
THE ART OF

COMPUTER PROGRAMMING

PRE-FASCICLE 2A

A DRAFT OF SECTION 7.2.1.1:

GENERATING ALL n -TUPLES

DONALD E. KNUTH Stanford University

ADDISON{WESLEY

6

77

-1

Internet page http://www-s-faulty.stanford.edu/~knuth/taop.html ontains

urrent information about this book and related books.

See also http://www-s-faulty.stanford.edu/~knuth/sgb.html for information

about The Stanford GraphBase, inluding downloadable software for dealing with the

graphs used in many of the examples in Chapter 7.

Copyright

 2001 by Addison{Wesley

All rights reserved. No part of this publiation may be reprodued, stored in a retrieval

system, or transmitted, in any form, or by any means, eletroni, mehanial, photo-

opying, reording, or otherwise, without the prior onsent of the publisher, exept

that the oÆial eletroni �le may be used to print single opies for personal (not

ommerial) use.

Zeroth printing (revision 14), 10 Deember 2004

-2

PREFACE

I am grateful to all my friends,

and reord here and now my most espeial appreiation

to those friends who, after a deent interval,

stopped asking me, \How's the book oming?"

| PETER J. GOMES, The Good Book (1996)

This booklet ontains draft material that I'm irulating to experts in the

�eld, in hopes that they an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for

ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet reahed a very mature state. Beware: This material has

not yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3

were at the time of their �rst printings. And those arefully-heked volumes,

alas, were subsequently found to ontain thousands of mistakes.

Given this aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be disouraged from reading the material arefully.

I did try to make it both interesting and authoritative, as far as it goes. But the

�eld is so vast, I annot hope to have surrounded it enough to orral it ompletely.

Therefore I beg you to let me know about any de�ienies you disover.

To put the material in ontext, this is Setion 7.2.1.1 of a long, long hapter

on ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namely

Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will

begin with a short review of graph theory, with emphasis on some highlights

of signi�ant graphs in The Stanford GraphBase (from whih I will be drawing

many examples). Then omes Setion 7.1, whih deals with the topi of bitwise

manipulations. (I drafted about 60 pages about that subjet in 1977, but those

pages need extensive revision; meanwhile I've deided to work for awhile on the

material that follows it, so that I an get a better feel for how muh to ut.)

Setion 7.2 is about generating all possibilities, and it begins with Setion 7.2.1:

Generating Basi Combinatorial Patterns. That sets the stage for the main

ontents of this booklet, Setion 7.2.1.1, where I get the ball rolling at last by

dealing with the generation of n-tuples. Then will ome Setion 7.2.1.2 (about

permutations), Setion 7.2.1.3 (about ombinations), et. Setion 7.2.2 will deal

with baktraking in general. And so it will go on, if all goes well; an outline of

the entire Chapter 7 as urrently envisaged appears on the taop webpage that

is ited on page ii.

iii

-3

iv PREFACE

Even the apparently lowly topi of n-tuple generation turns out to be sur-

prisingly rih, with ties to Setions 1.2.4, 1.3.3, 2.3.1, 2.3.4.2, 3.2.2, 3.5, 4.1,

4.3.1, 4.5.2, 4.5.3, 4.6.1, 4.6.2, 4.6.4, 5.2.1, and 6.3 of the �rst three volumes.

I strongly believe in building up a �rm foundation, so I have disussed this topi

muh more thoroughly than I will be able to do with material that is newer or

less basi. To my surprise, I ame up with 112 exerises, a new reord, even

though|believe it or not| I had to eliminate quite a bit of the interesting

material that appears in my �les.

Some of the material is new, to the best of my knowledge, although I will not

be at all surprised to learn that my own little \disoveries" have been disovered

before. Please look, for example, at the exerises that I've lassed as researh

problems (rated with diÆulty level 46 or higher), namely exerises 43, 46, 47,

53, 55, and 62. Are these problems still open? The question in exerise 53

might not have been posed previously, but it seems to deserve attention. Other

problems, like exerises 66 and 83, suggest additional researh topis. Please let

me know if you know of a solution to any of these intriguing problems. And of

ourse if no solution is known today but you do make progress on any of them

in the future, I hope you'll let me know.

I urgently need your help also with respet to some exerises that I made

up as I was preparing this material. I ertainly don't like to get redit for things

that have already been published by others, and most of these results are quite

natural \fruits" that were just waiting to be \pluked." Therefore please tell

me if you know who I should have redited, with respet to the ideas found in

exerises 15, 16, 31, 37, 38, 69, 73, 76, 86, 87, 89, 90, and/or 109.

I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is

�rst reported to me, whether that error be typographial, tehnial, or historial.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/ eah. (Furthermore, if

you �nd a better solution to an exerise, I'll atually reward you with immortal

glory instead of mere money, by publishing your name in the eventual book:�)

I wish to thank Yoihi Hariguhi for helping me to build and rebuild the

omputer on whih this book was written. And I also want to thank Frank

Ruskey for bravely foisting this material on ollege students, and for providing

valuable feedbak about his lassroom experienes.

Cross referenes to yet-unwritten material sometimes appear as `00'; this

impossible value is a plaeholder for the atual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

August 2001 (revised, September 2001)

-4

7.2.1.1 GENERATING ALL n-TUPLES 1

7.2. GENERATING ALL POSSIBILITIES

All present or aounted for, sir.

| Traditional Amerian military saying

All present and orret, sir.

| Traditional British military saying

7.2.1. Generating Basi Combinatorial Patterns

Our goal in this setion is to study methods for running through all of the

possibilities in some ombinatorial universe, beause we often fae problems

in whih an exhaustive examination of all ases is neessary or desirable. For

example, we might want to look at all permutations of a given set.

Some authors all this the task of enumerating all of the possibilities; but

that's not quite the right word, beause \enumeration" most often means that

we merely want to ount the total number of ases, not that we atually want

to look at them all. If somebody asks you to enumerate the permutations of

f1; 2; 3g, you are quite justi�ed in replying that the answer is 3! = 6; you needn't

give the more omplete answer f123; 132; 213; 231; 312; 321g.

Other authors speak of listing all the possibilities; but that's not suh a great

word either. No sensible person would want to make a list of the 10! = 3;628;800

permutations of f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g by printing them out on thousands of

sheets of paper, nor even by writing them all in a omputer �le. All we really

want is to have them present momentarily in some data struture, so that a

program an examine eah permutation one at a time.

So we will speak of generating all of the ombinatorial objets that we need,

and visiting eah objet in turn. Just as we studied algorithms for tree traversal

in Setion 2.3.1, where the goal was to visit every node of a tree, we turn now

to algorithms that systematially traverse a ombinatorial spae of possibilities.

He's got 'em on the list|

he's got 'em on the list;

And they'll none of 'em be missed|

they'll none of 'em be missed.

| WILLIAM S. GILBERT, The Mikado (1885)

7.2.1.1. Generating all n-tuples. Let's start small, by onsidering how to

run through all 2

n

strings that onsist of n binary digits. Equivalently, we want

to visit all n-tuples (a

1

; : : : ; a

n

) where eah a

j

is either 0 or 1. This task is

also, in essene, equivalent to examining all subsets of a given set fx

1

; : : : ; x

n

g,

beause we an say that x

j

is in the subset if and only if a

j

= 1.

Of ourse suh a problem has an absurdly simple solution. All we need to

do is start with the binary number (0 : : : 00)

2

= 0 and repeatedly add 1 until

we reah (1 : : : 11)

2

= 2

n

� 1. We will see, however, that even this utterly trivial

problem has astonishing points of interest when we look into it more deeply. And

our study of n-tuples will pay o� later when we turn to the generation of more

diÆult kinds of patterns.

1

2 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

In the �rst plae, we an see that the binary-notation trik extends to other

kinds of n-tuples. If we want, for example, to generate all (a

1

; : : : ; a

n

) in whih

eah a

j

is one of the deimal digits f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g, we an simply ount

from (0 : : : 00)

10

= 0 to (9 : : : 99)

10

= 10

n

� 1 in the deimal number system.

And if we want more generally to run through all ases in whih

0 � a

j

< m

j

for 1 � j � n; (1)

where the upper limits m

j

might be di�erent in di�erent omponents of the

vetor (a

1

; : : : ; a

n

), the task is essentially the same as repeatedly adding unity

to the number

h

a

1

;

m

1

;

a

2

;

m

2

;

: : : ;

: : : ;

a

n

m

n

i

(2)

in a mixed-radix number system; see Eq. 4.1{(9) and exerise 4.3.1{9.

We might as well pause to desribe the proess more formally:

Algorithm M (Mixed-radix generation). This algorithm visits all n-tuples

that satisfy (1), by repeatedly adding 1 to the mixed-radix number in (2) until

overow ours. Auxiliary variables a

0

and m

0

are introdued for onveniene.

M1. [Initialize.℄ Set a

j

 0 for 0 � j � n, and set m

0

 2.

M2. [Visit.℄ Visit the n-tuple (a

1

; : : : ; a

n

). (The program that wants to examine

all n-tuples now does its thing.)

M3. [Prepare to add one.℄ Set j n.

M4. [Carry if neessary.℄ If a

j

= m

j

� 1, set a

j

 0, j j � 1, and repeat this

step.

M5. [Inrease, unless done.℄ If j = 0, terminate the algorithm. Otherwise set

a

j

 a

j

+ 1 and go bak to step M2.

Algorithm M is simple and straightforward, but we shouldn't forget that

nested loops are even simpler, when n is a fairly small onstant. When n = 4,

we ould for example write out the following instrutions:

For a

1

= 0, 1, : : : , m

1

� 1 (in this order) do the following:

For a

2

= 0, 1, : : : , m

2

� 1 (in this order) do the following:

For a

3

= 0, 1, : : : , m

3

� 1 (in this order) do the following:

For a

4

= 0, 1, : : : , m

4

� 1 (in this order) do the following:

Visit (a

1

; a

2

; a

3

; a

4

):

(3)

These instrutions are equivalent to Algorithm M, and they are easily expressed

in any programming language.

Gray binary ode. Algorithm M runs through all (a

1

; : : : ; a

n

) in lexiographi

order, as in a ditionary. But there are many situations in whih we prefer to visit

those n-tuples in some other order. The most famous alternative arrangement is

the so-alled Gray binary ode, whih lists all 2

n

strings of n bits in suh a way

2

7.2.1.1 GENERATING ALL n-TUPLES 3

Fig. 10.

0

0

0

0

0

0

0

�

0

0

0

1

00

��

0

0

1

0

0

0

1

�

0

0

1

1

0

�

�

�

0

1

0

0

0

1

0

�

0

1

0

1

0

1

�

�

0

1

1

0

0

1

1

�

0

1

1

1

�

�

�

�

1

0

0

0

1

0

0

�

1

0

0

1

10

��

1

0

1

0

1

0

1

�

1

0

1

1

1

�

�

�

1

1

0

0

1

1

0

�

1

1

0

1

1

1

�

�

1

1

1

0

1

1

1

�

1

1

1

1

�

�

�

�

(a) Lexiographi binary ode.

0

0

0

0

0

0

0

�

0

0

0

1

00

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

�

1

0

0

1

1

0

0

1

1

�

0

1

1

1

0

1

�

1

0

1

0

1

0

1

0

�

0

1

0

0

�

1

0

0

1

1

0

0

1

1

0

�

1

1

0

1

11

�

1

1

1

1

1

1

1

1

�

1

1

1

0

1

�

1

0

1

0

1

0

1

0

1

�

1

0

1

1

1

0

�

1

1

0

0

1

1

0

0

�

1

0

0

0

�

0

0

0

(b) Gray binary ode.

that only one bit hanges eah time, in a simple and regular way. For example,

the Gray binary ode for n = 4 is

0000; 0001; 0011; 0010; 0110; 0111; 0101; 0100;

1100; 1101; 1111; 1110; 1010; 1011; 1001; 1000: (4)

Suh odes are espeially important in appliations where analog information

is being onverted to digital or vie versa. For example, suppose we want to

identify our urrent position on a rotating disk that has been divided into 16

setors, using four sensors that eah distinguish blak from white. If we use

lexiographi order to mark the traks from 0000 to 1111, as in Fig. 10(a), wildly

inaurate measurements an our at the boundaries between setors; but the

ode in Fig. 10(b) never gives a bad reading.

Gray binary ode an be de�ned in many equivalent ways. For example,

if �

n

stands for the Gray binary sequene of n-bit strings, we an de�ne �

n

reursively by the two rules

�

0

= �;

�

n+1

= 0�

n

; 1�

R

n

:

(5)

Here � denotes the empty string, 0�

n

denotes the sequene �

n

with 0 pre�xed to

eah string, and 1�

R

n

denotes the sequene �

n

in reverse order with 1 pre�xed

to eah string. Sine the last string of �

n

equals the �rst string of �

R

n

, it is lear

from (5) that exatly one bit hanges in every step of �

n+1

if �

n

enjoys the same

property.

Another way to de�ne the sequene �

n

= g(0), g(1), : : : , g(2

n

� 1) is to give

an expliit formula for its individual elements g(k). Indeed, sine �

n+1

begins

with 0�

n

, the in�nite sequene

�

1

= g(0); g(1); g(2); g(3); g(4); : : :

= (0)

2

; (1)

2

; (11)

2

; (10)

2

; (110)

2

; : : :

(6)

is a permutation of all the nonnegative integers, if we regard eah string of 0s

and 1s as a binary integer with optional leading 0s. Then �

n

onsists of the �rst

2

n

elements of (6), onverted to n-bit strings by inserting 0s at the left if needed.

3

4 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

When k = 2

n

+ r, where 0 � r < 2

n

, relation (5) tells us that g(k) is equal

to 2

n

+ g(2

n

� 1� r). Therefore we an prove by indution on n that the integer

k whose binary representation is (: : : b

2

b

1

b

0

)

2

has a Gray binary equivalent g(k)

with the representation (: : : a

2

a

1

a

0

)

2

, where

a

j

= b

j

� b

j+1

; for j � 0. (7)

(See exerise 6.) For example, g

�

(111001000011)

2

�

= (100101100010)

2

. Con-

versely, if g(k) = (: : : a

2

a

1

a

0

)

2

is given, we an �nd k = (: : : b

2

b

1

b

0

)

2

by inverting

the system of equations (7), obtaining

b

j

= a

j

� a

j+1

� a

j+2

� � � � ; for j � 0; (8)

this in�nite sum is really �nite beause a

j+t

= 0 for all large t.

One of the many pleasant onsequenes of Eq. (7) is that g(k) an be om-

puted very easily with bitwise arithmeti:

g(k) = k � bk=2: (9)

Similarly, the inverse funtion in (8) satis�es

g

[�1℄

(l) = l � bl=2 � bl=4 � � � � ; (10)

this funtion, however, requires more omputation (see exerise 7.1{00). We an

also dedue from (7) that, if k and k

0

are any nonnegative integers,

g(k � k

0

) = g(k)� g(k

0

): (11)

Yet another onsequene is that the (n+1)-bit Gray binary ode an be written

�

n+1

= 0�

n

; (0�

n

)�110 : : : 0;

this pattern is evident, for example, in (4). Comparing with (5), we see that

reversing the order of Gray binary ode is equivalent to omplementing the �rst

bit:

�

R

n

= �

n

� 1

n�1

z }| {

0 : : : 0: (12)

The exerises below show that the funtion g(k) de�ned in (7), and its inverse

g

[�1℄

de�ned in (8), have many further properties and appliations of interest.

Sometimes we think of these as funtions taking binary strings to binary strings;

at other times we regard them as funtions from integers to integers, via binary

notation, with leading zeros irrelevant.

Gray binary ode is named after Frank Gray, a physiist who beame fa-

mous for helping to devise the method long used for ompatible olor television

broadasting [Bell System Teh. J. 13 (1934), 464{515℄. He invented �

n

for

appliations to pulse ode modulation, a method for analog transmission of dig-

ital signals [see Bell System Teh. J. 30 (1951), 38{40; U.S. Patent 2632058 (17

Marh 1953); W. R. Bennett, Introdution to Signal Transmission (1971), 238{

240℄. But the idea of \Gray binary ode" was known long before he worked on it;

for example, it appeared in U.S. Patent 2307868 by George Stibitz (12 January

1943). More signi�antly, �

5

was used in a telegraph mahine demonstrated

in 1878 by

�

Emile Baudot, after whom the term \baud" was later named. At

4

7.2.1.1 GENERATING ALL n-TUPLES 5

about the same time, a similar but less systemati ode for telegraphy was

independently devised by Otto Sh�a�ler [see Journal T�el�egraphique 4 (1878),

252{253; Annales T�el�egraphiques 6 (1879), 361, 382{383℄.*

In fat, Gray binary ode is impliitly present in a lassi toy that has

fasinated people for enturies, now generally known as the \Chinese ring puzzle"

in English, although Englishmen used to all it the \tiring irons." Figure 11

shows a seven-ring example. The hallenge is to remove the rings from the bar,

and the rings are interloked in suh a way that only two basi types of move are

possible (although this may not be immediately apparent from the illustration):

a) The rightmost ring an be removed or replaed at any time;

b) Any other ring an be removed or replaed if and only if the ring to its right

is on the bar and all rings to the right of that one are o�.

We an represent the urrent state of the puzzle in binary notation, writing 1

if a ring is on the bar and 0 if it is o�; thus Fig. 11 shows the rings in state

1011000. (The seond ring from the left is enoded as 0, beause it lies entirely

above the bar.)

Fig. 11.

The Chinese ring puzzle.

A Frenh magistrate named Louis Gros demonstrated an expliit onnetion

between Chinese rings and binary numbers, in a booklet alled Th�eorie du

Baguenodier [si℄ (Lyon: Aim�e Vingtrinier, 1872) that was published anony-

mously. If the rings are in state a

n�1

: : : a

0

, and if we de�ne the binary number

k = (b

n�1

: : : b

0

)

2

by Eq. (8), he showed that exatly k more steps are neessary

and suÆient to solve the puzzle. Thus Gros is the true inventor of Gray binary

ode.

Certainly no home should be without

this fasinating, histori, and instrutive puzzle.

| HENRY E. DUDENEY (1901)

When the rings are in any state other than 00 : : : 0 or 10 : : : 0, exatly two

moves are possible, one of type (a) and one of type (b). Only one of these moves

advanes toward the desired goal; the other is a step bakward that will need to

be undone. A type (a) move hanges k to k � 1; thus we want to do it when

k is odd, sine this will derease k. A type (b) move from a position that ends

in (10

j�1

)

2

for 1 � j < n hanges k to k � (1

j+1

)

2

= k � (2

j+1

� 1). When k

* Some authors have asserted that Gray ode was invented by Elisha Gray, who developed a

printing telegraph mahine at the same time as Baudot and Sh�a�ler. Suh laims are untrue,

although Elisha did get a raw deal with respet to priority for inventing the telephone [see

L. W. Taylor, Amer. Physis Teaher 5 (1937), 243{251℄.

5

6 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

is even, we want k � (2

j+1

� 1) to equal k � 1, whih means that k must be a

multiple of 2

j

but not a multiple of 2

j+1

; in other words,

j = �(k); (13)

where � is the \ruler funtion" of Eq. 7.1{(00). Therefore the rings follow a nie

pattern when the puzzle is solved properly: If we number them 0, 1, : : : , n � 1

(starting at the free end), the sequene of ring moves on or o� the bar is the

sequene of numbers that ends with : : : , �(4), �(3), �(2), �(1).

Going bakwards, suessively putting rings on or o� until we reah the

ultimate state 10 : : : 0 (whih, as John Wallis observed in 1693, is more diÆult to

reah than the supposedly harder state 11 : : : 1), yields an algorithm for ounting

in Gray binary ode:

Algorithm G (Gray binary generation). This algorithm visits all binary n-

tuples (a

n�1

; : : : ; a

1

; a

0

) by starting with (0; : : : ; 0; 0) and hanging only one bit

at a time, also maintaining a parity bit a

1

suh that

a

1

= a

n�1

� � � � � a

1

� a

0

: (14)

It suessively omplements bits �(1), �(2), �(3), : : : , �(2

n

� 1) and then stops.

G1. [Initialize.℄ Set a

j

 0 for 0 � j < n; also set a

1

 0.

G2. [Visit.℄ Visit the n-tuple (a

n�1

; : : : ; a

1

; a

0

).

G3. [Change parity.℄ Set a

1

 1� a

1

.

G4. [Choose j.℄ If a

1

= 1, set j 0. Otherwise let j � 1 be minimum suh

that a

j�1

= 1. (After the kth time we have performed this step, j = �(k).)

G5. [Complement oordinate j.℄ Terminate if j = n; otherwise set a

j

 1� a

j

and return to G2.

The parity bit a

1

omes in handy if we are omputing a sum like

X

000

�X

001

�X

010

+X

011

�X

100

+X

101

+X

110

�X

111

or

X

;

�X

a

�X

b

+X

ab

�X

+X

a

+X

b

�X

ab

;

where the sign depends on the parity of a binary string or the number of elements

in a subset. Suh sums arise frequently in \inlusion-exlusion" formulas suh

as Eq. 1.3.3{(29). The parity bit is also neessary, for eÆieny: Without it we

ould not easily hoose between the two ways of determining j, whih orrespond

to performing a type (a) or type (b) move in the Chinese ring puzzle. But the

most important feature of Algorithm G is that step G5 makes only a single

oordinate hange. Therefore only a simple hange is usually needed to the

terms X that we are summing, or to whatever other strutures we are onerned

with as we visit eah n-tuple.

It is impossible, of ourse, to remove all ambiguity in the lowest-order digit

exept by a sheme like one the Irish railways are said to have used

of removing the last ar of every train

beause it is too suseptible to ollision damage.

| G. R. STIBITZ and J. A. LARRIVEE, Mathematis and Computers (1957)

6

7.2.1.1 GENERATING ALL n-TUPLES 7

Fig. 12. Walsh funtions w

k

(x) for

0 � k < 8, with the analogous trigo-

nometri funtions

p

2 os k�x shown

in gray for omparison.

w (x)

0

w (x)

1

w (x)

2

w (x)

3

w (x)

4

w (x)

5

w (x)

6

w (x)

7

x = 0

x =

1

4

x =

1

2

x =

3

4

x = 1

Another key property of Gray binary ode was disovered by J. L. Walsh

in onnetion with an important sequene of funtions now known as Walsh

funtions [see Amer. J. Math. 45 (1923), 5{24℄. Let w

0

(x) = 1 for all real

numbers x, and

w

k

(x) = (�1)

b2xdk=2e

w

bk=2

(2x); for k > 0. (15)

For example, w

1

(x) = (�1)

b2x

hanges sign whenever x is an integer or an

integer plus

1

2

. It follows that w

k

(x) = w

k

(x+1) for all k, and that w

k

(x) = �1

for all x. More signi�antly, w

k

(0) = 1 and w

k

(x) has exatly k sign hanges in

the interval (0 : : 1), so that it approahes (�1)

k

as x approahes 1 from the left.

Therefore w

k

(x) behaves rather like a trigonometri funtion os k�x or sin k�x,

and we an represent other funtions as a linear ombination of Walsh funtions

in muh the same way as they are traditionally represented as Fourier series. This

fat, together with the simple disrete nature of w

k

(x), makes Walsh funtions

extremely useful in omputer alulations related to information transmission,

image proessing, and many other appliations.

Figure 12 shows the �rst eight Walsh funtions together with their trigono-

metri ousins. Engineers ommonly all w

k

(x) the Walsh funtion of sequeny

k, by analogy with the fat that os k�x and sin k�x have frequeny k=2. [See,

for example, the book Sequeny Theory: Foundations and Appliations (New

York: Aademi Press, 1977), by H. F. Harmuth.℄

7

8 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Although Eq. (15) may look formidable at �rst glane, it atually provides an

easy way to see by indution why w

k

(x) has exatly k sign hanges as laimed. If

k is even, say k = 2l, we have w

2l

(x) = w

l

(2x) for 0 � x <

1

2

; the e�et is simply

to ompress the funtion w

l

(x) into half the spae, so w

2l

(x) has aumulated

l sign hanges so far. Then w

2l

(x) = (�1)

l

w

l

(2x) = (�1)

l

w

l

(2x � 1) in the

range

1

2

� x < 1; this onatenates another opy of w

l

(2x), ipping the sign if

neessary to avoid a sign hange at x =

1

2

. The funtion w

2l+1

(x) is similar, but

it fores a sign hange when x =

1

2

.

What does this have to do with Gray binary ode? Walsh disovered that

his funtions ould all be expressed neatly in terms of simpler funtions alled

Rademaher funtions [Hans Rademaher, Math. Annalen 87 (1922), 112{138℄,

r

k

(x) = (�1)

b2

k

x

; (16)

whih take the value (�1)

�k

when (: : :

2

1

0

:

�1

�2

: : :)

2

is the binary represen-

tation of x. Indeed, we have w

1

(x) = r

1

(x), w

2

(x) = r

1

(x)r

2

(x), w

3

(x) = r

2

(x),

and in general

w

k

(x) =

Y

j�0

r

j+1

(x)

b

j

�b

j+1

when k = (b

n�1

: : : b

1

b

0

)

2

. (17)

(See exerise 33.) Thus the exponent of r

j+1

(x) in w

k

(x) is the jth bit of the

Gray binary number g(k), aording to (7), and we have

w

k

(x) = r

�(k)+1

(x)w

k�1

(x); for k > 0. (18)

Equation (17) implies the handy formula

w

k

(x)w

k

0

(x) = w

k�k

0

(x); (19)

whih is muh simpler than the orresponding produt formulas for sines and

osines. This identity follows easily beause r

j

(x)

2

= 1 for all j and x, hene

r

j

(x)

a�b

= r

j

(x)

a+b

. It implies in partiular that w

k

(x) is orthogonal to w

k

0

(x)

when k 6= k

0

, in the sense that the average value of w

k

(x)w

k

0

(x) is zero. We also

an use (17) to de�ne w

k

(x) for frational values of k like 1=2 or 13=8.

TheWalsh transform of 2

n

numbers (X

0

; : : : ; X

2

n

�1

) is the vetor de�ned by

the equation (x

0

; : : : ; x

2

n

�1

)

T

= W

n

(X

0

; : : : ; X

2

n

�1

)

T

, where W

n

is the 2

n

� 2

n

matrix having w

j

(k=2

n

) in row j and olumn k, for 0 � j; k < 2

n

. For example,

Fig. 12 tells us that the Walsh transform when n = 3 is

0

B

B

B

B

B

B

B

B

B

�

x

000

x

001

x

010

x

011

x

100

x

101

x

110

x

111

1

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

�

X

000

X

001

X

010

X

011

X

100

X

101

X

110

X

111

1

C

C

C

C

C

C

C

C

C

A

: (20)

8

7.2.1.1 GENERATING ALL n-TUPLES 9

(Here 1 stands for �1, and the subsripts are onveniently regarded as binary

strings 000{111 instead of as the integers 0{7.) The Hadamard transform is

de�ned similarly, but with the matrix H

n

in plae of W

n

, where H

n

has (�1)

j�k

in row j and olumn k; here `j �k' denotes the dot produt a

n�1

b

n�1

+ � � �+a

0

b

0

of the binary representations j = (a

n�1

: : : a

0

)

2

and k = (b

n�1

: : : b

0

)

2

. For

example, the Hadamard transform for n = 3 is

0

B

B

B

B

B

B

B

B

B

�

x

0

000

x

0

001

x

0

010

x

0

011

x

0

100

x

0

101

x

0

110

x

0

111

1

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

�

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

�

X

000

X

001

X

010

X

011

X

100

X

101

X

110

X

111

1

C

C

C

C

C

C

C

C

C

A

: (21)

This is the same as the disrete Fourier transform on an n-dimensional ube,

Eq. 4.6.4{(38), and we an evaluate it quikly \in plae" by adapting the method

of Yates disussed in Setion 4.6.4:

Given First step Seond step Third step

X

000

X

000

+X

001

X

000

+X

001

+X

010

+X

011

X

000

+X

001

+X

010

+X

011

+X

100

+X

101

+X

110

+X

111

X

001

X

000

�X

001

X

000

�X

001

+X

010

�X

011

X

000

�X

001

+X

010

�X

011

+X

100

�X

101

+X

110

�X

111

X

010

X

010

+X

011

X

000

+X

001

�X

010

�X

011

X

000

+X

001

�X

010

�X

011

+X

100

+X

101

�X

110

�X

111

X

011

X

010

�X

011

X

000

�X

001

�X

010

+X

011

X

000

�X

001

�X

010

+X

011

+X

100

�X

101

�X

110

+X

111

X

100

X

100

+X

101

X

100

+X

101

+X

110

+X

111

X

000

+X

001

+X

010

+X

011

�X

100

�X

101

�X

110

�X

111

X

101

X

100

�X

101

X

100

�X

101

+X

110

�X

111

X

000

�X

001

+X

010

�X

011

�X

100

+X

101

�X

110

+X

111

X

110

X

110

+X

111

X

100

+X

101

�X

110

�X

111

X

000

+X

001

�X

010

�X

011

�X

100

�X

101

+X

110

+X

111

X

111

X

110

�X

111

X

100

�X

101

�X

110

+X

111

X

000

�X

001

�X

010

+X

011

�X

100

+X

101

+X

110

�X

111

Notie that the rows of H

3

are a permutation of the rows of W

3

. This is true in

general, so we an obtain the Walsh transform by permuting the elements of the

Hadamard transform. Exerise 36 disusses the details.

Going faster. When we're running through 2

n

possibilities, we usually want

to redue the omputation time as muh as possible. Algorithm G needs to

omplement only one bit a

j

per visit to (a

n�1

; : : : ; a

0

), but it loops in step G4

while hoosing an appropriate value of j. Another approah has been suggested

by Gideon Ehrlih [JACM 20 (1973), 500{513℄, who introdued the notion of

loopless ombinatorial generation: With a loopless algorithm, the number of

operations performed between suessive visits is required to be bounded in

advane, so there never is a long wait before a new pattern has been generated.

We learned some triks in Setion 7.1 about quik ways to determine the

number of leading or trailing 0s in a binary number. Those methods ould be

used in step G4 to make Algorithm G loopless, assuming that n isn't unreason-

ably large. But Ehrlih's method is quite di�erent, and muh more versatile,

so it provides us with a new weapon in our arsenal of tehniques for eÆient

omputation. Here is how his approah an be used to generate binary n-tuples

[see Bitner, Ehrlih, and Reingold, CACM 19 (1976), 517{521℄:

9

10 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Algorithm L (Loopless Gray binary generation). This algorithm, like Algo-

rithm G, visits all binary n-tuples (a

n�1

; : : : ; a

0

) in the order of the Gray binary

ode. But instead of maintaining a parity bit, it uses an array of \fous pointers"

(f

n

; : : : ; f

0

), whose signi�ane is disussed below.

L1. [Initialize.℄ Set a

j

 0 and f

j

 j for 0 � j < n; also set f

n

 n. (A

loopless algorithm is allowed to have loops in its initialization step, as long

as the initial setup is reasonably eÆient; after all, every program needs to

be loaded and launhed.)

L2. [Visit.℄ Visit the n-tuple (a

n�1

; : : : ; a

1

; a

0

).

L3. [Choose j.℄ Set j f

0

, f

0

 0. (If this is the kth time we are performing

the present step, j is now equal to �(k).) Terminate if j = n; otherwise set

f

j

 f

j+1

and f

j+1

 j + 1.

L4. [Complement oordinate j.℄ Set a

j

 1� a

j

and return to L2.

For example, the omputation proeeds as follows when n = 4. Elements a

j

have

been underlined in this table if the orresponding bit b

j

is 1 in the binary string

b

3

b

2

b

1

b

0

suh that a

3

a

2

a

1

a

0

= g(b

3

b

2

b

1

b

0

):

a

3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

a

2

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

a

1

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

a

0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

f

3

3 3 3 3 3 3 3 3 4 4 4 4 3 3 3 3

f

2

2 2 2 2 3 3 2 2 2 2 2 2 4 4 2 2

f

1

1 1 2 1 1 1 3 1 1 1 2 1 1 1 4 1

f

0

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Although the binary number k = (b

n�1

: : : b

0

)

2

never appears expliitly in Al-

gorithm L, the fous pointers f

j

represent it impliitly in a lever way, so that

we an repeatedly form g(k) = (a

n�1

: : : a

0

)

2

by omplementing bit a

�(k)

as we

should. Let's say that a

j

is passive when it is underlined, ative otherwise. Then

the fous pointers satisfy the following invariant relations:

1) If a

j

is passive and a

j�1

is ative, then f

j

is the smallest index j

0

> j suh

that a

j

0

is ative. (Bits a

n

and a

�1

are onsidered to be ative for purposes

of this rule, although they aren't really present in the algorithm.)

2) Otherwise f

j

= j.

Thus, the rightmost element a

j

of a blok of passive elements a

i�1

: : : a

j+1

a

j

,

with dereasing subsripts, has a fous f

j

that points to the element a

i

just to

the left of that blok. All other elements a

j

have f

j

pointing to themselves.

In these terms, the �rst two operations `j f

0

, f

0

 0' in step L3 are

equivalent to saying, \Set j to the index of the rightmost ative element, and

ativate all elements to the right of a

j

." Notie that if f

0

= 0, the operation

f

0

 0 is redundant; but it doesn't do any harm. The other two operations of L3,

`f

j

 f

j+1

, f

j+1

 j + 1', are equivalent to saying, \Make a

j

passive," beause

we know that a

j

and a

j�1

are both ative at this point in the omputation.

10

7.2.1.1 GENERATING ALL n-TUPLES 11

(Again the operation f

j+1

 j + 1 might be harmlessly redundant.) The net

e�et of ativation and passivation is therefore equivalent to ounting in binary

notation, as in Algorithm M, with 1-bits passive and 0-bits ative.

Algorithm L is almost blindingly fast, beause it does only �ve assignment

operations and one test for termination between eah visit to a generated n-tuple.

But we an do even better. In order to see how, let's onsider an appliation

to rereational linguistis: Rudolph Castown, in Word Ways 1 (1968), 165{

169, noted that all 16 of the ways to intermix the letters of sins with the

orresponding letters of fate produe words that are found in a suÆiently large

ditionary of English: sine, sits, site, et.; and all but three of those words

(namely fane, fite, and sats) are suÆiently ommon as to be unquestionably

part of standard English. Therefore it is natural to ask the analogous question

for �ve-letter words: What two strings of �ve letters will produe the maximum

number of words in the Stanford GraphBase, when letters in orresponding

positions are swapped in all 32 possible ways?

To answer this question, we need not examine all

�

26

2

�

5

= 3;625;908;203;125

essentially di�erent pairs of strings; it suÆes to look at all

�

5757

2

�

= 16;568;646

pairs of words in the GraphBase, provided that at least one of those pairs

produes at least 17 words, beause every set of 17 or more �ve-letter words

obtainable from two �ve-letter strings must ontain two that are \antipodal"

(with no orresponding letters in ommon). For every antipodal pair, we want

to determine as rapidly as possible whether the 32 possible subset-swaps produe

a signi�ant number of English words.

Every 5-letter word an be represented as a 25-bit number using 5 bits per

letter, from "a" = 00000 to "z" = 11001. A table of 2

25

bits or bytes will then

determine quikly whether a given �ve-letter string is a word. So the problem

is redued to generating the bit patterns of the 32 potential words obtainable

by mixing the letters of two given words, and looking those patterns up in the

table. We an proeed as follows, for eah pair of 25-bit words w and w

0

:

W1. [Chek the di�erene.℄ Set z w � w

0

. Rejet the word pair (w;w

0

) if

�

(z�m)�z�m

�

^m

0

6= 0, wherem = 2

20

+2

15

+2

10

+2

5

+1 andm

0

= 2

5

m;

this test eliminates ases where w and w

0

have a ommon letter in some

position. (See 7.1{(00); it turns out that 10,614,085 of the 16,568,646 word

pairs have no suh ommon letters.)

W2. [Form individual masks.℄ Set m

0

 z ^ (2

5

� 1), m

1

 z ^ (2

10

� 2

5

),

m

2

 z ^ (2

15

� 2

10

), m

3

 z ^ (2

20

� 2

15

), and m

4

 z ^ (2

25

� 2

20

), in

preparation for the next step.

W3. [Count words.℄ Set l 1 and A

0

 w; the variable l will ount how many

words starting with w we have found so far. Then perform the operations

swap(4) de�ned below.

W4. [Print a reord-setting solution.℄ If l exeeds or equals the urrent maxi-

mum, print A

j

for 0 � j < l.

The heart of this high-speed method is the sequene of operations swap(4), whih

should be expanded inline (for example with a maro-proessor) to eliminate all

11

12 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

unneessary overhead. It is de�ned in terms of the basi operation

sw(j): Set w w �m

j

. Then if w is a word, set A

l

 w and l l + 1.

Given sw(j), whih ips the letters in position j, we de�ne

swap(0) = sw(0);

swap(1) = swap(0); sw(1); swap(0);

swap(2) = swap(1); sw(2); swap(1);

swap(3) = swap(2); sw(3); swap(2);

swap(4) = swap(3); sw(4); swap(3):

(22)

Thus swap(4) expands into a sequene of 31 steps sw(0), sw(1), sw(0), sw(2),

: : : , sw(0) = sw(�(1)), sw(�(2)), : : : , sw(�(31)); these steps will be used 10

million times. We learly gain speed by embedding the ruler funtion values

�(k) diretly into our program, instead of reomputing them repeatedly for eah

word pair via Algorithm M, G, or L.

The winning pair of words generates a set of 21, namely

duks duky dues dunes dunks dinks dinky

dines dies diey diky diks piks piky

pines piney pinky pinks punks punky puks

(23)

If, for example, w = duks and w

0

= piney, then m

0

= s � y, so the �rst

operation sw(0) hanges duks to duky, whih is seen to be a word. The next

operation sw(1) applies m

1

, whih is k� e in the next-to-last letter position, so

it produes the nonword duey. Another appliation of sw(0) hanges duey to

dues (a legal term generally followed by the word teum). And so on. All word

pairs an be proessed by this method in at most a few seonds.

Further streamlining is also possible. For example, one we have found

a pair that yields k words, we an rejet later pairs as soon as they generate

33 � k nonwords. But the method we've disussed is already quite fast, and it

demonstrates the fat that even the loopless Algorithm L an be beaten.

Fans of Algorithm L may, of ourse, omplain that we have speeded up

the proess only in the small speial ase n = 5, while Algorithm L solves the

generation problem for n in general. A similar idea does, however, work also

for general values of n > 5: We an expand out a program so that it rapidly

generates all 32 settings of the rightmost bits a

4

a

3

a

2

a

1

a

0

, as above; then we an

apply Algorithm L after every 32 steps, using it to generate suessive hanges

to the other bits a

n�1

: : : a

5

. This approah redues the amount of unneessary

work done by Algorithm L by nearly a fator of 32.

Other binary Gray odes. The Gray binary ode g(0), g(1), : : : , g(2

n

� 1) is

only one of many ways to traverse all possible n-bit strings while hanging only

a single bit at eah step. Let us say that, in general, a \Gray yle" on binary

n-tuples is any sequene (v

0

; v

1

; : : : ; v

2

n

�1

) that inludes every n-tuple and has

the property that v

k

di�ers from v

(k+1) mod 2

n

in just one bit position. Thus,

in the terminology of graph theory, a Gray yle is an oriented Hamiltonian

12

7.2.1.1 GENERATING ALL n-TUPLES 13

Fig. 13.

0

0

0

0

0

0

0

�

0

0

0

1

00

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

0

1

0

�

0

1

0

1

0

1

�

1

0

1

1

1

�

1

1

1

1

1

1

1

1

1

1

�

1

1

1

0

11

�

0

1

1

0

0

1

1

0

�

1

1

0

1

1

�

0

1

1

0

0

1

1

0

�

1

1

0

1

1

1

0

1

�

1

0

1

0

1

0

�

0

1

0

0

0

�

0

0

0

(a) Complementary Gray ode.

0

0

0

0

0

0

0

�

0

0

0

1

00

�

1

0

0

1

1

0

0

1

�

0

0

1

0

0

�

1

0

0

1

1

0

0

1

1

�

0

1

1

1

�

1

1

1

1

1

1

1

1

�

1

1

1

0

1

1

1

0

�

1

1

0

0

1

1

�

0

1

1

1

0

1

�

101

0

1

0

1

0

1

0

�

0

1

0

0

�

1

0

0

1

1

0

0

1

1

�

0

1

1

1

0

1

�

1

0

1

0

1

0

1

0

�

0

1

0

0

0

�

0

0

0

(b) Balaned Gray ode.

yle on the n-ube. We an assume that subsripts have been hosen so that

v

0

= 0 : : : 0.

If we think of the v's as binary numbers, there are integers Æ

0

: : : Æ

2

n

�1

suh

that

v

(k+1) mod 2

n

= v

k

� 2

Æ

k

; for 0 � k < 2

n

; (24)

this so-alled \delta sequene" is another way to desribe a Gray yle. For

example, the delta sequene for standard Gray binary when n = 3 is 01020102;

it is essentially the ruler funtion Æ

k

= �(k+1) of (13), but the �nal value Æ

2

n

�1

is n� 1 instead of n, so that the yle loses. The individual elements Æ

k

always

lie in the range 0 � Æ

k

< n, and they are alled \oordinates."

Let d(n) be the number of di�erent delta sequenes that de�ne an n-bit

Gray yle, and let (n) be the number of \anonial" delta sequenes in whih

eah oordinate k appears before the �rst appearane of k + 1. Then d(n) =

n! (n), beause every permutation of the oordinate numbers in a delta sequene

obviously produes another delta sequene. The only possible anonial delta

sequenes for n � 3 are easily seen to be

00; 0101; 01020102 and 01210121: (25)

Therefore (1) = (2) = 1, (3) = 2; d(1) = 1, d(2) = 2, and d(3) = 12. A

straightforward omputer alulation, using tehniques for the enumeration of

Hamiltonian yles that we will study later, establishes the next values,

(4) = 112;

(5) = 15;109;096;

d(4) = 2688;

d(5) = 1;813;091;520:

(26)

No simple pattern is evident, and the numbers grow quite rapidly (see exer-

ise 45); therefore it's a fairly safe bet that nobody will ever know the exat

values of (8) and d(8).

Sine the number of possibilities is so huge, people have been enouraged

to look for Gray yles that have additional useful properties. For example,

Fig. 13(a) shows a 4-bit Gray yle in whih every string a

3

a

2

a

1

a

0

is diametrially

opposite to its omplement a

3

a

2

a

1

a

0

. Suh oding shemes are possible whenever

the number of bits is even (see exerise 49).

13

14 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

An even more interesting Gray yle, found by G. C. Tootill [Pro. IEE 103,

Part B Supplement (1956), 435℄, is shown in Fig. 13(b). This one has the same

number of hanges in eah of the four oordinate traks, hene all oordinates

share equally in the ativities. Gray yles that are balaned in a similar way an

in fat be onstruted for all larger values of n, by using the following versatile

method to extend a yle from n bits to n+ 2 bits:

Theorem D. Let �

1

j

1

�

2

j

2

: : : �

l

j

l

be a delta sequene for an n-bit Gray yle,

where eah j

k

is a single oordinate, eah �

k

is a possibly empty sequene of

oordinates, and l is odd. Then

�

1

(n+1)�

R

1

n�

1

j

1

�

2

n�

R

2

(n+1)�

2

j

2

�

3

(n+1)�

R

3

n�

3

: : : j

l�1

�

l

(n+1)�

R

l

n�

l

(n+1)�

R

l

j

l�1

�

R

l�1

: : : �

R

2

j

1

�

R

1

n

(27)

is the delta sequene of an (n+ 2)-bit Gray yle.

For example, if we start with the sequene 01020102 for n = 3 and let the three

underlined elements be j

1

, j

2

, j

3

, the new sequene (27) for a 5-bit yle is

01410301020131024201043401020103: (28)

Proof. Let �

k

have length m

k

and let v

kt

be the vertex reahed if we start at

0 : : : 0 and apply the oordinate hanges �

1

j

1

: : : �

k�1

j

k�1

and the �rst t of �

k

.

We need to prove that all verties 00v

kt

, 01v

kt

, 10v

kt

, and 11v

kt

our when (27)

is used, for 1 � k � l and 0 � t � m

k

. (The leftmost oordinate is n+1.)

Starting with 000 : : : 0 = 00v

10

, we proeed to obtain the verties

00v

11

; : : : ; 00v

1m

1

; 10v

1m

1

; : : : ; 10v

10

; 11v

10

; : : : ; 11v

1m

1

;

then j

1

yields 11v

20

, whih is followed by

11v

21

; : : : ; 11v

2m

2

; 10v

2m

2

; : : : ; 10v

20

; 00v

20

; : : : ; 00v

2m

2

;

then omes 00v

30

, et., and we eventually reah 11v

lm

l

. The glorious �nale then

uses the third line of (27) to generate all the missing verties 01v

lm

l

, : : : , 01v

10

and take us bak to 000 : : : 0.

The transition ounts (

0

; : : : ;

n�1

) of a delta sequene are de�ned by letting

j

be the number of times Æ

k

= j. For example, (28) has transition ounts

(12; 8; 4; 4; 4), and it arose from a sequene with transition ounts (4; 2; 2). If we

hoose the original delta sequene arefully and underline appropriate elements

j

k

, we an obtain transition ounts that are as equal as possible:

Corollary B. For all n � 1, there is an n-bit Gray yle with transition ounts

(

0

;

1

; : : : ;

n�1

) that satisfy the ondition

j

j

�

k

j � 2 for 0 � j < k < n. (29)

(This is the best possible balane ondition, beause eah

j

must be an even

number, and we must have

0

+

1

+ � � � +

n�1

= 2

n

. Indeed, ondition (29)

14

7.2.1.1 GENERATING ALL n-TUPLES 15

holds if and only if n� r of the ounts are equal to 2q and r are equal to 2q+2,

where q = b2

n�1

=n and r = 2

n�1

mod n.)

Proof. Given a delta sequene for an n-bit Gray yle with transition ounts

(

0

; : : : ;

n�1

), the ounts for yle (27) are obtained by starting with the values

(

0

0

; : : : ;

0

n�1

;

0

n

;

0

n+1

) = (4

0

; : : : ; 4

n�1

; l+1; l+1), then subtrating 2 from

0

j

k

for 1 � k < l and subtrating 4 from

0

j

l

. For example, when n = 3 we an obtain

a balaned 5-bit Gray yle having transition ounts (8 � 2; 16 � 10; 8; 6; 6) =

(6; 6; 8; 6; 6) if we apply Theorem D to the delta sequene 01210121. Exerise 51

works out the details for other values of n.

Another important lass of n-bit Gray yles in whih eah of the oordinate

traks has equal responsibility arises when we onsider run lengths, namely the

distanes between onseutive appearanes of the same Æ value. Standard Gray

binary ode has run length 2 in the least signi�ant position, and this an lead to

a loss of auray when preise measurements need to be made [see, for example,

the disussion by G. M. Lawrene and W. E. MClintok, Pro. SPIE 2831

(1996), 104{111℄. But all runs have length 4 or more in the remarkable 5-bit

Gray yle whose delta sequene is

(0123042103210423)

2

: (30)

Let r(n) be the maximum value r suh that an n-bit Gray yle an be

found in whih all runs have length � r. Clearly r(1) = 1, and r(2) = r(3) =

r(4) = 2; and it is easy to see that r(n) must be less than n when n > 2, hene

(30) proves that r(5) = 4. Exhaustive omputer searhes establish the values

r(6) = 4 and r(7) = 5. Indeed, a fairly straightforward baktrak alulation

for the ase n = 7 needs a tree of only about 60 million nodes to determine

that r(7) < 6, and exerise 61(a) onstruts a 7-bit yle with no run shorter

than 5. The exat values of r(n) are unknown for n � 8; but r(10) is almost

ertainly 8, and interesting onstrutions are known by whih we an prove that

r(n) = n�O(logn) as n!1. (See exerises 60{64.)

*Binary Gray paths. We have de�ned an n-bit Gray yle as a way to arrange

all binary n-tuples into a sequene (v

0

; v

1

; : : : ; v

2

n

�1

) with the property that

v

k

is adjaent to v

k+1

in the n-ube for 0 � k < 2

n

, and suh that v

2

n

�1

is

also adjaent to v

0

. The yli property is nie, but not always essential; and

sometimes we an do better without it. Therefore we say that an n-bitGray path,

also ommonly alled a Gray ode, is any sequene that satis�es the onditions

of a Gray yle exept that the last element need not be adjaent to the �rst. In

other words, a Gray yle is a Hamiltonian yle on the verties of the n-ube,

but a Gray ode is simply a Hamiltonian path on that graph.

The most important binary Gray paths that are not also Gray yles are

n-bit sequenes (v

0

; v

1

; : : : ; v

2

n

�1

) that are monotoni, in the sense that

�(v

k

) � �(v

k+2

) for 0 � k < 2

n

� 2. (31)

(Here, as elsewhere, we use � to denote the \weight" or the \sideways sum" of a

binary string, namely the number of 1s that it has.) Trial and error shows that

15

16 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

(a) (b) () (d) (e) (f) (g)

Fig. 14. Examples of

8-bit Gray odes:

a) standard;

b) balaned;

) omplementary;

d) long-run;

e) nonloal;

f) monotoni;

g) trend-free.

16

7.2.1.1 GENERATING ALL n-TUPLES 17

there are essentially only two monotoni n-bit Gray odes for eah n � 4, one

starting with 0

n

and the other starting with 0

n�1

1. The two for n = 3 are

000; 001; 011; 010; 110; 100; 101; 111; (32)

001; 000; 010; 110; 100; 101; 111; 011: (33)

The two for n = 4 are slightly less obvious, but not really diÆult to disover.

Sine �(v

k+1

) = �(v

k

) � 1 whenever v

k

is adjaent to v

k+1

, we obviously

an't strengthen (31) to the requirement that all n-tuples be stritly sorted by

weight. But relation (31) is strong enough to determine the weight of eah v

k

,

given k and the weight of v

0

, beause we know that exatly

�

n

j

�

of the n-tuples

have weight j.

Figure 14 summarizes our disussions so far, by illustrating seven of the

zillions of Gray odes that make a grand tour through all 256 of the possible

8-bit bytes. Blak squares represent ones and white squares represent zeros.

Figure 14(a) is the standard Gray binary ode, while Fig. 14(b) is balaned with

exatly 256=8 = 32 transitions in eah oordinate position. Fig. 14() is a Gray

ode analogous to Fig. 13(a), in whih the bottom 128 odes are omplements

of the top 128. In Fig. 14(d), the transitions in eah oordinate position never

our loser than �ve steps apart; in other words, all run lengths are at least 5.

The yle in Fig. 14(e) is nonloal in the sense of exerise 59. Fig. 14(f) shows

a monotoni path for n = 8; notie how blak it gets near the bottom. Finally,

Fig. 14(g) illustrates a Gray ode that is totally nonmonotoni, in the sense that

the enter of gravity of the blak squares lies exatly at the halfway point in eah

olumn. Standard Gray binary ode has this property in seven of the oordinate

positions, but Fig. 14(g) ahieves perfet blak-white weight balane in all eight.

Suh odes are alled trend-free; they are important in the design of agriultural

and other experiments (see exerises 75 and 76).

Carla Savage and Peter Winkler [J. Combinatorial Theory A70 (1995), 230{

248℄ found an elegant way to onstrut monotoni binary Gray odes for all n > 0.

Suh paths are neessarily built from subpaths P

nj

in whih all transitions are

between n-tuples of weights j and j + 1. Savage and Winkler de�ned suitable

subpaths reursively by letting P

10

= 0; 1 and, for all n > 0,

P

(n+1)j

= 1P

�

n

n(j�1)

; 0P

nj

; (34)

P

nj

= ; if j < 0 or j � n. (35)

Here �

n

is a permutation of the oordinates that we will speify later, and the

notation P

�

means that every element a

n�1

: : : a

1

a

0

of the sequene P is replaed

by b

n�1

: : : b

1

b

0

, where b

j�

= a

j

. (We don't de�ne P

�

by letting b

j

= a

j�

,

beause we want (2

j

)

�

to be 2

j�

.) It follows, for example, that

P

20

= 0P

10

= 00; 01 (36)

beause P

1(�1)

is vauous; also

P

21

= 1P

�

1

10

= 10; 11 (37)

17

18 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

beause P

11

is vauous and �

1

must be the identity permutation. In general,

P

nj

is a sequene of n-bit strings ontaining exatly

�

n�1

j

�

strings of weight j

interleaved with

�

n�1

j

�

strings of weight j + 1.

Let �

nj

and !

nj

be the �rst and last elements of P

nj

. Then we easily �nd

!

nj

= 0

n�j�1

1

j+1

, for 0 � j < n; (38)

�

n0

= 0

n

, for n > 0; (39)

�

nj

= 1�

�

n�1

(n�1)(j�1)

, for 1 � j < n. (40)

In partiular, �

nj

always has weight j, and !

nj

always has weight j+1. We will

de�ne permutations �

n

of f0; 1; : : : ; n� 1g so that both of the sequenes

P

n0

; P

R

n1

; P

n2

; P

R

n3

; : : : (41)

and P

R

n0

; P

n1

; P

R

n2

; P

n3

; : : : (42)

are monotoni binary Gray paths for n = 1, 2, 3, : : : . In fat, the monotoniity

is lear, so only the Grayness is in doubt; and the sequenes (41), (42) link up

niely beause the adjaenies

�

n0

����

n1

���� � �����

n(n�1)

; !

n0

���!

n1

���� � ����!

n(n�1)

(43)

follow immediately from (34), regardless of the permutations �

n

. Thus the

ruial point is the transition at the omma in formula (34), whih makes P

(n+1)j

a Gray subpath if and only if

!

�

n

n(j�1)

= �

nj

for 0 < j < n. (44)

For example, when n = 2 and j = 1 we need (01)

�

2

= �

21

= 10, by (38){

(40); hene �

2

must transpose oordinates 0 and 1. The general formula (see

exerise 71) turns out to be

�

n

= �

n

�

2

n�1

; (45)

where �

n

is the n-yle (n�1 : : : 1 0). The �rst few ases are therefore

�

1

= (0);

�

2

= (0 1);

�

3

= (0 2 1);

�

4

= (0 3);

�

5

= (0 4 3 2 1);

�

6

= (0 5 2 4 1 3);

no simple \losed form" for the magi permutations �

n

is apparent. Exerise 73

shows that the Savage{Winkler odes an be generated eÆiently.

Nonbinary Gray odes. We have studied the ase of binary n-tuples in

great detail, beause it is the simplest, most lassial, most appliable, and

most thoroughly explored part of the subjet. But of ourse there are numerous

appliations in whih we want to generate (a

1

; : : : ; a

n

) with oordinates in the

more general ranges 0 � a

j

< m

j

, as in Algorithm M. Gray odes apply niely

to this ase as well.

Consider, for example, deimal digits, where we want 0 � a

j

< 10 for

eah j. Is there a deimal way to ount that is analogous to the Gray binary

ode, hanging only one digit at a time? Yes; in fat, two natural shemes are

18

7.2.1.1 GENERATING ALL n-TUPLES 19

available. In the �rst, alled reeted Gray deimal, the sequene for ounting

up to a thousand with 3-digit strings has the form

000; 001; : : : ; 009; 019; 018; : : : ; 011; 010; 020; 021; : : : ; 091; 090; 190; 191; : : : ; 900;

with eah oordinate moving alternately from 0 up to 9 and then bak down from

9 to 0. In the seond, alled modular Gray deimal, the digits always inrease

by 1 mod 10, therefore they \wrap around" from 9 to 0:

000; 001; : : : ; 009; 019; 010; : : : ; 017; 018; 028; 029; : : : ; 099; 090; 190; 191; : : : ; 900:

In both ases the digit that hanges on step k is determined by the radix-ten

ruler funtion �

10

(k), the largest power of 10 that divides k. Therefore eah

n-tuple of digits ours exatly one: We generate 10

j

di�erent settings of the

rightmost j digits before hanging any of the others, for 1 � j � n.

In general, the reeted Gray ode in any mixed-radix system an be re-

garded as a permutation of the nonnegative integers, a funtion that maps an

ordinary mixed-radix number

k =

h

b

n�1

;

m

n�1

;

: : : ;

: : : ;

b

1

;

m

1

;

b

0

m

0

i

= b

n�1

m

n�2

: : :m

1

m

0

+ � � �+ b

1

m

0

+ b

0

(46)

into its reeted-Gray equivalent

ĝ(k) =

h

a

n�1

;

m

n�1

;

: : : ;

: : : ;

a

1

;

m

1

;

a

0

m

0

i

= a

n�1

m

n�2

: : :m

1

m

0

+ � � �+ a

1

m

0

+ a

0

; (47)

just as (7) does this in the speial ase of binary numbers. Let

A

j

=

h

a

n�1

;

m

n�1

;

: : : ;

: : : ;

a

j

m

j

i

; B

j

=

h

b

n�1

;

m

n�1

;

: : : ;

: : : ;

b

j

m

j

i

; (48)

with A

n

= B

n

= 0, so that when 0 � j < n we have

A

j

= m

j

A

j+1

+ a

j

and B

j

= m

j

B

j+1

+ b

j

: (49)

The rule onneting the a's and b's is not diÆult to derive by indution:

a

j

=

�

b

j

; if B

j+1

is even;

m

j

� 1� b

j

; if B

j+1

is odd.

(50)

(Here we are numbering the oordinates of the n-tuples (a

n�1

; : : : ; a

1

; a

0

) and

(b

n�1

; : : : ; b

1

; b

0

) from right to left, for onsisteny with (7) and the onven-

tions of mixed-radix notation in Eq. 4.1{(9). Readers who prefer notations like

(a

1

; : : : ; a

n

) an hange j to n � j in all the formulas if they wish.) Going the

other way, we have

b

j

=

�

a

j

; if a

j+1

+ a

j+2

+ � � � is even;

m

j

� 1� a

j

; if a

j+1

+ a

j+2

+ � � � is odd.

(51)

Curiously, rule (50) and its inverse in (51) are exatly the same when all of the

radiesm

j

are odd. In Gray ternary ode, for example, whenm

0

= m

1

= � � � = 3,

we have ĝ

�

(10010211012)

3

�

= (12210211010)

3

and also ĝ

�

(12210211010)

3

�

=

19

20 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

(10010211012)

3

. Exerise 78 proves (50) and (51), and disusses similar formulas

that hold in the modular ase.

We an in fat generate suh Gray sequenes looplessly, generalizing Algo-

rithms M and L:

Algorithm H (Loopless reeted mixed-radix Gray generation). This algorithm

visits all n-tuples (a

n�1

; : : : ; a

0

) suh that 0 � a

j

< m

j

for 0 � j < n, hanging

only one oordinate by �1 at eah step. It maintains an array of fous pointers

(f

n

; : : : ; f

0

) to ontrol the ations as in Algorithm L, together with an array of

diretions (o

n�1

; : : : ; o

0

). We assume that eah radix m

j

is � 2.

H1. [Initialize.℄ Set a

j

 0, f

j

 j, and o

j

 1, for 0 � j < n; also set f

n

 n.

H2. [Visit.℄ Visit the n-tuple (a

n�1

; : : : ; a

1

; a

0

).

H3. [Choose j.℄ Set j f

0

and f

0

 0. (As in Algorithm L, j was the rightmost

ative oordinate; all elements to its right have now been reativated.)

H4. [Change oordinate j.℄ Terminate if j = n; otherwise set a

j

 a

j

+ o

j

.

H5. [Reet?℄ If a

j

= 0 or a

j

= m

j

� 1, set o

j

 �o

j

, f

j

 f

j+1

, and

f

j+1

 j + 1. (Coordinate j has thus beome passive.) Return to H2.

A similar algorithm generates the modular variation (see exerise 77).

*Subforests. An interesting and instrutive generalization of Algorithm H,

disovered by Y. Koda and F. Ruskey [J. Algorithms 15 (1993), 324{340℄, sheds

further light on the subjet of Gray odes and loopless generation. Suppose we

have a forest of n nodes, and we want to visit all of its \prinipal subforests,"

namely all subsets of nodes S suh that if x is in S and x is not a root, the

parent of x is also in S. For example, the 7-node forest has 33 suh subsets,

orresponding to the blak nodes in the following 33 diagrams:

(52)

Notie that if we read the top row from left to right, the middle row from right

to left, and the bottom row from left to right, the status of exatly one node

hanges at eah step.

If the given forest onsists of degenerate nonbranhing trees, the prinipal

subforests are equivalent to mixed-radix numbers. For example, a forest like

has 3 � 2 � 4 � 2 prinipal subforests, orresponding to 4-tuples (x

1

; x

2

; x

3

; x

4

)

suh that 0 � x

1

< 3, 0 � x

2

< 2, 0 � x

3

< 4, and 0 � x

4

< 2; the value of x

j

is the number of nodes seleted in the jth forest. When the algorithm of Koda

20

7.2.1.1 GENERATING ALL n-TUPLES 21

and Ruskey is applied to suh a forest, it will visit the subforests in the same

order as the reeted Gray ode on radies (3; 2; 4; 2).

Algorithm K (Loopless reeted subforest generation). Given a forest whose

nodes are (1; : : : ; n) when arranged in postorder, this algorithm visits all binary

n-tuples (a

1

; : : : ; a

n

) suh that a

p

� a

q

whenever p is a parent of q. (Thus,

a

p

= 1 means that p is a node in the urrent subforest.) Exatly one bit a

j

hanges between one visit and the next. Fous pointers (f

0

; f

1

; : : : ; f

n

) analogous

to those of Algorithm L are used together with additional arrays of pointers

(l

0

; l

1

; : : : ; l

n

) and (r

0

; r

1

; : : : ; r

n

), whih represent a doubly linked list alled the

\urrent fringe." The urrent fringe ontains all nodes of the urrent subforest

and their hildren; r

0

points to its leftmost node and l

0

to its rightmost.

An auxiliary array (

0

;

1

; : : : ;

n

) de�nes the forest as follows: If p has no

hildren,

p

= 0; otherwise

p

is the leftmost (smallest) hild of p. Also

0

is the

leftmost root of the forest itself. When the algorithm begins, we assume that

r

p

= q and l

q

= p whenever p and q are onseutive hildren of the same family.

Thus, for example, the forest in (52) has the postorder numbering

1

2

3

4 5

6

7

;

therefore we should have (

0

; : : : ;

7

) = (2; 0; 1; 0; 0; 0; 4; 3) and r

2

= 7, l

7

= 2,

r

3

= 6, l

6

= 3, r

4

= 5, and l

5

= 4 at the beginning of step K1 in this ase.

K1. [Initialize.℄ Set a

j

 0 and f

j

 j for 1 � j � n, thereby making the initial

subforest empty and all nodes ative. Set f

0

 0, l

0

 n, r

n

 0, r

0

0

,

and l

0

 0, thereby putting all roots into the urrent fringe.

K2. [Visit.℄ Visit the subforest de�ned by (a

1

; : : : ; a

n

).

K3. [Choose p.℄ Set q l

0

, p f

q

. (Now p is the rightmost ative node of the

fringe.) Also set f

q

 q (thereby ativating all nodes to p's right).

K4. [Chek a

p

.℄ Terminate the algorithm if p = 0. Otherwise go to K6 if a

p

= 1.

K5. [Insert p's hildren.℄ Set a

p

 1. Then, if

p

6= 0, set q r

p

, l

q

 p � 1,

r

p�1

 q, r

p

p

, l

p

 p (thereby putting p's hildren to the right of p

in the fringe). Go to K7.

K6. [Delete p's hildren.℄ Set a

p

 0. Then, if

p

6= 0, set q r

p�1

, r

p

 q,

l

q

 p (thereby removing p's hildren from the fringe).

K7. [Make p passive.℄ (At this point we know that p is ative.) Set f

p

 f

l

p

and f

l

p

 l

p

. Return to K2.

The reader is enouraged to play through this algorithm on examples like (52),

in order to understand the beautiful mehanism by whih the fringe grows and

shrinks at just the right times.

21

22 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

*Shift register sequenes. A ompletely di�erent way to generate all n-tuples of

m-ary digits is also possible: We an generate one digit at a time, and repeatedly

work with the n most reently generated digits, thus passing from one n-tuple

(x

0

; x

1

; : : : ; x

n�1

) to another one (x

1

; : : : ; x

n�1

; x

n

) by shifting an appropriate

new digit in at the right. For example, Fig. 15 shows how all 5-bit numbers an

be obtained as bloks of 5 onseutive bits in a ertain yli pattern of length 32.

This general idea has already been disussed in some of the exerises of Setions

2.3.4.2 and 3.2.2, and we now are ready to explore it further.

Fig. 15.

A de Bruijn yle

for 5-bit numbers.

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

00100

0

1

0

0

0

1

0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

0

1

1

0

0

1

1

0

0

1

1

1

0

1

1

1

0

1

1

1

0

1

11010

1

0

1

0

1

0

1

0

1

1

1

0

1

1

0

0

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

0

0

1

1

0

0

0

1

0

0

0

0

Algorithm S (Generi shift register generation). This algorithm visits all n-

tuples (a

1

; : : : ; a

n

) suh that 0 � a

j

< m for 1 � j � n, provided that a suitable

funtion f is used in step S3.

S1. [Initialize.℄ Set a

j

 0 for �n < j � 0 and k 1.

S2. [Visit.℄ Visit the n-tuple (a

k�n

; : : : ; a

k�1

). Terminate if k = m

n

.

S3. [Advane.℄ Set a

k

 f(a

k�n

; : : : ; a

k�1

), k k + 1, and return to S2.

Every funtion f that makes Algorithm S valid orresponds to a yle of

m

n

radix-m digits suh that every ombination of n digits ours onseutively

in the yle. For example, the ase m = 2 and n = 5 illustrated in Fig. 15

orresponds to the binary yle

00000100011001010011101011011111; (53)

and the �rst m

2

digits of the in�nite sequene

0011021220313233041424344 : : : (54)

yield an appropriate yle for n = 2 and arbitrary m. Suh yles are ommonly

alled m-ary de Bruijn yles, beause N. G. de Bruijn treated the binary ase

for arbitrary n in Indagationes Mathemati� 8 (1946), 461{467.

Exerise 2.3.4.2{23 proves that exatly m!

m

n�1

=m

n

funtions f have the

required properties. That's a huge number, but only a few of those funtions are

known to be eÆiently omputable. We will disuss three kinds of f that appear

to be the most useful.

22

7.2.1.1 GENERATING ALL n-TUPLES 23

Table 1

PARAMETERS FOR ALGORITHM A

3 : 1 8 : 1; 5 13 : 1; 3 18 : 7 23 : 5 28 : 3

4 : 1 9 : 4 14 : 1; 11 19 : 1; 5 24 : 1; 3 29 : 2

5 : 2 10 : 3 15 : 1 20 : 3 25 : 3 30 : 1; 15

6 : 1 11 : 2 16 : 2; 3 21 : 2 26 : 1; 7 31 : 3

7 : 1 12 : 3; 4 17 : 3 22 : 1; 7 27 : 1; 7 32 : 1; 27

The entries `n : s' or `n : s; t' mean that the polynomials x

n

+ x

s

+ 1 or x

n

+ (x

s

+ 1)(x

t

+ 1)

are primitive modulo 2. Additional values up to n = 168 have been tabulated by W. Stahnke,

Math. Comp. 27 (1973), 977{980.

The �rst important ase ours when m is a prime number, and f is the

almost-linear reurrene

f(x

1

; : : : ; x

n

) =

8

>

<

>

:

1

; if (x

1

; x

2

; : : : ; x

n

) = (0; 0; : : : ; 0);

0; if (x

1

; x

2

; : : : ; x

n

) = (1; 0; : : : ; 0);

(

1

x

1

+

2

x

2

+ � � �+

n

x

n

) modm; otherwise.

(55)

Here the oeÆients (

1

; : : : ;

n

) must be suh that

x

n

�

n

x

n�1

� � � � �

2

x�

1

(56)

is a primitive polynomial modulo m, in the sense disussed following Eq. 3.2.2{

(9). The number of suh polynomials is '(m

n

� 1)=n, large enough to allow us

to �nd one in whih only a few of the 's are nonzero. [This onstrution goes

bak to a pioneering paper of Willem Mantel, Nieuw Arhief voor Wiskunde (2)

1 (1897), 172{184.℄

For example, suppose m = 2. We an generate binary n-tuples with a very

simple loopless proedure:

Algorithm A (Almost-linear bit-shift generation). This algorithm visits all n-

bit vetors, by using either a speial o�set s [Case 1℄ or two speial o�sets s and t

[Case 2℄, as found in Table 1.

A1. [Initialize.℄ Set (x

0

; x

1

; : : : ; x

n�1

) (1; 0; : : : ; 0) and k 0, j s. In

Case 2, also set i t and h s+ t.

A2. [Visit.℄ Visit the n-tuple (x

k�1

; : : : ; x

0

; x

n�1

; : : : ; x

k+1

; x

k

).

A3. [Test for end.℄ If x

k

6= 0, set r 0; otherwise set r r + 1, and go to A6

if r = n� 1. (We have just seen r onseutive zeros.)

A4. [Shift.℄ Set k (k � 1) mod n and j (j � 1) mod n. In Case 2 also set

i (i� 1) mod n and h (h� 1) mod n.

A5. [Compute a new bit.℄ Set x

k

 x

k

� x

j

[Case 1℄ or x

k

 x

k

� x

j

� x

i

� x

h

[Case 2℄. Return to A2.

A6. [Finish.℄ Visit (0; : : : ; 0) and terminate.

Appropriate o�set parameters s and possibly t almost ertainly exist for all n,

beause primitive polynomials are so abundant; for example, eight di�erent

hoies of (s; t) would work when n = 32, and Table 1 merely lists the smallest.

23

24 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

However, a rigorous proof of existene in all ases lies well beyond the present

state of mathematial knowledge.

Our �rst onstrution of de Bruijn yles, in (55), was algebrai, relying for

its validity on the theory of �nite �elds. A similar method that works when m

is not a prime number appears in exerise 3.2.2{21. Our next onstrution, by

ontrast, will be purely ombinatorial. In fat, it is strongly related to the idea

of modular Gray m-ary odes.

Algorithm R (Reursive de Bruijn yle generation). Suppose f() is a oroutine

that will output the suessive digits of an m-ary de Bruijn yle of length m

n

,

beginning with n zeros, when it is invoked repeatedly. This algorithm is a similar

oroutine that outputs a yle of lengthm

n+1

, provided that n � 2. It maintains

three private variables x, y, and t; variable x should initially be zero.

R1. [Output.℄ Output x. Go to R3 if x 6= 0 and t � n.

R2. [Invoke f .℄ Set y f().

R3. [Count ones.℄ If y = 1, set t t+ 1; otherwise set t 0.

R4. [Skip one?℄ If t = n and x 6= 0, go bak to R2.

R5. [Adjust x.℄ Set x (x+ y) modm and return to R1.

For example, let m = 3 and n = 2. If f() produes the in�nite 9-yle

001102122 001102122 0 : : : ; (57)

then Algorithm R will produe the following in�nite 27-yle at step R1:

y = 001021220011110212200102122 001 : : :

t = 001001000012340010000100100 001 : : :

x = 000110102220120020211122121 0001 : : :

The proof that Algorithm R works orretly is interesting and instrutive (see

exerise 93). And the proof of the next algorithm, whih doubles the window

size n, is even more so (see exerise 95).

Algorithm D (Doubly reursive de Bruijn yle generation). Suppose f()

and f

0

() are oroutines that eah will output the suessive digits of an m-ary

de Bruijn yle of length m

n

when invoked repeatedly, beginning with n zeros.

(The two yles are idential, but they must be generated by independent orou-

tines, beause we will onsume their values at di�erent rates.) This algorithm is

a similar oroutine that outputs a yle of length m

2n

. It maintains six private

variables x, y, t, x

0

, y

0

, and t

0

; variables x and x

0

should initially be m.

The speial parameter r must be set to a onstant value suh that

0 � r � m and gd(m

n

� r; m

n

+ r) = 2: (58)

The best hoie is usually r = 1 when m is odd and r = 2 when m is even.

D1. [Possibly invoke f .℄ If t 6= n or x � r, set y f().

D2. [Count repeats.℄ If x 6= y, set x y and t 1. Otherwise set t t+ 1.

D3. [Output from f .℄ Output the urrent value of x.

24

7.2.1.1 GENERATING ALL n-TUPLES 25

D4. [Invoke f

0

.℄ Set y

0

 f

0

().

D5. [Count repeats.℄ If x

0

6= y

0

, set x

0

 y

0

and t

0

 1. Otherwise set t

0

 t

0

+1.

D6. [Possibly rejet f

0

.℄ If t

0

= n and x

0

< r and either t < n or x

0

< x, go to

D4. If t

0

= n and x

0

< r and x

0

= x, go to D3.

D7. [Output from f

0

.℄ Output the urrent value of x

0

. Return to D3 if t

0

= n

and x

0

< r; otherwise return to D1.

The basi idea of Algorithm D is to output from f() and f

0

() alternately, making

speial adjustments when either sequene generates n onseutive x's for x < r.

For example, when f() and f

0

() produe the 9-yle (57), we take r = 1 and get

t in step D2: 12 31211112 12312111 12123121 11121231 21111212 : : :

x in step D3: 00001102122 00011021 22000110 21220001 102122000 : : :

t

0

in step D6: 121211112121211112121211112121211112121211112121 : : :

x

0

in step D7: 0 11021220 11021220 11021220 11021220 11021220 1 : : : ;

so the 81-yle produed in steps D3 and D7 is 00001011012 : : : 2222 00001 : : : .

The ase m = 2 of Algorithm R was disovered by Abraham Lempel [IEEE

Trans.C-19 (1970), 1204{1209℄; Algorithm D was not disovered until more than

25 years later [C. J. Mithell, T. Etzion, and K. G. Paterson, IEEE Trans. IT-

42 (1996), 1472{1478℄. By using them together, starting with simple oroutines

for n = 2 based on (54), we an build up an interesting family of ooperating

oroutines that will generate a de Bruijn yle of lengthm

n

for any desiredm � 2

and n � 2, using only O(logn) simple omputations for eah digit of output.

(See exerise 96.) Furthermore, in the simplest ase m = 2, this ombination

\R&D method" has the property that its kth output an be omputed diretly,

as a funtion of k, by doing O(n logn) simple operations on n-bit numbers.

Conversely, given any n-bit pattern �, the position of � in the yle an also be

omputed in O(n logn) steps. (See exerises 97{99.) No other family of binary

de Bruijn yles is presently known to have the latter property.

Our third onstrution of de Bruijn yles is based on the theory of prime

strings, whih will be of great importane to us when we study pattern mathing

in Chapter 9. Suppose = �� is the onatenation of two strings; we say that

� is a pre�x of and � is a suÆx. A pre�x or suÆx of is alled proper if its

length is positive but less than the length of . Thus � is a proper suÆx of ��

if and only if � 6= � and � 6= �.

De�nition P. A string is prime if it is nonempty and (lexiographially) less

than all of its proper suÆxes.

For example, 01101 is not prime, beause it is greater than 01; but 01102 is

prime, beause it is less than 1102, 102, 02, and 2. (We assume that strings are

omposed of letters, digits, or other symbols from a linearly ordered alphabet.

Lexiographi or ditionary order is the normal way to ompare strings, so we

write � < � and say that � is less than � when � is lexiographially less than �.

In partiular, we always have � � ��, and � < �� if and only if � 6= �.)

25

26 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Prime strings have often been alled Lyndon words, beause they were

introdued by R. C. Lyndon [Trans. Amer. Math. So. 77 (1954), 202{215℄;

Lyndon alled them \standard sequenes." The simpler term \prime" is justi�ed

beause of the fundamental fatorization theorem in exerise 101. We will,

however, ontinue to pay respet to Lyndon impliitly by often using the letter �

to denote strings that are prime.

Several of the most important properties of prime strings were derived by

Chen, Fox, and Lyndon in an important paper on group theory [Annals of Math.

68 (1958), 81{95℄, inluding the following easy but basi result:

Theorem P. A nonempty string that is less than all its yli shifts is prime.

(The yli shifts of a

1

: : : a

n

are a

2

: : : a

n

a

1

, a

3

: : : a

n

a

1

a

2

, : : : , a

n

a

1

: : : a

n�1

.)

Proof. Suppose = �� is not prime, beause � 6= � and � � 6= �; but suppose

 is also less than its yli shift ��. Then the onditions � � < �� imply

that = �� for some string � < �. Therefore, if is also less than its yli

shift ��, we have � < � < �� < ��. But that is impossible, beause � and �

have the same length.

Let L

m

(n) be the number ofm-ary primes of length n. Every string a

1

: : : a

n

,

together with its yli shifts, yields d distint strings for some divisor d of n,

orresponding to exatly one prime of length d. For example, from 010010 we

get also 100100 and 001001 by yli shifting, and the smallest of the periodi

parts f010; 100; 001g is the prime 001. Therefore we must have

X

dnn

dL

m

(d) = m

n

; for all m;n � 1. (59)

This family of equations an be solved for L

m

(n) using exerise 4.5.3{28(a), and

we obtain

L

m

(n) =

1

n

X

dnn

�(d)m

n=d

: (60)

During the 1970s, Harold Fredriksen and James Maiorana disovered a

beautifully simple way to generate all of the m-ary primes of length n or less,

in inreasing order [Disrete Math. 23 (1978), 207{210℄. Before we are ready to

understand their algorithm, we need to onsider the n-extension of a nonempty

string �, namely the �rst n haraters of the in�nite string ��� : : : . For example,

the 10-extension of 123 is 1231231231. In general if j�j = k, its n-extension is

�

bn=k

�

0

, where �

0

is the pre�x of � whose length is nmod k.

De�nition Q. A string is preprime if it is a nonempty pre�x of a prime, on

some alphabet.

Theorem Q. A string of length n > 0 is preprime if and only if it is the n-

extension of a prime string � of length k � n. This prime string is uniquely

determined.

Proof. See exerise 105.

26

7.2.1.1 GENERATING ALL n-TUPLES 27

Theorem Q states, in essene, that there is a one-to-one orrespondene between

primes of length � n and preprimes of length n. The following algorithm

generates all of the m-ary instanes, in inreasing order.

Algorithm F (Prime and preprime string generation). This algorithm visits

all m-ary n-tuples (a

1

; : : : ; a

n

) suh that the string a

1

: : : a

n

is preprime. It also

identi�es the index j suh that a

1

: : : a

n

is the n-extension of the prime a

1

: : : a

j

.

F1. [Initialize.℄ Set a

1

 � � � a

n

 0 and j 1; also set a

0

 �1.

F2. [Visit.℄ Visit (a

1

; : : : ; a

n

) with index j.

F3. [Prepare to inrease.℄ Set j n. Then if a

j

= m � 1, derease j until

�nding a

j

< m� 1.

F4. [Add one.℄ Terminate if j = 0. Otherwise set a

j

 a

j

+ 1. (Now a

1

: : : a

j

is

prime, by exerise 105(a).)

F5. [Make n-extension.℄ For k j + 1, : : : , n (in this order) set a

k

 a

k�j

.

Return to F2.

For example, Algorithm F visits 32 ternary preprimes when m = 3 and n = 4:

0

^

000 0011

^

0022

^

0111

^

0122

^

0212

^

1

^

111 12

^

12

0001

^

0012

^

01

^

01 0112

^

02

^

02 022

^

0 1112

^

122

^

1

0002

^

002

^

0 0102

^

012

^

0 021

^

0 0221

^

112

^

1 1222

^

001

^

0 0021

^

011

^

0 0121

^

0211

^

0222

^

1122

^

2

^

222

(61)

(The digits preeding `

^

' are the prime strings 0, 0001, 0002, 001, 0011, : : : , 2.)

Theorem Q explains why this algorithm is orret, beause steps F3 and F4

obviously �nd the smallest m-ary prime of length � n that exeeds the previous

preprime a

1

: : : a

n

. Notie that after a

1

inreases from 0 to 1, the algorithm

proeeds to visit all the (m� 1)-ary primes and preprimes, inreased by 1 : : : 1.

Algorithm F is quite beautiful, but what does it have to do with de Bruijn

yles? Here now omes the punh line: If we output the digits a

1

, : : : , a

j

in

step F2 whenever j is a divisor of n, the sequene of all suh digits forms a de

Bruijn yle! For example, in the ase m = 3 and n = 4, the following 81 digits

are output:

0 0001 0002 0011 0012 0021 0022 01 0102 0111 0112

0121 0122 02 0211 0212 0221 0222 1 1112 1122 12 1222 2: (62)

(We omit the primes 001, 002, 011, : : : , 122 of (61) beause their length does

not divide 4.) The reasons underlying this almost magial property are explored

in exerise 108. Notie that the yle has the orret length, by (59).

There is a sense in whih the outputs of this proedure are atually equiva-

lent to the \granddaddy" of all de Bruijn yle onstrutions that work for all m

and n, namely the onstrution �rst published by M. H. Martin in Bull. Amer.

Math. So. 40 (1934), 859{864: Martin's original yle for m = 3 and n = 4

was 2222122202211 : : : 10000, the twos' omplement of (62). In fat, Fredriksen

and Maiorana disovered Algorithm F almost by aident while looking for a

27

28 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

simple way to generate Martin's sequene. The expliit onnetion between

their algorithm and preprime strings was not notied until many years later,

when Ruskey, Savage, and Wang arried out a areful analysis of the running

time [J. Algorithms 13 (1992), 414{430℄. The prinipal results of that analysis

appear in exerise 107, namely

i) The average value of n� j in steps F3 and F5 is approximately 1=(m� 1).

ii) The total running time to produe a de Bruijn yle like (62) is O(m

n

).

EXERCISES

1. [10 ℄ Explain how to generate all n-tuples (a

1

; : : : ; a

n

) in whih l

j

� a

j

� u

j

, given

lower bounds l

j

and upper bounds u

j

for eah oordinate. (Assume that l

j

� u

j

.)

2. [15 ℄ What is the 1000000th n-tuple visited by Algorithm M if n = 10 and m

j

= j

for 1 � j � n? Hint: [

0;

1;

0;

2;

1;

3;

2;

4;

3;

5;

0;

6;

2;

7;

7;

8;

1;

9;

0

10

℄ = 1000000.

x 3. [M20 ℄ How many times does Algorithm M perform step M4?

x 4. [18 ℄ On most omputers it is faster to ount down to 0 rather than up to m.

Revise Algorithm M so that it visits all n-tuples in the opposite order, starting with

(m

1

� 1; : : : ;m

n

� 1) and �nishing with (0; : : : ; 0).

x 5. [20 ℄ Algorithms suh as the \fast Fourier transform" (exerise 4.6.4{14) often

end with an array of answers in bit-reeted order, having A[(b

0

: : : b

n�1

)

2

℄ in the plae

where A[(b

n�1

: : : b

0

)

2

℄ is desired. What is a good way to rearrange the answers into

proper order? [Hint: Reet Algorithm M.℄

6. [M17 ℄ Prove (7), the basi formula for Gray binary ode.

7. [20 ℄ Figure 10(b) shows the Gray binary ode for a disk that is divided into 16

setors. What would be a good Gray-like ode to use if the number of setors were 12

or 60 (for hours or minutes on a lok), or 360 (for degrees in a irle)?

8. [15 ℄ What's an easy way to run through all n-bit strings of even parity, hanging

only two bits at eah step?

9. [16 ℄ What move should follow Fig. 11, when solving the Chinese ring puzzle?

x 10. [M21 ℄ Find a simple formula for the total number of steps A

n

or B

n

in whih a

ring is (a) removed or (b) replaed, in the shortest proedure for removing n Chinese

rings. For example, A

3

= 4 and B

3

= 1.

11. [M22 ℄ (H. J. Purkiss, 1865.) The two smallest rings of the Chinese ring puzzle

an atually be taken on or o� the bar simultaneously. How many steps does the puzzle

require when suh aelerated moves are permitted?

x 12. [25 ℄ The ompositions of n are the sequenes of positive integers that sum to n.

For example, the ompositions of 4 are 1111, 112, 121, 13, 211, 22, 31, and 4. An integer

n has exatly 2

n�1

ompositions, orresponding to all subsets of the points f1; : : : ; n�1g

that might be used to break the interval (0 : : n) into integer-sized subintervals.

a) Design a loopless algorithm to generate all ompositions of n, representing eah

omposition as a sequential array of integers s

1

s

2

: : : s

j

.

b) Similarly, design a loopless algorithm that represents the ompositions impliitly

in an array of pointers q

0

q

1

: : : q

t

, where the elements of the omposition are

(q

0

� q

1

)(q

1

� q

2

) : : : (q

t�1

� q

t

) and we have q

0

= n, q

t

= 0. For example, the

omposition 211 would be represented under this sheme by the pointers q

0

= 4,

q

1

= 2, q

2

= 1, q

3

= 0, and with t = 3.

28

7.2.1.1 GENERATING ALL n-TUPLES 29

13. [21 ℄ Continuing the previous exerise, ompute also the multinomial oeÆient

C =

�

n

s

1

;:::;s

j

�

for use as the omposition s

1

: : : s

j

is being visited.

14. [20 ℄ Design an algorithm to generate all strings a

1

: : : a

j

suh that 0 � j � n and

0 � a

i

< m

i

for 1 � i � j, in lexiographi order. For example, if m

1

= m

2

= n = 2,

your algorithm should suessively visit �, 0, 00, 01, 1, 10, 11.

x 15. [25 ℄ Design a loopless algorithm to generate the strings of the previous exerise.

All strings of the same length should be visited in lexiographi order as before, but

strings of di�erent lengths an be intermixed in any onvenient way. For example,

0, 00, 01, �, 10, 11, 1 is an aeptable order when m

1

= m

2

= n = 2.

16. [23 ℄ A loopless algorithm obviously annot generate all binary vetors (a

1

; : : : ; a

n

)

in lexiographi order, beause the number of oordinates a

j

that need to hange

between suessive visits is not bounded. Show, however, that loopless lexiographi

generation does beome possible if a linked representation is used instead of a sequential

one: Suppose there are 2n + 1 nodes f0; 1; : : : ; 2ng, eah ontaining a LINK �eld. The

binary n-tuple (a

1

; : : : ; a

n

) is represented by letting

LINK(0) = 1 + na

1

;

LINK(j � 1 + na

j�1

) = j + na

j

; for 1 < j � n;

LINK(n+ na

n

) = 0;

the other n LINK �elds an have any onvenient values.

17. [20 ℄ A well-known onstrution alled the Karnaugh map [M. Karnaugh, Amer.

Inst. Elet. Eng. Trans. 72, part I (1953), 593{599℄ uses Gray binary ode in two

dimensions to display all 4-bit numbers in a 4� 4 torus:

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

(The entries of a torus \wrap around" at the left and right and also at the top and

bottom|just as if they were tiles, repliated in�nitely often in a plane.) Show that,

similarly, all 6-bit numbers an be arranged in an 8�8 torus so that only one oordinate

hanges when we move north, south, east, or west from any point.

x 18. [20 ℄ The Lee weight of a vetor u = (u

1

; : : : ; u

n

), where eah omponent satis�es

0 � u

j

< m

j

, is de�ned to be

�

L

(u) =

n

X

j=1

min(u

j

;m

j

� u

j

);

and the Lee distane between two suh vetors u and v is

d

L

(u; v) = �

L

(u� v); where u� v = ((u

1

� v

1

) modm

1

; : : : ; (u

n

� v

n

) modm

n

):

(This is the minimum number of steps needed to hange u to v if we adjust some

omponent u

j

by �1 (modulo m

j

) in eah step.)

A quaternary vetor has m

j

= 4 for 1 � j � n, and a binary vetor has all m

j

= 2.

Find a simple one-to-one orrespondene between quaternary vetors u = (u

1

; : : : ; u

n

)

and binary vetors u

0

= (u

0

1

; : : : ; u

0

2n

), with the property that �

L

(u) = �(u

0

) and

d

L

(u; v) = �(u

0

� v

0

).

29

30 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

19. [21 ℄ (The otaode.) Let g(x) = x

3

+ 2x

2

+ x� 1.

a) Use one of the algorithms in this setion to evaluate

P

z

u

0

z

u

1

z

u

2

z

u

3

z

u

4

z

u

5

z

u

6

z

u

1

,

summed over all 256 polynomials

(v

0

+v

1

x+v

2

x

2

+v

3

x

3

)g(x) mod 4 = u

0

+u

1

x+u

2

x

2

+u

3

x

3

+u

4

x

4

+u

5

x

5

+u

6

x

6

for 0 � v

0

; v

1

; v

2

; v

3

< 4, where u

1

is hosen so that 0 � u

1

< 4 and (u

0

+ u

1

+

u

2

+ u

3

+ u

4

+ u

5

+ u

6

+ u

1

) mod 4 = 0.

b) Construt a set of 256 16-bit numbers that di�er from eah other in at least six

di�erent bit positions. (Suh a set, �rst disovered by Nordstrom and Robinson

[Information and Control 11 (1967), 613{616℄, is essentially unique.)

20. [M36 ℄ The 16-bit odewords in the previous exerise an be used to transmit 8

bits of information, allowing transmission errors to be orreted if any one or two bits

are orrupted; furthermore, mistakes will be deteted (but not neessarily orretable)

if any three bits are reeived inorretly. Devise an algorithm that either �nds the

nearest odeword to a given 16-bit number u

0

or determines that at least three bits of

u

0

are erroneous. How does your algorithm deode the number (1100100100001111)

2

?

[Hint: Use the fats that x

7

� 1 (modulo g(x) and 4), and that every quaternary

polynomial of degree < 3 is ongruent to x

j

+ 2x

k

(modulo g(x) and 4) for some

j; k 2 f0; 1; 2; 3; 4; 5; 6;1g, where x

1

= 0.℄

21. [M30 ℄ A t-subube of an n-ube an be represented by a string like ��10��0�,

ontaining t asterisks and n � t spei�ed bits. If all 2

n

binary n-tuples are written in

lexiographi order, the elements belonging to suh a subube appear in 2

t

0

lusters

of onseutive entries, where t

0

is the number of asterisks that lie to the left of the

rightmost spei�ed bit. (In the example given, n = 8, t = 5, and t

0

= 4.) But if the

n-tuples are written in Gray binary order, the number of lusters might be redued.

For example, the (n� 1)-sububes � : : : �0 and � : : : �1 our in only 2

n�2

+1 and 2

n�2

lusters, respetively, when Gray binary order is used, not in 2

n�1

of them.

a) Explain how to ompute C(�), the number of Gray binary lusters of the subube

de�ned by a given string � of asterisks, 0s, and 1s. What is C(��10��0�)?

b) Prove that C(�) always lies between 2

t

0

�1

and 2

t

0

, inlusive.

) What is the average value of C(�), over all 2

n�t

�

n

t

�

possible t-sububes?

x 22. [22 ℄ A \right subube" is a subube suh as 0110�� in whih all the asterisks

appear after all the spei�ed digits. Any binary trie (Setion 6.3) an be regarded as a

way to partition a ube into disjoint right sububes, as in Fig. 16(a). If we interhange

the left and right subtries of every right subtrie, proeeding downward from the root,

we obtain a Gray binary trie, as in Fig. 16(b).

Prove that if the \lieves" of a Gray binary trie are traversed in order, from left to

right, onseutive lieves orrespond to adjaent sububes. (Sububes are adjaent if

they ontain adjaent verties. For example, 00�� is adjaent to 011� beause the �rst

ontains 0010 and the seond ontains 0110; but 011� is not adjaent to 10��.)

Fig. 16.

00��

010� 011� 100�

1010 1011

11��

(a) Normal binary trie.

00��

010�011� 100�

1010 1011

11��

(b) Gray binary trie.

30

7.2.1.1 GENERATING ALL n-TUPLES 31

23. [20 ℄ Suppose g(k)� 2

j

= g(l). What is a simple way to �nd l, given j and k?

24. [M21 ℄ Consider extending the Gray binary funtion g to all 2-adi integers (see

exerise 4.1{31). What is the orresponding inverse funtion g

[�1℄

?

x 25. [M25 ℄ Prove that if g(k) and g(l) di�er in t > 0 bits, and if 0 � k; l < 2

n

, then

d2

t

=3e � jk � lj � 2

n

� d2

t

=3e.

26. [25 ℄ (Frank Ruskey.) For whih integers N is it possible to generate all of the

nonnegative integers less than N in suh a way that only one bit of the binary repre-

sentation hanges at eah step?

x 27. [20 ℄ Let S

0

= f1g and S

n+1

= 1=(2 + S

n

) [1=(2� S

n

); thus, for example,

S

2

=

8

>

>

<

>

>

:

1

2 +

1

2 + 1

;

1

2 +

1

2� 1

;

1

2�

1

2 + 1

;

1

2�

1

2� 1

9

>

>

=

>

>

;

=

�

3

7

;

1

3

;

3

5

; 1

�

;

and S

n

has 2

n

elements that lie between

1

3

and 1. Compute the 10

10

th smallest element

of S

100

.

28. [M27 ℄ A median of n-bit strings f�

1

; : : : ; �

t

g, where �

k

has the binary represen-

tation �

k

= a

k(n�1)

: : : a

k0

, is a string �̂ = a

n�1

: : : a

0

whose bits a

j

for 0 � j < n

agree with the majority of the bits a

kj

for 1 � k � t. (If t is even and the bits

�

kj

are half 0 and half 1, the median bit a

j

an be either 0 or 1.) For example, the

strings f0010; 0100; 0101; 1110g have two medians, 0100 and 0110, whih we an denote

by 01�0.

a) Find a simple way to desribe the medians of G

t

= fg(0); : : : ; g(t� 1)g, the �rst t

Gray binary strings, when 0 < t � 2

n

.

b) Prove that if � = a

n�1

: : : a

0

is suh a median, and if 2

n�1

< t < 2

n

, then the

string � obtained from � by omplementing any bit a

j

is also an element of G

t

.

29. [M24 ℄ If integer values k are transmitted as n-bit Gray binary odes g(k) and

reeived with errors desribed by a bit pattern p = (p

n�1

: : : p

0

)

2

, the average numerial

error is

1

2

n

2

n

�1

X

k=0

�

�

�

(g

[�1℄

(k)� p)� k

�

�

�

;

assuming that all values of k are equally likely. Show that this sum is equal to

P

2

n

�1

k=0

j(k � p) � kj=2

n

, just as if Gray binary ode were not used, and evaluate it

expliitly.

x 30. [M27 ℄ (Gray permutation.) Design a one-pass algorithm to replae the array

elements (X

0

;X

1

;X

2

; : : : ; X

2

n

�1

) by (X

g(0)

;X

g(1)

;X

g(2)

; : : : ;X

g(2

n

�1)

), using only a

onstant amount of auxiliary storage. Hint: Considering the funtion g(n) as a per-

mutation of all nonnegative integers, show that the set

L = f0; 1; (10)

2

; (100)

2

; (100�)

2

; (100�0)

2

; (100�0�)

2

; : : : g

is the set of yle leaders (the smallest elements of the yles).

31. [HM35 ℄ (Gray �elds.) Let f

n

(x) = g(r

n

(x)) denote the operation of reeting

the bits of an n-bit binary string as in exerise 5 and then onverting to Gray binary

ode. For example, the operation f

3

(x) takes (001)

2

7! (110)

2

7! (010)

2

7! (011)

2

7!

(101)

2

7! (111)

2

7! (100)

2

7! (001)

2

, hene all of the nonzero possibilities appear in

31

32 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

a single yle. Therefore we an use f

3

to de�ne a �eld of 8 elements, with � as the

addition operator and with multipliation de�ned by the rule

f

[j℄

3

(1)� f

[k℄

3

(1) = f

[j+k℄

3

(1) = f

[j℄

3

(f

[k℄

3

(1)):

The funtions f

2

, f

5

, and f

6

have the same nie property. But f

4

does not, beause

f

4

((1011)

2

) = (1011)

2

.

Find all n � 100 for whih f

n

de�nes a �eld of 2

n

elements.

32. [M20 ℄ True or false: Walsh funtions satisfy w

k

(�x) = (�1)

k

w

k

(x).

x 33. [M20 ℄ Prove the Rademaher-to-Walsh law (17).

34. [M21 ℄ The Paley funtions p

k

(x) are de�ned by

p

0

(x) = 1 and p

k

(x) = (�1)

b2xk

p

bk=2

(2x):

Show that p

k

(x) has a simple expression in terms of Rademaher funtions, analogous

to (17), and relate Paley funtions to Walsh funtions.

35. [HM23 ℄ The 2

n

� 2

n

Paley matrix P

n

is obtained from Paley funtions just as

the Walsh matrix W

n

is obtained from Walsh funtions. (See (20).) Find interesting

relations between P

n

,W

n

, and the Hadamard matrix H

n

. Prove that all three matries

are symmetri.

36. [21 ℄ Spell out the details of an eÆient algorithm to ompute the Walsh transform

(x

0

; : : : ; x

2

n

�1

) of a given vetor (X

0

; : : : ;X

2

n

�1

).

37. [HM23 ℄ Let z

kl

be the loation of the lth sign hange in w

k

(x), for 1 � l � k and

0 < z

kl

< 1. Prove that jz

kl

� l=(k + 1)j = O((log k)=k).

x 38. [M25 ℄ Devise a ternary generalization of Walsh funtions.

x 39. [HM30 ℄ (J. J. Sylvester.) The rows of (

a

b

b

�a

) are orthogonal to eah other and

have the same magnitude; therefore the matrix identity

(A B)

�

a

2

+ b

2

0

0 a

2

+ b

2

��

A

B

�

=

(A B)

�

a b

b �a

��

a b

b �a

��

A

B

�

=

(Aa+Bb Ab� Ba)

�

aA+ bB

bA� aB

�

implies the sum-of-two-squares identity (a

2

+ b

2

)(A

2

+B

2

) = (aA+ bB)

2

+(bA�aB)

2

.

Similarly, the matrix

0

B

B

�

a b d

b �a d �

d �b �a

 �d �a b

1

C

C

A

leads to the sum-of-four-squares identity

(a

2

+b

2

+

2

+d

2

)(A

2

+B

2

+C

2

+D

2

) = (aA+bB+C+dD)

2

+(bA�aB+dC�D)

2

+ (dA+ B � bC � aD)

2

+ (A� dB � aC + bD)

2

:

a) Attah the signs of the matrix H

3

in (21) to the symbols fa; b; ; d; e; f; g; hg,

obtaining a matrix with orthogonal rows and a sum-of-eight-squares identity.

b) Generalize to H

4

and higher-order matries.

x 40. [21 ℄ Would the text's �ve-letter word omputation sheme produe orret an-

swers also if the masks in step W2 were omputed as m

j

= x^ (2

5j

� 1) for 0 � j < 5?

32

7.2.1.1 GENERATING ALL n-TUPLES 33

41. [25 ℄ If we restrit the �ve-letter word problem to the most ommon 3000 words|

thereby eliminating duky, dues, dunks, dinks, dinky, dies, diey, diky, diks,

piky, pinky, punky, and puks from (23)|how many valid words an still be gener-

ated from a single pair?

42. [35 ℄ (M. L. Fredman.) Algorithm L uses �(n logn) bits of auxiliary memory for

fous pointers as it deides what Gray binary bit a

j

should be omplemented next.

On eah step L3 it examines �(logn) of the auxiliary bits, and it oasionally hanges

(logn) of them.

Show that, from a theoretial standpoint, we an do better: The n-bit Gray binary

ode an be generated by hanging at most 2 auxiliary bits between visits. (We still

allow ourselves to examine O(logn) of the auxiliary bits on eah step, so that we know

whih of them should be hanged.)

43. [47 ℄ Determine d(6), the number of 6-bit Gray yles.

44. [M37 ℄ Show that arbitrary delta sequenes for Gray yles on n� 1 or n� 2 bits

an be used to onstrut a large number of delta sequenes for n-bit Gray yles with

the property that exatly (a) one or (b) two of the oordinate names our only twie.

45. [M25 ℄ Prove that the sequene d(n) has doubly exponential growth: There is a

onstant A > 1 suh that d(n) =
(A

2

n

).

46. [HM48 ℄ Determine the asymptoti behavior of d(n)

1=2

n

as n!1.

47. [M46 ℄ (Silverman, Vikers, and Sampson.) Let S

k

= fg(0); : : : ; g(k � 1)g be the

�rst k elements of the standard Gray binary ode, and let H(k; v) be the number

of Hamiltonian paths in S

k

that begin with 0 and end with v. Prove or disprove:

H(k; v) � H(k; g(k � 1)) for all v 2 S

k

that are adjaent to g(k).

48. [36 ℄ Prove that d(n) � 4(n=2)

2

n

if the onjeture in the previous exerise is true.

[Hint: Let d(n; k) be the number of n-bit Gray yles that begin with g(0) : : : g(k� 1);

the onjeture implies that d(n) �

n1

: : :

n(k�1)

d(n; k), where

nk

is the number of

verties adjaent to g(k � 1) in the n-ube but not in S

k

.℄

49. [20 ℄ Prove that for all n � 1 there is a 2n-bit Gray yle in whih v

k+2

2n�1

is the

omplement of v

k

, for all k � 0.

x 50. [21 ℄ Find a onstrution like that of Theorem D but with l even.

51. [M24 ℄ Complete the proof of Corollary B to Theorem D.

52. [M20 ℄ Prove that if the transition ounts of an n-bit Gray yle satisfy

0

�

1

�

� � � �

n�1

, we must have

0

+ � � �+

j�1

� 2

j

, with equality when j = n.

53. [M46 ℄ If the numbers (

0

; : : : ;

n�1

) are even and satisfy the ondition of the

previous exerise, is there always an n-bit Gray yle with these transition ounts?

54. [M20 ℄ (H. S. Shapiro, 1953.) Show that if a sequene of integers (a

1

; : : : ; a

2

n

) on-

tains only n distint values, then there is a subsequene whose produt a

k+1

a

k+2

: : : a

l

is a perfet square, for some 0 � k < l � 2

n

. However, this onlusion might not be

true if we disallow the ase l = 2

n

.

55. [47 ℄ (F. Ruskey and C. Savage, 1993.) If (v

0

; : : : ; v

2

n

�1

) is an n-bit Gray yle,

the pairs f fv

2k

; v

2k+1

g j 0 � k < 2

n�1

g form a perfet mathing between the verties

of even and odd parity in the n-ube. Conversely, does every suh perfet mathing

arise as \half" of some n-bit Gray yle?

56. [M30 ℄ (E. N. Gilbert, 1958.) Say that two Gray yles are equivalent if their delta

sequenes an be made equal by permuting the oordinate names, or by reversing the

33

34 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

yle and/or starting the yle at a di�erent plae. Show that the 2688 di�erent 4-bit

Gray yles fall into just 9 equivalene lasses.

57. [32 ℄ Consider a graph whose verties are the 2688 possible 4-bit Gray yles,

where two suh yles are adjaent if they are related by one of the following simple

transformations:

Before After Type 1 After Type 2 After Type 3 After Type 4

(Type 1 hanges arise when the yle an be broken into two parts and reassembled

with one part reversed. Types 2, 3, and 4 arise when the yle an be broken into three

parts and reassembled after reversing 0, 1, or 2 of the parts. The parts need not have

equal size. Suh transformations of Hamiltonian yles are often possible.)

Write a program to disover whih 4-bit Gray yles are transformable into eah

other, by �nding the onneted omponents of the graph; restrit onsideration to only

one of the four types at a time.

x 58. [21 ℄ Let � be the delta sequene of an n-bit Gray yle, and obtain � from � by

hanging q ourrenes of 0 to n, where q is odd. Prove that �� is the delta sequene

of an (n+ 1)-bit Gray yle.

59. [22 ℄ The 5-bit Gray yle of (30) is nonloal in the sense that no 2

t

onseutive

elements belong to a single t-subube, for 1 < t < n. Prove that nonloal n-bit Gray

yles exist for all n � 5. [Hint: See the previous exerise.℄

60. [20 ℄ Show that the run-length-bound funtion satis�es r(n+ 1) � r(n).

61. [M30 ℄ Show that r(m + n) � r(m) + r(n) � 1 if (a) m = 2 and 2 < r(n) < 8; or

(b) m � n and r(n) � 2

m�3

.

62. [46 ℄ Does r(8) = 6?

63. [30 ℄ (Luis Goddyn.) Prove that r(10) � 8.

x 64. [HM35 ℄ (L. Goddyn and P. Gvozdjak.) An n-bit Gray stream is a sequene of

permutations (�

0

; �

1

; : : : ; �

l�1

) where eah �

k

is a permutation of the verties of the

n-ube, taking every vertex to one of its neighbors.

a) Suppose (u

0

; : : : ; u

2

m

�1

) is an m-bit Gray yle and (�

0

; �

1

; : : : ; �

2

m

�1

) is an n-bit

Gray stream. Let v

0

= 0 : : : 0 and v

k+1

= v

k

�

k

, where �

k

= �

kmod 2

m

if k � 2

m

.

Under what onditions is the sequene

W = (u

0

v

0

; u

0

v

1

; u

1

v

1

; u

1

v

2

; : : : ; u

2

m+n�1

�1

v

2

m+n�1

�1

; u

2

m+n�1

�1

v

2

m+n�1

)

an (m+ n)-bit Gray yle?

b) Show that if m is suÆiently large, there is an n-bit Gray stream satisfying the

onditions of (a) for whih all run lengths of the sequene (v

0

; v

1

; : : :) are � n� 2.

) Apply these results to prove that r(n) � n�O(logn).

65. [30 ℄ (Brett Stevens.) In Samuel Bekett's play Quad, the stage begins and ends

empty; n ators enter and exit one at a time, running through all 2

n

possible subsets,

and the ator who leaves is always the one whose previous entrane was earliest. When

n = 4, as in the atual play, some subsets are neessarily repeated. Show, however,

that there is a perfet pattern with exatly 2

n

entranes and exits when n = 5.

34

7.2.1.1 GENERATING ALL n-TUPLES 35

66. [40 ℄ Is there a perfet Bekett{Gray pattern for 8 ators?

67. [20 ℄ Sometimes it is desirable to run through all n-bit binary strings by hanging

as many bits as possible from one step to the next, for example when testing a physial

iruit for reliable behavior in worst-ase onditions. Explain how to traverse all binary

n-tuples in suh a way that eah step hanges n or n� 1 bits, alternately.

68. [21 ℄ Rufus Q. Perverse deided to onstrut an anti-Gray ternary ode, in whih

eah n-trit number di�ers from its neighbors in every digit position. Is suh a ode

possible for all n?

x 69. [M25 ℄ Modify the de�nition of Gray binary ode (7) by letting

h(k) = (: : : (b

6

� b

5

)(b

5

� b

4

)(b

4

� b

3

� b

2

� b

0

)(b

3

� b

0

)(b

2

� b

1

� b

0

)b

1

)

2

;

when k = (: : : b

5

b

4

b

3

b

2

b

1

b

0

)

2

.

a) Show that the sequene h(0), h(1), : : : , h(2

n

� 1) runs through all n-bit numbers

in suh a way that exatly 3 bits hange eah time, when n > 3.

b) Generalize this rule to obtain sequenes in whih exatly t bits hange at eah

step, when t is odd and n > t.

70. [21 ℄ How many monotoni n-bit Gray odes exist for n = 5 and n = 6?

71. [M22 ℄ Derive (45), the reurrene that de�nes the Savage{Winkler permutations.

72. [20 ℄ What is the Savage{Winkler ode from 00000 to 11111?

x 73. [32 ℄ Design an eÆient algorithm to onstrut the delta sequene of an n-bit

monotoni Gray ode.

74. [M25 ℄ (Savage and Winkler.) How far apart an adjaent verties of the n-ube

be, in a monotoni Gray ode?

75. [32 ℄ Find all 5-bit Gray paths v

0

, : : : , v

31

that are trend-free, in the sense that

P

31

k=0

k(�1)

v

kj

= 0 in eah oordinate position j.

76. [M25 ℄ Prove that trend-free n-bit Gray odes exist for all n � 5.

77. [21 ℄ Modify Algorithm H in order to visit mixed-radix n-tuples in modular Gray

order.

78. [M26 ℄ Prove the onversion formulas (50) and (51) for reeted mixed-radix Gray

odes, and derive analogous formulas for the modular ase.

x 79. [M22 ℄ When is the last n-tuple of the (a) reeted (b) modular mixed-radix Gray

ode adjaent to the �rst?

80. [M20 ℄ Explain how to run through all divisors of a number, given its prime

fatorization p

e

1

1

: : : p

e

t

t

, repeatedly multiplying or dividing by a single prime at eah

step.

81. [M21 ℄ Let (a

0

; b

0

), (a

1

; b

1

), : : : , (a

m

2

�1

; b

m

2

�1

) be the 2-digit m-ary modular

Gray ode. Show that, if m > 2, every edge (x; y)���(x; (y + 1) modm) and (x; y)���

((x+ 1) modm; y) ours in one of the two yles

(a

0

; b

0

)���(a

1

; b

1

)���� � ����(a

m

2

�1

; b

m

2

�1

)���(a

0

; b

0

);

(b

0

; a

0

)���(b

1

; a

1

)���� � ����(b

m

2

�1

; a

m

2

�1

)���(b

0

; a

0

):

x 82. [M25 ℄ (G. Ringel, 1956.) Use the previous exerise to dedue that there exist four

8-bit Gray yles that, together, over all edges of the 8-ube.

83. [41 ℄ Can four balaned 8-bit Gray yles over all edges of the 8-ube?

35

36 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

x 84. [25 ℄ (Howard L. Dykman.) Figure 17 shows a fasinating puzzle alled Loony

Loop or the Gordian Knot, in whih the objet is to remove a exible ord from the

rigid loops that surround it. Show that the solution to this puzzle is inherently related

to the reeted Gray ternary ode.

Fig. 17. The Loony Loop puzzle.

x 85. [M25 ℄ (Dana Rihards.) If � = (�

0

; : : : ; �

t�1

) is a sequene of t strings of length n

and �

0

= (�

0

0

; : : : ; �

0

t

0

�1

) is a sequene of t

0

strings of length n

0

, the boustrophedon

produt ���

0

is the sequene of tt

0

strings of length n+ n

0

that begins

(�

0

�

0

0

; : : : ; �

0

�

0

t

0

�1

; �

1

�

0

t

0

�1

; : : : ; �

1

�

0

0

; �

2

�

0

0

; : : : ; �

2

�

0

t

0

�1

; �

3

�

0

t

0

�1

; : : :)

and ends with �

t�1

�

0

0

if t is even, �

t�1

�

0

t

0

�1

if t is odd. For example, the basi de�nition

of Gray binary ode in (5) an be expressed in this notation as �

n

= (0; 1)��

n�1

when

n > 0. Prove that the operation� is assoiative, hene �

m+n

= �

m

��

n

.

x 86. [26 ℄ De�ne an in�nite Gray ode that runs through all possible nonnegative

integer n-tuples (a

1

; : : : ; a

n

) in suh a way that max(a

1

; : : : ; a

n

) � max(a

0

1

; : : : ; a

0

n

)

when (a

1

; : : : ; a

n

) is followed by (a

0

1

; : : : ; a

0

n

).

87. [27 ℄ Continuing the previous exerise, de�ne an in�nite Gray ode that runs

through all integer n-tuples (a

1

; : : : ; a

n

), in suh a way that max(ja

1

j; : : : ; ja

n

j) �

max(ja

0

1

j; : : : ; ja

0

n

j) when (a

1

; : : : ; a

n

) is followed by (a

0

1

; : : : ; a

0

n

).

x 88. [25 ℄ After Algorithm K has terminated in step K4, what would happen if we

immediately restarted it in step K2?

x 89. [25 ℄ (Gray ode for Morse ode.) The Morse ode words of length n (exerise

4.5.3{32) are strings of dots and dashes, where n is the number of dots plus twie the

number of dashes.

a) Show that it is possible to generate all Morse ode words of length n by suessively

hanging a dash to two dots or vie versa. For example, the path for n = 3 must

be

q

,

q q q

,

q

or its reverse.

b) What string follows

q q q q q

in your sequene for n = 15?

90. [26 ℄ For what values of n an the Morse ode words be arranged in a yle, under

the ground rules of exerise 89? [Hint: The number of ode words is F

n+1

.℄

x 91. [34 ℄ Design a loopless algorithm to visit all binary n-tuples (a

1

; : : : ; a

n

) suh that

a

1

� a

2

� a

3

� a

4

� � � � . [The number of suh n-tuples is F

n+2

.℄

92. [M30 ℄ Is there an in�nite sequene �

n

whose �rst m

n

elements form an m-ary

de Bruijn yle, for all m? [The ase n = 2 is solved in (54).℄

x 93. [M28 ℄ Prove that Algorithm R outputs a de Bruijn yle as advertised.

94. [22 ℄ What is the output of Algorithm D when m = 5, n = 1, and r = 3, if the

oroutines f() and f

0

() generate the trivial yles 01234 01234 01 : : :?

36

7.2.1.1 GENERATING ALL n-TUPLES 37

x 95. [M23 ℄ Suppose an in�nite sequene a

0

a

1

a

2

: : : of period p is interleaved with an

in�nite sequene b

0

b

1

b

2

: : : of period q to form the in�nite yli sequene

0

1

2

3

4

5

: : : = a

0

b

0

a

1

b

1

a

2

b

2

: : : :

a) Under what irumstanes does

0

1

2

: : : have period pq? (The \period" of a

sequene a

0

a

1

a

2

: : : , for the purposes of this exerise, is the smallest integer p > 0

suh that a

k

= a

k+p

for all k � 0.)

b) Whih 2n-tuples would our as onseutive outputs of Algorithm D if step D6

were hanged to say simply \If t

0

= n and x

0

< r, go to D4"?

) Prove that Algorithm D outputs a de Bruijn yle as advertised.

x 96. [M23 ℄ Suppose a family of oroutines has been set up to generate a de Bruijn

yle of length m

n

using Algorithms R and D, based reursively on simple oroutines

for the base ase n = 2.

a) How many oroutines of eah type will there be?

b) What is the maximum number of oroutine ativations needed to get one top-level

digit of output?

97. [M29 ℄ The purpose of this exerise is to analyze the de Bruijn yles onstruted

by Algorithms R and D in the important speial ase m = 2. Let f

n

(k) be the (k+1)st

bit of the 2

n

-yle, so that f

n

(k) = 0 for 0 � k < n. Also let j

n

be the index suh that

0 � j

n

< 2

n

and f

n

(k) = 1 for j

n

� k < j

n

+ n.

a) Write out the yles (f

n

(0) : : : f

n

(2

n

� 1)) for n = 2, 3, 4, and 5.

b) Prove that, for all even values of n, there is a number Æ

n

= �1 suh that we have

f

n+1

(k) �

�

�f

n

(k); if 0 < k � j

n

or 2

n

+ j

n

< k � 2

n+1

,

1 + �f

n

(k + Æ

n

); if j

n

< k � 2

n

+ j

n

,

where the ongruene is modulo 2. (In this formula �f stands for the summation

funtion �f(k) =

P

k�1

j=0

f(j).) Hene j

n+1

= 2

n

� Æ

n

when n is even.

) Let (

n

(0)

n

(1) : : :

n

(2

2n

� 5)) be the yle produed when the simpli�ed version

of Algorithm D in exerise 95(b) is applied to f

n

(). Where do the (2n� 1)-tuples

1

2n�1

and (01)

n�1

0 our in this yle?

d) Use the results of () to express f

2n

(k) in terms of f

n

().

e) Find a (somewhat) simple formula for j

n

as a funtion of n.

98. [M34 ℄ Continuing the previous exerise, design an eÆient algorithm to ompute

f

n

(k), given n � 2 and k � 0.

x 99. [M23 ℄ Exploit the tehnology of the previous exerises to design an eÆient

algorithm that loates any given n-bit string in the yle (f

n

(0)f

n

(1) : : : f

n

(2

n

� 1)).

100. [40 ℄ Do the de Bruijn yles of exerise 97 provide a useful soure of pseudo-

random bits when n is large?

x 101. [M30 ℄ (Unique fatorization of strings into noninreasing primes.)

a) Prove that if � and �

0

are prime, then ��

0

is prime if � < �

0

.

b) Consequently every string � an be written in the form

� = �

1

�

2

: : : �

t

; �

1

� �

2

� � � � � �

t

; where eah �

j

is prime.

) In fat, only one suh fatorization is possible. Hint: Show that �

t

must be the

lexiographially smallest nonempty suÆx of �.

d) True or false: �

1

is the longest prime pre�x of �.

e) What are the prime fators of 3141592653589793238462643383279502884197?

37

38 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

102. [HM28 ℄ Dedue the number of m-ary primes of length n from the unique fa-

torization theorem in the previous exerise.

103. [M20 ℄ Use Eq. (59) to prove Fermat's theorem that m

p

� m (modulo p).

104. [17 ℄ Aording to formula (60), about 1=n of all n-letter words are prime. How

many of the 5757 �ve-letter GraphBase words are prime? Whih of them is the smallest

nonprime? The largest prime?

105. [M31 ℄ Let � be a preprime string of length n on an in�nite alphabet.

a) Show that if the �nal letter of � is inreased, the resulting string is prime.

b) If � has been fatored as in exerise 101, show that it is the n-extension of �

1

.

) Furthermore � annot be the n-extension of two di�erent primes.

x 106. [M30 ℄ By reverse-engineering Algorithm F, design an algorithm that visits all

m-ary primes and preprimes in dereasing order.

107. [HM30 ℄ Analyze the running time of Algorithm F.

108. [M35 ℄ Let �

1

< � � � < �

t

be the m-ary prime strings whose lengths divide n, and

let a

1

: : : a

n

be any m-ary string. The objet of this exerise is to prove that a

1

: : : a

n

appears in �

1

: : : �

t

�

1

�

2

; hene �

1

: : : �

t

is a de Bruijn yle (sine it has length m

n

).

For onveniene we may assume that m = 10 and that strings orrespond to deimal

numbers; the same arguments will apply for arbitrary m � 2.

a) Show that if a

1

: : : a

n

= �� is distint from all its yli shifts, and if �� = �

k

is

prime, then �� is a substring of �

k

�

k+1

, unless � = 9

j

for some j � 1.

b) Where does �� appear in �

1

: : : �

t

if �� is prime and � onsists of all 9s? Hint:

Show that if a

n+1�l

: : : a

n

= 9

l

in step F2 for some l > 0, and if j is not a divisor

of n, the previous step F2 had a

n�l

: : : a

n

= 9

l+1

.

) Now onsider n-tuples of the form (��)

d

, where d > 1 is a divisor of n and

�� = �

k

is prime.

d) Where do 899135, 997879, 913131, 090909, 909090, and 911911 our when n=6?

e) Is �

1

: : : �

t

the lexiographially least m-ary de Bruijn yle of length m

n

?

109. [M22 ℄ An m-ary de Bruijn torus of size m

2

�m

2

for 2� 2 windows is a matrix

of m-ary digits a

ij

suh that eah of the m

4

submatries

�

a

ij

a

i(j+1)

a

(i+1)j

a

(i+1)(j+1)

�

; 0 � i; j < m

2

is di�erent, where subsripts wrap around modulo m

2

. Thus every possible m-ary 2�2

submatrix ours exatly one; Ian Stewart [Game, Set, and Math (Oxford: Blakwell,

1989), Chapter 4℄ has therefore alled it an m-ary ourotorus. For example,

0

B

B

�

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1

C

C

A

is a binary ourotorus; indeed, it is essentially the only suh matrix when m = 2, exept

for shifting and/or transposition.

Consider the in�nite matrix A whose entry in row i = (: : : a

2

a

1

a

0

)

2

and olumn

j = (: : : b

2

b

1

b

0

)

2

is a

ij

= (: : :

2

1

0

)

2

, where

0

= (a

0

� b

0

)(a

1

� b

1

)� b

1

;

k

= (a

2k

a

0

� b

2k

)b

0

� (a

2k+1

a

0

� b

2k+1

)(b

0

� 1); for k > 0:

Show that the upper left 2

2n

� 2

2n

submatrix of A is a 2

n

-ary ourotorus for all n � 0.

38

7.2.1.1 GENERATING ALL n-TUPLES 39

110. [M25 ℄ Continuing the previous exerise, onstrut m-ary ourotoruses for all m.

111. [20 ℄ We an obtain the number 100 in twelve ways by inserting + and � signs

into the sequene 123456789; for example, 100 = 1 + 23 � 4 + 5 + 6 + 78 � 9 =

123� 45� 67 + 89 = �1 + 2� 3 + 4 + 5 + 6 + 78 + 9.

a) What is the smallest positive integer that annot be represented in suh a way?

b) Consider also inserting signs into the 10-digit sequene 9876543210.

x 112. [25 ℄ Continuing the previous exerise, how far an we go by inserting signs into

12345678987654321? For example, 100 = �1234� 5� 6 + 7898� 7� 6543� 2� 1.

39

ANSWERS TO EXERCISES

All that heard him were astonished

at his understanding and answers.

| Luke 2:47

SECTION 7.2.1.1

1. Let m

j

= u

j

� l

j

+1, and visit (a

1

+ l

1

; : : : ; a

n

+ l

n

) instead of visiting (a

1

; : : : ; a

n

)

in Algorithm M. Or, hange `a

j

 0' to `a

j

 l

j

' and `a

j

= m

j

� 1' to `a

j

= u

j

' in

that algorithm, and set l

0

 0, u

0

 1 in step M1.

2. (0; 0; 1; 2; 3; 0; 2; 7; 0; 9).

3. Step M4 is performed m

1

m

2

: : :m

k

times when j = k; therefore the total is

P

n

k=0

Q

k

j=1

m

j

= m

1

: : :m

n

(1 + 1=m

n

+ 1=m

n

m

n�1

+ � � � + 1=m

n

: : :m

1

). If all m

j

are 2 or more, this is less than 2m

1

: : :m

n

. [Thus, we should keep in mind that fany

Gray-ode methods, whih hange only one digit per visit, atually redue the total

number of digit hanges by at most a fator of 2.℄

4. N1. [Initialize.℄ Set a

j

 m

j

� 1 for 0 � j � n, where m

0

= 2.

N2. [Visit.℄ Visit the n-tuple (a

1

; : : : ; a

n

).

N3. [Prepare to subtrat one.℄ Set j n.

N4. [Borrow if neessary.℄ If a

j

= 0, set a

j

 m

j

� 1, j j � 1, and repeat this

step.

N5. [Derease, unless done.℄ If j = 0, terminate the algorithm. Otherwise set

a

j

 a

j

� 1 and go bak to step N2.

5. Bit reetion is easy on a mahine like MMIX, but on other omputers we an

proeed as follows:

R1. [Initialize.℄ Set j k 0.

R2. [Swap.℄ Interhange A[j + 1℄ $ A[k + 2

n�1

℄. Also, if j > k, interhange

A[j℄$ A[k℄ and A[j + 2

n�1

+ 1℄$ A[k + 2

n�1

+ 1℄.

R3. [Advane k.℄ Set k k + 2, and terminate if k � 2

n�1

.

R4. [Advane j.℄ Set h 2

n�2

. If j � h, repeatedly set j j � h and h h=2

until j < h. Then set j j+h. (Now j = (b

0

: : : b

n�1

)

2

if k = (b

n�1

: : : b

0

)

2

.)

Return to R2.

6. If g((0b

n�1

: : : b

1

b

0

)

2

) = (0(b

n�1

) : : : (b

2

�b

1

)(b

1

�b

0

))

2

then g((1b

n�1

: : : b

1

b

0

)

2

) =

2

n

+ g((0b

n�1

: : : b

1

b

0

)

2

) = (1(b

n�1

) : : : (b

2

� b

1

)(b

1

� b

0

))

2

, where b = b� 1.

40

40

7.2.1.1 ANSWERS TO EXERCISES 41

7. To aommodate 2r setors one an use g(k) for 2

n

� r � k < 2

n

+ r, where

n = dlg re, beause g(2

n

� r) � g(2

n

+ r � 1) = 2

n

by (5). [G. C. Tootill, Pro. IEE

103, Part B Supplement (1956), 434.℄ See also exerise 26.

8. Use Algorithm G with n n�1 and inlude the parity bit a

1

at the right. (This

yields g(0), g(2), g(4), : : : .)

9. Replae the rightmost ring, sine �(1011000) is odd.

10. A

n

+B

n

= g

[�1℄

(2

n

� 1) = b2

n+1

=3 and A

n

= B

n

+ n. Hene A

n

= b2

n

=3+ n=2

and B

n

= b2

n

=3� n=2.

Historial notes: The early Japanese mathematiian Yoriyuki Arima (1714{1783)

treated this problem in his Sh�uki Sanp�o (1769), Problem 44, observing that the n-

ring puzzle redues to an (n � 1)-ring puzzle after a ertain number of steps. Let

C

n

= A

n

� A

n�1

= B

n

� B

n�1

+ 1 be the number of rings removed during this

redution. Arima notied that C

n

= 2C

n�1

� [n even℄; thus he ould ompute A

n

=

C

1

+ C

2

+ � � �+ C

n

for n = 9 without atually knowing the formula C

n

= d2

n�1

=3e.

More than two enturies earlier, Cardano had already mentioned the \ompliati

annuli" in his De Subtilitate Libri XXI (Nuremberg: 1550), Book 15. He wrote that

they are \useless yet admirably subtle," stating erroneously that 95 moves are needed

to remove seven rings and 95 more to put them bak. John Wallis devoted seven

pages to this puzzle in the Latin edition of his Algebra 2 (Oxford: 1693), Chapter 111,

presenting detailed but nonoptimum methods for the nine-ring ase. He inluded the

operation of sliding a ring through the bar as well as putting it on or o�, and he hinted

that shortuts were available, but he did not attempt to �nd a shortest solution.

11. The solution to S

n

= S

n�2

+ 1 + S

n�2

+ S

n�1

when S

1

= S

2

= 1 is S

n

=

2

n�1

� [n even℄. [Math. Quest. Eduational Times 3 (1865), 66{67.℄

12. (a) The theory of n � 1 Chinese rings proves that Gray binary ode yields the

ompositions in a onvenient order (4, 31, 211, 22, 112, 1111, 121, 13):

A1. [Initialize.℄ Set t 0, j 1, s

1

 n. (We assume that n > 1.)

A2. [Visit.℄ Visit s

1

: : : s

j

. Then set t 1� t, and go to A4 if t = 0.

A3. [Odd step.℄ If s

j

> 1, set s

j

 s

j

� 1, s

j+1

 1, j j + 1; otherwise set

j j � 1 and s

j

 s

j

+ 1. Return to A2.

A4. [Even step.℄ If s

j�1

> 1, set s

j�1

 s

j�1

� 1, s

j+1

 s

j

, s

j

 1, j j + 1;

otherwise set j j � 1, s

j

 s

j+1

, s

j�1

 s

j�1

+ 1 (but terminate if

j � 1 = 0). Return to A2.

(b) Now q

1

, : : : , q

t�1

represent rings on the bar:

B1. [Initialize.℄ Set t 1, q

0

 n. (We assume that n > 1.)

B2. [Visit.℄ Set q

t

 0 and visit (q

0

� q

1

) : : : (q

t�1

� q

t

). Go to B4 if t is even.

B3. [Odd step.℄ If q

t�1

= 1, set t t � 1; otherwise set q

t

 1 and t t + 1.

Return to step B2.

B4. [Even step.℄ If q

t�2

= q

t�1

+1, set q

t�2

 q

t�1

and t t� 1 (but terminate

if t = 2); otherwise set q

t

 q

t�1

, q

t�1

 q

t

+1, t t+1. Return to B2.

These algorithms [see J. Misra, ACM Trans. Math. Software 1 (1975), 285℄ are loopless

even in their initialization steps.

13. In step A1, also set C 1. In step A3, set C s

j

C if s

j

> 1, otherwise

C C=(s

j�1

+1). In step A4, set C s

j�1

C if s

j�1

> 1, otherwise C C=(s

j�2

+1).

41

42 ANSWERS TO EXERCISES 7.2.1.1

Similar modi�ations apply to steps B1, B3, B4. SuÆient preision is needed to

aommodate the value C = n! for the omposition 1 : : : 1; we are strething the

de�nition of looplessness by assuming that arithmeti operations take unit time.

14. S1. [Initialize.℄ Set j 0.

S2. [Visit.℄ Visit the string a

1

: : : a

j

.

S3. [Lengthen.℄ If j < n, set j j + 1, a

j

 0, and return to S2.

S4. [Inrease.℄ If a

j

< m

j

� 1, set a

j

 a

j

+ 1 and return to S2.

S5. [Shorten.℄ Set j j � 1, and return to S4 if j > 0.

15. T1. [Initialize.℄ Set j 0.

T2. [Even visit.℄ If j is even, visit the string a

1

: : : a

j

.

T3. [Lengthen.℄ If j < n, set j j + 1, a

j

 0, and return to T2.

T4. [Odd visit.℄ If j is odd, visit the string a

1

: : : a

j

.

T5. [Inrease.℄ If a

j

< m

j

� 1, set a

j

 a

j

+ 1 and return to T2.

T6. [Shorten.℄ Set j j � 1, and return to T4 if j > 0.

This algorithm is loopless, although it may appear at �rst glane to ontain loops; at

most four steps separate onseutive visits. The basi idea is related to exerise 2.3.1{5

and to \prepostorder" traversal (Algorithm 7.2.1.6Q).

16. Suppose LINK(j � 1) = j + nb

j

for 1 � j � n and LINK(j � 1 + n) = j + n(1� b

j

)

for 1 < j � n. These links represent (a

1

; : : : ; a

n

) if and only if g(b

1

: : : b

n

) = a

1

: : : a

n

,

so we an use a loopless Gray binary generator to ahieve the desired result.

17. Put the onatenation of 3-bit odes (g(j); g(k)) in row j and olumn k, for 0 �

j; k < 8. [It is not diÆult to prove that this is essentially the only solution, exept

for permuting and/or omplementing oordinates and/or rotating rows, beause the

oordinate that hanges when moving north or south depends only on the row, and a

similar statement applies to olumns. Karnaugh's isomorphism between the 4-ube and

the 4� 4 torus an be traed bak to The Design of Swithing Ciruits by W. Keister,

A. E. Rithie, and S. H. Washburn (1951), page 174. Inidentally, Keister went on to

design an ingenious variant of Chinese rings alled SpinOut, and a generalization alled

The Hexadeimal Puzzle, U.S. Patents 3637215{3637216 (1972).℄

18. Use 2-bit Gray ode to represent the digits u

j

= (0; 1; 2; 3) respetively as the bit

pairs u

0

2j�1

u

0

2j

= (00; 01; 11; 10). [C. Y. Lee introdued his metri in IEEE Trans. IT-4

(1958), 77{82. A similar m=2-bit enoding works for even values of m; for example,

when m = 8 we an represent (0; 1; 2; 3; 4; 5; 6; 7) by (0000; 0001; 0011; 0111; 1111; 1110;

1100; 1000). But suh a sheme leaves out some of the binary patterns when m > 4.℄

19. (a) A modular Gray quaternary algorithm needs slightly less omputation than

Algorithm M, but it doesn't matter beause 256 is so small. The result is z

8

0

+ z

8

1

+

z

8

2

+ z

8

3

+ 14(z

4

0

z

4

2

+ z

4

1

z

4

3

) + 56z

0

z

1

z

2

z

3

(z

2

0

+ z

2

2

)(z

2

1

+ z

2

3

).

(b) Replaing (z

0

; z

1

; z

2

; z

3

) by (1; z; z

2

; z) gives 1 + 112z

6

+ 30z

8

+ 112z

10

+ z

16

;

thus all of the nonzero Lee weights are � 6. Now use the onstrution in the previous

exerise to onvert eah (u

0

; u

1

; u

2

; u

3

; u

4

; u

5

; u

6

; u

1

) into a 16-bit number.

20. Reover the quaternary vetor (u

0

; u

1

; u

2

; u

3

; u

4

; u

5

; u

6

; u

1

) from u

0

, and use Al-

gorithm 4.6.1D to �nd the remainder of u

0

+ u

1

x+ � � �+ u

6

x

6

divided by g(x), mod 4;

that algorithm an be used in spite of the fat that the oeÆients do not belong to a

�eld, beause g(x) is moni. Express the remainder as x

j

+ 2x

k

(modulo g(x) and 4),

and let d = (k � j) mod 7, s = (u

0

+ � � �+ u

6

+ u

1

) mod 4.

42

7.2.1.1 ANSWERS TO EXERCISES 43

Case 1, s = 1: If k =1, the error was x

j

(in other words, the orret vetor has

u

j

 (u

j

� 1) mod 4); otherwise there were three or more errors.

Case 2, s = 3: If j = k the error was �x

j

; otherwise � 3 errors ourred.

Case 3, s = 0: If j = k = 1, no errors were made; if j = 1 and k < 1,

at least four errors were made. Otherwise the errors were x

a

� x

b

, where a = (j +

(1;6;5;2;3;1;4;0))mod 7 aording as d = (0;1;2;3;4;5;6;1), and b = (j+2d) mod 7.

Case 4, s = 2: If j =1 the errors were 2x

k

. Otherwise the errors were

x

j

+ x

1

, if k =1;

�x

j

� x

1

, if d = 0;

x

a

+ x

b

, if d 2 f1; 2; 4g; a = (j � 3d) mod 7; b = (j � 2d) mod 7;

�x

a

� x

b

, if d 2 f3; 5; 6g; a = (j � 3d) mod 7; b = (j � d) mod 7:

Given u

0

= (1100100100001111)

2

, we have u = (2; 0; 3; 1; 0; 0; 2; 2) and 2 + 3x

2

+

x

3

+ 2x

6

� 1 + 3x + 3x

2

� x

5

+ 2x

6

; also s = 2. Thus the errors are x

2

+ x

3

, and

the nearest errorfree odeword is (2; 0; 2; 0; 0; 0; 2; 2). Algorithm 4.6.1D tells us that

2+2x

2

+2x

6

� (2+2x+2x

3

)g(x) (modulo 4); so the eight information bits orrespond

to (v

0

; v

1

; v

2

; v

3

) = (2; 2; 0; 2). [A more intelligent algorithm would also say, \Aha: The

�rst 16 bits of �."℄

For generalizations to other eÆient oding shemes based on quaternary vetors,

see the lassi paper by Hammons, Kumar, Calderbank, Sloane, and Sol�e, IEEE Trans.

IT-40 (1994), 301{319.

21. (a) C(�) = 1, C(0�) = C(1�) = C(�), and C(��) = 2C(�) � [10 : : : 02�℄.

Iterating this reurrene gives C(�) = 2

t

� 2

t�1

e

t

� 2

t�2

e

t�1

� � � � � 2

0

e

1

, where

e

j

= [10 : : : 02�

j

℄ and �

j

is the suÆx of � following the jth asterisk. In the example

we have �

1

= �10��0�, �

2

= 10��0�, : : : , �

5

= �; thus e

1

= 0, e

2

= 1, e

3

= 1, e

4

= 0,

and e

5

= 1 (by onvention), hene C(��10��0�) = 2

5

� 2

4

� 2

2

� 2

1

= 10.

(b) We may remove trailing asterisks so that t = t

0

. Then e

t

= 1 implies e

t�1

=

� � � = e

1

= 0. [The ase C(�) = 2

t

0

�1

ours if and only if � ends in 10

j

�

k

.℄

() To ompute the sum of C(�) over all t-sububes, note that

�

n

t

�

lusters begin at

the n-tuple 0 : : : 0, and

�

n�1

t

�

begin at eah sueeding n-tuple (namely one luster for

eah t-subube ontaining that n-tuple and speifying the bit that hanged). Thus the

average is (

�

n

t

�

+(2

n

�1)

�

n�1

t

�

)=2

n�t

�

n

t

�

= 2

t

(1� t=n)+2

t�n

(t=n). [The formula in ()

holds for any n-bit Gray path, but (a) and (b) are spei� to the reeted Gray binary

ode. These results are due to C. Faloutsos, IEEE Trans. SE-14 (1988), 1381{1393.℄

22. Let ��

j

and ��

k

be onseutive lieves of a Gray binary trie, where � and � are

binary strings and j � k. Then the last k � j bits of � are a string �

0

suh that �

and ��

0

are onseutive elements of Gray binary ode, hene adjaent. [Interesting

appliations of this property to ube-onneted message-passing onurrent omputers

are disussed in A VLSI Arhiteture for Conurrent Data Strutures by William J.

Dally (Kluwer, 1987), Chapter 3.℄

23. 2

j

= g(k) � g(l) = g(k � l) implies that l = k � g

[�1℄

(2

j

) = k � (2

j+1

� 1). In

other words, if k = (b

n�1

: : : b

0

)

2

we have l = (b

n�1

: : : b

j+1

b

j

: : : b

0

)

2

.

24. De�ning g(k) = k�bk=2 as usual, we �nd g(k) = g(�1� k); hene there are two

2-adi integers k suh that g(k) has a given 2-adi value l. One of them is even, the

other is odd. We an onveniently de�ne g

[�1℄

to be the solution that is even; then

(8) is replaed by b

j

= a

j�1

� � � � � a

0

, for j � 0. For example, g

[�1℄

(1) = �2 by this

de�nition; when l is a normal integer, the \sign" of g

[�1℄

(l) is the parity of l.

43

44 ANSWERS TO EXERCISES 7.2.1.1

25. Let p = k � l; exerise 7.1{00 tells us that 2

blg p+1

� p � jk � lj � p. We

have �(g(p)) = �(g(k) � g(l)) = t if and only if there are positive integers j

1

, : : : , j

t

suh that p = (1

j

1

0

j

2

1

j

3

: : : (0 or 1)

j

t

)

2

. The largest possible p < 2

n

ours when

j

1

= n + 1 � t and j

2

= � � � = j

t

= 1, yielding p = 2

n

� d2

t

=3e. The smallest possible

2

blg p+1

� p = (1

j

2

0

j

3

: : : (1 or 0)

j

t

)

2

+ 1 ours when j

2

= � � � = j

t

= 1, yielding

p = d2

t

=3e. [C. K. Yuen, IEEE Trans. IT-20 (1974), 668; S. R. Cavior, IEEE Trans.

IT-21 (1975), 596.℄

26. Let N = 2

n

t

+ � � � + 2

n

1

where n

t

> � � � > n

1

� 0; also, let �

n

be any Gray ode

for f0; 1; : : : ; 2

n

� 1g that begins at 0 and ends at 1, exept that �

0

is simply 0. Use

�

R

n

t

; 2

n

t

+�

n

t�1

; : : : ; 2

n

t

+ � � �+2

n

3

+�

R

n

2

; 2

n

t

+ � � �+2

n

2

+�

n

1

; if t is even;

�

n

t

; 2

n

t

+�

R

n

t�1

; : : : ; 2

n

t

+ � � �+2

n

3

+�

R

n

2

; 2

n

t

+ � � �+2

n

2

+�

n

1

; if t is odd.

27. In general, if k = (b

n�1

: : : b

0

)

2

, the (k + 1)st largest element of S

n

is equal to

1/(2� (�1)

a

n�1

/(2� � � � =(2� (�1)

a

1

=(2� (�1)

a

0

)) : : :));

orresponding to the sign pattern g(k) = (a

n�1

: : : a

0

)

2

. Thus we an ompute any ele-

ment of S

n

in O(n) steps, given its rank. Setting k = 2

100

�10

10

and n = 100 yields the

answer 373065177=1113604409. [Whenever f(x) is a positive and monotoni funtion,

the 2

n

elements f(�f(: : :�f(�x) : : :)) are ordered aording to Gray binary ode, as

observed by H. E. Salzer, CACM 16 (1973), 180. In this partiular ase there is, how-

ever, another way to get the answer, beause we also have S

n

= ==2;�2; : : : ;�2;�1==

using the notation of Setion 4.5.3; ontinued frations in this form are ordered by

omplementing alternate bits of k.℄

28. (a) As t = 1, 2, : : : , bit a

j

of median(G

t

) runs through the periodi sequene

0; : : : ; 0; �; 1; : : : ; 1; �; 0; : : : ; 0; �; : : :

with asterisks at every 2

1+j

th step. Thus the strings that orrespond to the binary

representations of b(t � 1)=2 and bt=2 are medians. And those strings are in fat

\extreme" ases, in the sense that all medians agree with the ommon bits of b(t�1)=2

and bt=2, hene asterisks appear where they disagree. For example, when t = 100 =

(01100100)

2

and n = 8, we have median(G

100

) = 001100��.

(b) Sine G

2t

= 2G

t

[(2G

t

+ 1), we may assume that t = (a

n�2

: : : a

1

a

0

1)

2

is

odd. If � is g(p) and � is g(q) in Gray binary, we have p = (p

n�1

: : : p

0

)

2

and q =

(p

n�1

: : : p

j+1

p

j

: : : p

0

)

2

; and a

n�1

a

n�2

= 01 = p

n�1

p

n�2

. We annot have p < t � q,

beause this would imply that j = n � 1 and p

n�3

= p

n�4

= � � � = p

0

= 1. [See A. J.

Bernstein, K. Steiglitz, and J. E. Hoproft, IEEE Trans. IT-12 (1966), 425{430.℄

29. Assuming that p 6= 0, let l = blg p and S

a

= fs j 2

l

a � s < 2

l

(a + 1)g for

0 � a < 2

n�l

. Then (k � p)� k has a onstant sign for all k 2 S

a

, and

X

k2S

a

�

�

�

(k � p)� k

�

�

�

= 2

l

jS

a

j = 2

2l

:

Also g

[�1℄

(g(k)� p) = k � g

[�1℄

(p), and blg g

[�1℄

(p) = blg p. Therefore

1

2

n

2

n

�1

X

k=0

�

�

�

g

[�1℄

(g(k)� p)� k

�

�

�

=

1

2

n

2

n�l

�1

X

a=0

X

k2S

a

�

�

�

(k� g

[�1℄

(p))� k

�

�

�

=

1

2

n

2

n�l

�1

X

a=0

2

2l

= 2

l

:

[See Morgan M. Buhner, Jr., Bell System Teh. J. 48 (1969), 3113{3130.℄

44

7.2.1.1 ANSWERS TO EXERCISES 45

30. The yle ontaining k > 1 has length 2

blg lg k+1

, beause it is easy to show from

Eq. (7) that if k = (b

n�1

: : : b

0

)

2

we have

g

[2

l

℄

(k) = (

n�1

: : :

0

)

2

; where

j

= b

j

� b

j+l+1

.

To permute all elements k suh that blg k = t, there are two ases: If t is a power of 2,

the yle ontaining 2bk=2 also ontains 2bk=2+1, so we must double the yle leaders

for t � 1. Otherwise the yle ontaining 2bk=2 is disjoint from the yle ontaining

2bk=2 + 1, so L

t

= (2L

t�1

) [(2L

t�1

+ 1) = (L

t�1

�)

2

. This argument, disovered by

J�org Arndt in 2001, establishes the hint and yields the following algorithm:

P1. [Initialize.℄ Set t 1, m 0. (We may assume that n � 2.)

P2. [Loop through leaders.℄ Set r m. Perform Algorithm Q with k = 2

t

+ r;

then if r > 0, set r (r�1)^m and repeat until r = 0. [See exerise 7.1{00.℄

P3. [Inrease lg k.℄ Set t t+ 1. Terminate if t is now equal to n; otherwise set

m 2m+ [t ^ (t� 1) 6=0℄ and return to P2.

Q1. [Begin a yle.℄ Set s X

k

, l k, j l � bl=2.

Q2. [Follow the yle.℄ If j 6= k set X

l

 X

j

, l j, j l � bl=2, and repeat

until j = k. Then set X

l

 s.

31. We get a �eld from f

n

if and only if we get one from f

[2℄

n

, whih takes (a

n�1

: : : a

0

)

2

to ((a

n�1

� a

n�2

)(a

n�1

� a

n�3

)(a

n�2

� a

n�4

) : : : (a

2

� a

0

)(a

1

))

2

. Let

n

(x) be the

harateristi polynomial of the matrix A de�ning this transformation, mod 2; then

1

(x) = x+ 1,

2

(x) = x

2

+ x+ 1, and

j+1

(x) = x

j

(x) +

j�1

(x). Sine

n

(A) is the

zero matrix, by the Cayley{Hamilton theorem, a �eld is obtained if and only if

n

(x) is

a primitive polynomial, and this ondition an be tested as in Setion 3.2.2. The �rst

suh values of n are 1, 2, 3, 5, 6, 9, 11, 14, 23, 26, 29, 30, 33, 35, 39, 41, 51, 53, 65, 69,

74, 81, 83, 86, 89, 90, 95.

[Running the reurrene bakwards shows that

�j�1

(x) =

j

(x), hene

j

(x)

divides

(2j+1)k+j

(x); for example,

3k+1

(x) is always a multiple of x+1. All numbers n

of the form 2jk+ j+ k are therefore exluded when j > 0 and k > 0. The polynomials

18

(x),

50

(x),

98

(x), and

99

(x) are irreduible but not primitive.℄

32. Mostly true, but false at the points where w

k

(x) hanges sign. (Walsh originally

suggested that w

k

(x) should be zero at suh points; but the onvention adopted here

is better, beause it makes simple formulas like (15){(19) valid for all x.)

33. By indution on k, we have

w

k

(x) = w

bk=2

(2x) = r

1

(2x)

b

1

+b

2

r

2

(2x)

b

2

+b

3

: : : = r

1

(x)

b

0

+b

1

r

2

(x)

b

1

+b

2

r

3

(x)

b

2

+b

3

: : :

for 0 � x <

1

2

, beause r

j

(2x) = r

j+1

(x) and r

1

(x) = 1 in this range. And when

1

2

� x < 1,

w

k

(x) = (�1)

dk=2e

w

bk=2

(2x� 1) = r

1

(x)

b

0

+b

1

r

1

(2x� 1)

b

1

+b

2

r

2

(2x� 1)

b

2

+b

3

: : :

= r

1

(x)

b

0

+b

1

r

2

(x)

b

1

+b

2

r

3

(x)

b

2

+b

3

: : :

beause dk=2e � b

0

+ b

1

(modulo 2) and r

j

(2x� 1) = r

j+1

(x�

1

2

) = r

j+1

(x) for j � 1.

34. p

k

(x) =

Q

j�0

r

b

j

j+1

; hene w

k

(x) = p

k

(x)p

bk=2

(x) = p

g(k)

(x). [R. E. A. C. Paley,

Pro. London Math. So. (2) 34 (1932), 241{279.℄

45

46 ANSWERS TO EXERCISES 7.2.1.1

35. If j = (a

n�1

: : : a

0

)

2

and k = (b

n�1

: : : b

0

)

2

, the element in row j and olumn k is

(�1)

f(j;k)

, where f(j; k) is the sum of all a

r

b

s

suh that: r = s (Hadamard); r+s = n�1

(Paley); r + s = n or n� 1 (Walsh).

Let R

n

, F

n

, and G

n

be permutation matries for the permutations that take

j = (a

n�1

: : : a

0

)

2

to k = (a

0

: : : a

n�1

)

2

, k = 2

n

� 1 � j = (a

n�1

: : : a

0

)

2

, and k =

g

[�1℄

(j) = ((a

n�1

) : : : (a

n�1

� � � � � a

0

))

2

, respetively. Then, using the Kroneker

produt of matries, we have the reursive formulas

R

n+1

=

�

R

n

 (1 0)

R

n

 (0 1)

�

; F

n+1

= F

n

�

0 1

1 0

�

; G

n+1

=

�

G

n

0

0 G

n

F

n

�

;

H

n+1

= H

n

�

1 1

1 1

�

; P

n+1

=

�

P

n

 (1 1)

P

n

 (1 1)

�

; W

n+1

=

�

W

n

 (1 1)

F

n

W

n

 (1 1)

�

:

Thus W

n

= G

T

n

P

n

= P

n

G

n

; H

n

= P

n

R

n

= R

n

P

n

; and P

n

= W

n

G

T

n

= G

n

W

n

=

H

n

R

n

= R

n

H

n

.

36. W1. [Hadamard transform.℄ For k = 0, 1, : : : , n� 1, replae the pair (X

j

;X

j+2

k

)

by (X

j

+X

j+2

k

; X

j

�X

j+2

k

) for all j with bj=2

k

 even, 0 � j < 2

n

. (These

operations e�etively set X

T

 H

n

X

T

.)

W2. [Bit reversal.℄ Apply the algorithm of exerise 5 to the vetor X. (These

operations e�etively set X

T

 R

n

X

T

, in the notation of exerise 35.)

W3. [Gray binary permutation.℄ Apply the algorithm of exerise 30 to the ve-

tor X. (These operations e�etively set X

T

 G

T

n

X

T

.)

If n has one of the speial values in exerise 31, it may be faster to ombine steps W2

and W3 into a single permutation step.

37. If k = 2

e

1

+� � �+2

e

t

with e

1

> � � � > e

t

� 0, the sign hanges our at S

e

1

[� � �[S

e

t

,

where

S

0

=

n

1

2

o

; S

1

=

n

1

4

;

3

4

o

; : : : ; S

e

=

n

2j + 1

2

e

�

�

�

0 � j < 2

e

o

:

Therefore the number of sign hanges in (0 : : x) is

P

t

j=1

b2

e

j

x+

1

2

. Setting x = l=(k+1)

gives l+O(t) hanges; so the lth is at a distane of at mostO(�(k))=2

blg k

from l=(k+1).

[This argument makes it plausible that in�nitely many pairs (k; l) exist with

jz

kl

� l=(k + 1)j =
((log k)=k). But no expliit onstrution of suh \bad" pairs

is immediately apparent.℄

38. Let t

0

(x) = 1 and t

k

(x) = !

b3xd2k=3e

t

bk=3

(3x), where ! = e

2�i=3

. Then t

k

(x)

winds around the origin

2

3

k times as x inreases from 0 to 1. If s

k

(x) = !

b3

k

x

is the

ternary analog of the Rademaher funtion r

k

(x), we have t

k

(x) =

Q

j�0

s

j+1

(x)

b

j

�b

j+1

when k = (b

n�1

: : : b

0

)

3

, as in the modular ternary Gray ode.

39. Let's all the symbols fx

0

; x

1

; : : : ; x

7

g instead of fa; b; ; d; e; f; g; hg. We want to

�nd a permutation p of f0; 1; : : : ; 7g suh that the matrix with (�1)

j�k

x

p(j)�k

in row j

and olumn k has orthogonal rows; this ondition is equivalent to requiring that

(j + j

0

) � (p(j) + p(j

0

)) � 1 (modulo 2), for 0 � j < j

0

< 8.

One solution is p(0) : : : p(7) = 0 1 7 2 5 6 3 4, yielding the identity (a

2

+ b

2

+

2

+ d

2

+

e

2

+ f

2

+ g

2

+ h

2

)(A

2

+B

2

+C

2

+D

2

+E

2

+ F

2

+G

2

+H

2

) = A

2

+ B

2

+ C

2

+D

2

+

46

7.2.1.1 ANSWERS TO EXERCISES 47

E

2

+ F

2

+ G

2

+H

2

, where

0

B

B

B

B

B

B

B

B

B

�

A

B

C

D

E

F

G

H

1

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

�

a b d e f g h

b �a d � f �e h �g

h g �f �e d �b �a

 �d �a b g �h �e f

f e h g �b �a �d �

g �h e �f � d �a b

d �b �a �h �g f e

e �f �g h �a b �d

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

�

A

B

C

D

E

F

G

H

1

C

C

C

C

C

C

C

C

C

A

:

[This identity was disovered by C. F. Degen, M�emoires de l'Aad. Si. St. Petersbourg

(5) 8 (1818), 207{219. The related otonions are disussed in an interesting survey by

J. C. Baez, Bull. Amer. Math. So. 39 (2002), 145{205.℄

(b) There is no 16� 16 solution. The losest one an ome is

p(0) : : : p(15) = 0 1 11 2 14 15 13 4 9 10 7 12 5 6 3 8;

whih fails if and only if j � j

0

= 5. (See Philos. Mag. 34 (1867), 461{475. In x9, x10,

x11, and x13 of this paper, Sylvester stated and proved the basi results about what

has somehow ome to be known as the Hadamard transform|although Hadamard

himself gave redit to Sylvester [Bull. des Sienes Math�ematiques (2) 17 (1893), 240{

246℄. Moreover, Sylvester introdued transforms of m

n

elements in x14, using mth

roots of unity.)

40. Yes; this hange would in fat run through the swapped subsets in lexiographi

binary order rather than in Gray binary order. (Any 5 � 5 matrix of 0s and 1s that

is nonsingular mod 2 will generate all 32 possibilities when we run through all linear

ombinations of its rows.) The most important thing is the appearane of the ruler

funtion, or some other Gray ode delta sequene, not the fat that only one a

j

hanges

per step, in ases like this where any number of the a

j

an be hanged simultaneously

at the same ost.

41. At most 16; for example, fired, fires, finds, fines, fined, fares, fared, wares,

wards, wands, wanes, waned, wines, winds, wires, wired. We also get 16 from paed/

links and paled/mints; perhaps also from a word mixed with an antipodal nonword.

42. Suppose n � 2

2

r

+ r+1, and let s = 2

r

. We use an auxiliary table of 2

r+s

bits f

jk

for 0 � j < 2

s

and 0 � k < s, representing fous pointers as in Algorithm L, together

with an auxiliary s-bit \register" j = (j

s�1

: : : j

0

)

2

and an (r+2)-bit \program ounter"

p = (p

r+1

: : : p

0

)

2

. At eah step we examine the program ounter and possibly the j

register and one of the f bits; then, based on the bits seen, we omplement a bit of the

Gray ode, omplement a bit of the program ounter, and possibly hange a j or f bit,

thereby emulating step L3 with respet to the most signi�ant n� r � 2 bits.

For example, here is the onstrution when r = 1:

p

2

p

1

p

0

Change Set

0 0 0 a

0

; p

0

j

0

 f

00

0 0 1 a

1

; p

1

j

1

 f

01

o

j f

0

0 1 1 a

0

; p

0

f

00

 0

0 1 0 a

2

; p

2

f

01

 0

o

f

0

 0

p

2

p

1

p

0

Change Set

1 1 0 a

0

; p

0

f

j0

 f

(j+1)0

1 1 1 a

1

; p

1

f

j1

 f

(j+1)1

o

f

j

 f

j+1

1 0 1 a

0

; p

0

f

(j+1)0

 (j+1)

0

1 0 0 a

j+3

; p

2

f

(j+1)1

 (j+1)

1

o

f

j+1

 j+1

The proess stops when it attempts to hange bit a

n

.

47

48 ANSWERS TO EXERCISES 7.2.1.1

[In fat, we need hange only one auxiliary bit per step if we allow ourselves to

examine some Gray binary bits as well as the auxiliary bits, beause p

r

: : : p

0

= a

r

: : : a

0

,

and we an set f

0

 0 in a more lever way when j doesn't have its �nal value 2

s

� 1.

This onstrution, suggested by Fredman in 2001, improves on another that he had

published in SICOMP 7 (1978), 134{146. With a more elaborate onstrution it is

possible to redue the number of auxiliary bits to O(n).℄

43. This number was estimated by Silverman, Vikers, and Sampson [IEEE Trans. IT-

29 (1983), 894{901℄ to be about 7� 10

22

. Exat alulation might be feasible beause

every 6-bit Gray yle has only �ve or fewer segments that lie in a 5-ube orresponding

to at least one of the six oordinates. (In unpublished work, Steve Winker had used a

similar idea to evaluate d(5) in less than 15 minutes on a \generi" omputer in 1972.)

44. All (n + 1)-bit delta sequenes with just two ourrenes of the oordinate j are

produed by the following onstrution: Let Æ

1

: : : Æ

2

n

�1

and "

1

: : : "

2

n

�1

be n-bit delta

sequenes for Gray paths, with 2

Æ

1

� � � � � 2

Æ

2

n

�1

= 2

"

1

� � � � � 2

"

2

n

�1

. Form the yle

Æ

k+1

: : : Æ

2

n

�1

n "

1

: : : "

2

n

�1

n Æ

1

: : : Æ

k

for some k with 0 � k < 2

n

, then interhange n$ j.

All (n + 2)-bit delta sequenes with just two ourrenes of oordinates h and j

(with h before j) are, similarly, produed from four n-bit sequenes Æ

1

: : : Æ

2

n

�1

, : : : ,

�

1

: : : �

2

n

�1

where 2

Æ

1

� � � � � 2

�

2

n

�1

= 0, by interhanging n$ h and n+ 1$ j in

Æ

k+1

: : : Æ

2

n

�1

n "

1

: : : "

2

n

�1

(n+1)�

1

: : : �

2

n

�1

n�

1

: : : �

2

n

�1

(n+1)Æ

1

: : : Æ

k

:

Let a(n) and b(n) be the number of n-bit yles de�ned in parts (a) and (b); then

(a(1); : : : ; a(5))=(1; 0; 0; 1920; 318996480) and (b(1); : : : ; b(5))=(0; 2; 12; 384; 4200960).

The onstrutions above prove that a(n+1)+2b(n+1) = 2

n

(n+1)A(n) and b(n+2) =

2

n

(n+2)(n+1)B(n), if there are A(n) and B(n) ways to hoose the respetive sequenes

Æ, ", �, and �. If we restrit ourselves to ases where the Gray paths are extendible to

Gray yles, with Æ

0

= "

0

= �

0

= �

0

, we get a

0

(n + 1) and b

0

(n + 2) sequenes where

a

0

(n+ 1) + 2b

0

(n+ 1) = 2

n

(n+ 1)d(n)

2

=n and b

0

(n+ 2) = 2

n

(n+ 2)(n+ 1)d(n)

4

=n

3

.

45. We have d(n+1) � 2

n

d(n)

2

=n, beause 2

n

d(n)

2

=n is a lower bound on the number

of (n+1)-bit delta sequenes with exatly two appearanes of 0. Hene d(n+1)

1=2

n+1

>

d(n)

1=2

n

; and d(n) �

5

32

�

2

n

for n � 5, where � = (

32

5

d(5))

1=32

� 2:06.

Indeed, we an establish even faster growth by using the previous exerise, beause

d(n + 1) � a

0

(n + 1) + b

0

(n + 1) and b

0

(n + 1) �

25

64

(n + 1)d(n)

2

=n for n � 5. Hene

d(n+1) � (2

n

�

25

64

)(n+1)d(n)

2

=n for n � 5, and iteration of this relation shows that

lim

n!1

d(n)

1=2

n

� d(5)

1=32

1

Y

n=5

�

2

n

�

25

64

�

1=2

n+1

�

n+ 1

n

�

1=2

n+1

� 2:3606:

[See R. J. Douglas, Dis. Math. 17 (1977), 143{146; M. Mollard, European J. Comb.

9 (1988), 49{52.℄ The true value of this limit, however, is probably 1.

46. Leo Moser (unpublished) has onjetured that it is � n=e. So far only an upper

bound of about n=

p

2 has been established; see the referenes in the previous answer.

48. If d(n; k; v) of the yles begin with g(0) : : : g(k � 1)v, the onjeture implies that

d(n; k; v) � d(n; k; g(k)), beause the reverse of a Gray yle is a Gray yle. Thus the

48

7.2.1.1 ANSWERS TO EXERCISES 49

hint follows from d(n) = d(n; 1) and

d(n; k) =

X

v

f d(n; k; v) j v���g(k � 1); v =2 S

k

g �

nk

d(n; k; g(k)) = d(n; k + 1):

Finally, d(n; 2

n

) = 1, hene d(n) �

Q

2

n

�1

k=1

nk

=

Q

n

k=1

k

(

n

k

)

= n

Q

n�1

k=1

(k(n�k))

(

n

k

)

=2

�

n

Q

n�1

k=1

(n=2)

(

n

k

)

= n(n=2)

2

n

�2

. [IEEE Trans. IT-29 (1983), 894{901.℄

49. Take any Hamiltonian path P from 0 : : : 0 to 1 : : : 1 in the (2n � 1)-ube, suh

as the Savage{Winkler ode, and use 0P , 1P . (All suh yles are obtained by this

onstrution when n = 1 or n = 2, but many more possibilities exist when n > 2.)

50. �

1

(n+1)�

R

1

n�

1

j

1

�

2

n�

R

2

(n+1)�

2

: : : j

l�1

�

l

n�

R

l

(n+1)�

l

n�

R

l

j

l�1

: : : j

1

�

R

1

n.

51. We an assume that n > 3 and that we have an n-bit Gray yle with transition

ounts

j

= 2b(2

n�1

+ j)=n; we want to onstrut an (n+ 2)-bit yle with transition

ounts

0

j

= 2b(2

n+1

+ j)=(n + 2). If 2

n+1

mod (n + 2) � 2, we an use Theorem D

with l = 2b2

n+1

=(n+ 2)+ 1, underlining b

j

opies of j where b

j

= 4b(2

n�1

+ j)=n �

b(2

n+1

+j)=(n+2)� [j=0℄ and putting an underlined 0 last. This is always easy to do

beause jb

j

�2

n+2

=n(n+2)j < 5. A similar onstrution works if 2

n+1

mod (n+2) � n,

with l = 2b2

n+1

=(n+2)�1 and b

j

= 4b(2

n�1

+j)=n�b(2

n+1

+j+2)=(n+2)�[j=0℄.

In fat, 2

n+1

mod (n+2) is always � n [see K. Kedlaya, Eletroni J. Combinatoris 3

(1996), omment on #R25 (9 April 1997)℄. The basi idea of this proof is due to J. P.

Robinson and M. Cohn [IEEE Trans. C-30 (1981), 17{23℄.

52. The number of di�erent ode patterns in the smallest j oordinate positions is at

most

0

+ � � �+

j�1

.

53. Notie that Theorem D produes only yles with

j

=

j+1

for some j, so it

annot produe the ounts (2; 4; 6; 8; 12). The extension in exerise 50 gives also

j

=

j+1

� 2, but it annot produe (6; 10; 14; 18; 22; 26; 32). The sets of numbers

satisfying the onditions of exerise 52 are preisely those obtainable by starting with

f2; 2; 4; : : : ; 2

n�1

g and repeatedly replaing some pair f

j

;

k

g for whih

j

<

k

by the

pair f

j

+ 2;

k

� 2g.

54. Suppose the values are fp

1

; : : : ; p

n

g, and let x

jk

be the number of times p

j

ours

in (a

1

; : : : ; a

k

). We must have (x

1k

; : : : ; x

nk

) � (x

1l

; : : : ; x

nl

) (modulo 2) for some k < l.

But if the p's are prime numbers, varying as the delta sequene of an n-bit Gray yle,

the only solution is k = 0 and l = 2

n

. [AMM 60 (1953), 418; 83 (1976), 54.℄

56. [Bell System Teh. J. 37 (1958), 815{826.℄ The 112 anonial delta sequenes yield

Class Example t

A 0102101302012023 2

B 0102303132101232 2

C 0102030130321013 2

Class Example t

D 0102013201020132 4

E 0102032021202302 4

F 0102013102010232 4

Class Example t

G 0102030201020302 8

H 0102101301021013 8

I 0102013121012132 1

Here B is the balaned ode (Fig. 13(b)), G is standard Gray binary (Fig. 10(b)), and

H is the omplementary ode (Fig. 13(a)). Class H is also equivalent to the modular

(4; 4) Gray ode under the orrespondene of exerise 18. A lass with t automorphisms

orresponds to 32� 24=t of the 2688 di�erent delta sequenes Æ

0

Æ

1

: : : Æ

15

.

Similarly (see exerise 7.2.3{00), the 5-bit Gray yles fall into 237,675 di�erent

equivalene lasses.

57. With Type 1 only, 480 verties are isolated, namely those of lasses D, F , G in the

previous answer. With Type 2 only, the graph has 384 omponents, 288 of whih are

49

50 ANSWERS TO EXERCISES 7.2.1.1

isolated verties of lasses F and G. There are 64 omponents of size 9, eah ontaining

3 verties from E and 6 from A; 16 omponents of size 30, eah with 6 from H and 24

from C; and 16 omponents of size 84, eah with 12 fromD, 24 from B, 48 from I. With

Type 3 (or Type 4) only, the entire graph is onneted. [Similarly, all 91,392 of the 4-bit

Gray paths are onneted if path �� is onsidered adjaent to path �

R

�. Vikers and

Silverman, IEEE Trans. C-29 (1980), 329{331, have onjetured that Type 3 hanges

will suÆe to onnet the graph of n-bit Gray yles for all n � 3.℄

58. If some nonempty substring of �� involves eah oordinate an even number of

times, that substring annot have length j�j, so some yli shift of � has a pre�x

with the same evenness property. But then � doesn't de�ne a Gray yle, beause we

ould hange eah n of bak to 0.

59. If � is nonloal in exerise 58, so is ��, provided that q > 1 and that 0 ours

more than q + 1 times in �. Therefore, starting with the � of (30) but with 0 and 1

interhanged, we obtain nonloal yles for n � 5 in whih oordinate 0 hanges exatly

6 times. [Mark Ramras, Disrete Math. 85 (1990), 329{331.℄ On the other hand, a 4-

bit Gray yle annot be nonloal beause it always has a run of length 2; if Æ

k

= Æ

k+2

,

elements fv

k�1

; v

k

; v

k+1

; v

k+2

g form a 2-subube.

60. Use the onstrution of exerise 58 with q = 1.

61. The idea is to interleave an m-bit yle U = (u

0

; u

1

; u

2

; : : :) with an n-bit yle

V = (v

0

; v

1

; v

2

; : : :), by forming onatenations

W = (u

i

0

v

j

0

; u

i

1

v

j

1

; u

i

2

v

j

2

; : : :); i

k

= a

0

+ � � �+ a

k�1

; j

k

= a

0

+ � � �+ a

k�1

;

where a

0

a

1

a

2

: : : is a periodi string of ontrol bits ��� : : : ; we advane to the next

element of U when a

k

= 0, otherwise to the next element of V .

If � is any string of length 2

m

� 2

n

, ontaining s bits that are 0 and t = 2

m

� s

bits that are 1, W will be an (m + n)-bit Gray yle if s and t are odd. For we have

i

k+l

� i

k

(modulo 2

m

) and j

k+l

� j

k

(modulo 2

n

) only if l is a multiple of 2

m

, sine

i

k

+ j

k

= k. Suppose l = 2

m

; then j

k+l

= j

k

+ t, so is a multiple of 2

n

.

(a) Let � = 0111; then runs of length 8 our in the left 2 bits and runs of length

� b

4

3

r(n) our in the right n bits.

(b) Let s be the largest odd number � 2

m

r(m)=(r(m)+ r(n)). Also let t = 2

m

� s

and a

k

= b(k + 1)t=2

m

 � bkt=2

m

, so that i

k

= dks=2

m

e and j

k

= bkt=2

m

. If

a run of length l ours in the left m bits, we have i

k+l+1

� i

k

+ r(m) + 1, hene

l+1 > 2

m

r(m)=s � r(m) + r(n). And if it ours in the right n bits we have j

k+l+1

�

j

k

+ r(n) + 1, hene

l + 1 > 2

m

r(n)=t > 2

m

r(n)=(2

m

r(n)=(r(m) + r(n)) + 2)

= r(m) + r(n)�

2(r(m) + r(n))

2

2

m

r(n) + 2(r(m) + r(n))

> r(m) + r(n)� 1

beause r(m) � r(n).

The onstrution often works also in less restrited ases. See the paper that

introdued the study of Gray-ode runs: L. Goddyn, G. M. Lawrene, and E. Nemeth,

Utilitas Math. 34 (1988), 179{192.

63. Set a

k

 kmod 4 for 0 � k < 2

10

, exept that a

k

= 4 when k mod 16 = 15 or

k mod 64 = 42 or k mod 256 = 133. Also set (j

0

; j

1

; j

2

; j

3

; j

4

) (0; 2; 4; 6; 8). Then

for k = 0, 1, : : : , 1023, set Æ

k

 j

a

k

and j

a

k

 1 + 4a

k

� j

a

k

. (This onstrution

generalizes the method of exerise 61.)

50

7.2.1.1 ANSWERS TO EXERCISES 51

64. (a) Eah element u

k

appears together with fv

k

; v

k+2

m

; : : : ; v

k+2

m

(2

n�1

�1)

g and

fv

k+1

; v

k+1+2

m

; : : : ; v

k+1+2

m

(2

n�1

�1)

g. Thus the permutation �

0

: : : �

2

m

�1

must be a

2

n�1

-yle ontaining the n-bit verties of even parity, times an arbitrary permutation

of the other verties. This ondition is also suÆient.

(b) Let �

j

be the permutation that takes v 7! v � 2

j

, and let �

j

(u;w) be the

permutation (uw)�

j

. If u�w = 2

i

+2

j

then �

j

(u;w) takes u 7! u�2

i

and w 7! w�2

i

,

while v 7! v � 2

j

for all other verties v, so it takes eah vertex to a neighbor.

If S is any set � f0; : : : ; n� 1g, let �(S) be the stream of all permutations �

j

for

all j 2 f0; : : : ; n� 1g nS, in inreasing order of j, repeated twie; for example, if n = 5

we have �(f1; 2g) = �

0

�

3

�

4

�

0

�

3

�

4

. Then the Gray stream

�(i; j; u) = �(fi; jg)�

j

(u; u�2

i

�2

j

)�(fi; jg)�

j

�(fjg)

onsists of 6n � 8 permutations whose produt is the transposition (u u�2

i

�2

j

).

Moreover, when this stream is applied to any n-bit vertex v, its runs all have length

n� 2 or more.

We may assume that n � 5. Let Æ

0

: : : Æ

2

n

�1

be the delta sequene for an n-bit

Gray yle (v

0

; v

1

; : : : ; v

2

n

�1

) with all runs of length 3 or more. Then the produt of

all permutations in

� =

2

n�1

�1

Y

k=1

(�(Æ

2k�1

; Æ

2k

; v

2k�1

) �(Æ

2k

; Æ

2k+1

; v

2k

))

is (v

1

v

3

)(v

2

v

4

) : : : (v

2

n

�3

v

2

n

�1

)(v

2

n

�2

v

0

) = (v

2

n

�1

: : : v

1

)(v

2

n

�2

: : : v

0

), so it satis�es

the yle ondition of (a).

Moreover, all powers (�(;)�)

t

produe runs of length � n � 2 when applied to

any vertex v. By repeating individual fators �(fi; jg) or �(fjg) in � as many times

as we wish, we an adjust the length of �(;)�, obtaining 2n+ (2

n�1

� 1)(12n� 16) +

2(n�2)a+2(n�1)b for any integers a; b � 0; thus we an inrease its length to exatly

2

m

, provided that 2

m

� 2n+(2

n�1

�1)(12n�16)+2(n

2

�5n+6), by exerise 5.2.1{ 21.

() The bound r(n) � n � 4 lgn + 8 an be proved for n � 5 as follows. First

we observe that it holds for 5 � n < 33 by the methods of exerises 60{63. Then we

observe that every integer N � 33 an be written as N = m+n or N = m+n+1, for

some m � 20, where

n = m� b4 lgm+ 10:

If m � 20, 2

m

is suÆiently large for the onstrution in part (b) to be valid; hene

r(N) � r(m+ n) � 2min(r(m); n� 2) � 2(m� b4 lgm+ 8)

= m+ n+ 1� b4 lg(m+ n)� 1 + �+ 8

� N � 4 lgN + 8

where � = 4 lg(2m=(m + n)) < 1. [Eletroni Journal of Combinatoris 10 (2003),

#R27, 1{10.℄ Reursive use of (b) gives, in fat, r(1024) � 1000.

65. A omputer searh reveals that eight essentially di�erent patterns (and their

reverses) are possible. One of them has the delta sequene 01020314203024041234

214103234103, and it is lose to two of the others.

66. (Solution by Mark Cooke.) One suitable delta sequene is 012345607012132435

65760710213534626701537412362567017314262065701342146560573102464537

57102043537614073630464273703564027132750541210275641502403654250136

51

52 ANSWERS TO EXERCISES 7.2.1.1

02541615604312576032572043157624321760452041751635476703564757062543

7242132624161523417514367143164314. (Solutions for n > 8 are still unknown.)

67. Let v

2k+1

= v

2k

and v

2k

= 0u

k

, where (u

0

; u

1

; : : : ; u

2

n

�1

) is any (n� 1)-bit Gray

yle. [See Robinson and Cohn, IEEE Trans. C-30 (1981), 17{23.℄

68. Yes. The simplest way is probably to take (n� 1)-trit modular Gray ternary ode

and add 0 : : : 0, 1 : : : 1, 2 : : : 2 to eah string (modulo 3). For example, when n = 3 the

ode is 000, 111, 222, 001, 112, 220, 002, 110, 221, 012, 120, 201, : : : , 020, 101, 212.

69. (a) We need only verify the hange in h when bits b

j�1

: : : b

0

are simultaneously

omplemented, for j = 1, 2, : : : ; and these hanges are respetively (1110)

2

, (1101)

2

,

(0111)

2

, (1011)

2

, (10011)

2

, (100011)

2

, : : : . To prove that every n-tuple ours, note

that 0 � h(k) < 2

n

when 0 � k < 2

n

and n > 3; also h

[�1℄

((a

n�1

: : : a

0

)

2

) =

(b

n�1

: : : b

0

)

2

, where b

0

= a

0

� a

1

� a

2

� � � � , b

1

= a

0

, b

2

= a

2

� a

3

� a

4

� � � � ,

b

3

= a

0

� a

1

� a

3

� � � � , and b

j

= a

j

� a

j+1

� � � � for j � 4.

(b) Let h(k) = (: : : a

2

a

1

a

0

)

2

where a

j

= b

j

� b

j+1

� b

0

[j� t℄� b

t�1

[t� 1� j� t℄.

70. As in (32) and (33), we an remove a fator of n! by assuming that the strings of

weight 1 our in order. Then there are 14 solutions for n = 5 starting with 00000, and

21 starting with 00001. When n = 6 there are 46,935 of eah type (related by reversal

and omplementation). When n = 7 the number is muh, muh larger, yet very small

by omparison with the total number of 7-bit Gray odes.

71. Suppose that �

n(j+1)

di�ers from �

nj

in oordinate t

j

, for 0 � j < n � 1. Then

t

j

= j�

n

, by (44) and (38). Now Eq. (34) tells us that t

0

= n� 1; and if 0 < j < n� 1

we have t

j

= ((j � 1)�

n�1

)�

n�1

by (40). Thus t

j

= j�

n

�

2

n�1

for 0 � j < n � 1, and

the value of (n� 1)�

n

is whatever is left. (Notations for permutations are notoriously

onfusing, so it is always wise to hek a few small ases arefully.)

72. The delta sequene is 0102132430201234012313041021323.

73. Let Q

nj

= P

R

nj

and denote the sequenes (41), (42) by S

n

and T

n

. Thus S

n

=

P

n0

Q

n1

P

n2

: : : and T

n

= Q

n0

P

n1

Q

n2

: : : , if we omit the ommas; and we have

S

n+1

= 0P

n0

0Q

n1

1Q

�

n0

1P

�

n1

0P

n2

0Q

n3

1Q

�

n2

1P

�

n3

0P

n4

: : : ;

T

n+1

= 0Q

n0

1P

�

n0

0P

n1

0Q

n2

1Q

�

n1

1P

�

n2

0P

n3

0Q

n4

1Q

�

n3

: : : ;

where � = �

n

, revealing a reasonably simple joint reursion between the delta sequenes

�

n

and E

n

of S

n

and T

n

. Namely, if we write

�

n

= �

1

a

1

�

2

a

2

: : : �

n�1

a

n�1

�

n

; E

n

=

1

b

1

2

b

2

: : :

n�1

b

n�1

n

;

where eah �

j

and

j

is a string of length 2

�

n�1

j�1

�

� 1, the next sequenes are

�

n+1

= �

1

a

1

�

2

n

1

� b

1

�

2

� n �

3

a

3

�

4

n

3

� b

3

�

4

� n : : :

E

n+1

=

1

n �

1

� n

2

b

2

3

n �

2

� a

2

� �

3

� n

4

b

4

5

n �

4

� a

4

� �

5

� n : : :

For example, we have �

3

= 01 0 2 1 0 1 and E

3

= 02 1 2 0 2 1, if we underline the a's

and b's to distinguish them from the �'s and 's; and

�

4

= 0 1 0 2 1 3 0� 2� 1� 2� 0� 3 1 3 1� = 0 1 0 2 1 3 2 1 0 1 2 3 1 3 0;

E

4

= 0 3 0� 3 1 2 0 2 1 3 0� 2� 1� 0� 1� = 0 3 2 3 1 2 0 2 1 3 2 1 0 2 0;

here a

3

�

4

and b

3

4

are empty. Elements have been underlined for the next step.

Thus we an ompute the delta sequenes in memory as follows. Here p[j℄ = j�

n

for 1 � j < n; s

k

= Æ

k

, t

k

= "

k

, and u

k

= [Æ

k

and "

k

are underlined℄, for 0 � k < 2

n

�1.

52

7.2.1.1 ANSWERS TO EXERCISES 53

R1. [Initialize.℄ Set n 1, p[0℄ 0, s

0

 t

0

 u

0

 0.

R2. [Advane n.℄ Perform Algorithm S below, whih omputes the arrays s

0

, t

0

,

and u

0

for the next value of n; then set n n+ 1.

R3. [Ready?℄ If n is suÆiently large, the desired delta sequene �

n

is in array s

0

;

terminate. Otherwise keep going.

R4. [Compute �

n

.℄ Set p

0

[0℄ = n� 1, and p

0

[j℄ = p[p[j � 1℄℄ for 1 � j < n.

R5. [Prepare to advane.℄ Set p[j℄ p

0

[j℄ for 0 � j < n; set s

k

 s

0

k

, t

k

 t

0

k

,

and u

k

 u

0

k

for 0 � k < 2

n

� 1. Return to R2.

In the following steps, \Transmit stu�(l; j) while u

j

= 0" is an abbreviation for \If

u

j

= 0, repeatedly stu�(l; j), l l + 1, j j + 1, until u

j

6= 0."

S1. [Prepare to ompute �

n+1

.℄ Set j k l 0 and u

2

n

�1

 �1.

S2. [Advane j.℄ Transmit s

0

l

 s

j

and u

0

l

 0 while u

j

= 0. Then go to S5 if

u

j

< 0.

S3. [Advane j and k.℄ Set s

0

l

 s

j

, u

0

l

 1, l l+ 1, j j + 1. Then transmit

s

0

l

 s

j

and u

0

l

 0 while u

j

= 0. Then set s

0

l

 n, u

0

l

 0, l l + 1. Then

transmit s

0

l

 p[t

k

℄ and u

0

l

 0 while u

k

= 0. Then set s

0

l

 p[t

k

℄, u

0

l

 1,

l l + 1, k k + 1. And one again transmit s

0

l

 p[t

k

℄ and u

0

l

 0 while

u

k

= 0.

S4. [Done with �

n+1

?℄ If u

k

< 0, go to S6. Otherwise set s

0

l

 n, u

0

l

 0,

l l + 1, j j + 1, k k + 1, and return to S2.

S5. [Finish �

n+1

.℄ Set s

0

l

 n, u

0

l

 1, l l+1. Then transmit s

0

l

 p[t[k℄℄ and

u

0

l

 0 while u

k

= 0.

S6. [Prepare to ompute E

n+1

.℄ Set j k l 0. Transmit t

0

l

 t

k

while

u

k

= 0. Then set t

0

l

 n, l l + 1.

S7. [Advane j.℄ Transmit t

0

l

 p[s

j

℄ while u

j

= 0. Then terminate if u

j

< 0;

otherwise set t

0

l

 n, l l + 1, j j + 1, k k + 1.

S8. [Advane k.℄ Transmit t

0

l

 t

k

while u

k

= 0. Then go to S10 if u

k

< 0.

S9. [Advane k and j.℄ Set t

0

l

 t

k

, l l + 1, k k + 1. Then transmit t

0

l

 t

k

while u

k

= 0. Then set t

0

l

 n, l l + 1. Then transmit t

0

l

 p[s

j

℄ while

u

j

= 0. Then set t

0

l

 p[s

j

℄, l l + 1, j j + 1. Return to S7.

S10. [Finish E

n+1

.℄ Set t

0

l

 n, l l+1. Then transmit t

0

l

 p[s

j

℄ while u

j

= 0.

To generate the monotoni Savage{Winkler ode for fairly large n, one an �rst generate

�

10

and E

10

, say, or even �

20

and E

20

. Using these tables, a suitable reursive pro-

edure will then be able to reah higher values of n with very little omputational

overhead per step, on the average.

74. If the monotoni path is v

0

, : : : , v

2

n

�1

and if v

k

has weight j, we have

2

X

t>0

�

n

j � 2t

�

+ ((j + �(v

0

)) mod 2) � k � 2

X

t�0

�

n

j � 2t

�

+ ((j + �(v

0

)) mod 2)� 2:

Therefore the maximum distane between verties of respetive weights j and j + 1

is 2(

�

n�1

j�1

�

+

�

n�1

j

�

+

�

n�1

j+1

�

) � 1. The maximum value, approximately 3 � 2

n

=

p

2�n,

ours when j is approximately n=2. [This is only about three times the smallest value

ahievable in any ordering of the verties, whih is

P

n�1

j=0

�

j

bj=2

�

by exerise 7.10{00.℄

53

54 ANSWERS TO EXERCISES 7.2.1.1

75. There are only �ve essentially distint solutions, all of whih turn out in fat to

be Gray yles. The delta sequenes are

0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 1 2 1 0 3 2 1 0 4 0 1 2 3 0 1 2 (1)

0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 1 3 0 1 2 3 0 1 4 1 0 3 2 1 0 3 (1)

0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 2 0 3 2 1 0 3 2 4 2 3 0 1 2 3 0 (2)

0 1 2 3 0 1 2 4 2 3 0 1 2 3 0 2 0 1 2 3 0 1 2 4 2 3 0 1 2 3 0 (2)

0 1 2 3 4 1 0 1 2 1 0 3 0 1 4 3 2 1 0 3 0 1 4 1 0 1 2 3 4 1 0 (3)

76. If v

0

, : : : , v

2

n

�1

is trend-free, so is the (n+1)-bit yle 0v

0

, 1v

0

, 1v

1

, 0v

1

, 0v

2

, 1v

2

,

: : : , 1v

2

n

�1

, 0v

2

n

�1

. Figure 14(g) shows a somewhat more interesting onstrution,

whih generalizes the �rst solution of exerise 75 to an (n+ 2)-bit yle

00�

00R

; 01�

0R

; 11�

0

; 10�

00

; 10�; 11�

000

; 01�

000R

; 00�

R

where � is the n-bit sequene g(1), : : : , g(2

n�1

) and �

0

= �� g(1), �

00

= �� g(2

n�1

),

�

000

= �� g(2

n�1

+ 1). [An n-bit trend-free design that is almost a Gray ode, having

just four steps in whih �(v

k

� v

k+1

) = 2, was found for all n � 3 by C. S. Cheng,

Pro. Berkeley Conf. Neyman and Kiefer 2 (Hayward, Calif.: Inst. of Math. Statistis,

1985), 619{633.℄

77. Replae the array (o

n�1

; : : : ; o

0

) by an array of sentinel values (s

n�1

; : : : ; s

0

), with

s

j

 m

j

� 1 in step H1. Set a

j

 (a

j

+ 1) modm

j

in step H4. If a

j

= s

j

in step H5,

set s

j

 (s

j

� 1) modm

j

, f

j

 f

j+1

, f

j+1

 j + 1.

78. For (50), notie that B

j+1

is the number of times reetion has ourred in

oordinate j, beause we bypass oordinate j on steps that are multiples of m

j

: : :m

0

.

Hene, if b

j

< m

j

, an inrease of b

j

by 1 auses a

j

to inrease or derease by 1 as

appropriate. Furthermore, if b

i

= m

i

� 1 for 0 � i < j, hanging all these b

i

to 0 when

inrementing b

j

will inrease eah of B

0

, : : : , B

j

by 1, thereby leaving the values a

0

,

: : : , a

j�1

unhanged in (50).

For (51), note that B

j

= m

j

B

j+1

+ b

j

� m

j

B

j+1

+a

j

+(m

j

�1)B

j+1

� a

j

+B

j+1

(modulo 2); hene B

j

� a

j

+ a

j+1

+ � � � , and (51) is obviously equivalent to (50).

In the modular Gray ode for general radies (m

n�1

; : : : ;m

0

), let

�g(k) =

h

a

n�1

;

m

n�1

;

: : : ;

: : : ;

a

2

;

m

2

;

a

1

;

m

1

;

a

0

m

0

i

when k is given by (46). Then a

j

= (b

j

� B

j+1

) modm

j

, beause oordinate j has

inreased modulo m

j

exatly B

j

� B

j+1

times if we start at (0; : : : ; 0). The inverse

funtion, whih determines the b's from the modular Gray a's, is b

j

= (a

j

+ a

j+1

+

a

j+2

+ � � �) modm

j

in the speial ase that eah m

j

is a divisor of m

j+1

(for example,

if all m

j

are equal). But the inverse has no simple form in general; it an be omputed

by using the reurrenes b

j

= (a

j

+ B

j+1

) modm

j

, B

j

= m

j

B

j+1

+ b

j

for j = n � 1,

: : : , 0, starting with B

n

= 0.

[Reeted Gray odes for radix m > 2 were introdued by Ivan Flores in IRE

Trans. EC-5 (1956), 79{82; he derived (50) and (51) in the ase that all m

j

are

equal. Modular Gray odes with general mixed radies were impliitly disussed by

Joseph Rosenbaum in AMM 45 (1938), 694{696, but without the onversion formulas;

onversion formulas when all m

j

have a ommon value m were published by Martin

Cohn, Info. and Control 6 (1963), 70{78.℄

54

7.2.1.1 ANSWERS TO EXERCISES 55

79. (a) The last n-tuple always has a

n�1

= m

n�1

� 1, so it is one step from (0; : : : ; 0)

only if m

n�1

= 2. And this ondition suÆes to make the �nal n-tuple (1; 0; : : : ; 0).

[Similarly, the �nal subforest output by Algorithm K is adjaent to the initial one if

and only if the leftmost tree is an isolated vertex.℄

(b) The last n-tuple is (m

n�1

�1; 0; : : : ; 0) if and only ifm

n�1

: : :m

j+1

modm

j

= 0

for 0 � j < n� 1, beause b

j

= m

j

� 1 and B

j

= m

n�1

: : :m

j

� 1.

80. Run through p

a

1

1

: : : p

a

t

t

using reeted Gray ode with radies m

j

= e

j

+ 1.

81. The �rst yle ontains the edge from (x; y) to (x; (y + 1) modm) if and only if

(x+ y) modm 6= m� 1 if and only if the seond yle ontains the edge from (x; y) to

((x+ 1) modm; y).

82. There are two 4-bit Gray yles (u

0

; : : : ; u

15

) and (v

0

; : : : ; v

15

) that over all edges

of the 4-ube. (Indeed, the non-edges of lasses A, B, D, H, and I in exerise 56 form

Gray yles, in the same lasses as their omplements.) Therefore with 16-ary modular

Gray ode we an form the four desired yles (u

0

u

0

; u

0

u

1

; : : : ; u

0

u

15

; u

1

u

15

; : : : ; u

15

u

0

),

(u

0

u

0

; u

1

u

0

; : : : ; u

15

u

0

; u

15

u

1

; : : : ; u

0

u

15

), (v

0

v

0

; : : : ; v

15

v

0

), (v

0

v

0

; : : : ; v

0

v

15

).

In a similar way we an show that n=2 edge-disjoint n-bit Gray yles exist when

n is 16, 32, 64, et. [Abhandlungen Math. Sem. Hamburg 20 (1956), 13{16.℄ J. Aubert

and B. Shneider [Disrete Math. 38 (1982), 7{16℄ have proved that the same property

holds for all even values of n � 4, but no simple onstrution is known.

83. Mark Cooke found the following totally unsymmetri solution in Deember, 2002:

(1) 2737465057320265612316546743610525106052042416314372145101421737

2506246064173213107351607103156205713172463452102434643207054702

4147356146737625047350745130620656415073123731427376432561240264

3016735467532402524637475217640270736065105215106073575463253105;

(2) 0616713417232175171671540460247164742473202531621673531632736052

6710141503047313570615453627623241426465272021632075363710750740

3157674761545652756510451024023107353424651230406545306213710537

2620501752453406703437343531502602463045627674152752406021610434;

(3) 3701063751507131236243765735103012042353747207410473621617247324

6505132565057121565024570473247421427640231034362703262764130574

0560620341745613151756314702721725205613212604053506260460173642

6717641743513401245360241730636545061563027414535676432625745051;

(4) 6706546435672147236210405432054510737405170532145431636430504673

4560621206416201320742373627204506473140171020514126107452343672

1320452752353410515426370601363567307105420163151210535061731236

4272537165617217542510760215462375452674257037346403647376271657.

(Eah of these delta sequenes should start from the same vertex of the ube.) Is there

a symmetrial way to do the job?

84. Calling the initial position (2; 2), the 8-step solution in Fig. A-1 shows how the

sequene progresses down to (0; 0). In the �rst move, for example, the front half of the

ord passes around and behind the right omb, then through the large right loop. The

middle line should be read from right to left. The generalization to n pairs of loops

would, similarly, take 3

n

� 1 steps.

[The origin of this delightful puzzle is obsure. The Book of Ingenious & Diabolial

Puzzles by Jerry Sloum and Jak Botermans (1994) shows a 2-loop version arved from

horn, probably made in China about 1850 [page 101℄, and a modern 6-loop version

55

56 ANSWERS TO EXERCISES 7.2.1.1

Step 0: (2; 2) Step 1: (2; 1) Step 2: (2; 0)

Step 5: (1; 2) Step 4: (1; 1) Step 3: (1; 0)

Step 6: (0; 2) Step 7: (0; 1) Step 8: (0; 0)

Fig. A-1.

made in Malaysia about 1988 [page 93℄. Sloum also owns a 4-loop version made from

bamboo in England about 1884. He has found it listed in Henry Novra's Catalogue of

Conjuring Triks and Puzzles (1858 or 1859) and W. H. Cremer's Games, Amusements,

Pastimes and Magi (1867), as well as in Hamley's atalog of 1895, under the name

\Marvellous Canoe Puzzle." Dykman noted its onnetion to reeted Gray ternary

in a letter to Martin Gardner, dated 2 August 1972.℄

85. By (50), element [

b;

t;

b

0

t

0

℄ of ���

0

is �

a

�

0

a

0

if ĝ([

b;

t;

b

0

t

0

℄) = [

a;

t;

a

0

t

0

℄ in the reeted Gray

ode for radies (t; t

0

). We an now show that element [

b;

t;

b

0

;

t

0

;

b

00

t

00

℄ of both (���

0

)��

00

and ��(�

0

��

00

) is �

a

�

0

a

0

�

00

a

00

if ĝ([

b;

t;

b

0

;

t

0

;

b

00

t

00

℄) = [

a;

t;

a

0

;

t

0

;

a

00

t

00

℄ in the reeted Gray ode for

radies (t; t

0

; t

00

). See exerise 4.1{10, and note also the mixed-radix law

m

1

: : :m

n

� 1�

h

x

1

;

m

1

;

: : : ;

: : : ;

x

n

m

n

i

=

h

m

1

� 1� x

1

;

m

1

;

: : : ;

: : : ;

m

n

� 1� x

n

m

n

i

:

In general, the reeted Gray ode for radies (m

1

; : : : ;m

n

) is (0; : : : ;m

1

� 1)�� � ��

(0; : : : ;m

n

� 1). [Information Proessing Letters 22 (1986), 201{205.℄

86. Let �

mn

be the reeted m-ary Gray ode, whih an be de�ned by �

m0

= � and

�

m(n+1)

= (0; 1; : : : ;m� 1)��

mn

; n � 0:

This path runs from (0; 0; : : : ; 0) to (m�1; 0; : : : ; 0) when m is even. Consider the Gray

path �

mn

de�ned by �

m0

= ; and

�

m(n+1)

=

(

(0; 1; : : : ;m� 1)��

mn

; m�

R

(m+1)n

; if m is odd;

(0; 1; : : : ;m)��

mn

; m�

R

mn

; if m is even.

56

7.2.1.1 ANSWERS TO EXERCISES 57

This path traverses all of the (m + 1)

n

� m

n

nonnegative integer n-tuples for whih

max(a

1

; : : : ; a

n

) = m, starting with (0; : : : ; 0;m) and ending with (m; 0; : : : ; 0). The

desired in�nite Gray path is �

0n

, �

R

1n

, �

2n

, �

R

3n

, : : : .

87. This is impossible when n is odd, beause the n-tuples with max(ja

1

j; : : : ; ja

n

j) = 1

inlude

1

2

(3

n

+ 1) with odd parity and

1

2

(3

n

� 3) with even parity. When n = 2 we

an use a spiral �

0

, �

1

, �

2

, : : : , where �

m

winds ounterlokwise from (m; 1 � m)

to (m;�m) when m > 0. For even values of n � 2, if T

m

is a path of n-tuples from

(m; 1�m;m� 1; 1�m; : : : ;m� 1; 1�m) to (m;�m;m;�m; : : : ;m;�m), we an use

�

m

� (T

0

; : : : ; T

m�1

); (�

0

; : : : ;�

m

)

R

�T

m

for (n + 2)-tuples with the same property,

where� is the dual operation

���

0

= (�

0

�

0

0

; : : : ; �

t�1

�

0

0

; �

t�1

�

0

1

; : : : ; �

0

�

0

1

; �

0

�

0

2

; : : : ; �

t�1

�

0

2

; �

t�1

�

0

3

; : : :):

[In�nite n-dimensional Gray odes without the magnitude onstraint were �rst on-

struted by E. V�azsonyi, Ata Litterarum a Sientiarum, setio Sientiarum Mathe-

matiarum 9 (Szeged: 1938), 163{173.℄

88. It would visit all the subforests again, but in reverse order, ending with (0; : : : ; 0)

and returning to the state it had after the initialization step K1. (This reetion

priniple is, in fat, the key to understanding how Algorithm K works.)

89. (a) Let M

0

= �, M

1

=

q

, and M

n+2

=

q

M

R

n+1

; M

R

n

. This onstrution works

beause the last element of M

R

n+1

is the �rst element of M

n+1

, namely a dot followed

by the �rst element of M

R

n

.

(b) Given a string d

1

: : : d

l

where eah d

j

is

q

or , we an �nd its suessor by

letting k = l� [d

l

=

q

℄ and proeeding as follows: If k is odd and d

k

=

q

, hange d

k

d

k+1

to ; if k is even and d

k

= , hange d

k

to

q q

; otherwise derease k by 1 and repeat

until either making a hange or reahing k = 0. The suessor of the given word is

q q q q q q q

.

90. A yle an exist only when the number of ode words is even, sine the number

of dashes hanges by �1 at eah step. Thus we must have nmod 3 = 2. The Gray

paths M

n

of exerise 89 are not suitable; they begin with (

q

)

bn=3

q

nmod 3

and end

with (

q

)

bn=3

q

[nmod 3=1℄ [nmod 3=2℄

. But M

3k+1

q

, M

R

3k

is a Hamiltonian yle in

the Morse ode graph when n = 3k + 2.

91. Equivalently, the n-tuples a

1

�a

2

a

3

�a

4

: : : have no two onseutive 1s. Suh n-tuples

orrespond to Morse ode sequenes of length n+1, if we append 0 and then represent

q

and

q

� respetively by 0 and 10. Under this orrespondene we an onvert the path

M

n+1

of exerise 89 into a proedure like Algorithm K, with the fringe ontaining the

indies where eah dot or dash begins (exept for a �nal dot):

Q1. [Initialize.℄ Set a

j

 b((j � 1) mod 6)=3 and f

j

 j for 1 � j � n. Also set

f

0

 0, r

0

 1, l

1

 0, r

j

 j+(j mod 3) and l

j+(j mod 3)

 j for 1 � j � n,

exept if j+(j mod 3) > n set r

j

 0 and l

0

 j. (The \fringe" now ontains

1, 2, 4, 5, 7, 8, : : : .)

Q2. [Visit.℄ Visit the n-tuple (a

1

; : : : ; a

n

).

Q3. [Choose p.℄ Set q l

0

, p f

q

, f

q

 q.

Q4. [Chek a

p

.℄ Terminate the algorithm if p = 0. Otherwise set a

p

 1� a

p

and

go to Q6 if a

p

+ p is now even.

Q5. [Insert p+1.℄ If p < n, set q r

p

, l

q

 p+1, r

p+1

 q, r

p

 p+1, l

p+1

 p.

Go to Q7.

57

58 ANSWERS TO EXERCISES 7.2.1.1

Q6. [Delete p+ 1.℄ If p < n, set q r

p+1

, r

p

 q, l

q

 p.

Q7. [Make p passive.℄ Set f

p

 f

l

p

and f

l

p

 l

p

. Return to Q2.

This algorithm an also be derived as a speial ase of a onsiderably more general

method due to Gang Li, Frank Ruskey, and D. E. Knuth, whih extends Algorithm K

by allowing the user to speify either a

p

� a

q

or a

p

� a

q

for eah (parent; hild) pair

(p; q). [See Knuth and Ruskey, Leture Notes in Computer Siene 2635 (2004), 183{

204.℄ A generalization in another diretion, whih produes all strings of length n that

do not ontain ertain substrings, has been disovered by M. B. Squire, Eletroni J.

Combinatoris 3 (1996), #R17, 1{29.

Inidentally, it is amusing to note that the mapping k 7! g(k)=2 is a one-to-one

orrespondene between all binary n-tuples with no odd-length runs of 1s and all binary

n-tuples with no two onseutive 1s.

92. Yes, beause the digraph of all (n�1)-tuples (x

1

; : : : ; x

n�1

) with x

1

; : : : ; x

n�1

� m

and with ars (x

1

; : : : ; x

n�1

) ! (x

2

; : : : ; x

n

) whenever max(x

1

; : : : ; x

n

) = m is on-

neted and balaned; see Theorem 2.3.4.2G. Indeed, we get suh a sequene from

Algorithm F if we note that the �nal k

n

elements of the prime strings of length

dividing n, when subtrated from m� 1, are the same for all m � k. When n = 4, for

example, the �rst 81 digits of the sequene �

4

are 2 � �

R

= 00001 01 0011 : : : , where

� is the string (62). [There also are in�nite m-ary sequenes whose �rst m

n

elements

are de Bruijn yles for all n, given any �xed m � 3. See L. J. Cummings and D.

Wiedemann, Cong. Numerantium 53 (1986), 155{160.℄

93. The yle generated by f() is a yli permutation of �1, where � has lengthm

n

�1

and ends with 1

n�1

. The yle generated by Algorithm R is a yli permutation of

 =

0

: : :

m

n+1

�1

, where

k

= (

0

+ b

0

+ � � � + b

k�1

) modm and b

0

: : : b

m

n+1

�1

=

� = �

m

1

m

.

If x

0

: : : x

n

ours in , say x

j

=

k+j

for 0 � j � n, then y

j

= b

k+j

for 0 � j < n,

where y

j

= (x

j+1

�x

j

) modm. [This is the onnetion with modular m-ary Gray ode;

see exerise 78.℄ Now if y

0

: : : y

n�1

= 1

n

we have m

n+1

� m � n < k � m

n+1

� n;

otherwise there is an index k

0

suh that �n < k

0

< m

n

� n and y

0

: : : y

n�1

ours in

� at positions k = (k

0

+ r(m

n

� 1)) modm

n+1

for 0 � r < m. In both ases the m

hoies of k have di�erent values of x

0

, beause the sum of all elements in � is m � 1

(modulo m) when n � 2. [Algorithm R is valid also for n = 1 if mmod 4 6= 2, beause

m ?

P

� in that ase.℄

94. 0010203041121314223243344. (The underlined digits are e�etively inserted

into the interleaving of 00112234 with 34. Algorithm D an be used in general when

n = 1 and r = m� 2 � 0; but it is pointless to do so, in view of (54).)

95. (a) Let

0

1

2

: : : have period r. If r is odd we have p = q = r, so r = pq only in

the trivial ase when p = q = 1 and a

0

= b

0

. Otherwise r=2 = lm(p; q) = pq=gd(p; q)

by 4.5.2{(10), hene gd(p; q) = 2. In the latter ase the 2n-tuples

l

l+1

: : :

l+2n�1

that our are a

j

b

k

: : : a

j+n�1

b

k+n�1

for 0 � j < p, 0 � k < q, j � k (modulo 2), and

b

k

a

j

: : : b

k+n�1

a

j+n�1

for 0 � j < p, 0 � k < q, j 6� k (modulo 2).

(b) The output would interleave two sequenes a

0

a

1

: : : and b

0

b

1

: : : whose periods

are respetively m

n

+r and m

n

�r; the a's are the yle of f() with x

n

hanged to x

n+1

and the b's are the yle of f

0

() with x

n

hanged to x

n�1

, for 0 � x < r. By (58) and

part (a), the period length is m

2n

� r

2

, and every 2n-tuple ours with the exeption

of (xy)

n

for 0 � x; y < r.

58

7.2.1.1 ANSWERS TO EXERCISES 59

() The real step D6 alters the behavior of (b) by going to D3 when t � n, t

0

= n,

and 0 � x

0

= x < r; this hange emits an extra x at the time when x

2n�1

has just

been output and b is about to be emitted, where b is the digit following x

n

in the yle.

D6 also allows ontrol to pass to D7 and then D3 with t

0

= n in the ase that t � n and

x < x

0

< r; this behavior emits an extra x

0

x at the time when (xx

0

)

n�1

x has just been

output and b will be next. These r

2

extra bits provide the r

2

missing 2n-tuples of (b).

96. (a) The reurrenes S

2

= 1, S

2n+1

= S

2n

= 2S

n

, R

2

= 0, R

2n+1

= 1 + R

2n

,

R

2n

= 2R

n

, D

2

= 0, D

2n+1

= D

2n

= 1 + 2D

n

have the solution S

n

= 2

blgn�1

,

R

n

= n� 2S

n

, D

n

= S

n

� 1. Thus S

n

+R

n

+D

n

= n� 1.

(b) Eah top-level output usually involves blgn � 1 D-ativations and �(n) � 1

R-ativations, plus one basi ativation at the bottom level. But there are exeptions:

Algorithm R might invoke its f() twie, if the �rst ativation ompleted a sequene 1

n

;

and sometimes Algorithm R doesn't need to invoke f() at all. Algorithm D might

invoke its f

0

() twie, if the �rst ativation ompleted a sequene (x

0

)

n

; but sometimes

Algorithm D doesn't need to invoke either f() or f

0

().

Algorithm R ompletes a sequene x

n+1

if and only if its hild f() has just

ompleted a sequene 0

n

. Algorithm D ompletes a sequene x

2n

for x < r if and

only if it has just jumped from D6 to D3 without invoking any hild.

From these observations we an onlude that at most blg n+�(n)+1 ativations

are possible per top-level output, if r > 1; suh a ase happens when Algorithm D

for n = 6 goes from D6 to D4. But when r = 1 we an have as many as 2blgn + 3

ativations, for example when Algorithm R for n = 25 goes from R4 to R2.

97. (a) (0011), (00011101), (0000101001111011), and (00000110001011011111

001110101001). Thus j

2

= 2, j

3

= 3, j

4

= 9, j

5

= 15.

(b) We obviously have f

n+1

(k) = �f

n

(k) mod 2 for 0 � k < j

n

+ n. The next

value, f

n+1

(j

n

+ n), depends on whether step R4 jumps to R2 after omputing y =

f

n

(j

n

+n�1). If it does (namely, if f

n+1

(j

n

+n�1) 6= 0), we have f

n+1

(k) � 1+�(k+1)

for j

n

+ n � k < 2

n

+ j

n

+ n; otherwise we have f

n+1

(k) � 1 + �(k � 1) for those

values of k. In partiular, f

n+1

(k) = 1 when 2

n

� k+ Æ

n

� 2

n

+n. The stated formula,

whih has simpler ranges for the index k, holds beause 1 + �(k � 1) � �(k) when

j

n

< k < j

n

+ n or 2

n

+ j

n

< k < 2

n

+ j

n

+ n.

() The interleaved yle has

n

(2k) = f

+

n

(k) and

n

(2k + 1) = f

�

n

(k), where

f

+

n

(k) =

�

f

n

(k�1); if 0 < k � j

n

+1;

f

n

(k�2); if j

n

+1 < k � 2

n

+2;

f

�

n

(k) =

�

f

n

(k+1); if 0 � k < j

n

;

f

n

(k+2); if j

n

� k < 2

n

�2;

f

+

n

(k) = f

+

n

(k mod (2

n

+ 2)), f

�

n

(k) = f

�

n

(kmod (2

n

� 2)). Therefore the subsequene

1

2n�1

begins at position k

n

= (2

n�1

� 2)(2

n

+ 2) + 2j

n

+ 2 in the

n

yle; this will

make j

2n

odd. The subsequene (01)

n�1

0 begins at position l

n

= (2

n�1

+ 1)(j

n

� 1) if

j

n

mod 4 = 1, at l

n

= (2

n�1

+ 1)(2

n

+ j

n

� 3) if j

n

mod 4 = 3. Also k

2

= 6, l

2

= 2.

(d) Algorithm D inserts four elements into the

n

yle; hene

when j

n

mod 4<3 (l

n

<k

n

):

f

2n

(k)=

8

<

:

n

(k�1); if 0<k�l

n

+2;

n

(k�3); if l

n

+2<k�k

n

+3;

n

(k�4); if k

n

+3<k�2

2n

;

when j

n

mod 4=3 (k

n

<l

n

):

=

8

<

:

n

(k�1); if 0<k�k

n

+1;

n

(k�2); if k

n

+1<k�l

n

+3;

n

(k�4); if l

n

+3<k�2

2n

.

(e) Consequently j

2n

= k

n

+ 1 + 2[j

n

mod 4< 3℄. Indeed, the elements preeding

1

2n

onsist of 2

n�2

� 1 omplete periods of f

+

n

() interleaved with 2

n�2

omplete

periods of f

�

n

(), with one 0 inserted and also with 10 inserted if l

n

< k

n

, followed

59

60 ANSWERS TO EXERCISES 7.2.1.1

by f

n

(1)f

n

(1)f

n

(2)f

n

(2) : : : f

n

(j

n

�1)f

n

(j

n

�1). The sum of all these elements is odd,

unless l

n

< k

n

; therefore Æ

2n

= 1� 2[j

n

mod 4=3℄.

Let n = 2

t

q , where q is odd and n > 2. The reurrenes imply that, if q = 1, we

have j

n

= 2

n�1

+ b

t

where b

t

= 2

t

=3� (�1)

t

=3. And if q > 1 we have j

n

= 2

n�1

� b

t+2

,

where the + sign is hosen if and only if blg q+ [b4q=2

blg q

=5℄ is even.

98. If f(k) = g(k) when k lies in a ertain range, there's a onstant C suh that

�f(k) = C + �g(k) for k in that range. We an therefore ontinue almost mindlessly

to derive additional reurrenes: If n > 1 we have

�f

2n

(k); when j

n

mod 4< 3 (l

n

< k

n

):

�

8

<

:

�

n

(k�1); if 0< k � l

n

+2;

1+�

n

(k�3); if l

n

+2< k � k

n

+3;

�

n

(k�4); if k

n

+3< k � 2

2n

;

when j

n

mod 4 = 3 (k

n

< l

n

):

�

8

<

:

�

n

(k�1); if 0< k � k

n

+1;

1+�

n

(k�2); if k

n

+1< k � l

n

+3;

�

n

(k�4); if l

n

+3< k � 2

2n

.

�

n

(k) � �f

+

n

(dk=2e)+�f

�

n

(bk=2):

�f

+

n

(k)�

�

�f

n

(k�1); if 0<k�j

n

+1;

1+�f

n

(k�2); if j

n

+1<k�2

n

+2;

�f

�

n

(k)�

�

�f

n

(k+1); if 0�k<j

n

;

1+�f

n

(k+2); if j

n

�k<2

n

�2;

�f

�

n

(k) � bk=(2

n

� 2)+ �f

�

n

(k mod (2

n

� 2)); �f

n

(k) = �f

n

(kmod 2

n

):

�f

2n+1

(k) �

�

��f

2n

(k); if 0 < k � j

2n

or 2

2n

+ j

2n

< k � 2

2n+1

;

1 + k +��f

2n

(k + Æ

2n

); if j

2n

< k � 2

2n

+ j

2n

.

��f

2n

(k); when j

n

mod 4<3 (l

n

<k

n

):

�

8

<

:

��

n

(k�1); if 0<k�l

n

+2;

1+k+��

n

(k�3); if l

n

+2<k�k

n

+3;

��

n

(k�4); if k

n

+3<k�2

2n

;

when j

n

mod 4=3 (k

n

<l

n

):

�

8

<

:

��

n

(k�1); if 0<k�k

n

+1;

1+k+�

n

(k�2); if k

n

+1<k�l

n

+3;

1+��

n

(k�4); if l

n

+3<k�2

2n

.

��f

2n

(k) � [j

n

mod 4 < 3℄bk=2

2n

+ ��f

2n

(kmod 2

2n

):

And then, aha, there is losure:

��

n

(2k) = �f

+

n

(k); ��

n

(2k + 1) = �f

�

n

(k):

If n = 2

t

q where q is odd, the running time to evaluate f

n

(k) by this system of

reursive formulas is O(t+S(q)), where S(1) = 1, S(2k) = 1+ 2S(k), and S(2k+1) =

1+S(k). Clearly S(k) < 2k, so the evaluations involve at most O(n) simple operations

on n-bit numbers. In fat, the method is often signi�antly faster: If we average S(k)

over all k with blg k = s we get (3

s+1

� 2

s+1

)=2

s

, whih is less than 3k

lg(3=2)

< 3k

0:59

.

(Inidentally, if k = 2

s+1

� 1 � (2

s�e

1

+ 2

s�e

2

+ � � � + 2

s�e

t

) we have S(k) = s + 1 +

e

t

+ 2e

t�1

+ 4e

t�2

+ � � �+ 2

t

e

1

.)

99. A string that starts at position k in f

n

() starts at position k

+

= k+1+[k > j

n

℄ in

f

+

n

() and at position k

�

= k� 1� [k> j

n

℄ in f

�

n

(), exept that 0

n

and 1

n

our twie

in f

+

n

() but not at all in f

�

n

().

To �nd = a

0

b

0

: : : a

n�1

b

n�1

in the yle f

2n

(), let � = a

0

: : : a

n�1

and � =

b

0

: : : b

n�1

. Suppose � starts at position j and � at position k in f

n

(), and assume

that neither � nor � is 0

n

or 1

n

. If j

+

� k

+

(modulo 2), let l=2 be a solution to the

equation j

+

+ (2

n

+ 2)x = k

�

+ (2

n

� 2)y; we may take l=2 = k + (2

n

� 2)(2

n�3

(j � k)

mod (2

n�1

+ 1)) if j � k, otherwise l=2 = j + (2

n

+ 2)(2

n�3

(k � j) mod (2

n�1

� 1)).

Otherwise let (l� 1)=2 = k

+

+ (2

n

+ 2)x = j

�

+ (2

n

� 2)y. Then starts at position l

in the yle

n

(); hene it starts at position l+1+[l� k

n

℄+2[l� l

n

℄ in the yle f

2n

().

60

7.2.1.1 ANSWERS TO EXERCISES 61

Similar formulas hold when � 2 f0

n

; 1

n

g or � 2 f0

n

; 1

n

g (but not both). Finally,

0

2n

, 1

2n

, (01)

n

, and (10)

n

start respetively in positions 0, j

2n

, l

n

+ 1 + [k

n

< l

n

℄, and

l

n

+ 2 + [k

n

< l

n

℄.

To �nd � = b

0

b

1

: : : b

n

in f

n+1

() when n is even, suppose that the n-bit string

(b

0

� b

1

) : : : (b

n�1

� b

n

) starts at position j in f

n

(). Then � starts at position k =

j � Æ

n

[j� j

n

℄ + 2

n

[j= j

n

℄[Æ

n

= 1℄ if f

n+1

(k) = b

0

, otherwise at position k + (2

n

� Æ

n

;

Æ

n

; 2

n

+ Æ

n

) aording as (j<j

n

; j=j

n

; j>j

n

).

The running time of this reursion satis�es T (n) = O(n) + 2T (bn=2), so it is

O(n logn). [Exerises 97{99 are based on the work of J. Tuliani, who also has developed

methods for ertain larger values of m; see Disrete Math. 226 (2001), 313{336.℄

100. No obvious defets are apparent, but extensive testing should be done before any

sequene an be reommended. By ontrast, the de Bruijn yle produed impliitly

by Algorithm F is a terrible soure of supposedly random bits, even though it is n-

distributed in the sense of De�nition 3.5D, beause 0s predominate at the beginning.

Indeed, when n is prime, bits tn+ 1 of that sequene are zero for 0 � t < (2

n

� 2)=n.

101. (a) Let � be a proper suÆx of ��

0

with � � ��

0

. Either � is a suÆx of �

0

, whene

� < �

0

� �, or � = ��

0

and we have � < � < �.

Now � < � � ��

0

implies that � = � for some � �

0

. But is a suÆx of � with

1 � jj = j�j � j�j < j�

0

j; hene is a proper suÆx of �

0

, and �

0

< . Contradition.

(b) Any string of length 1 is prime. Combine adjaent primes by (a), in any

order, until no further ombination is possible. [See the more general results of M. P.

Sh�utzenberger, Pro. Amer. Math. So. 16 (1965), 21{24.℄

() If t 6= 0, let � be the smallest suÆx of �

1

: : : �

t

. Then � is prime by de�nition,

and it has the form � where � is a nonempty suÆx of some �

j

. Therefore �

t

� �

j

�

� � � = � � �

t

, so we must have � = �

t

. Remove �

t

and repeat until t = 0.

(d) True. For if we had � = �� for some prime � with j�j > j�

1

j, we ould

append the fators of � to obtain another fatorization of �.

(e) 3 � 1415926535897932384626433832795 � 02884197. (An eÆient algorithm

appears in exerise 106. Knowing more digits of � would not hange the �rst two

fators. The in�nite deimal expansion of any number that is \normal" in the sense of

Borel (see Setion 3.5) fators into primes of �nite length.)

102. We must have 1=(1 � mz) = 1=

Q

1

n=1

(1 � z

n

)

L

m

(n)

. This implies (60) as in

exerise 4.6.2{4.

103. When n = p is prime, (59) tells us that L

m

(1) + pL

m

(p) = m

p

, and we also

have L

m

(1) = m. [This ombinatorial proof provides an interesting ontrast to the

traditional algebrai proof of Theorem 1.2.4F.℄

104. The 4483 nonprimes are abaa, agora, ahead, : : : ; the 1274 primes are : : : , rusts,

rusty, rutty. (Sine prime isn't prime, we should perhaps all prime strings lowly.)

105. (a) Let �

0

be � with its last letter inreased, and suppose �

0

= �

0

where � = �

and � 6= �, 6= �. Let � be the pre�x of � with j�j = jj. By hypothesis there is a string

! suh that �! is prime; hene � � �! < !, so we must have � � . Consequently

� <

0

, and we have �

0

<

0

.

(b) Let � = �

1

� = a

1

: : : a

n

where �

1

�! is prime. The ondition �

1

�! < �!

implies that a

j

� a

j+r

for 1 � j � n�r, where r = j�

1

j. But we annot have a

j

< a

j+r

;

otherwise � would begin with a prime longer than �

1

, ontraditing exerise 101(d).

() If � is the n-extension of both � and �

0

, where j�j > j�

0

j, we must have

� = (�

0

)

q

� where � is a nonempty pre�x of �

0

. But then � � �

0

< � < �.

61

62 ANSWERS TO EXERCISES 7.2.1.1

106. B1. [Initialize.℄ Set a

1

 � � � a

n

 m� 1, a

n+1

 �1, and j 1.

B2. [Visit.℄ Visit (a

1

; : : : ; a

n

) with index j.

B3. [Subtrat one.℄ Terminate if a

j

= 0. Otherwise set a

j

 a

j

� 1, and

a

k

 m� 1 for j < k � n.

B4. [Prepare to fator.℄ (Aording to exerise 105(b), we now want to �nd the

�rst prime fator �

1

of a

1

: : : a

n

.) Set j 1 and k 2.

B5. [Find the new j.℄ (Now a

1

: : : a

k�1

is the (k � 1)-extension of the prime

a

1

: : : a

j

.) If a

k�j

> a

k

, return to B2. Otherwise, if a

k�j

< a

k

, set j k.

Then inrease k by 1 and repeat this step.

The eÆient fatoring algorithm in steps B4 and B5 is due to J. P. Duval, J. Algorithms

4 (1983), 363{381. For further information, see Cattell, Ruskey, Sawada, Serra, and

Miers, J. Algorithms 37 (2000), 267{282.

107. The number of n-tuples visited is P

m

(n) =

P

n

j=1

L

m

(j). Sine L

m

(n) =

1

n

m

n

+

O(m

n=2

=n), we have P

m

(n) = Q(m;n) +O(Q(

p

m;n)), where

Q(m;n) =

n

X

k=1

m

k

k

=

m

n

n

R(m;n);

R(m;n) =

n�1

X

k=0

m

�k

1� k=n

=

n=2

X

k=0

m

�k

1� k=n

+O(nm

�n=2

)

=

m

m� 1

t�1

X

j=0

1

n

j

X

l

n

j

l

o

l!

(m� 1)

l

+O(n

�t

):

Thus P

m

(n) � m

n+1

=((m � 1)n). The main ontributions to the running time ome

from the loops in steps F3 and F5, whih ost n� j for eah prime of length j, hene

a total of nP

m

(n)�

P

n

j=1

jL

m

(j) = m

n+1

(1=((m� 1)

2

n) +O(1=(mn

2

))). This is less

than the time needed to output the m

n

individual digits of the de Bruijn yle.

108. (a) If � 6= 9 : : : 9, we have �

k+1

� �9

j�j

, beause the latter is prime.

(b) We an assume that � is not all 0s, sine 9

j

0

n�j

is a substring of �

t�1

�

t

�

1

�

2

=

89

n

0

n

1. Let k be minimal with � � �

k

; then �

k

� ��, so � is a pre�x of �

k

. Sine �

is a preprime, it is the j�j-extension of some prime �

0

� �. The preprime visited by

Algorithm F just before �

0

is (�

0

� 1)9

n�j�

0

j

, by exerise 106, where �

0

� 1 denotes the

deimal number that is one less than �

0

. Thus, if �

0

is not �

k�1

, the hint (whih also

follows from exerise 106) implies that �

k�1

ends with at least n � j�

0

j � n � j�j 9s,

and � is a suÆx of �

k�1

. On the other hand if �

0

= �

k�1

, � is a suÆx of �

k�2

, and �

is a pre�x of �

k�1

�

k

.

() If � 6= 9 : : : 9, we have �

k+1

� (��)

d�1

�9

j�j

, beause the latter is prime.

Otherwise �

k�1

ends with at least (d � 1)j��j 9s, and �

k+1

� (��)

d�1

9

j��j

, so (��)

d

is a substring of �

k�1

�

k

�

k+1

.

(d) Within the primes 135899135914, 787899787979, 12999913131314, 09090911,

089999 09 090911, 118999 119 119122.

(e) Yes: In all ases, the position of a

1

: : : a

n

preedes the position of the substring

a

1

: : : a

n�1

(a

n

+ 1), if 0 � a

n

< 9 (and if we assume that strings like 9

j

0

n�j

our at

the beginning). Furthermore 9

j

0

n�j�1

ours only after 9

j�1

0

n�j

a has appeared for

1 � a � 9, so we must not plae 0 after 9

j

0

n�j�1

.

62

7.2.1.1 ANSWERS TO EXERCISES 63

109. Suppose we want to loate the submatrix

�

(w

n�1

: : : w

1

w

0

)

2

(x

n�1

: : : x

1

x

0

)

2

(y

n�1

: : : y

1

y

0

)

2

(z

n�1

: : : z

1

z

0

)

2

�

:

The binary ase n = 1 is the given example, and if n > 1 we an assume by indution

that we only need to determine the leading bits a

2n�1

, a

2n�2

, b

2n�1

, and b

2n�2

. The

ase n = 3 is typial: We must solve

b

5

= w

2

; b

4

= x

2

; a

5

� b

5

= y

2

; a

4

� b

4

= z

2

; if a

0

= 0, b

0

= 0;

b

4

= w

2

; b

0

5

= x

2

; a

4

� b

4

= y

2

; a

5

� b

0

5

= z

2

; if a

0

= 0, b

0

= 1;

a

5

� b

5

= w

2

; a

4

� b

4

= x

2

; b

5

= y

2

; b

4

= z

2

; if a

0

= 1, b

0

= 0;

a

4

� b

4

= w

2

; a

5

� b

0

5

= x

2

; b

4

= y

2

; b

0

5

= z

2

; if a

0

= 1, b

0

= 1;

here b

0

5

= b

5

� b

4

b

3

b

2

b

1

takes aount of arrying when j beomes j + 1.

110. Let a

0

a

1

: : : a

m

2

�1

be an m-ary de Bruijn yle, suh as the �rst m

2

elements of

(54). If m is odd, let a

ij

= a

j

when i is even, a

ij

= a

(j+(i�1)=2) modm

2 when i is odd.

[The �rst of many people to disover this onstrution seems to have been John C.

Cok, who also onstruted de Bruijn toruses of other shapes and sizes in Disrete

Math. 70 (1988), 209{210.℄

If m = m

0

m

00

where m

0

? m

00

, we use the Chinese remainder theorem to de�ne

a

ij

� a

0

ij

(modulo m

0

) and a

ij

� a

00

ij

(modulo m

00

)

in terms of matries that solve the problem for m

0

and m

00

. Thus the previous exerise

leads to a solution for arbitrary m.

Another interesting solution for even values of m was found by Zolt�an T�oth

[2nd Conf. Automata, Languages, and Programming Systems (1988), 165{172; see also

Hurlbert and Isaak, Contemp. Math. 178 (1994), 153{160℄. The �rst m

2

elements a

j

of the in�nite sequene

0011 021331203223041524355342514054450617263746577564 : : : 07667 08 : : :

de�ne a de Bruijn yle with the property that the distane between the appearanes

of ab and ba is always even. Then we an let a

ij

= a

j

if i+ j is even, a

ij

= a

i

if i+ j

is odd. For example, when m = 4 we have

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

0 0 0 1 0 2 0 3 2 0 2 1 2 2 2 3

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

1 0 1 1 1 2 1 3 3 0 3 1 3 2 3 3

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

0 2 0 3 0 0 0 1 2 2 2 3 2 0 2 1

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

1 2 1 3 1 0 1 1 3 2 3 3 3 0 3 1

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

2 0 2 1 2 2 2 3 0 0 0 1 0 2 0 3

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

3 0 3 1 3 2 3 3 1 0 1 1 1 2 1 3

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

2 2 2 3 2 0 2 1 0 2 0 3 0 0 0 1

0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

3 2 3 3 3 0 3 1 1 2 1 3 1 0 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(exerise 109);

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0

0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3

0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1

1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3

0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0

2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3

0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1

3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3

0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3

1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3

0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2

0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3

0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3

2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3

0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2

3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(T�oth).

63

64 ANSWERS TO EXERCISES 7.2.1.1

111. (a) Let d

j

= j and 0 � a

j

< 3 for 1 � j � 9, a

9

6= 0. Form sequenes s

j

, t

j

by the

rules s

1

= 0, t

1

= d

1

; t

j+1

= d

j+1

+ 10t

j

[a

j

=0℄ for 1 � j < 9; s

j+1

= s

j

+ (0; t

j

;�t

j

)

for a

j

= (0; 1; 2) and 1 � j � 9. Then s

10

is a possible result; we need only remember

the smallish values that our. More than half the work is saved by disallowing a

k

= 2

when s

k

= 0, then using js

10

j instead of s

10

. Sine fewer than 3

8

= 6561 possibilities

need to be tried, brute fore via the ternary version of Algorithm M works well; fewer

than 24,000 mems and 1600 multipliations are needed to dedue that all integers less

than 211 are representable, but 211 is not.

Another approah, using Gray ode to vary the signs after breaking the digits

into bloks in 2

8

possible ways, redues the number of multipliations to 255, but at

the ost of about 500 additional mems. Therefore Gray ode is not advantageous in

this appliation.

(b) Now (with 73,000 mems and 4900 multipliations) we an reah all numbers

less than 241, but not 241. There are 46 ways to represent 100, inluding the remarkable

9� 87 + 6 + 5� 43 + 210.

[H. E. Dudeney introdued his \entury" problem in The Weekly Dispath (4 and

18 June 1899). See also The Numerology of Dr. Matrix by Martin Gardner, Chapter 6;

Steven Kahan, J. Rereational Math. 23 (1991), 19{25.℄

112. The method of exerise 111 now needs more than 167 million mems and 10 million

multipliations, beause 3

16

is so muh larger than 3

8

. We an do muh better (10.4

million mems, 1100 mults) by �rst tabulating the possibilities obtainable from the �rst

k and last k digits, for 1 � k < 9, then onsidering all bloks of digits that use the 9.

There are 60,318 ways to represent 100, and the �rst unreahable number is 16,040.

64

INDEX AND GLOSSARY

When an index entry refers to a page ontaining a relevant exerise, see also the answer to

that exerise for further information. An answer page is not indexed here unless it refers to a

topi not inluded in the statement of the exerise.

2-adi numbers, 31.

4-ube, 42, 55.

8-ube, 17, 35.

�(k), see Lee weight, Sideways sum.

� (irle ratio), 30, 43, 61.

�(k), see Ruler funtion.

Almost-linear reurrene, 23.

Analog-to-digital onversion, 3{4, 15.

Analysis of algorithms, 28, 37, 38.

Anti-Gray ode, 35.

Antipodal words, 11.

Arima, Yoriyuki (), 41.

Arndt, J�org, 45.

Arti�ial intelligene, 43.

Aubert, Jaques, 55.

Automorphisms, 49.

Baez, John Carlos, 47.

Balaned Gray ode, 14{17, 35, 49.

Bandwidth of n-ube, 35.

baud: One transmission unit (e.g., one

bit) per seond, 4.

Baudot, Jean Maurie

�

Emile, 4{5.

Bekett, Samuel Barlay, 34{35.

Bennett, William Ralph, 4.

Bernstein, Arthur Jay, 44.

Binary Gray odes, 12{17, 33{35.

Binary number system, 1, 4.

Binary reurrenes, 43, 60.

Binary trie, 30.

Bit reversal, 28, 31.

Bitner, James Rihard, 9.

Bitwise operations, 4, 11{12, 32, 45.

Borel,

�

Emile F�elix

�

Edouard Justin, 61.

Borrow, 40.

Botermans, Jaobus (= Jak) Petrus

Hermana, 55.

Boustrophedon produt, 36, 57.

Bruijn, Niolaas Govert de, 22.

yles, 22{27, 36{38, 63.

toruses, 38.

Buhner, Morgan Mallory, Jr., 44.

Calderbank, Arthur Robert, 43.

Canoe puzzle, 56.

Canonial delta sequene, 13, 49.

Cardano, Girolamo (= Hieronymus

Cardanus), 41.

Carry, 2, 63.

Castown, Rudolph W., 11.

Cattell, Kevin Mihael, 62.

Cavior, Stephan Robert, 44.

Cayley, Arthur, Hamilton theorem, 45.

Center of gravity, 17.

Charateristi polynomial, 45.

Chen, Kuo-Tsai (), 26.

Cheng, Ching-Shui (), 54.

Chinese remainder theorem, 63.

Chinese ring puzzle, 5{6, 28, 41{42.

Cok, John Crowle, 63.

Cohn, Martin, 49, 52, 54.

Complementary Gray odes, 13, 16{17,

33, 49.

Compositions, 28{29.

Conatenation, 25, 35, 49.

Conurrent omputing, 43.

Conneted omponents, 34.

Cooke, Raymond Mark, 51, 55.

Coordinates, 13.

Coroutines, reursive, 24{25.

Cremer, William Henry, Jr., 56.

Cube, see n-ube.

Cube-onneted omputers, 43.

Cummings, Larry Jean, 58.

Cyle leaders, 31.

Cyli shifts, 26.

Dally, William James, 43.

de Bruijn, Niolaas Govert, 22.

yles, 22{27, 36{38, 63.

toruses, 38.

Deimal number system, 2, 18{19, 39.

Degen, Carl Ferdinand, 47.

Delta sequene, 13.

Dilation of embedded graph, 35.

Disrete Fourier transform, 9, 27, 47.

Divisors of a number, 35.

Doubly linked list, 21, 57{58.

Douglas, Robert James, 48.

Dual boustrophedon produt, 57.

Dudeney, Henry Ernest, 5, 64.

Duval, Jean Pierre, 62.

Dykman, Howard Lloyd, 36, 56.

Edge overing, 35.

Ehrlih, Gideon (JILX� OERCB), 9.

Enumeration, 1.

Equivalent Gray odes, 33{34.

Error-orreting odes, 30.

Etzion, Tuvi (OEIVR IAEH, born XVLED IAEH), 25.

Extension, 26.

65

65

66 INDEX AND GLOSSARY

Fatorization of strings, 37.

algorithm for, 62.

Faloutsos, Christos (FaloÔtso, Qr sto), 43.

Fast Fourier transform, 28.

Fast Walsh transform, 32.

Fermat, Pierre de, theorem, 38.

Fibonai, Leonardo, of Pisa, numbers, 36.

Field, �nite, 32.

Five-letter words, 11, 32{33, 38.

Flores, Ivan, 54.

Fous pointers, 10{11, 20{21, 57.

Forest, 20{21.

Fourier, Jean Baptiste Joseph,

series, 7.

transform, disrete, 9, 28, 47.

Fox, Ralph Hartzler, 26.

Fredman, Mihael Lawrene, 33, 48.

Fredriksen, Harold Marvin, 26, 27.

Fringe, 21, 57.

Gardner, Martin, 56, 64.

Generating funtions, 61.

Generation, 1.

onstant amortized time, 40.

loopless, 9{12, 20, 28, 29, 36, 42.

Gilbert, Edgar Nelson, 33.

Gilbert, William Shwenk, 1.

Goddyn de la Vega, Luis Armando, 34, 50.

Gomes, Peter John, iii.

Gordian Knot puzzle, 35.

Gray, Elisha, 5.

Gray, Frank, 4.

Gray binary ode, 2{12, 16, 28{33, 36, 58.

permutation, 3, 31.

Gray binary trie, 30.

Gray ode: A sequene of adjaent objets.

Gray ode for n-tuples, 12, 15, 18.

advantages of, 6, 11{12.

binary, see Binary Gray odes, Gray

binary ode.

limitations of, 40, 64.

nonbinary, 18{20, 35{36, 46, 52, 54{56.

Gray yle: A yli Gray ode, 12, 15.

Gray �elds, 31.

Gray path, 15, seeGray ode.

Gray stream, 34.

Gray ternary ode, 19, 36.

Gros, Lu Agathon Louis, 5.

Gvozdjak, Pavol, 34.

Hadamard, Jaques Salomon, 47.

transform, 9, 32, 46, 47.

Hamilton, William Rowan, see Cayley.

yle, 13, 34.

path, 15, 33, 49.

Hamley, William, and sons, 56.

Hammons, Arthur Roger, Jr., 43.

Hariguhi, Yoihi (), iv.

Harmuth, Henning Friedolf, 7.

Hexadeimal puzzle, 42.

Hoproft, John Edward, 44.

Hurlbert, Glenn Howland, 63.

in situ permutation, 28, 31.

in situ transformation, 9.

Inlusion and exlusion priniple, 6.

Inline expansion, 11{12.

Interleaving, 37, 50, 63.

Internet, ii, iii.

Inverse funtion, 4, 31.

Isaak, Garth Timothy, 63.

Isomorphi Gray yles, 33{34.

Iteration of funtions, 32, 45.

Japanese mathematis, 41.

Kahan, Steven Jay, 64.

Karnaugh, Maurie, 29.

Kedlaya, Kiran Sridhara, 49.

Keister, William, 42.

Kiefer, Jak Carl, 54.

Knuth, Donald Ervin (), i, iv, 58.

Koda, Yasunori (), 20{21.

Kroneker, Leopold, produt, 46.

Kumar, Panganamala Vijay

(�a��Z�Z ��e i ãN �f ¸ ��e �g), 43.

Larrivee, Jules Alphonse, 6.

Lawrene, George Melvin, 15, 50.

Lee, Chester Chi Yuan () = Chi

Lee (), 42.

distane, 29.

weight, 29.

Lempel, Abraham (LTNL MDXA�), 25.

Lexiographi order, 2{3, 25, 29, 47.

Li, Gang (= Kenny) (), 58.

Lieves, 30.

Linked alloation, 28, 29.

Listing, 1.

Loony Loop, 35{36.

Loopless generation, 9{12, 20, 28, 29, 36, 42.

Luke, Saint (�Agio Louk� å EÎaggelist),

40.

Lyndon, Roger Conant, 26.

words, 26, see Prime strings.

m-ary digit: An integer between 0 and

m � 1, inlusive, 2, 22.

Maro-proessor, 11.

Maiorana, James Anthony, 26, 27.

Mantel, Willem, 23.

Martin, Monroe Harnish, 27{28.

Mathing, 33.

Matrix (Bush), Irving Joshua, 64.

MClintok, William Edward, 15.

Median, 31.

Miers, Charles Robert, 62.

Military sayings, 1.

Misra, Jayadev (jYedb miS[), 41.

Mithell, Christopher John, 25.

Mixed-radix number system, 2, 19{21,

35, 54, 56.

66

INDEX AND GLOSSARY 67

MMIX, 40.

Modular Gray odes, 19{20, 35, 54.

deimal, 19.

m-ary, 24, 55, 58.

quaternary, 42, 49.

ternary, 46, 52.

Mollard, Mihel, 48.

Moni polynomial, 42.

Monotoni binary Gray odes, 15{18, 35.

Morse, Samuel Finley Breese, ode, 36, 57.

Moser, Leo, 48.

Multinomial oeÆient, 29.

n-ube: The graph of n-bit strings,

adjaent when they di�er in only one

position, 13, 15, 33{34.

sububes of, 30{31.

n-distributed sequene, 61.

n-extension, 26.

n-tuple: a sequene or string of

length n, 1{2.

Nemeth, Evelyn (= Evi) Hollister Pratt, 50.

Neyman, Jerzy, 54.

Nonbinary Gray odes, 18{20, 35{36,

46, 52, 54{56.

Nonloal Gray odes, 16{17, 34.

Nordstrom, Alan Wayne, 30.

Normal numbers, 61.

Novra, Henry, 56.

Otaode, 30.

Otonions, 47.

Odd-length runs, 58.

Orthogonal vetors, 8, 32.

Ourotoruses, 38{39.

Paley, Raymond Edward Alan Christopher,

45.

funtions, 32.

Pan-digital puzzles, 39.

Parity bit, 6, 28, 29.

Paterson, Kenneth Graham, 25.

Perverse, Rufus Quentin, 35.

Pi (�), 30, 43, 61.

Pre�x of a string, 25.

Prepostorder, 42.

Preprime strings, 26{28, 37.

Prime strings, 25{28, 37.

fatorization, 37, 62.

Primitive polynomials modulo p, 23, 45.

Prinipal subforests, 20{21.

Proper pre�xes or suÆxes, 25.

Pseudorandom bits, 37.

Pulse ode modulation, 4.

Purkiss, Henry John, 28.

Quaternary n-tuples, 29, 49.

Quaternions and otonions, 32.

R&D method, 25, 37.

Rademaher, Hans, 8.

funtions, 8, 32, 46.

Ramras, Mark Bernard, 50.

Random number generation, 37.

Ranking an n-tuple, 4, 19, 35.

Reeted Gray odes, 19{21, 35, 54, 56.

deimal, 19.

ternary, 36.

Reingold, Edward Martin (CLEBPIIX,

MIIG OA DYN WGVI), 9.

Reversing bits, 28, 31.

Rihards, Dana Sott, 36.

Right subube, 30.

Ringel, Gerhard, 35.

Rithie, Alistair English, 42.

Robinson, John Paul, 30, 49, 52.

Rosenbaum, Joseph, 54.

Ruler funtion, 6, 8, 12, 13, 47.

deimal, 19.

Run lengths, 15{17, 34, 50, 58.

Ruskey, Frank, iv, 20, 21, 28, 31, 33, 58, 62.

Salzer, Herbert Ellis, 44.

Sampson, John Laurene, 33, 48.

Savage, Carla Diane, 17{18, 28, 33, 35, 49.

Sawada, Joseph James, 62.

Sh�a�ler, Otto, 5.

Shneider, Bernadette, 55.

Sh�utzenberger, Marel Paul, 61.

Sequeny, 7.

Serra, Miaela, 62.

Shapiro, Harold Seymour, 33.

Shift register sequenes, 22{28, 36{38.

Sideways sum, 15, 44.

Silverman, Jerry, 33, 48{50.

Sloane, Neil James Alexander, 43.

Sloum, Gerald Kenneth (= Jerry), 55{56.

Sol�e, Patrik, 43.

SpinOut puzzle, 42.

Squire, Matthew Blaze, 58.

Stahnke, Wayne Lee, 23.

Standard sequenes, 26.

Stanford GraphBase, ii, iii, 11, 32{33, 38.

Steiglitz, Kenneth, 44.

Stevens, Brett, 34.

Stewart, Ian Niholas, 38.

Stibitz, George Robert, 4, 6.

Stringology, 25{28, 37{38.

Sububes, 30{31.

Subforests, 20{21, 36.

Subsets, 1, 6.

SuÆx of a string, 25.

Sums of squares, 32.

Sylvester, James Joseph, 32, 47.

67

68 INDEX AND GLOSSARY

Tangle puzzle, see Loony Loop.

Taylor, Lloyd William, 5.

Telephone, 5.

Television, 4.

Ternary n-tuples, 19, 26{27, 35, 36,

46, 52, 64.

Tiring irons, 5.

Tootill, Geo�rey Colin, 14, 41.

Torture test, 35.

Torus, 29, 38, 42.

T�oth, Zolt�an, 63.

Transition ounts, 14, 33.

Traversal, 1.

Trend-free Gray odes, 16{17, 35.

Trie, 30.

Tuliani, Jonathan R., 61.

Tuple: A sequene ontaining a given

number of elements.

Unranking an n-tuple, 3{4, 19, 28, 35.

Up-down sequene, 36.

V�azsonyi, Endre, 57.

Vikers, Virgil Eugene, 33, 48{50.

Visitation, 1.

Wallis, John, 6, 41.

Walsh, Joseph Leonard, 7, 8, 45.

funtions, 7{9, 32.

transform, 8{9, 32.

Wang, Terry Min Yih (), 28.

Washburn, Seth Harwood, 42.

Weight enumeration, 42.

Wiedemann, Douglas Henry, 58.

Winker, Steven Karl, 48.

Winkler, Peter Mann, 17{18, 35, 49.

Wrapping around, 19, 29, 38.

Yates, Frank, 9.

Yuen, Chung Kwong (), 44.

68

