo
um also owns a 4-loop version made from

bamboo in England about 1884. He has found it listed in Henry Novra's Catalogue of

Conjuring Tri
ks and Puzzles (1858 or 1859) and W. H. Cremer's Games, Amusements,

Pastimes and Magi
 (1867), as well as in Hamley's
atalog of 1895, under the name

\Marvellous Canoe Puzzle." Dy
kman noted its
onne
tion to re
e
ted Gray ternary

in a letter to Martin Gardner, dated 2 August 1972.℄

85. By (50), element [

b;

t;

b

0

t

0

℄ of ���

0

is �

a

�

0

a

0

if ĝ([

b;

t;

b

0

t

0

℄) = [

a;

t;

a

0

t

0

℄ in the re
e
ted Gray

ode for radi
es (t; t

0

). We
an now show that element [

b;

t;

b

0

;

t

0

;

b

00

t

00

℄ of both (���

0

)��

00

and ��(�

0

��

00

) is �

a

�

0

a

0

�

00

a

00

if ĝ([

b;

t;

b

0

;

t

0

;

b

00

t

00

℄) = [

a;

t;

a

0

;

t

0

;

a

00

t

00

℄ in the re
e
ted Gray
ode for

radi
es (t; t

0

; t

00

). See exer
ise 4.1{10, and note also the mixed-radix law

m

1

: : :m

n

� 1�

h

x

1

;

m

1

;

: : : ;

: : : ;

x

n

m

n

i

=

h

m

1

� 1� x

1

;

m

1

;

: : : ;

: : : ;

m

n

� 1� x

n

m

n

i

:

In general, the re
e
ted Gray
ode for radi
es (m

1

; : : : ;m

n

) is (0; : : : ;m

1

� 1)�� � ��

(0; : : : ;m

n

� 1). [Information Pro
essing Letters 22 (1986), 201{205.℄

86. Let �

mn

be the re
e
ted m-ary Gray
ode, whi
h
an be de�ned by �

m0

= � and

�

m(n+1)

= (0; 1; : : : ;m� 1)��

mn

; n � 0:

This path runs from (0; 0; : : : ; 0) to (m�1; 0; : : : ; 0) when m is even. Consider the Gray

path �

mn

de�ned by �

m0

= ; and

�

m(n+1)

=

(

(0; 1; : : : ;m� 1)��

mn

; m�

R

(m+1)n

; if m is odd;

(0; 1; : : : ;m)��

mn

; m�

R

mn

; if m is even.

56

7.2.1.1 ANSWERS TO EXERCISES 57

This path traverses all of the (m + 1)

n

� m

n

nonnegative integer n-tuples for whi
h

max(a

1

; : : : ; a

n

) = m, starting with (0; : : : ; 0;m) and ending with (m; 0; : : : ; 0). The

desired in�nite Gray path is �

0n

, �

R

1n

, �

2n

, �

R

3n

, : : : .

87. This is impossible when n is odd, be
ause the n-tuples with max(ja

1

j; : : : ; ja

n

j) = 1

in
lude

1

2

(3

n

+ 1) with odd parity and

1

2

(3

n

� 3) with even parity. When n = 2 we

an use a spiral �

0

, �

1

, �

2

, : : : , where �

m

winds
ounter
lo
kwise from (m; 1 � m)

to (m;�m) when m > 0. For even values of n � 2, if T

m

is a path of n-tuples from

(m; 1�m;m� 1; 1�m; : : : ;m� 1; 1�m) to (m;�m;m;�m; : : : ;m;�m), we
an use

�

m

� (T

0

; : : : ; T

m�1

); (�

0

; : : : ;�

m

)

R

�T

m

for (n + 2)-tuples with the same property,

where� is the dual operation

���

0

= (�

0

�

0

0

; : : : ; �

t�1

�

0

0

; �

t�1

�

0

1

; : : : ; �

0

�

0

1

; �

0

�

0

2

; : : : ; �

t�1

�

0

2

; �

t�1

�

0

3

; : : :):

[In�nite n-dimensional Gray
odes without the magnitude
onstraint were �rst
on-

stru
ted by E. V�azsonyi, A
ta Litterarum a
 S
ientiarum, se
tio S
ientiarum Mathe-

mati
arum 9 (Szeged: 1938), 163{173.℄

88. It would visit all the subforests again, but in reverse order, ending with (0; : : : ; 0)

and returning to the state it had after the initialization step K1. (This re
e
tion

prin
iple is, in fa
t, the key to understanding how Algorithm K works.)

89. (a) Let M

0

= �, M

1

=

q

, and M

n+2

=

q

M

R

n+1

; M

R

n

. This
onstru
tion works

be
ause the last element of M

R

n+1

is the �rst element of M

n+1

, namely a dot followed

by the �rst element of M

R

n

.

(b) Given a string d

1

: : : d

l

where ea
h d

j

is

q

or , we
an �nd its su

essor by

letting k = l� [d

l

=

q

℄ and pro
eeding as follows: If k is odd and d

k

=

q

,
hange d

k

d

k+1

to ; if k is even and d

k

= ,
hange d

k

to

q q

; otherwise de
rease k by 1 and repeat

until either making a
hange or rea
hing k = 0. The su

essor of the given word is

q q q q q q q

.

90. A
y
le
an exist only when the number of
ode words is even, sin
e the number

of dashes
hanges by �1 at ea
h step. Thus we must have nmod 3 = 2. The Gray

paths M

n

of exer
ise 89 are not suitable; they begin with (

q

)

bn=3

q

nmod 3

and end

with (

q

)

bn=3

q

[nmod 3=1℄ [nmod 3=2℄

. But M

3k+1

q

, M

R

3k

is a Hamiltonian
y
le in

the Morse
ode graph when n = 3k + 2.

91. Equivalently, the n-tuples a

1

�a

2

a

3

�a

4

: : : have no two
onse
utive 1s. Su
h n-tuples

orrespond to Morse
ode sequen
es of length n+1, if we append 0 and then represent

q

and

q

� respe
tively by 0 and 10. Under this
orresponden
e we
an
onvert the path

M

n+1

of exer
ise 89 into a pro
edure like Algorithm K, with the fringe
ontaining the

indi
es where ea
h dot or dash begins (ex
ept for a �nal dot):

Q1. [Initialize.℄ Set a

j

 b((j � 1) mod 6)=3
 and f

j

 j for 1 � j � n. Also set

f

0

 0, r

0

 1, l

1

 0, r

j

 j+(j mod 3) and l

j+(j mod 3)

 j for 1 � j � n,

ex
ept if j+(j mod 3) > n set r

j

 0 and l

0

 j. (The \fringe" now
ontains

1, 2, 4, 5, 7, 8, : : : .)

Q2. [Visit.℄ Visit the n-tuple (a

1

; : : : ; a

n

).

Q3. [Choose p.℄ Set q l

0

, p f

q

, f

q

 q.

Q4. [Che
k a

p

.℄ Terminate the algorithm if p = 0. Otherwise set a

p

 1� a

p

and

go to Q6 if a

p

+ p is now even.

Q5. [Insert p+1.℄ If p < n, set q r

p

, l

q

 p+1, r

p+1

 q, r

p

 p+1, l

p+1

 p.

Go to Q7.

57

58 ANSWERS TO EXERCISES 7.2.1.1

Q6. [Delete p+ 1.℄ If p < n, set q r

p+1

, r

p

 q, l

q

 p.

Q7. [Make p passive.℄ Set f

p

 f

l

p

and f

l

p

 l

p

. Return to Q2.

This algorithm
an also be derived as a spe
ial
ase of a
onsiderably more general

method due to Gang Li, Frank Ruskey, and D. E. Knuth, whi
h extends Algorithm K

by allowing the user to spe
ify either a

p

� a

q

or a

p

� a

q

for ea
h (parent;
hild) pair

(p; q). [See Knuth and Ruskey, Le
ture Notes in Computer S
ien
e 2635 (2004), 183{

204.℄ A generalization in another dire
tion, whi
h produ
es all strings of length n that

do not
ontain
ertain substrings, has been dis
overed by M. B. Squire, Ele
troni
 J.

Combinatori
s 3 (1996), #R17, 1{29.

In
identally, it is amusing to note that the mapping k 7! g(k)=2 is a one-to-one

orresponden
e between all binary n-tuples with no odd-length runs of 1s and all binary

n-tuples with no two
onse
utive 1s.

92. Yes, be
ause the digraph of all (n�1)-tuples (x

1

; : : : ; x

n�1

) with x

1

; : : : ; x

n�1

� m

and with ar
s (x

1

; : : : ; x

n�1

) ! (x

2

; : : : ; x

n

) whenever max(x

1

; : : : ; x

n

) = m is
on-

ne
ted and balan
ed; see Theorem 2.3.4.2G. Indeed, we get su
h a sequen
e from

Algorithm F if we note that the �nal k

n

elements of the prime strings of length

dividing n, when subtra
ted from m� 1, are the same for all m � k. When n = 4, for

example, the �rst 81 digits of the sequen
e �

4

are 2 � �

R

= 00001 01 0011 : : : , where

� is the string (62). [There also are in�nite m-ary sequen
es whose �rst m

n

elements

are de Bruijn
y
les for all n, given any �xed m � 3. See L. J. Cummings and D.

Wiedemann, Cong. Numerantium 53 (1986), 155{160.℄

93. The
y
le generated by f() is a
y
li
 permutation of �1, where � has lengthm

n

�1

and ends with 1

n�1

. The
y
le generated by Algorithm R is a
y
li
 permutation of

 =

0

: : :

m

n+1

�1

, where

k

= (

0

+ b

0

+ � � � + b

k�1

) modm and b

0

: : : b

m

n+1

�1

=

� = �

m

1

m

.

If x

0

: : : x

n

o

urs in
, say x

j

=

k+j

for 0 � j � n, then y

j

= b

k+j

for 0 � j < n,

where y

j

= (x

j+1

�x

j

) modm. [This is the
onne
tion with modular m-ary Gray
ode;

see exer
ise 78.℄ Now if y

0

: : : y

n�1

= 1

n

we have m

n+1

� m � n < k � m

n+1

� n;

otherwise there is an index k

0

su
h that �n < k

0

< m

n

� n and y

0

: : : y

n�1

o

urs in

� at positions k = (k

0

+ r(m

n

� 1)) modm

n+1

for 0 � r < m. In both
ases the m

hoi
es of k have di�erent values of x

0

, be
ause the sum of all elements in � is m � 1

(modulo m) when n � 2. [Algorithm R is valid also for n = 1 if mmod 4 6= 2, be
ause

m ?

P

� in that
ase.℄

94. 0010203041121314223243344. (The underlined digits are e�e
tively inserted

into the interleaving of 00112234 with 34. Algorithm D
an be used in general when

n = 1 and r = m� 2 � 0; but it is pointless to do so, in view of (54).)

95. (a) Let

0

1

2

: : : have period r. If r is odd we have p = q = r, so r = pq only in

the trivial
ase when p = q = 1 and a

0

= b

0

. Otherwise r=2 = l
m(p; q) = pq=g
d(p; q)

by 4.5.2{(10), hen
e g
d(p; q) = 2. In the latter
ase the 2n-tuples

l

l+1

: : :

l+2n�1

that o

ur are a

j

b

k

: : : a

j+n�1

b

k+n�1

for 0 � j < p, 0 � k < q, j � k (modulo 2), and

b

k

a

j

: : : b

k+n�1

a

j+n�1

for 0 � j < p, 0 � k < q, j 6� k (modulo 2).

(b) The output would interleave two sequen
es a

0

a

1

: : : and b

0

b

1

: : : whose periods

are respe
tively m

n

+r and m

n

�r; the a's are the
y
le of f() with x

n

hanged to x

n+1

and the b's are the
y
le of f

0

() with x

n

hanged to x

n�1

, for 0 � x < r. By (58) and

part (a), the period length is m

2n

� r

2

, and every 2n-tuple o

urs with the ex
eption

of (xy)

n

for 0 � x; y < r.

58

7.2.1.1 ANSWERS TO EXERCISES 59

(
) The real step D6 alters the behavior of (b) by going to D3 when t � n, t

0

= n,

and 0 � x

0

= x < r; this
hange emits an extra x at the time when x

2n�1

has just

been output and b is about to be emitted, where b is the digit following x

n

in the
y
le.

D6 also allows
ontrol to pass to D7 and then D3 with t

0

= n in the
ase that t � n and

x < x

0

< r; this behavior emits an extra x

0

x at the time when (xx

0

)

n�1

x has just been

output and b will be next. These r

2

extra bits provide the r

2

missing 2n-tuples of (b).

96. (a) The re
urren
es S

2

= 1, S

2n+1

= S

2n

= 2S

n

, R

2

= 0, R

2n+1

= 1 + R

2n

,

R

2n

= 2R

n

, D

2

= 0, D

2n+1

= D

2n

= 1 + 2D

n

have the solution S

n

= 2

blgn
�1

,

R

n

= n� 2S

n

, D

n

= S

n

� 1. Thus S

n

+R

n

+D

n

= n� 1.

(b) Ea
h top-level output usually involves blgn
 � 1 D-a
tivations and �(n) � 1

R-a
tivations, plus one basi
 a
tivation at the bottom level. But there are ex
eptions:

Algorithm R might invoke its f() twi
e, if the �rst a
tivation
ompleted a sequen
e 1

n

;

and sometimes Algorithm R doesn't need to invoke f() at all. Algorithm D might

invoke its f

0

() twi
e, if the �rst a
tivation
ompleted a sequen
e (x

0

)

n

; but sometimes

Algorithm D doesn't need to invoke either f() or f

0

().

Algorithm R
ompletes a sequen
e x

n+1

if and only if its
hild f() has just

ompleted a sequen
e 0

n

. Algorithm D
ompletes a sequen
e x

2n

for x < r if and

only if it has just jumped from D6 to D3 without invoking any
hild.

From these observations we
an
on
lude that at most blg n
+�(n)+1 a
tivations

are possible per top-level output, if r > 1; su
h a
ase happens when Algorithm D

for n = 6 goes from D6 to D4. But when r = 1 we
an have as many as 2blgn
 + 3

a
tivations, for example when Algorithm R for n = 25 goes from R4 to R2.

97. (a) (0011), (00011101), (0000101001111011), and (00000110001011011111

001110101001). Thus j

2

= 2, j

3

= 3, j

4

= 9, j

5

= 15.

(b) We obviously have f

n+1

(k) = �f

n

(k) mod 2 for 0 � k < j

n

+ n. The next

value, f

n+1

(j

n

+ n), depends on whether step R4 jumps to R2 after
omputing y =

f

n

(j

n

+n�1). If it does (namely, if f

n+1

(j

n

+n�1) 6= 0), we have f

n+1

(k) � 1+�(k+1)

for j

n

+ n � k < 2

n

+ j

n

+ n; otherwise we have f

n+1

(k) � 1 + �(k � 1) for those

values of k. In parti
ular, f

n+1

(k) = 1 when 2

n

� k+ Æ

n

� 2

n

+n. The stated formula,

whi
h has simpler ranges for the index k, holds be
ause 1 + �(k � 1) � �(k) when

j

n

< k < j

n

+ n or 2

n

+ j

n

< k < 2

n

+ j

n

+ n.

(
) The interleaved
y
le has

n

(2k) = f

+

n

(k) and

n

(2k + 1) = f

�

n

(k), where

f

+

n

(k) =

�

f

n

(k�1); if 0 < k � j

n

+1;

f

n

(k�2); if j

n

+1 < k � 2

n

+2;

f

�

n

(k) =

�

f

n

(k+1); if 0 � k < j

n

;

f

n

(k+2); if j

n

� k < 2

n

�2;

f

+

n

(k) = f

+

n

(k mod (2

n

+ 2)), f

�

n

(k) = f

�

n

(kmod (2

n

� 2)). Therefore the subsequen
e

1

2n�1

begins at position k

n

= (2

n�1

� 2)(2

n

+ 2) + 2j

n

+ 2 in the

n

y
le; this will

make j

2n

odd. The subsequen
e (01)

n�1

0 begins at position l

n

= (2

n�1

+ 1)(j

n

� 1) if

j

n

mod 4 = 1, at l

n

= (2

n�1

+ 1)(2

n

+ j

n

� 3) if j

n

mod 4 = 3. Also k

2

= 6, l

2

= 2.

(d) Algorithm D inserts four elements into the

n

y
le; hen
e

when j

n

mod 4<3 (l

n

<k

n

):

f

2n

(k)=

8

<

:

n

(k�1); if 0<k�l

n

+2;

n

(k�3); if l

n

+2<k�k

n

+3;

n

(k�4); if k

n

+3<k�2

2n

;

when j

n

mod 4=3 (k

n

<l

n

):

=

8

<

:

n

(k�1); if 0<k�k

n

+1;

n

(k�2); if k

n

+1<k�l

n

+3;

n

(k�4); if l

n

+3<k�2

2n

.

(e) Consequently j

2n

= k

n

+ 1 + 2[j

n

mod 4< 3℄. Indeed, the elements pre
eding

1

2n

onsist of 2

n�2

� 1
omplete periods of f

+

n

() interleaved with 2

n�2

omplete

periods of f

�

n

(), with one 0 inserted and also with 10 inserted if l

n

< k

n

, followed

59

60 ANSWERS TO EXERCISES 7.2.1.1

by f

n

(1)f

n

(1)f

n

(2)f

n

(2) : : : f

n

(j

n

�1)f

n

(j

n

�1). The sum of all these elements is odd,

unless l

n

< k

n

; therefore Æ

2n

= 1� 2[j

n

mod 4=3℄.

Let n = 2

t

q , where q is odd and n > 2. The re
urren
es imply that, if q = 1, we

have j

n

= 2

n�1

+ b

t

where b

t

= 2

t

=3� (�1)

t

=3. And if q > 1 we have j

n

= 2

n�1

� b

t+2

,

where the + sign is
hosen if and only if blg q
+ [b4q=2

blg q

=5℄ is even.

98. If f(k) = g(k) when k lies in a
ertain range, there's a
onstant C su
h that

�f(k) = C + �g(k) for k in that range. We
an therefore
ontinue almost mindlessly

to derive additional re
urren
es: If n > 1 we have

�f

2n

(k); when j

n

mod 4< 3 (l

n

< k

n

):

�

8

<

:

�

n

(k�1); if 0< k � l

n

+2;

1+�

n

(k�3); if l

n

+2< k � k

n

+3;

�

n

(k�4); if k

n

+3< k � 2

2n

;

when j

n

mod 4 = 3 (k

n

< l

n

):

�

8

<

:

�

n

(k�1); if 0< k � k

n

+1;

1+�

n

(k�2); if k

n

+1< k � l

n

+3;

�

n

(k�4); if l

n

+3< k � 2

2n

.

�

n

(k) � �f

+

n

(dk=2e)+�f

�

n

(bk=2
):

�f

+

n

(k)�

�

�f

n

(k�1); if 0<k�j

n

+1;

1+�f

n

(k�2); if j

n

+1<k�2

n

+2;

�f

�

n

(k)�

�

�f

n

(k+1); if 0�k<j

n

;

1+�f

n

(k+2); if j

n

�k<2

n

�2;

�f

�

n

(k) � bk=(2

n

� 2)
+ �f

�

n

(k mod (2

n

� 2)); �f

n

(k) = �f

n

(kmod 2

n

):

�f

2n+1

(k) �

�

��f

2n

(k); if 0 < k � j

2n

or 2

2n

+ j

2n

< k � 2

2n+1

;

1 + k +��f

2n

(k + Æ

2n

); if j

2n

< k � 2

2n

+ j

2n

.

��f

2n

(k); when j

n

mod 4<3 (l

n

<k

n

):

�

8

<

:

��

n

(k�1); if 0<k�l

n

+2;

1+k+��

n

(k�3); if l

n

+2<k�k

n

+3;

��

n

(k�4); if k

n

+3<k�2

2n

;

when j

n

mod 4=3 (k

n

<l

n

):

�

8

<

:

��

n

(k�1); if 0<k�k

n

+1;

1+k+�

n

(k�2); if k

n

+1<k�l

n

+3;

1+��

n

(k�4); if l

n

+3<k�2

2n

.

��f

2n

(k) � [j

n

mod 4 < 3℄bk=2

2n

+ ��f

2n

(kmod 2

2n

):

And then, aha, there is
losure:

��

n

(2k) = �f

+

n

(k); ��

n

(2k + 1) = �f

�

n

(k):

If n = 2

t

q where q is odd, the running time to evaluate f

n

(k) by this system of

re
ursive formulas is O(t+S(q)), where S(1) = 1, S(2k) = 1+ 2S(k), and S(2k+1) =

1+S(k). Clearly S(k) < 2k, so the evaluations involve at most O(n) simple operations

on n-bit numbers. In fa
t, the method is often signi�
antly faster: If we average S(k)

over all k with blg k
 = s we get (3

s+1

� 2

s+1

)=2

s

, whi
h is less than 3k

lg(3=2)

< 3k

0:59

.

(In
identally, if k = 2

s+1

� 1 � (2

s�e

1

+ 2

s�e

2

+ � � � + 2

s�e

t

) we have S(k) = s + 1 +

e

t

+ 2e

t�1

+ 4e

t�2

+ � � �+ 2

t

e

1

.)

99. A string that starts at position k in f

n

() starts at position k

+

= k+1+[k > j

n

℄ in

f

+

n

() and at position k

�

= k� 1� [k> j

n

℄ in f

�

n

(), ex
ept that 0

n

and 1

n

o

ur twi
e

in f

+

n

() but not at all in f

�

n

().

To �nd
 = a

0

b

0

: : : a

n�1

b

n�1

in the
y
le f

2n

(), let � = a

0

: : : a

n�1

and � =

b

0

: : : b

n�1

. Suppose � starts at position j and � at position k in f

n

(), and assume

that neither � nor � is 0

n

or 1

n

. If j

+

� k

+

(modulo 2), let l=2 be a solution to the

equation j

+

+ (2

n

+ 2)x = k

�

+ (2

n

� 2)y; we may take l=2 = k + (2

n

� 2)(2

n�3

(j � k)

mod (2

n�1

+ 1)) if j � k, otherwise l=2 = j + (2

n

+ 2)(2

n�3

(k � j) mod (2

n�1

� 1)).

Otherwise let (l� 1)=2 = k

+

+ (2

n

+ 2)x = j

�

+ (2

n

� 2)y. Then
 starts at position l

in the
y
le

n

(); hen
e it starts at position l+1+[l� k

n

℄+2[l� l

n

℄ in the
y
le f

2n

().

60

7.2.1.1 ANSWERS TO EXERCISES 61

Similar formulas hold when � 2 f0

n

; 1

n

g or � 2 f0

n

; 1

n

g (but not both). Finally,

0

2n

, 1

2n

, (01)

n

, and (10)

n

start respe
tively in positions 0, j

2n

, l

n

+ 1 + [k

n

< l

n

℄, and

l

n

+ 2 + [k

n

< l

n

℄.

To �nd � = b

0

b

1

: : : b

n

in f

n+1

() when n is even, suppose that the n-bit string

(b

0

� b

1

) : : : (b

n�1

� b

n

) starts at position j in f

n

(). Then � starts at position k =

j � Æ

n

[j� j

n

℄ + 2

n

[j= j

n

℄[Æ

n

= 1℄ if f

n+1

(k) = b

0

, otherwise at position k + (2

n

� Æ

n

;

Æ

n

; 2

n

+ Æ

n

) a

ording as (j<j

n

; j=j

n

; j>j

n

).

The running time of this re
ursion satis�es T (n) = O(n) + 2T (bn=2
), so it is

O(n logn). [Exer
ises 97{99 are based on the work of J. Tuliani, who also has developed

methods for
ertain larger values of m; see Dis
rete Math. 226 (2001), 313{336.℄

100. No obvious defe
ts are apparent, but extensive testing should be done before any

sequen
e
an be re
ommended. By
ontrast, the de Bruijn
y
le produ
ed impli
itly

by Algorithm F is a terrible sour
e of supposedly random bits, even though it is n-

distributed in the sense of De�nition 3.5D, be
ause 0s predominate at the beginning.

Indeed, when n is prime, bits tn+ 1 of that sequen
e are zero for 0 � t < (2

n

� 2)=n.

101. (a) Let � be a proper suÆx of ��

0

with � � ��

0

. Either � is a suÆx of �

0

, when
e

� < �

0

� �, or � = ��

0

and we have � < � < �.

Now � < � � ��

0

implies that � = �
 for some
 � �

0

. But
 is a suÆx of � with

1 � j
j = j�j � j�j < j�

0

j; hen
e
 is a proper suÆx of �

0

, and �

0

<
. Contradi
tion.

(b) Any string of length 1 is prime. Combine adja
ent primes by (a), in any

order, until no further
ombination is possible. [See the more general results of M. P.

S
h�utzenberger, Pro
. Amer. Math. So
. 16 (1965), 21{24.℄

(
) If t 6= 0, let � be the smallest suÆx of �

1

: : : �

t

. Then � is prime by de�nition,

and it has the form �
 where � is a nonempty suÆx of some �

j

. Therefore �

t

� �

j

�

� � �
 = � � �

t

, so we must have � = �

t

. Remove �

t

and repeat until t = 0.

(d) True. For if we had � = �� for some prime � with j�j > j�

1

j, we
ould

append the fa
tors of � to obtain another fa
torization of �.

(e) 3 � 1415926535897932384626433832795 � 02884197. (An eÆ
ient algorithm

appears in exer
ise 106. Knowing more digits of � would not
hange the �rst two

fa
tors. The in�nite de
imal expansion of any number that is \normal" in the sense of

Borel (see Se
tion 3.5) fa
tors into primes of �nite length.)

102. We must have 1=(1 � mz) = 1=

Q

1

n=1

(1 � z

n

)

L

m

(n)

. This implies (60) as in

exer
ise 4.6.2{4.

103. When n = p is prime, (59) tells us that L

m

(1) + pL

m

(p) = m

p

, and we also

have L

m

(1) = m. [This
ombinatorial proof provides an interesting
ontrast to the

traditional algebrai
 proof of Theorem 1.2.4F.℄

104. The 4483 nonprimes are aba
a, agora, ahead, : : : ; the 1274 primes are : : : , rusts,

rusty, rutty. (Sin
e prime isn't prime, we should perhaps
all prime strings lowly.)

105. (a) Let �

0

be � with its last letter in
reased, and suppose �

0

= �

0

where � = �

and � 6= �,
 6= �. Let � be the pre�x of � with j�j = j
j. By hypothesis there is a string

! su
h that �! is prime; hen
e � � �! <
!, so we must have � �
. Consequently

� <

0

, and we have �

0

<

0

.

(b) Let � = �

1

� = a

1

: : : a

n

where �

1

�! is prime. The
ondition �

1

�! < �!

implies that a

j

� a

j+r

for 1 � j � n�r, where r = j�

1

j. But we
annot have a

j

< a

j+r

;

otherwise � would begin with a prime longer than �

1

,
ontradi
ting exer
ise 101(d).

(
) If � is the n-extension of both � and �

0

, where j�j > j�

0

j, we must have

� = (�

0

)

q

� where � is a nonempty pre�x of �

0

. But then � � �

0

< � < �.

61

62 ANSWERS TO EXERCISES 7.2.1.1

106. B1. [Initialize.℄ Set a

1

 � � � a

n

 m� 1, a

n+1

 �1, and j 1.

B2. [Visit.℄ Visit (a

1

; : : : ; a

n

) with index j.

B3. [Subtra
t one.℄ Terminate if a

j

= 0. Otherwise set a

j

 a

j

� 1, and

a

k

 m� 1 for j < k � n.

B4. [Prepare to fa
tor.℄ (A

ording to exer
ise 105(b), we now want to �nd the

�rst prime fa
tor �

1

of a

1

: : : a

n

.) Set j 1 and k 2.

B5. [Find the new j.℄ (Now a

1

: : : a

k�1

is the (k � 1)-extension of the prime

a

1

: : : a

j

.) If a

k�j

> a

k

, return to B2. Otherwise, if a

k�j

< a

k

, set j k.

Then in
rease k by 1 and repeat this step.

The eÆ
ient fa
toring algorithm in steps B4 and B5 is due to J. P. Duval, J. Algorithms

4 (1983), 363{381. For further information, see Cattell, Ruskey, Sawada, Serra, and

Miers, J. Algorithms 37 (2000), 267{282.

107. The number of n-tuples visited is P

m

(n) =

P

n

j=1

L

m

(j). Sin
e L

m

(n) =

1

n

m

n

+

O(m

n=2

=n), we have P

m

(n) = Q(m;n) +O(Q(

p

m;n)), where

Q(m;n) =

n

X

k=1

m

k

k

=

m

n

n

R(m;n);

R(m;n) =

n�1

X

k=0

m

�k

1� k=n

=

n=2

X

k=0

m

�k

1� k=n

+O(nm

�n=2

)

=

m

m� 1

t�1

X

j=0

1

n

j

X

l

n

j

l

o

l!

(m� 1)

l

+O(n

�t

):

Thus P

m

(n) � m

n+1

=((m � 1)n). The main
ontributions to the running time
ome

from the loops in steps F3 and F5, whi
h
ost n� j for ea
h prime of length j, hen
e

a total of nP

m

(n)�

P

n

j=1

jL

m

(j) = m

n+1

(1=((m� 1)

2

n) +O(1=(mn

2

))). This is less

than the time needed to output the m

n

individual digits of the de Bruijn
y
le.

108. (a) If � 6= 9 : : : 9, we have �

k+1

� �9

j�j

, be
ause the latter is prime.

(b) We
an assume that � is not all 0s, sin
e 9

j

0

n�j

is a substring of �

t�1

�

t

�

1

�

2

=

89

n

0

n

1. Let k be minimal with � � �

k

; then �

k

� ��, so � is a pre�x of �

k

. Sin
e �

is a preprime, it is the j�j-extension of some prime �

0

� �. The preprime visited by

Algorithm F just before �

0

is (�

0

� 1)9

n�j�

0

j

, by exer
ise 106, where �

0

� 1 denotes the

de
imal number that is one less than �

0

. Thus, if �

0

is not �

k�1

, the hint (whi
h also

follows from exer
ise 106) implies that �

k�1

ends with at least n � j�

0

j � n � j�j 9s,

and � is a suÆx of �

k�1

. On the other hand if �

0

= �

k�1

, � is a suÆx of �

k�2

, and �

is a pre�x of �

k�1

�

k

.

(
) If � 6= 9 : : : 9, we have �

k+1

� (��)

d�1

�9

j�j

, be
ause the latter is prime.

Otherwise �

k�1

ends with at least (d � 1)j��j 9s, and �

k+1

� (��)

d�1

9

j��j

, so (��)

d

is a substring of �

k�1

�

k

�

k+1

.

(d) Within the primes 135899135914, 787899787979, 12999913131314, 09090911,

089999 09 090911, 118999 119 119122.

(e) Yes: In all
ases, the position of a

1

: : : a

n

pre
edes the position of the substring

a

1

: : : a

n�1

(a

n

+ 1), if 0 � a

n

< 9 (and if we assume that strings like 9

j

0

n�j

o

ur at

the beginning). Furthermore 9

j

0

n�j�1

o

urs only after 9

j�1

0

n�j

a has appeared for

1 � a � 9, so we must not pla
e 0 after 9

j

0

n�j�1

.

62

7.2.1.1 ANSWERS TO EXERCISES 63

109. Suppose we want to lo
ate the submatrix

�

(w

n�1

: : : w

1

w

0

)

2

(x

n�1

: : : x

1

x

0

)

2

(y

n�1

: : : y

1

y

0

)

2

(z

n�1

: : : z

1

z

0

)

2

�

:

The binary
ase n = 1 is the given example, and if n > 1 we
an assume by indu
tion

that we only need to determine the leading bits a

2n�1

, a

2n�2

, b

2n�1

, and b

2n�2

. The

ase n = 3 is typi
al: We must solve

b

5

= w

2

; b

4

= x

2

; a

5

� b

5

= y

2

; a

4

� b

4

= z

2

; if a

0

= 0, b

0

= 0;

b

4

= w

2

; b

0

5

= x

2

; a

4

� b

4

= y

2

; a

5

� b

0

5

= z

2

; if a

0

= 0, b

0

= 1;

a

5

� b

5

= w

2

; a

4

� b

4

= x

2

; b

5

= y

2

; b

4

= z

2

; if a

0

= 1, b

0

= 0;

a

4

� b

4

= w

2

; a

5

� b

0

5

= x

2

; b

4

= y

2

; b

0

5

= z

2

; if a

0

= 1, b

0

= 1;

here b

0

5

= b

5

� b

4

b

3

b

2

b

1

takes a

ount of
arrying when j be
omes j + 1.

110. Let a

0

a

1

: : : a

m

2

�1

be an m-ary de Bruijn
y
le, su
h as the �rst m

2

elements of

(54). If m is odd, let a

ij

= a

j

when i is even, a

ij

= a

(j+(i�1)=2) modm

2 when i is odd.

[The �rst of many people to dis
over this
onstru
tion seems to have been John C.

Co
k, who also
onstru
ted de Bruijn toruses of other shapes and sizes in Dis
rete

Math. 70 (1988), 209{210.℄

If m = m

0

m

00

where m

0

? m

00

, we use the Chinese remainder theorem to de�ne

a

ij

� a

0

ij

(modulo m

0

) and a

ij

� a

00

ij

(modulo m

00

)

in terms of matri
es that solve the problem for m

0

and m

00

. Thus the previous exer
ise

leads to a solution for arbitrary m.

Another interesting solution for even values of m was found by Zolt�an T�oth

[2nd Conf. Automata, Languages, and Programming Systems (1988), 165{172; see also

Hurlbert and Isaak, Contemp. Math. 178 (1994), 153{160℄. The �rst m

2

elements a

j

of the in�nite sequen
e

0011 021331203223041524355342514054450617263746577564 : : : 07667 08 : : :

de�ne a de Bruijn
y
le with the property that the distan
e between the appearan
es

of ab and ba is always even. Then we
an let a

ij

= a

j

if i+ j is even, a

ij

= a

i

if i+ j

is odd. For example, when m = 4 we have

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

0 0 0 1 0 2 0 3 2 0 2 1 2 2 2 3

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

1 0 1 1 1 2 1 3 3 0 3 1 3 2 3 3

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

0 2 0 3 0 0 0 1 2 2 2 3 2 0 2 1

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

1 2 1 3 1 0 1 1 3 2 3 3 3 0 3 1

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

2 0 2 1 2 2 2 3 0 0 0 1 0 2 0 3

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

3 0 3 1 3 2 3 3 1 0 1 1 1 2 1 3

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

2 2 2 3 2 0 2 1 0 2 0 3 0 0 0 1

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

3 2 3 3 3 0 3 1 1 2 1 3 1 0 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(exer
ise 109);

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0

0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3

0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1

1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3

0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0

2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3

0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1

3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3

0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3

1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3

0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2

0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3

0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3

2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3

0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2

3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(T�oth).

63

64 ANSWERS TO EXERCISES 7.2.1.1

111. (a) Let d

j

= j and 0 � a

j

< 3 for 1 � j � 9, a

9

6= 0. Form sequen
es s

j

, t

j

by the

rules s

1

= 0, t

1

= d

1

; t

j+1

= d

j+1

+ 10t

j

[a

j

=0℄ for 1 � j < 9; s

j+1

= s

j

+ (0; t

j

;�t

j

)

for a

j

= (0; 1; 2) and 1 � j � 9. Then s

10

is a possible result; we need only remember

the smallish values that o

ur. More than half the work is saved by disallowing a

k

= 2

when s

k

= 0, then using js

10

j instead of s

10

. Sin
e fewer than 3

8

= 6561 possibilities

need to be tried, brute for
e via the ternary version of Algorithm M works well; fewer

than 24,000 mems and 1600 multipli
ations are needed to dedu
e that all integers less

than 211 are representable, but 211 is not.

Another approa
h, using Gray
ode to vary the signs after breaking the digits

into blo
ks in 2

8

possible ways, redu
es the number of multipli
ations to 255, but at

the
ost of about 500 additional mems. Therefore Gray
ode is not advantageous in

this appli
ation.

(b) Now (with 73,000 mems and 4900 multipli
ations) we
an rea
h all numbers

less than 241, but not 241. There are 46 ways to represent 100, in
luding the remarkable

9� 87 + 6 + 5� 43 + 210.

[H. E. Dudeney introdu
ed his \
entury" problem in The Weekly Dispat
h (4 and

18 June 1899). See also The Numerology of Dr. Matrix by Martin Gardner, Chapter 6;

Steven Kahan, J. Re
reational Math. 23 (1991), 19{25.℄

112. The method of exer
ise 111 now needs more than 167 million mems and 10 million

multipli
ations, be
ause 3

16

is so mu
h larger than 3

8

. We
an do mu
h better (10.4

million mems, 1100 mults) by �rst tabulating the possibilities obtainable from the �rst

k and last k digits, for 1 � k < 9, then
onsidering all blo
ks of digits that use the 9.

There are 60,318 ways to represent 100, and the �rst unrea
hable number is 16,040.

64

INDEX AND GLOSSARY

When an index entry refers to a page
ontaining a relevant exer
ise, see also the answer to

that exer
ise for further information. An answer page is not indexed here unless it refers to a

topi
 not in
luded in the statement of the exer
ise.

2-adi
 numbers, 31.

4-
ube, 42, 55.

8-
ube, 17, 35.

�(k), see Lee weight, Sideways sum.

� (
ir
le ratio), 30, 43, 61.

�(k), see Ruler fun
tion.

Almost-linear re
urren
e, 23.

Analog-to-digital
onversion, 3{4, 15.

Analysis of algorithms, 28, 37, 38.

Anti-Gray
ode, 35.

Antipodal words, 11.

Arima, Yoriyuki (), 41.

Arndt, J�org, 45.

Arti�
ial intelligen
e, 43.

Aubert, Ja
ques, 55.

Automorphisms, 49.

Baez, John Carlos, 47.

Balan
ed Gray
ode, 14{17, 35, 49.

Bandwidth of n-
ube, 35.

baud: One transmission unit (e.g., one

bit) per se
ond, 4.

Baudot, Jean Mauri
e

�

Emile, 4{5.

Be
kett, Samuel Bar
lay, 34{35.

Bennett, William Ralph, 4.

Bernstein, Arthur Jay, 44.

Binary Gray
odes, 12{17, 33{35.

Binary number system, 1, 4.

Binary re
urren
es, 43, 60.

Binary trie, 30.

Bit reversal, 28, 31.

Bitner, James Ri
hard, 9.

Bitwise operations, 4, 11{12, 32, 45.

Borel,

�

Emile F�elix

�

Edouard Justin, 61.

Borrow, 40.

Botermans, Ja
obus (= Ja
k) Petrus

Hermana, 55.

Boustrophedon produ
t, 36, 57.

Bruijn, Ni
olaas Govert de, 22.

y
les, 22{27, 36{38, 63.

toruses, 38.

Bu
hner, Morgan Mallory, Jr., 44.

Calderbank, Arthur Robert, 43.

Canoe puzzle, 56.

Canoni
al delta sequen
e, 13, 49.

Cardano, Girolamo (= Hieronymus

Cardanus), 41.

Carry, 2, 63.

Castown, Rudolph W., 11.

Cattell, Kevin Mi
hael, 62.

Cavior, Stephan Robert, 44.

Cayley, Arthur, Hamilton theorem, 45.

Center of gravity, 17.

Chara
teristi
 polynomial, 45.

Chen, Kuo-Tsai (), 26.

Cheng, Ching-Shui (), 54.

Chinese remainder theorem, 63.

Chinese ring puzzle, 5{6, 28, 41{42.

Co
k, John Crowle, 63.

Cohn, Martin, 49, 52, 54.

Complementary Gray
odes, 13, 16{17,

33, 49.

Compositions, 28{29.

Con
atenation, 25, 35, 49.

Con
urrent
omputing, 43.

Conne
ted
omponents, 34.

Cooke, Raymond Mark, 51, 55.

Coordinates, 13.

Coroutines, re
ursive, 24{25.

Cremer, William Henry, Jr., 56.

Cube, see n-
ube.

Cube-
onne
ted
omputers, 43.

Cummings, Larry Jean, 58.

Cy
le leaders, 31.

Cy
li
 shifts, 26.

Dally, William James, 43.

de Bruijn, Ni
olaas Govert, 22.

y
les, 22{27, 36{38, 63.

toruses, 38.

De
imal number system, 2, 18{19, 39.

Degen, Carl Ferdinand, 47.

Delta sequen
e, 13.

Dilation of embedded graph, 35.

Dis
rete Fourier transform, 9, 27, 47.

Divisors of a number, 35.

Doubly linked list, 21, 57{58.

Douglas, Robert James, 48.

Dual boustrophedon produ
t, 57.

Dudeney, Henry Ernest, 5, 64.

Duval, Jean Pierre, 62.

Dy
kman, Howard Lloyd, 36, 56.

Edge
overing, 35.

Ehrli
h, Gideon (JILX� OERCB), 9.

Enumeration, 1.

Equivalent Gray
odes, 33{34.

Error-
orre
ting
odes, 30.

Etzion, Tuvi (OEIVR IAEH, born XVLED IAEH), 25.

Extension, 26.

65

65

66 INDEX AND GLOSSARY

Fa
torization of strings, 37.

algorithm for, 62.

Faloutsos, Christos (FaloÔtso
, Qr sto
), 43.

Fast Fourier transform, 28.

Fast Walsh transform, 32.

Fermat, Pierre de, theorem, 38.

Fibona

i, Leonardo, of Pisa, numbers, 36.

Field, �nite, 32.

Five-letter words, 11, 32{33, 38.

Flores, Ivan, 54.

Fo
us pointers, 10{11, 20{21, 57.

Forest, 20{21.

Fourier, Jean Baptiste Joseph,

series, 7.

transform, dis
rete, 9, 28, 47.

Fox, Ralph Hartzler, 26.

Fredman, Mi
hael Lawren
e, 33, 48.

Fredri
ksen, Harold Marvin, 26, 27.

Fringe, 21, 57.

Gardner, Martin, 56, 64.

Generating fun
tions, 61.

Generation, 1.

onstant amortized time, 40.

loopless, 9{12, 20, 28, 29, 36, 42.

Gilbert, Edgar Nelson, 33.

Gilbert, William S
hwen
k, 1.

Goddyn de la Vega, Luis Armando, 34, 50.

Gomes, Peter John, iii.

Gordian Knot puzzle, 35.

Gray, Elisha, 5.

Gray, Frank, 4.

Gray binary
ode, 2{12, 16, 28{33, 36, 58.

permutation, 3, 31.

Gray binary trie, 30.

Gray
ode: A sequen
e of adja
ent obje
ts.

Gray
ode for n-tuples, 12, 15, 18.

advantages of, 6, 11{12.

binary, see Binary Gray
odes, Gray

binary
ode.

limitations of, 40, 64.

nonbinary, 18{20, 35{36, 46, 52, 54{56.

Gray
y
le: A
y
li
 Gray
ode, 12, 15.

Gray �elds, 31.

Gray path, 15, seeGray
ode.

Gray stream, 34.

Gray ternary
ode, 19, 36.

Gros, Lu
 Agathon Louis, 5.

Gvozdjak, Pavol, 34.

Hadamard, Ja
ques Salomon, 47.

transform, 9, 32, 46, 47.

Hamilton, William Rowan, see Cayley.

y
le, 13, 34.

path, 15, 33, 49.

Hamley, William, and sons, 56.

Hammons, Arthur Roger, Jr., 43.

Harigu
hi, Yoi
hi (), iv.

Harmuth, Henning Friedolf, 7.

Hexade
imal puzzle, 42.

Hop
roft, John Edward, 44.

Hurlbert, Glenn Howland, 63.

in situ permutation, 28, 31.

in situ transformation, 9.

In
lusion and ex
lusion prin
iple, 6.

Inline expansion, 11{12.

Interleaving, 37, 50, 63.

Internet, ii, iii.

Inverse fun
tion, 4, 31.

Isaak, Garth Timothy, 63.

Isomorphi
 Gray
y
les, 33{34.

Iteration of fun
tions, 32, 45.

Japanese mathemati
s, 41.

Kahan, Steven Jay, 64.

Karnaugh, Mauri
e, 29.

Kedlaya, Kiran Sridhara, 49.

Keister, William, 42.

Kiefer, Ja
k Carl, 54.

Knuth, Donald Ervin (), i, iv, 58.

Koda, Yasunori (), 20{21.

Krone
ker, Leopold, produ
t, 46.

Kumar, Panganamala Vijay

(�a��Z�Z ��e i ãN �f ¸ ��e �g), 43.

Larrivee, Jules Alphonse, 6.

Lawren
e, George Melvin, 15, 50.

Lee, Chester Chi Yuan () = Chi

Lee (), 42.

distan
e, 29.

weight, 29.

Lempel, Abraham (LTNL MDXA�), 25.

Lexi
ographi
 order, 2{3, 25, 29, 47.

Li, Gang (= Kenny) (), 58.

Lieves, 30.

Linked allo
ation, 28, 29.

Listing, 1.

Loony Loop, 35{36.

Loopless generation, 9{12, 20, 28, 29, 36, 42.

Luke, Saint (�Agio
 Louk�
 å EÎaggelist
),

40.

Lyndon, Roger Conant, 26.

words, 26, see Prime strings.

m-ary digit: An integer between 0 and

m � 1, in
lusive, 2, 22.

Ma
ro-pro
essor, 11.

Maiorana, James Anthony, 26, 27.

Mantel, Willem, 23.

Martin, Monroe Harnish, 27{28.

Mat
hing, 33.

Matrix (Bush), Irving Joshua, 64.

M
Clinto
k, William Edward, 15.

Median, 31.

Miers, Charles Robert, 62.

Military sayings, 1.

Misra, Jayadev (jYedb miS[), 41.

Mit
hell, Christopher John, 25.

Mixed-radix number system, 2, 19{21,

35, 54, 56.

66

INDEX AND GLOSSARY 67

MMIX, 40.

Modular Gray
odes, 19{20, 35, 54.

de
imal, 19.

m-ary, 24, 55, 58.

quaternary, 42, 49.

ternary, 46, 52.

Mollard, Mi
hel, 48.

Moni
 polynomial, 42.

Monotoni
 binary Gray
odes, 15{18, 35.

Morse, Samuel Finley Breese,
ode, 36, 57.

Moser, Leo, 48.

Multinomial
oeÆ
ient, 29.

n-
ube: The graph of n-bit strings,

adja
ent when they di�er in only one

position, 13, 15, 33{34.

sub
ubes of, 30{31.

n-distributed sequen
e, 61.

n-extension, 26.

n-tuple: a sequen
e or string of

length n, 1{2.

Nemeth, Evelyn (= Evi) Hollister Pratt, 50.

Neyman, Jerzy, 54.

Nonbinary Gray
odes, 18{20, 35{36,

46, 52, 54{56.

Nonlo
al Gray
odes, 16{17, 34.

Nordstrom, Alan Wayne, 30.

Normal numbers, 61.

Novra, Henry, 56.

O
ta
ode, 30.

O
tonions, 47.

Odd-length runs, 58.

Orthogonal ve
tors, 8, 32.

Ourotoruses, 38{39.

Paley, Raymond Edward Alan Christopher,

45.

fun
tions, 32.

Pan-digital puzzles, 39.

Parity bit, 6, 28, 29.

Paterson, Kenneth Graham, 25.

Perverse, Rufus Quentin, 35.

Pi (�), 30, 43, 61.

Pre�x of a string, 25.

Prepostorder, 42.

Preprime strings, 26{28, 37.

Prime strings, 25{28, 37.

fa
torization, 37, 62.

Primitive polynomials modulo p, 23, 45.

Prin
ipal subforests, 20{21.

Proper pre�xes or suÆxes, 25.

Pseudorandom bits, 37.

Pulse
ode modulation, 4.

Purkiss, Henry John, 28.

Quaternary n-tuples, 29, 49.

Quaternions and o
tonions, 32.

R&D method, 25, 37.

Radema
her, Hans, 8.

fun
tions, 8, 32, 46.

Ramras, Mark Bernard, 50.

Random number generation, 37.

Ranking an n-tuple, 4, 19, 35.

Re
e
ted Gray
odes, 19{21, 35, 54, 56.

de
imal, 19.

ternary, 36.

Reingold, Edward Martin (CLEBPIIX,

MIIG OA DYN WGVI), 9.

Reversing bits, 28, 31.

Ri
hards, Dana S
ott, 36.

Right sub
ube, 30.

Ringel, Gerhard, 35.

Rit
hie, Alistair English, 42.

Robinson, John Paul, 30, 49, 52.

Rosenbaum, Joseph, 54.

Ruler fun
tion, 6, 8, 12, 13, 47.

de
imal, 19.

Run lengths, 15{17, 34, 50, 58.

Ruskey, Frank, iv, 20, 21, 28, 31, 33, 58, 62.

Salzer, Herbert Ellis, 44.

Sampson, John Lauren
e, 33, 48.

Savage, Carla Diane, 17{18, 28, 33, 35, 49.

Sawada, Joseph James, 62.

S
h�a�ler, Otto, 5.

S
hneider, Bernadette, 55.

S
h�utzenberger, Mar
el Paul, 61.

Sequen
y, 7.

Serra, Mi
aela, 62.

Shapiro, Harold Seymour, 33.

Shift register sequen
es, 22{28, 36{38.

Sideways sum, 15, 44.

Silverman, Jerry, 33, 48{50.

Sloane, Neil James Alexander, 43.

Slo
um, Gerald Kenneth (= Jerry), 55{56.

Sol�e, Patri
k, 43.

SpinOut puzzle, 42.

Squire, Matthew Blaze, 58.

Stahnke, Wayne Lee, 23.

Standard sequen
es, 26.

Stanford GraphBase, ii, iii, 11, 32{33, 38.

Steiglitz, Kenneth, 44.

Stevens, Brett, 34.

Stewart, Ian Ni
holas, 38.

Stibitz, George Robert, 4, 6.

Stringology, 25{28, 37{38.

Sub
ubes, 30{31.

Subforests, 20{21, 36.

Subsets, 1, 6.

SuÆx of a string, 25.

Sums of squares, 32.

Sylvester, James Joseph, 32, 47.

67

68 INDEX AND GLOSSARY

Tangle puzzle, see Loony Loop.

Taylor, Lloyd William, 5.

Telephone, 5.

Television, 4.

Ternary n-tuples, 19, 26{27, 35, 36,

46, 52, 64.

Tiring irons, 5.

Tootill, Geo�rey Colin, 14, 41.

Torture test, 35.

Torus, 29, 38, 42.

T�oth, Zolt�an, 63.

Transition
ounts, 14, 33.

Traversal, 1.

Trend-free Gray
odes, 16{17, 35.

Trie, 30.

Tuliani, Jonathan R., 61.

Tuple: A sequen
e
ontaining a given

number of elements.

Unranking an n-tuple, 3{4, 19, 28, 35.

Up-down sequen
e, 36.

V�azsonyi, Endre, 57.

Vi
kers, Virgil Eugene, 33, 48{50.

Visitation, 1.

Wallis, John, 6, 41.

Walsh, Joseph Leonard, 7, 8, 45.

fun
tions, 7{9, 32.

transform, 8{9, 32.

Wang, Terry Min Yih (), 28.

Washburn, Seth Harwood, 42.

Weight enumeration, 42.

Wiedemann, Douglas Henry, 58.

Winker, Steven Karl, 48.

Winkler, Peter Mann, 17{18, 35, 49.

Wrapping around, 19, 29, 38.

Yates, Frank, 9.

Yuen, Chung Kwong (), 44.

68

