
September 23, 2015

Note to readers:

Please ignore these

sidenotes; they're just

hints to myself for

preparing the index,

and they're often aky!

KNUTH

THE ART OF

COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF

SECTION 7.2.2.2:

SATISFIABILITY

DONALD E. KNUTH Stanford University

ADDISON{WESLEY

6

77

September 23, 2015

Internet

Stanford GraphBase

MMIX

Internet page http://www-s-faulty.stanford.edu/~knuth/taop.html ontains

urrent information about this book and related books.

See also http://www-s-faulty.stanford.edu/~knuth/sgb.html for information

about The Stanford GraphBase, inluding downloadable software for dealing with

the graphs used in many of the examples in Chapter 7.

See also http://www-s-faulty.stanford.edu/~knuth/mmixware.html for down-

loadable software to simulate the MMIX omputer.

Copyright

 2015 by Addison{Wesley

All rights reserved. No part of this publiation may be reprodued, stored in a retrieval

system, or transmitted, in any form, or by any means, eletroni, mehanial, photo-

opying, reording, or otherwise, without the prior onsent of the publisher, exept

that the oÆial eletroni �le may be used to print single opies for personal (not

ommerial) use.

Zeroth printing (revision 5), 15 September 2015

September 23, 2015

STERNE

Internet

PREFACE

These unforeseen stoppages,

whih I own I had no oneption of when I �rst set out;

| but whih, I am onvined now, will rather inrease than diminish as I advane,

| have struk out a hint whih I am resolved to follow;

| and that is, | not to be in a hurry;

| but to go on leisurely, writing and publishing two volumes of my life every year;

| whih, if I am su�ered to go on quietly, and an make a tolerable bargain

with my bookseller, I shall ontinue to do as long as I live.

| LAURENCE STERNE, The Life and Opinions of

Tristram Shandy, Gentleman (1759)

This booklet ontains draft material that I'm irulating to experts in the

�eld, in hopes that they an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for

ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet reahed a very mature state. Beware: This material

has not yet been proofread as thoroughly as the manusripts of Volumes 1, 2,

3, and 4A were at the time of their �rst printings. And those arefully-heked

volumes, alas, were subsequently found to ontain thousands of mistakes.

Given this aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be disouraged from reading the material arefully.

I did try to make the text both interesting and authoritative, as far as it goes.

But the �eld is vast; I annot hope to have surrounded it enough to orral it

ompletely. So I beg you to let me know about any de�ienies that you disover.

To put the material in ontext, this long pre-fasile ontains Setion 7.2.2.2

of a long, long hapter on ombinatorial algorithms. Chapter 7 will eventually

�ll at least four volumes (namely Volumes 4A, 4B, 4C, and 4D), assuming that

I'm able to remain healthy. It began in Volume 4A with a short review of graph

theory and a longer disussion of \Zeros and Ones" (Setion 7.1); that volume

onluded with Setion 7.2.1, \Generating Basi Combinatorial Patterns," whih

was the �rst part of Setion 7.2, \Generating All Possibilities." Volume 4B will

begin with Setion 7.2.2, about baktraking in general, and Setion 7.2.2.1 will

disuss a family of methods alled \daning links," for updating data strutures

while baktraking. That sets the sene for the present setion, whih applies

those ideas to the important problem of Boolean satis�ability.

� � �

iii

September 23, 2015

iv PREFACE

Heule

� � �

After working on this material for more than three years, I've �nally gotten most

of the major topis into plae. Eah time I �nish drafting a small piee of the

�nal big piture, I've been testing it by adding it to these pages; hene there now

are quite a few sraps of text and exerises, whih I plan to re�ne and polish (if

the FORCE stays with me).

I hope you will see why I've found this topi to be suh a fasinating story;

and I hope you'll not get too lost as I move through di�erent parts of the tale.

I've tried to explain things in a natural order.

� � �

My notes on ombinatorial algorithms have been aumulating for more than

�fty years, yet I fear that in many respets my knowledge is woefully behind the

times. Please look, for example, at the exerises that I've lassed as researh

problems (rated with diÆulty level 46 or higher), namely exerises 5, 39, 112,

193, 194, 236, 283, 516, : : : ; exerise 223 is also urrently unsolved, although

I've rated it only `40' beause I one thought of an answer (whih I have sine

forgotten!). I've also impliitly mentioned or posed additional unsolved questions

in the answers to exerises 18, 19, 68, 84, 105(,e), 111, 132, 183, 194, 204, 205,

316, 335, 351, 360, 365, 372, 397, 409(), 476, 480, 486, 487, 488, 501, 511, 515,

: : : . And I still haven't solved exerise 68. Are those problems still open? Please

inform me if you know of a solution to any of those intriguing enigmas. And of

ourse if no solution is known today but you do make progress on any of them

in the future, I hope you'll let me know.

I urgently need your help also with respet to some exerises that I made

up as I was preparing this material. I ertainly don't like to reeive redit for

things that have already been published by others, and most of these results are

quite natural \fruits" that were just waiting to be \pluked." Therefore please

tell me if you know who deserves to be redited, with respet to the ideas found

in exerises 18, 19, 20, 21, 22, 24, 29, 38(b), 62, 63, 65(b), 74, 84(,d,e), 101, 108,

132, 133, 149, 151, 161, 162, 177, 180, 181, 188, 191, 204(b,,d), 206, 207, 208,

220, 228, 229, 232, 239, 242, 252, 259, 270, 272, 273, 279, 280, 282, 300, 305,

310, 311, 312, 327, 328, 329, 334, 335, 336(b), 337, 343, 349, 357, 358, 361, 390,

396, 399(), 404, 406, 410, 411, 414, 419, 423, 427, 432, 433, 435, 439, 462, 463,

464, 465, 470, 472, 473, 475(d,e,f,g), 476, 479, 495, 498, : : : , and/or the answers

to exerises : : : . Furthermore I've redited exerise 170 to unpublished work of

Heule. Have any of those results ever appeared in print, to your knowledge?

I also wonder if Eq. 7.2.2.2{(169) is \well known."

� � �

September 23, 2015

PREFACE v

Biere

Bryant

Buss

E�en

Gent

Heule

Hoos

Janson

Jeavons

Kroening

Kullmann

Lauria

Pegden

Shortz

Sinz

S�orensson

Wermuth

Williams

Internet

MPR

Internet

Speial thanks are due to Armin Biere, Randy Bryant, Sam Buss, Niklas E�en,

Ian Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, Daniel

Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten

Sinz, Niklas S�orensson, Udo Wermuth, Ryan Williams, and : : : for their detailed

omments on my early attempts at exposition, as well as to numerous other or-

respondents who have ontributed ruial orretions. Thanks also to Stanford's

Information Systems Laboratory for providing extra omputer power when my

laptop mahine was inadequate.

� � �

Wow|Setion 7.2.2.2 has turned out to be the longest setion, by far, in

The Art of Computer Programming. The SAT problem is evidently a \killer

app," beause it is key to the solution of so many other problems. Consequently

I an only hope that my lengthy treatment does not also kill o� my faithful

readers! As I wrote this material, one topi always seemed to ow naturally

into another, so there was no neat way to break this setion up into separate

subsetions. (And anyway the format of TAOCP doesn't allow for a Setion

7.2.2.2.1.)

I've tried to ameliorate the reader's navigation problem by adding subhead-

ings at the top of eah right-hand page. Furthermore, as in other setions,

the exerises appear in an order that roughly parallels the order in whih orre-

sponding topis are taken up in the text. Numerous ross-referenes are provided

between text, exerises, and illustrations, so that you have a fairly good hane of

keeping in syn. I've also tried to make the index as omprehensive as possible.

I wrote more than three hundred omputer programs while preparing this

material, beause I �nd that I don't understand things unless I try to program

them. Most of those programs were quite short, of ourse; but several of them

are rather substantial, and possibly of interest to others. Therefore I've made a

seletion available by listing some of them on the following webpage:

http://www-s-faulty.stanford.edu/~knuth/programs.html

I happily o�er a \�nder's fee" of $2.56 for eah error in this draft when it is

�rst reported to me, whether that error be typographial, tehnial, or historial.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/ eah. (Furthermore, if

you �nd a better solution to an exerise, I'll atually do my best to give you

immortal glory, by publishing your name in the eventual book:�)

Volume 4B will begin with a speial tutorial and review of probability

theory, in an unnumbered setion entitled \Mathematial Preliminaries Redux."

Referenes to its equations and exerises use the abbreviation `MPR'. (Think of

the word \improvement.") A preliminary version of that setion an be found

online, as pre-fasile 5a to Volume 4, if you knew how to �nd this one.

Cross referenes to yet-unwritten material sometimes appear as `00'; this

impossible value is a plaeholder for the atual numbers to be supplied later.

September 23, 2015

vi PREFACE

notational onventions

Knuth

The notational onventions that I've used in the mathematial formulas

of this setion are summarized either in the Index to Notations of Volume 4A

(Appendix B on pages 822{827) or under the heading `Notational onventions'

in the index below.

Happy reading!

Stanford, California D. E. K.

69 Umbruary 2015

September 23, 2015

PREFACE vii

Langford pairs

exat over problem

symmetry breaking

DEFOE

Crusoe

Here's an exerise for Setion 7.2.2.1 that I plan to put eventually into fasile 5:

00. [20 ℄ The problem of Langford pairs on f1; 1; : : : ; n; ng an be represented as an

exat over problem using olumns fd

1

; : : : ; d

n

g[fs

1

; : : : ; s

2n

g; the rows are d

i

s

j

s

k

for

1 � i � n and 1 � j < k � 2n and k = i+j+1, meaning \put digit i into slots j and k."

However, that onstrution essentially gives us every solution twie, beause the

left-right reversal of any solution is also a solution. Modify it so that we get only half

as many solutions; the others will be the reversals of these.

And here's its rypti answer (needed in exerise 7.2.2.2{13):

00. Omit the rows with i = n� [n even℄ and j > n=2.

(Other solutions are possible. For example, we ould omit the rows with i = 1 and

j � n; that would omit n � 1 rows instead of only bn=2. However, the suggested rule

turns out to make the daning links algorithm run about 10% faster.)

Now I saw, tho' too late, the Folly of

beginning a Work before we ount the Cost,

and before we judge rightly of our own Strength to go through with it.

| DANIEL DEFOE, Robinson Crusoe (1719)

September 23, 2015

JOHNSON

Burney

CONTENTS

Chapter 7|Combinatorial Searhing 0

7.2. Generating All Possibilities . 0

7.2.1. Generating Basi Combinatorial Patterns 0

7.2.2. Basi Baktrak . 0

7.2.2.1. Daning links 0

7.2.2.2. Satis�ability . 1

Example appliations 4

Baktraking algorithms 27

Random lauses . 47

Resolution of lauses 54

Clause-learning algorithms 60

Monte Carlo algorithms 77

The Loal Lemma 81

*Message-passing algorithms 90

*Preproessing of lauses 95

Enoding onstraints into lauses 97

Unit propagation and foring 103

Symmetry breaking 105

Satis�ability-preserving maps 107

One hundred test ases 113

Tuning the parameters 124

Exploiting parallelism 128

History . 129

Exerises . 133

Answers to Exerises . 185

Index to Algorithms and Theorems 292

Index and Glossary . 293

That your book has been delayed I am glad,

sine you have gained an opportunity of being more exat.

| SAMUEL JOHNSON, letter to Charles Burney (1 November 1784)

viii

September 23, 2015

7.2.2.2 SATISFIABILITY 1

HUME

JAGGER

RICHARDS

Boolean formula

unsatis�able

satisfying assignment

onsistent, see satis�able

inonsistent, see unsatis�able

P = NP

NP-omplete problem

Knuth

SAT solvers

He reaps no satisfation but from low and sensual objets,

or from the indulgene of malignant passions.

| DAVID HUME, The Septi (1742)

I an't get no . . .

| MICK JAGGER and KEITH RICHARDS, Satisfation (1965)

7.2.2.2. Satis�ability. We turn now to one of the most fundamental problems

of omputer siene: Given a Boolean formula F (x

1

; : : : ; x

n

), expressed in so-

alled \onjuntive normal form" as an AND of ORs, an we \satisfy" F by

assigning values to its variables in suh a way that F (x

1

; : : : ; x

n

) = 1? For

example, the formula

F (x

1

; x

2

; x

3

) = (x

1

_ �x

2

) ^ (x

2

_ x

3

) ^ (�x

1

_ �x

3

) ^ (�x

1

_ �x

2

_ x

3

) (1)

is satis�ed when x

1

x

2

x

3

= 001. But if we rule that solution out, by de�ning

G(x

1

; x

2

; x

3

) = F (x

1

; x

2

; x

3

) ^ (x

1

_ x

2

_ �x

3

); (2)

then G is unsatis�able: It has no satisfying assignment.

Setion 7.1.1 disussed the embarrassing fat that nobody has ever been

able to ome up with an eÆient algorithm to solve the general satis�ability

problem, in the sense that the satis�ability of any given formula of sizeN ould be

deided in N

O(1)

steps. Indeed, the famous unsolved question \does P = NP?"

is equivalent to asking whether suh an algorithm exists. We will see in Setion

7.9 that satis�ability is a natural progenitor of every NP-omplete problem.*

On the other hand enormous tehnial breakthroughs in reent years have

led to amazingly good ways to approah the satis�ability problem. We now

have algorithms that are muh more eÆient than anyone had dared to believe

possible before the year 2000. These so-alled \SAT solvers" are able to handle

industrial-strength problems, involving millions of variables, with relative ease,

and they've had a profound impat on many areas of researh suh as omputer-

aided veri�ation. In this setion we shall study the priniples that underlie

modern SAT-solving proedures.

* At the present time very few people believe that P = NP [see SIGACT News 43, 2 (June

2012), 53{77℄. In other words, almost everybody who has studied the subjet thinks that

satis�ability annot be deided in polynomial time. The author of this book, however, suspets

that N

O(1)

-step algorithms do exist, yet that they're unknowable. Almost all polynomial time

algorithms are so ompliated that they lie beyond human omprehension, and ould never be

programmed for an atual omputer in the real world. Existene is di�erent from embodiment.

September 23, 2015

2 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

variables

literal

notation: jvj

positive

negative

distint

stritly distint

overing problem

exat over problems

To begin, let's de�ne the problem arefully and simplify the notation, so

that our disussion will be as eÆient as the algorithms that we'll be onsidering.

Throughout this setion we shall deal with variables, whih are elements of any

onvenient set. Variables are often denoted by x

1

, x

2

, x

3

, : : : , as in (1); but any

other symbols an also be used, like a, b, , or even d

000

74

. We will in fat often use

the numerals 1, 2, 3, : : : to stand for variables; and in many ases we'll �nd it

onvenient to write just j instead of x

j

, beause it takes less time and less spae

if we don't have to write so many x's. Thus `2' and `x

2

' will mean the same

thing in many of the disussions below.

A literal is either a variable or the omplement of a variable. In other words,

if v is a variable, both v and �v are literals. If there are n possible variables in

some problem, there are 2n possible literals. If l is the literal �x

2

, whih is also

written

�

2, then the omplement of l,

�

l, is x

2

, whih is also written 2.

The variable that orresponds to a literal l is denoted by jlj; thus we have

jvj = j�vj = v for every variable v. Sometimes we write �v for a literal that is

either v or �v. We might also denote suh a literal by �v, where � is �1. The

literal l is alled positive if jlj = l; otherwise jlj =

�

l, and l is said to be negative.

Two literals l and l

0

are distint if l 6= l

0

. They are stritly distint if jlj 6= jl

0

j.

A set of literals fl

1

; : : : ; l

k

g is stritly distint if jl

i

j 6= jl

j

j for 1 � i < j � k.

The satis�ability problem, like all good problems, an be understood in many

equivalent ways, and we will �nd it onvenient to swith from one viewpoint to

another as we deal with di�erent aspets of the problem. Example (1) is an AND

of lauses, where every lause is an OR of literals; but we might as well regard

every lause as simply a set of literals, and a formula as a set of lauses. With

that simpli�ation, and with `x

j

' idential to `j', Eq. (1) beomes

F =

�

f1;

�

2g; f2; 3g; f

�

1;

�

3g; f

�

1;

�

2; 3g

	

:

And we needn't bother to represent the lauses with braes and ommas either;

we an simply write out the literals of eah lause. With that shorthand we're

able to pereive the real essene of (1) and (2):

F = f1

�

2; 23;

�

1

�

3;

�

1

�

23g; G = F [f12

�

3g: (3)

Here F is a set of four lauses, and G is a set of �ve.

In this guise, the satis�ability problem is equivalent to a overing problem,

analogous to the exat over problems that we onsidered in Setion 7.2.2.1: Let

T

n

=

�

fx

1

; �x

1

g; fx

2

; �x

2

g; : : : ; fx

n

; �x

n

g

	

= f1

�

1; 2

�

2; : : : ; n�ng: (4)

\Given a set F = fC

1

; : : : ; C

m

g, where eah C

i

is a lause and eah lause

onsists of literals based on the variables fx

1

; : : : ; x

n

g, �nd a set L of n literals

that `overs' F [T

n

, in the sense that every lause ontains at least one element

of L." For example, the set F in (3) is overed by L = f

�

1;

�

2; 3g, and so is the set

T

3

; hene F is satis�able. The set G is overed by f1;

�

1; 2g or f1;

�

1; 3g or � � � or

f

�

2; 3;

�

3g, but not by any three literals that also over T

3

; so G is unsatis�able.

Similarly, a family F of lauses is satis�able if and only if it an be overed

by a set L of stritly distint literals.

September 23, 2015

7.2.2.2 SATISFIABILITY 3

trivially SAT

polarities

De Morgan's laws

TAUT

oNP-omplete

SAT

kSAT

3SAT

unit lauses

unary lauses

Binary lauses

ternary lauses

empty lause

nullary lause

�

multisets

tautologial

}

stritly distint literals

If F

0

is any formula obtained from F by omplementing one or more vari-

ables, it's lear that F

0

is satis�able if and only if F is satis�able. For example,

if we replae 1 by

�

1 and 2 by

�

2 in (3) we obtain

F

0

= f

�

12;

�

23; 1

�

3; 123g; G = F [f

�

1

�

2

�

3g:

In this ase F

0

is trivially satis�able, beause eah of its lauses ontains a

positive literal: Every suh formula is satis�ed by simply letting L be the set of

positive literals. Thus the satis�ability problem is the same as the problem of

swithing signs (or \polarities") so that no all-negative lauses remain.

Another problem equivalent to satis�ability is obtained by going bak to the

Boolean interpretation in (1) and omplementing both sides of the equation. By

De Morgan's laws 7.1.1{(11) and (12) we have

F (x

1

; x

2

; x

3

) = (�x

1

^ x

2

) _ (�x

2

^ �x

3

) _ (x

1

^ x

3

) _ (x

1

^ x

2

^ �x

3

); (5)

and F is unsatis�able() F = 0() F = 1() F is a tautology. Consequently

F is satis�able if and only if F is not a tautology: The tautology problem and

the satis�ability problem are essentially the same.*

Sine the satis�ability problem is so important, we simply all it SAT. And

instanes of the problem suh as (1), in whih there are no lauses of length

greater than 3, are alled 3SAT. In general, kSAT is the satis�ability problem

restrited to instanes where no lause has more than k literals.

Clauses of length 1 are alled unit lauses, or unary lauses. Binary lauses,

similarly, have length 2; then ome ternary lauses, quaternary lauses, and so

forth. Going the other way, the empty lause, or nullary lause, has length 0 and

is denoted by �; it is always unsatis�able. Short lauses are very important in al-

gorithms for SAT, beause they are easier to deal with than long lauses. But long

lauses aren't neessarily bad; they're muh easier to satisfy than the short ones.

A slight tehniality arises when we onsider lause length: The binary

lause (x

1

_ �x

2

) in (1) is equivalent to the ternary lause (x

1

_ x

1

_ �x

2

) as well

as to (x

1

_ �x

2

_ �x

2

) and to longer lauses suh as (x

1

_ x

1

_ x

1

_ �x

2

); so we an

regard it as a lause of any length � 2. But when we think of lauses as sets

of literals rather than ORs of literals, we usually rule out multisets suh as 11

�

2

or 1

�

2

�

2 that aren't sets; in that sense a binary lause is not a speial ase of a

ternary lause. On the other hand, every binary lause (x _ y) is equivalent to

two ternary lauses, (x _ y _ z) ^ (x _ y _ �z), if z is another variable; and every

k-ary lause is equivalent to two (k + 1)-ary lauses. Therefore we an assume,

if we like, that kSAT deals only with lauses whose length is exatly k.

A lause is tautologial (always satis�ed) if it ontains both v and �v for some

variable v. Tautologial lauses an be denoted by } (see exerise 7.1.4{222).

They never a�et a satis�ability problem; so we usually assume that the lauses

input to a SAT-solving algorithm onsist of stritly distint literals.

When we disussed the 3SAT problem briey in Setion 7.1.1, we took a look

at formula 7.1.1{(32), \the shortest interesting formula in 3CNF." In our new

* Stritly speaking, TAUT is oNP-omplete, while SAT is NP-omplete; see Setion 7.9.

September 23, 2015

4 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Rivest

assoiative blok design

equally spaed ourrenes

arithmeti progressions

baktraking

lexiographi order

van der Waerden

W (k

0

; : : : ; k

b�1

)

waerden+

shorthand, it onsists of the following eight unsatis�able lauses:

R = f12

�

3; 23

�

4; 341; 4

�

12;

�

1

�

23;

�

2

�

34;

�

3

�

4

�

1;

�

41

�

2g: (6)

This set makes an exellent little test ase, so we will refer to it frequently below.

(The letter R reminds us that it is based on R. L. Rivest's assoiative blok design

6.5{(13).) The �rst seven lauses of R, namely

R

0

= f12

�

3; 23

�

4; 341; 4

�

12;

�

1

�

23;

�

2

�

34;

�

3

�

4

�

1g; (7)

also make nie test data; they are satis�ed only by hoosing the omplements of

the literals in the omitted lause, namely f4;

�

1; 2g. More preisely, the literals

4,

�

1, and 2 are neessary and suÆient to over R

0

; we an also inlude either 3

or

�

3 in the solution. Notie that (6) is symmetri under the yli permutation

1 ! 2 ! 3 ! 4 !

�

1 !

�

2 !

�

3 !

�

4 ! 1 of literals; thus, omitting any lause

of (6) gives a satis�ability problem equivalent to (7).

A simple example. SAT solvers are important beause an enormous variety

of problems an readily be formulated Booleanwise as ANDs of ORs. Let's begin

with a little puzzle that leads to an instrutive family of example problems:

Find a binary sequene x

1

: : : x

8

that has no three equally spaed 0s and no

three equally spaed 1s. For example, the sequene 01001011 almost works; but

it doesn't qualify, beause x

2

, x

5

, and x

8

are equally spaed 1s.

If we try to solve this puzzle by baktraking manually through all 8-bit

sequenes in lexiographi order, we see that x

1

x

2

= 00 fores x

3

= 1. Then

x

1

x

2

x

3

x

4

x

5

x

6

x

7

= 0010011 leaves us with no hoie for x

8

. A minute or two of

further hand alulation reveals that the puzzle has just six solutions, namely

00110011; 01011010; 01100110; 10011001; 10100101; 11001100: (8)

Furthermore it's easy to see that none of these solutions an be extended to a

suitable binary sequene of length 9. We onlude that every binary sequene

x

1

: : : x

9

ontains three equally spaed 0s or three equally spaed 1s.

Notie now that the ondition x

2

x

5

x

8

6= 111 is the same as the Boolean

lause (�x

2

_ �x

5

_ �x

8

), namely

�

2

�

5

�

8. Similarly x

2

x

5

x

8

6= 000 is the same as 258.

So we have just veri�ed that the following 32 lauses are unsatis�able:

123; 234; : : : ; 789; 135; 246; : : : ; 579; 147; 258; 369; 159;

�

1

�

2

�

3;

�

2

�

3

�

4; : : : ;

�

7

�

8

�

9;

�

1

�

3

�

5;

�

2

�

4

�

6; : : : ;

�

5

�

7

�

9;

�

1

�

4

�

7;

�

2

�

5

�

8;

�

3

�

6

�

9;

�

1

�

5

�

9.

(9)

This result is a speial ase of a general fat that holds for any given positive

integers j and k: If n is suÆiently large, every binary sequene x

1

: : : x

n

ontains

either j equally spaed 0s or k equally spaed 1s. The smallest suh n is denoted

by W (j; k) in honor of B. L. van der Waerden, who proved an even more general

result (see exerise 2.3.4.3{6): If n is suÆiently large, and if k

0

, : : : , k

b�1

are

positive integers, every b-ary sequene x

1

: : : x

n

ontains k

a

equally spaed a's

for some digit a, 0 � a < b. The least suh n is W (k

0

; : : : ; k

b�1

).

Let us aordingly de�ne the following set of lauses when j; k; n > 0:

waerden (j; k;n) =

�

(x

i

_ x

i+d

_ � � � _ x

i+(j�1)d

)

�

�

1 � i � n� (j�1)d; d � 1

	

[

�

(�x

i

_ �x

i+d

_ � � � _ �x

i+(k�1)d

)

�

�

1 � i � n� (k�1)d; d � 1

	

: (10)

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 5

Chv�atal

Kouril

Paul

Kouril

Ahmed

Kullmann

Snevily

monotoni lauses

exat over problems

daning links

Langford pairs

symmetry

The 32 lauses in (9) are waerden(3; 3; 9); and in general waerden(j; k;n) is an

appealing instane of SAT, satis�able if and only if n < W (j; k).

It's obvious that W(1; k) = k andW(2; k) = 2k� [k even℄; but when j and k

exeed 2 the numbersW(j; k) are quite mysterious. We've seen thatW (3; 3) = 9,

and the following nontrivial values are urrently known:

k = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

W(3; k) = 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312 349

W(4; k) = 18 35 55 73 109 146 309 ? ? ? ? ? ? ? ? ? ?

W(5; k) = 22 55 178 206 260 ? ? ? ? ? ? ? ? ? ? ? ?

W(6; k) = 32 73 206 1132 ? ? ? ? ? ? ? ? ? ? ? ? ?

V. Chv�atal inaugurated the study ofW(j; k) by omputing the values for j+k � 9

as well asW(3; 7) [Combinatorial Strutures and Their Appliations (1970), 31{

33℄. Most of the large values in this table have been alulated by state-of-the-art

SAT solvers [see M. Kouril and J. L. Paul, Experimental Math. 17 (2008), 53{

61; M. Kouril, Integers 12 (2012), A46:1{A46:13℄. The table entries for j = 3

suggest that we might have W(3; k) < k

2

when k > 4, but that isn't true: SAT

solvers have also been used to establish the lower bounds

k = 20 21 22 23 24 25 26 27 28 29 30

W(3; k) � 389 416 464 516 593 656 727 770 827 868 903

(whih might in fat be the true values for this range of k); see T. Ahmed,

O. Kullmann, and H. Snevily [Disrete Applied Math. 174 (2014), 27{51℄.

Notie that the literals in every lause of waerden (j; k;n) have the same

sign: They're either all positive or all negative. Does this \monotoni" property

make the SAT problem any easier? Unfortunately, no: Exerise 10 proves that

any set of lauses an be onverted to an equivalent set of monotoni lauses.

Exat overing. The exat over problems that we solved with \daning links"

in Setion 7.2.2.1 an easily be reformulated as instanes of SAT and handed o�

to SAT solvers. For example, let's look again at Langford pairs, the task of

plaing two 1s, two 2s, : : : , two n's into 2n slots so that exatly k slots intervene

between the two appearanes of k, for eah k. The orresponding exat over

problem when n = 3 has nine olumns and eight rows (see 7.2.2.1{(00)):

d

1

s

1

s

3

; d

1

s

2

s

4

; d

1

s

3

s

5

; d

1

s

4

s

6

; d

2

s

1

s

4

; d

2

s

2

s

5

; d

2

s

3

s

6

; d

3

s

1

s

5

: (11)

The olumns are d

i

for 1 � i � 3 and s

j

for 1 � j � 6; the row `d

i

s

j

s

k

' means

that digit i is plaed in slots j and k. Left-right symmetry allows us to omit the

row `d

3

s

2

s

6

' from this spei�ation.

We want to selet rows of (11) so that eah olumn appears just one. Let

the Boolean variable x

j

mean `selet row j', for 1 � j � 8; the problem is then

to satisfy the nine onstraints

S

1

(x

1

; x

2

; x

3

; x

4

) ^ S

1

(x

5

; x

6

; x

7

) ^ S

1

(x

8

)

^ S

1

(x

1

; x

5

; x

8

) ^ S

1

(x

2

; x

6

) ^ S

1

(x

1

; x

3

; x

7

)

^ S

1

(x

2

; x

4

; x

5

) ^ S

1

(x

3

; x

6

; x

8

) ^ S

1

(x

4

; x

7

); (12)

September 23, 2015

6 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

S

1

(y

1

; : : : ; y

p

)

symmetri Boolean funtion

langford (n)

unary lause

binary lauses

ternary lause

enoding

Langford pairs

langford

0

(n)

oloring a graph

exlusion lauses

at-most-one

one for eah olumn. (Here, as usual, S

1

(y

1

; : : : ; y

p

) denotes the symmetri

funtion [y

1

+ � � �+ y

p

=1℄.) For example, we must have x

5

+ x

6

+ x

7

= 1,

beause olumn d

2

appears in rows 5, 6, and 7 of (11).

One of the simplest ways to express the symmetri Boolean funtion S

1

as

an AND of ORs is to use 1 +

�

p

2

�

lauses:

S

1

(y

1

; : : : ; y

p

) = (y

1

_ � � � _ y

p

) ^

^

1�j<k�p

(�y

j

_ �y

k

): (13)

\At least one of the y's is true, but not two." Then (12) beomes, in shorthand,

f1234;

�

1

�

2;

�

1

�

3;

�

1

�

4;

�

2

�

3;

�

2

�

4;

�

3

�

4; 567;

�

5

�

6;

�

5

�

7;

�

6

�

7; 8;

158;

�

1

�

5;

�

1

�

8;

�

5

�

8; 26;

�

2

�

6; 137;

�

1

�

3;

�

1

�

7;

�

3

�

7;

245;

�

2

�

4;

�

2

�

5;

�

4

�

5; 368;

�

3

�

6;

�

3

�

8;

�

6

�

8; 47;

�

4

�

7g; (14)

we shall all these lauses langford (3). (Notie that only 30 of them are atually

distint, beause

�

1

�

3 and

�

2

�

4 appear twie.) Exerise 13 de�nes langford (n); we

know from exerise 7{1 that langford (n) is satis�able () nmod 4 = 0 or 3.

The unary lause 8 in (14) tells us immediately that x

8

= 1. Then from the

binary lauses

�

1

�

8,

�

5

�

8,

�

3

�

8,

�

6

�

8 we have x

1

= x

5

= x

3

= x

6

= 0. The ternary lause

137 then implies x

7

= 1; �nally x

4

= 0 (from

�

4

�

7) and x

2

= 1 (from 1234). Rows

8, 7, and 2 of (11) now give us the desired Langford pairing 3 1 2 1 3 2.

Inidentally, the funtion S

1

(y

1

; y

2

; y

3

; y

4

; y

5

) an also be expressed as

(y

1

_ y

2

_ y

3

_ y

4

_ y

5

) ^ (�y

1

_ �y

2

) ^ (�y

1

_ �y

3

) ^ (�y

1

_

�

t)

^ (�y

2

_ �y

3

) ^ (�y

2

_

�

t) ^ (�y

3

_

�

t) ^ (t_ �y

4

) ^ (t_ �y

5

) ^ (�y

4

_ �y

5

);

where t is a new variable. In general, if p gets big, it's possible to express

S

1

(y

1

; : : : ; y

p

) with only 3p�5 lauses instead of

�

p

2

�

+1, by using b(p�3)=2 new

variables as explained in exerise 12. When this alternative enoding is used to

represent Langford pairs of order n, we'll all the resulting lauses langford

0

(n).

Do SAT solvers do a better job with the lauses langford (n) or langford

0

(n)?

Stay tuned: We'll �nd out later.

Coloring a graph. The lassial problem of oloring a graph with at most d

olors is another rih soure of benhmark examples for SAT solvers. If the graph

has n verties V , we an introdue nd variables v

j

, for v 2 V and 1 � j � d,

signifying that v has olor j; the resulting lauses are quite simple:

(v

1

_ v

2

_ � � � _ v

d

) for v 2 V (\every vertex has at least one olor"); (15)

(�u

j

_ �v

j

) for u���v, 1 � j � d (\adjaent verties have di�erent olors"): (16)

We ould also add n

�

d

2

�

additional so-alled exlusion lauses

(�v

i

_ �v

j

) for v 2V , 1� i< j� d (\every vertex has at most one olor"); (17)

but they're optional, beause verties with more than one olor are harmless.

Indeed, if we �nd a solution with v

1

= v

2

= 1, we'll be extra happy, beause it

gives us two legal ways to olor vertex v. (See exerise 14.)

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 7

Gardner

hess

da Vini

Ripo�

April Fool

Four Color Theorem

MGregor

Bryant

independent

Fig. 33. The MGregor graph

of order 10. Eah region of this

\map" is identi�ed by a two-

digit hexadeimal ode. Can you

olor the regions with four olors,

never using the same olor for

two adjaent regions?

00 01 02 03 04 05 06 07 08 09

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29

33 34 35 36 37 38 39

44 45 46 47 48 49

55 56 57 58 59

66 67 68 69

77 78 79

88 89

99

20 21

30 31 32

40 41 42 43

50 51 52 53 54

60 61 62 63 64 65

70 71 72 73 74 75 76

80 81 82 83 84 85 86 87

90 91 92 93 94 95 96 97 98

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

10

Martin Gardner astonished the world in 1975 when he reported [Sienti�

Amerian 232, 4 (April 1975), 126{130℄ that a proper oloring of the planar

map in Fig. 33 requires �ve distint olors, thereby disproving the longstanding

four-olor onjeture. (In that same olumn he also ited several other \fats"

supposedly disovered in 1974: (i) e

�

p

163

is an integer; (ii) pawn-to-king-rook-4

(`h4') is a winning �rst move in hess; (iii) the theory of speial relativity is

fatally awed; (iv) Leonardo da Vini invented the ush toilet; and (v) Robert

Ripo� devised a motor that is powered entirely by psyhi energy. Thousands

of readers failed to notie that they had been April Fooled!)

The map in Fig. 33 atually an be 4-olored; you are hereby hallenged to

disover a suitable way to do this, before turning to the answer of exerise 18.

Indeed, the four-olor onjeture beame the Four Color Theorem in 1976, as

mentioned in Setion 7. Fortunately that result was still unknown in April of

1975; otherwise this interesting graph would probably never have appeared in

print. MGregor's graph has 110 verties (regions) and 324 edges (adjaenies

between regions); hene (15) and (16) yield 110 + 1296 = 1406 lauses on 440

variables, whih a modern SAT solver an polish o� quikly.

We an also go muh further and solve problems that would be extremely

diÆult by hand. For example, we an add onstraints to limit the number of

regions that reeive a partiular olor. Randal Bryant exploited this idea in 2010

to disover that there's a four-oloring of Fig. 33 that uses one of the olors only

7 times (see exerise 17). His oloring is, in fat, unique, and it leads to an

expliit way to 4-olor the MGregor graphs of all orders n � 3 (exerise 18).

Suh additional onstraints an be generated in many ways. We ould,

for instane, append

�

110

8

�

lauses, one for every hoie of 8 regions, speifying

that those 8 regions aren't all olored 1. But no, we'd better srath that idea:

�

110

8

�

= 409;705;619;895. Even if we restrited ourselves to the 74,792,876,790

sets of 8 regions that are independent, we'd be dealing with far too many lauses.

September 23, 2015

8 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Sinz

Bailleux

Boufkhad

omplete binary tree

ardinality onstraints

S

�r

(x

1

; : : : ; x

n

)

symmetri threshold funtions

binary multipliation

multipliation+

An interesting SAT-oriented way to ensure that x

1

+ � � �+ x

n

is at most r,

whih works well when n and r are rather large, was found by C. Sinz [LNCS

3709 (2005), 827{831℄. His method introdues (n � r)r new variables s

k

j

for

1 � j � n� r and 1 � k � r. If F is any satis�ability problem and if we add the

(n� r � 1)r + (n� r)(r + 1) lauses

(�s

k

j

_ s

k

j+1

); for 1 � j < n� r and 1 � k � r, (18)

(�x

j+k

_ �s

k

j

_ s

k+1

j

); for 1 � j � n� r and 0 � k � r, (19)

where �s

k

j

is omitted when k = 0 and s

k+1

j

is omitted when k = r, then the new set

of lauses is satis�able if and only if F is satis�able with x

1

+� � �+x

n

� r. (See ex-

erise 26.) With this sheme we an limit the number of red-olored regions of

MGregor's graph to at most 7 by appending 1538 lauses in 721 new variables.

Another way to ahieve the same goal, whih turns out to be even better,

has been proposed by O. Bailleux and Y. Boufkhad [LNCS 2833 (2003), 108{

122℄. Their method is a bit more diÆult to desribe, but still easy to implement:

Consider a omplete binary tree that has n�1 internal nodes numbered 1 through

n � 1, and n leaves numbered n through 2n � 1; the hildren of node k, for

1 � k < n, are nodes 2k and 2k+1 (see 2.3.4.5{(5)). We form new variables b

k

j

for

1 < k < n and 1 � j � t

k

, where t

k

is the minimum of r and the number of leaves

below node k. Then the following lauses, explained in exerise 27, do the job:

(

�

b

2k

i

_

�

b

2k+1

j

_ b

k

i+j

); for 0� i� t

2k

, 0� j� t

2k+1

, 1� i+j� t

k

+1, 1<k<n; (20)

(

�

b

2

i

_

�

b

3

j

); for 0� i� t

2

, 0� j� t

3

, i+ j= r + 1. (21)

In these formulas we let t

k

= 1 and b

k

1

= x

k�n+1

for n � k < 2n; all literals

�

b

k

0

and b

k

r+1

are to be omitted. Applying (20) and (21) to MGregor's graph, with

n = 110 and r = 7, yields just 1216 new lauses in 399 new variables.

The same ideas apply when we want to ensure that x

1

+ � � �+x

n

is at least r,

beause of the identity S

�r

(x

1

; : : : ; x

n

) = S

�n�r

(�x

1

; : : : ; �x

n

). And exerise 30

onsiders the ase of equality, when our goal is to make x

1

+ � � �+ x

n

= r. We'll

disuss other enodings of suh ardinality onstraints below.

Fatoring integers. Next on our agenda is a family of SAT instanes with quite

a di�erent avor. Given an (m + n)-bit binary integer z = (z

m+n

: : : z

2

z

1

)

2

, do

there exist integers x = (x

m

: : : x

1

)

2

and y = (y

n

: : : y

1

)

2

suh that z = x � y?

For example, if m = 2 and n = 3, we want to invert the binary multipliation

y

3

y

2

y

1

� x

2

x

1

a

3

a

2

a

1

b

3

b

2

b

1

3

2

1

z

5

z

4

z

3

z

2

z

1

(a

3

a

2

a

1

)

2

= (y

3

y

2

y

1

)

2

� x

1

(b

3

b

2

b

1

)

2

= (y

3

y

2

y

1

)

2

� x

2

z

1

= a

1

(

1

z

2

)

2

= a

2

+ b

1

(

2

z

3

)

2

= a

3

+ b

2

+

1

(

3

z

4

)

2

= b

3

+

2

z

5

=

3

(22)

when the z bits are given. This problem is satis�able when z = 21 = (10101)

2

,

in the sense that suitable binary values x

1

, x

2

, y

1

, y

2

, y

3

, a

1

, a

2

, a

3

, b

1

, b

2

, b

3

,

1

,

2

,

3

do satisfy these equations. But it's unsatis�able when z = 19 = (10011)

2

.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 9

Boolean hain

full adder

half adders

unary lauses

Tseytin enoding

onjuntive normal form

DAVIS

PUTNAM

Napier

Dadda

binary number system

half adder

arry bit

full adder

notation habi

median operation

ternary operations

Arithmetial alulations like (22) are easily expressed in terms of lauses

that an be fed to a SAT solver: We �rst speify the omputation by onstruting

a Boolean hain, then we enode eah step of the hain in terms of a few lauses.

One suh hain, if we identify a

1

with z

1

and

3

with z

5

, is

z

1

 x

1

^y

1

;

a

2

 x

1

^y

2

;

a

3

 x

1

^y

3

;

b

1

 x

2

^y

1

;

b

2

 x

2

^y

2

;

b

3

 x

2

^y

3

;

z

2

 a

2

�b

1

;

1

 a

2

^b

1

;

s a

3

�b

2

;

p a

3

^b

2

;

z

3

 s�

1

;

q s^

1

;

2

 p_q;

z

4

 b

3

�

2

;

z

5

 b

3

^

2

;

(23)

using a \full adder" to ompute

2

z

3

and \half adders" to ompute

1

z

2

and

3

z

4

(see 7.1.2{(23) and (24)). And that hain is equivalent to the 49 lauses

(x

1

_�z

1

)^(y

1

_�z

1

)^(�x

1

_�y

1

_z

1

)^� � �^(

�

b

3

_�

2

_�z

4

)^(b

3

_�z

5

)^(

2

_�z

5

)^(

�

b

3

_�

2

_z

5

)

obtained by expanding the elementary omputations aording to simple rules:

t u ^ v beomes (u _

�

t) ^ (v _

�

t) ^ (�u _ �v _ t);

t u _ v beomes (�u _ t) ^ (�v _ t) ^ (u _ v _

�

t);

t u� v beomes (�u _ v _ t) ^ (u _ �v _ t) ^ (u _ v _

�

t) ^ (�u _ �v _

�

t):

(24)

To omplete the spei�ation of this fatoring problem when, say, z = (10101)

2

,

we simply append the unary lauses (z

5

) ^ (�z

4

) ^ (z

3

) ^ (�z

2

) ^ (z

1

).

Logiians have known for a long time that omputational steps an readily

be expressed as onjuntions of lauses. Rules suh as (24) are now alled Tseytin

enoding, after Gregory Tseytin (1966). Our representation of a small �ve-bit

fatorization problem in 49+5 lauses may not seem very eÆient; but we will see

shortly that m-bit by n-bit fatorization orresponds to a satis�ability problem

with fewer than 6mn variables, and fewer than 20mn lauses of length 3 or less.

Even if the system has hundreds or thousands of formulas,

it an be put into onjuntive normal form \piee by piee,"

without any \multiplying out."

| MARTIN DAVIS and HILARY PUTNAM (1958)

Suppose m � n. The easiest way to set up Boolean hains for multipliation

is probably to use a sheme that goes bak to John Napier's Rabdologi� (Edin-

burgh, 1617), pages 137{143, as modernized by Luigi Dadda [Alta Frequenza

34 (1964), 349{356℄: First we form all mn produts x

i

^ y

j

, putting every suh

bit into bin [i + j℄, whih is one of m + n \bins" that hold bits to be added

for a partiular power of 2 in the binary number system. The bins will ontain

respetively (0, 1, 2, : : : , m, m, : : : , m, : : : , 2, 1) bits at this point, with n�m+1

ourrenes of \m" in the middle. Now we look at bin [k℄ for k = 2, 3, : : : . If

bin [k℄ ontains a single bit b, we simply set z

k�1

 b. If it ontains two bits

fb; b

0

g, we use a half adder to ompute z

k�1

 b� b

0

, b^ b

0

, and we put the

arry bit into bin [k + 1℄. Otherwise bin [k℄ ontains t � 3 bits; we hoose any

three of them, say fb; b

0

; b

00

g, and remove them from the bin. With a full adder we

then ompute r b�b

0

�b

00

and hbb

0

b

00

i, so that b+b

0

+b

00

= r+2; and we

put r into bin [k℄, into bin [k+1℄. This dereases t by 2, so eventually we will have

omputed z

k�1

. Exerise 41 quanti�es the exat amount of alulation involved.

September 23, 2015

10 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

�rst-in-�rst-out

FIFO: �rst in �rst out

last-in-�rst-out

stak

queue

fator �fo (m;n; z)

fator lifo (m;n; z)

fator rand (m;n; z; s)

Fermat

Fault testing

ATPG: Automati test pattern generation, see Fault testing

test patterns

iruit

iruit: see also Boolean hain

single-stuk-at fault

fanout

This method of enoding multipliation into lauses is quite exible, sine

we're allowed to hoose any three bits from bin [k℄ whenever four or more bits are

present. We ould use a �rst-in-�rst-out strategy, always seleting bits from the

\rear" and plaing their sum at the \front"; or we ould work last-in-�rst-out,

essentially treating bin [k℄ as a stak instead of a queue. We ould also selet

the bits randomly, to see if this makes our SAT solver any happier. Later in this

setion we'll refer to the lauses that represent the fatoring problem by alling

them fator �fo (m;n; z), fator lifo (m;n; z), or fator rand (m;n; z; s), respe-

tively, where s is a seed for the random number generator used to generate them.

It's somewhat mind-boggling to realize that numbers an be fatored without

using any number theory! No greatest ommon divisors, no appliations of

Fermat's theorems, et., are anywhere in sight. We're providing no hints to

the solver exept for a bunh of Boolean formulas that operate almost blindly

at the bit level. Yet fators are found.

Of ourse we an't expet this method to ompete with the sophistiated

fatorization algorithms of Setion 4.5.4. But the problem of fatoring does dem-

onstrate the great versatility of lauses. And its lauses an be ombined with

other onstraints that go well beyond any of the problems we've studied before.

Fault testing. Lots of things an go wrong when omputer hips are manufa-

tured in the \real world," so engineers have long been interested in onstruting

test patterns to hek the validity of a partiular iruit. For example, suppose

that all but one of the logial elements are funtioning properly in some hip; the

bad one, however, is stuk: Its output is onstant, always the same regardless of

the inputs that it is given. Suh a failure is alled a single-stuk-at fault.

x

1

x

2

y

1

y

2

y

3

z

1

z

2

z

3

z

4

z

5

z

1

b

1

a

2

b

2

a

3

b

3

z

2

1

sp

z

3

q

2

z

4

z

5

Fig. 34. A iruit that

orresponds to (23).

Figure 34 illustrates a typial digital iruit in

detail: It implements the 15 Boolean operations

of (23) as a network that produes �ve output sig-

nals z

5

z

4

z

3

z

2

z

1

from the �ve inputs y

3

y

2

y

1

x

2

x

1

.

In addition to having 15 AND,OR, and XOR gates,

eah of whih transforms two inputs into one out-

put, it has 15 \fanout" gates (indiated by dots

at juntion points), eah of whih splits one input

into two outputs. As a result it omprises 50

potentially distint logial signals, one for eah

internal \wire." Exerise 47 shows that a iruit

with m outputs, n inputs, and g onventional 2-

to-1 gates will have g + m � n fanout gates and

3g+2m�n wires. A iruit with w wires has 2w

possible single-stuk-at faults, namely w faults in

whih the signal on a wire is stuk at 0 and w

more on whih it is stuk at 1.

Table 1 shows 101 senarios that are possible

when the 50 wires of Fig. 34 are ativated by one

partiular sequene of inputs, assuming that at

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 11

default

bitwise

Table 1

SINGLE-STUCK-AT FAULTS IN FIGURE 34 WHEN x

2

x

1

= 11, y

3

y

2

y

1

= 110

OKx

1

x

1

1

x

2

1

x

3

1

x

4

1

x

2

x

1

2

x

2

2

x

3

2

x

4

2

y

1

y

1

1

y

2

1

y

2

y

1

2

y

2

2

y

3

y

1

3

y

2

3

z

1

a

2

a

1

2

a

2

2

a

3

a

1

3

a

2

3

b

1

b

1

1

b

2

1

b

2

b

1

2

b

2

2

b

3

b

1

3

b

2

3

z

2

1

1

1

2

1

s s

1

s

2

p z

3

q

2

1

2

2

2

z

4

z

5

x

1

 input 1

00

0

11

111

x

1

1

 x

1

1 01

00

0

11

111

x

2

1

 x

1

1 0111

00

0

11

111

x

3

1

 x

1

1

1 010111

00

0

11

111

x

4

1

 x

1

1

1 01011111

00

0

11

111

x

2

 input 1 1111111111

00

0

11

111

x

1

2

 x

2

1 111111111101

00

0

11

111

x

2

2

 x

2

1 11111111110111

00

0

11

111

x

3

2

 x

1

2

1 1111111111010111

00

0

11

111

x

4

2

 x

1

2

1 111111111101011111

00

0

11

111

y

1

 input 0 00000000000000000000

00

0

11

100

y

1

1

 y

1

0 0000000000000000000001

00

0

11

100

y

2

1

 y

1

0 000000000000000000000100

00

0

11

100

y

2

 input 1 11111111111111111111111111

00

0

11

111

y

1

2

 y

2

1 1111111111111111111111111101

00

0

11

111

y

2

2

 y

2

1 111111111111111111111111110111

00

0

11

111

y

3

 input 1 11111111111111111111111111111111

00

0

11

111

y

1

3

 y

3

1 1111111111111111111111111111111101

00

0

11

111

y

2

3

 y

3

1 111111111111111111111111111111110111

00

0

11

111

z

1

 x

2

1

^y

1

1

0 00000000000000000000010100000000000000

00

0

11

100

a

2

 x

3

1

^y

1

2

1 0101110111111111111111111101011111111111

00

0

11

111

a

1

2

 a

2

1 010111011111111111111111110101111111111101

00

0

11

111

a

2

2

 a

2

1 01011101111111111111111111010111111111110111

00

0

11

111

a

3

 x

4

1

^y

1

3

1 0101111101111111111111111111111101011111111111

00

0

11

111

a

1

3

 a

3

1 010111110111111111111111111111110101111111111101

00

0

11

111

a

2

3

 a

3

1 01011111011111111111111111111111010111111111110111

00

0

11

111

b

1

 x

2

2

^y

2

1

0 0000000000000000000001000100000000000000000000000000

00

0

11

100

b

1

1

 b

1

0 000000000000000000000100010000000000000000000000000001

00

0

11

100

b

2

1

 b

1

0 00000000000000000000010001000000000000000000000000000100

00

0

11

100

b

2

 x

3

2

^y

2

2

1 1111111111010111011111111101110111111111111111111111111111

00

0

11

111

b

1

2

 b

2

1 111111111101011101111111110111011111111111111111111111111101

00

0

11

111111111111111111111111111111111111111

b

2

2

 b

2

1 11111111110101110111111111011101111111111111111111111111110111

00

0

11

1111111111111111111111111111111111111

b

3

 x

4

2

^y

2

3

1 1111111111010111110111111111111101110111111111111111111111111111

00

0

11

11111111111111111111111111111111111

b

1

3

 b

3

1 111111111101011111011111111111110111011111111111111111111111111101

00

0

11

111111111111111111111111111111111

b

2

3

 b

3

1 11111111110101111101111111111111011101111111111111111111111111110111

00

0

11

1111111111111111111111111111111

z

2

 a

1

2

�b

1

1

1 0101110111111111111110111001011111111111010111111111101011111111111111

00

0

11

11111111111111111111111111111

1

 a

2

2

^b

2

1

0 000000000000000000000100010000000000000000000000000001000100000000000000

00

0

11

100000000000000000000000000

1

1

1

0 00000000000000000000010001000000000000000000000000000100010000000000000001

00

0

11

1000000000000000000000000

2

1

1

0 0000000000000000000001000100000000000000000000000000010001000000000000000100

00

0

11

10000000000000000000000

s a

1

3

�b

1

2

0 101000001010100010000000001000101010000000000010100000000010100000000000000000

00

0

11

100000000000000000000

s

1

 s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001

00

0

11

1000000000000000000

s

2

 s 0 1010000010101000100000000010001010100000000000101000000000101000000000000000000100

00

0

11

10000000000000000

p a

2

3

^b

2

2

1 010111110101011101111111110111010101111111111101110111111101110111111111111111111111

00

0

11

111111111111111

z

3

 s

1

�

1

1

0 10100000101010001000010001100010101000000000001010000100011010000000000001010001010000

00

0

11

1000000000000

q s

2

^

2

1

0 00

00

0

11

10000000000

2

 p_q 1 010111110101011101111111110111010101111111111101110111111101110111111111111111111111011111

00

0

11

111111111

1

2

2

1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101

00

0

11

1111111

2

2

2

1 0101111101010111011111111101110101011111111111011101111111011101111111111111111111110111110111

00

0

11

11111

z

4

 b

1

3

�

1

2

0 101000001000000010100000001000100010100000000010001000000010001010100000000000000000100000101000

00

0

11

100

z

5

 b

2

3

^

2

2

1 01011111010101110101111111011101010101111111110111011111110111010111011111111111111101111101110111

00

0

11

1

most one stuk-at fault is present. The olumn headed OK shows the orret

behavior of the Boolean hain (whih niely multiplies x = 3 by y = 6 and

obtains z = 18). We an all these the \default" values, beause, well, they have

no faults. The other 100 olumns show what happens if all but one of the 50

wires have error-free signals; the two olumns under b

1

2

, for example, illustrate

the results when the rightmost wire that fans out from gate b

2

is stuk at 0

or 1. Eah row is obtained bitwise from previous rows or inputs, exept that the

boldfae digits are fored. When a boldfae value agrees with the default, its

entire olumn is orret; otherwise errors might propagate. All values above the

bold diagonal math the defaults.

If we want to test a hip that has n inputs and m outputs, we're allowed

to apply test patterns to the inputs and see what outputs are produed. Close

September 23, 2015

12 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Boolean evaluation

prod

Stanford GraphBase

multiplies

parallel multiplier

fator �fo

fanout gates

wires

random

pi, as soure of random data

e, as soure of random data

bitwise operations

inspetion shows, for instane, that the pattern onsidered in Table 1 doesn't

detet an error when q is stuk at 1, even though q should be 0, beause all �ve

output bits z

5

z

4

z

3

z

2

z

1

are orret in spite of that error. In fat, the value of

1

 p _ q is una�eted by a bad q, beause p = 1 in this example. Similarly,

the fault \x

2

1

stuk at 0" doesn't propagate into z

1

 x

2

1

^ y

1

1

beause y

1

1

= 0.

Altogether 44 faults, not 50, are disovered by this partiular test pattern.

All of the relevant repeatable faults, whether they're single-stuk-at or wildly

ompliated, ould obviously be disovered by testing all 2

n

possible patterns.

But that's out of the question unless n is quite small. Fortunately, testing isn't

hopeless, beause satisfatory results are usually obtained in pratie if we do

have enough test patterns to detet all of the detetable single-stuk-at faults.

Exerise 49 shows that just �ve patterns suÆe to ertify Fig. 34 by this riterion.

The detailed analysis in exerise 49 also shows, surprisingly, that one of the

faults, namely \s

2

stuk at 1," annot be deteted! Indeed, an erroneous s

2

an

propagate to an erroneous q only if

2

1

= 1, and that fores x

1

= x

2

= y

1

= y

2

= 1;

only two possibilities remain, and neither y

3

= 0 nor y

3

= 1 reveals the fault.

Consequently we an simplify the iruit by removing gate q ; the hain (23)

beomes shorter, with \q s ^

1

,

2

 p_ q" replaed by \

2

 p_

1

."

Of ourse Fig. 34 is just a tiny little iruit, intended only to introdue the

onept of stuk-at faults. Test patterns are needed for the muh larger iruits

that arise in real omputers; and we will see that SAT solvers an help us to �nd

them. Consider, for example, the generi multiplier iruit prod (m;n), whih is

part of the Stanford GraphBase. It multiplies an m-bit number x by an n-bit

number y, produing an (m + n)-bit produt z. Furthermore, it's a so-alled

\parallel multiplier," with delay time O(log(m+n)); thus it's muh more suited

to hardware design than methods like the fator �fo shemes that we onsidered

above, beause those iruits need
(m+ n) time for arries to propagate.

Let's try to �nd test patterns that will smoke out all of the single-stuk-at

faults in prod (32; 32), whih is a iruit of depth 33 that has 64 inputs, 64 out-

puts, 3660 AND gates, 1203 OR gates, 2145 XOR gates, and (therefore) 7008 fan-

out gates and 21,088 wires. How an we guard it against 42,176 di�erent faults?

Before we onstrut lauses to failitate that task, we should realize that

most of the single-stuk-at faults are easily deteted by hoosing patterns at

random, sine faults usually ause big trouble and are hard to miss. Indeed,

hoosing x =

#

3243F6A8 and y =

#

885A308D more or less at random already

eliminates 14,733 ases; and (x; y) = (

#

2B7E1516;

#

28AED2A6) eliminates 6,918

more. We might as well keep doing this, beause bitwise operations suh as those

in Table 1 are fast. Experiene with the smaller multiplier in Fig. 34 suggests

that we get more e�etive tests if we bias the inputs, hoosing eah bit to be 1

with probability .9 instead of .5 (see exerise 49). A million suh random inputs

will then generate, say, 243 patterns that detet all but 140 of the faults.

Our remaining job, then, is essentially to �nd 140 needles in a haystak of

size 2

64

, after having piked 42;176� 140 = 42;036 piees of low-hanging fruit.

And that's where a SAT solver is useful. Consider, for example, the analogous

but simpler problem of �nding a test pattern for \q stuk at 0" in Fig. 34.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 13

tarnished

ative path

Larrabee

AND

OR

XOR

Fanout gates

unit lause

SAT solver

Stanford GraphBase

GB GATES

We an use the 49 lauses F derived from (23) to represent the well-behaved

iruit; and we an imagine orresponding lauses F

0

that represent the faulty

omputation, using \primed" variables z

0

1

, a

0

2

, : : : , z

0

5

. Thus F

0

begins with

(x

1

_ �z

0

1

)^(y

1

_ �z

0

1

) and ends with (

�

b

0

3

_�

0

2

_z

0

5

); it's like F exept that the lauses

representing q

0

 s

0

^

0

1

in (23) are hanged to simply �q

0

(meaning that q

0

is

stuk at 0). Then the lauses of F and F

0

, together with a few more lauses to

state that z

1

6= z

0

1

or � � � or z

5

6= z

0

5

, will be satis�able only by variables for whih

(y

3

y

2

y

1

)

2

� (x

2

x

1

)

2

is a suitable test pattern for the given fault.

This onstrution of F

0

an obviously be simpli�ed, beause z

0

1

is idential

to z

1

; any signal that di�ers from the orret value must be loated \downstream"

from the one-and-only fault. Let's say that a wire is tarnished if it is the faulty

wire or if at least one of its input wires is tarnished. We introdue new variables

g

0

only for wires g that are tarnished. Thus, in our example, the only lauses F

0

that are needed to extend F to a faulty ompanion iruit are �q

0

and the lauses

that orrespond to

0

2

 p _ q

0

, z

0

4

 b

3

�

0

2

, z

0

5

 b

3

^

0

2

.

Moreover, any fault that is revealed by a test pattern must have an ative

path of wires, leading from the fault to an output; all wires on this path must

arry a faulty signal. Therefore Tray Larrabee [IEEE Trans. CAD-11 (1992),

4{15℄ deided to introdue additional \sharped" variables g

℄

for eah tarnished

wire, meaning that g lies on the ative path. The two lauses

(�g

℄

_ g _ g

0

) ^ (�g

℄

_ �g _ �g

0

) (25)

ensure that g 6= g

0

whenever g is part of that path. Furthermore we have (�v

℄

_g

℄

)

whenever g is an AND, OR, or XOR gate with tarnished input v. Fanout gates

are slightly triky in this regard: When wires g

1

and g

2

fan out from a tarnished

wire g, we need variables g

1℄

and g

2℄

as well as g

℄

; and we introdue the lause

(�g

℄

_ g

1℄

_ g

2℄

) (26)

to speify that the ative path takes at least one of the two branhes.

Aording to these rules, our example aquires the new variables q

℄

,

℄

2

,

1℄

2

,

2℄

2

, z

℄

4

, z

℄

5

, and the new lauses

(�q

℄

_q_q

0

)^ (�q

℄

_ �q_ �q

0

)^ (�q

℄

_

℄

2

)^ (�

℄

2

_

2

_

0

2

)^ (�

℄

2

_�

2

_�

0

2

)^ (�

℄

2

_

1℄

2

_

2℄

2

)^

(�

1℄

2

_z

℄

4

)^ (�z

℄

4

_z

4

_z

0

4

)^ (�z

℄

4

_ �z

4

_ �z

0

4

)^ (�

2℄

2

_z

℄

5

)^ (�z

℄

5

_z

5

_z

0

5

) ^ (�z

℄

5

_ �z

5

_ �z

0

5

):

The ative path begins at q, so we assert the unit lause (q

℄

); it ends at a

tarnished output, so we also assert (z

℄

4

_ z

℄

5

). The resulting set of lauses will

�nd a test pattern for this fault if and only if the fault is detetable. Larrabee

found that suh ative-path variables provide important lues to a SAT solver

and signi�antly speed up the solution proess.

Returning to the large iruit prod (32; 32), one of the 140 hard-to-test faults

is \W

26

21

stuk at 1," where W

26

21

denotes the 26th extra wire that fans out from

the OR gate alled W

21

in x75 of the Stanford GraphBase program GB GATES;

W

26

21

is an input to gate b

40

40

 d

19

40

^W

26

21

in x80 of that program. Test patterns

for that fault an be haraterized by a set of 23,194 lauses in 7,082 variables

September 23, 2015

14 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Knuth

GB GATES

number theory

Aurifeuillian

learning a Boolean funtion{

Boolean funtion{

DNF

disjuntive normal form

(of whih only 4 variables are \primed" and 4 are \sharped"). Fortunately

the solution (x; y) = (

#

7F13FEDD;

#

5FE57FFE) was found rather quikly in the

author's experiments; and this pattern also killed o� 13 of the other ases, so

the sore was now \14 down and 126 to go"!

The next fault sought was \A

36;2

5

stuk at 1," where A

36;2

5

is the seond

extra wire to fan out from the AND gate A

36

5

in x72 of GB GATES (an input

to R

36

11

 A

36;2

5

^ R

35;2

1

). This fault orresponds to 26,131 lauses on 8,342

variables; but the SAT solver took a quik look at those lauses and deided

almost instantly that they are unsatis�able. Therefore the fault is undetetable,

and the iruit prod (32; 32) an be simpli�ed by setting R

36

11

 R

35;2

1

. A loser

look showed, in fat, that lauses orresponding to the Boolean equations

x = y ^ z; y = v ^ w; z = t ^ u; u = v � w

were present (where t = R

44

13

, u = A

45

58

, v = R

44

4

, w = A

45

14

, x = R

46

23

, y = R

45

13

,

z = R

45

19

); these lauses fore x = 0. Therefore it was not surprising to �nd

that the list of unresolved faults also inluded R

46

23

, R

46;1

23

and R

46;2

23

stuk at 0.

Altogether 26 of the 140 faults undeteted by random inputs turned out to be

absolutely undetetable; and only one of these, namely \Q

46

26

stuk at 0," required

a nontrivial proof of undetetability.

Some of the 126�26 = 100 faults remaining on the to-do list turned out to be

signi�ant hallenges for the SAT solver. While waiting, the author therefore had

time to take a look at a few of the previously found solutions, and notied that

those patterns themselves were forming a pattern! Sure enough, the extreme por-

tions of this large and ompliated iruit atually have a fairly simple struture,

stuk-at-fault-wise. Hene number theory ame to the resue: The fatorization

#

87FBC059 �

#

F0F87817 = 2

63

� 1 solved many of the toughest hallenges,

some of whih our with probability less than 2

�34

when 32-bit numbers are

multiplied; and the \Aurifeuillian" fatorization (2

31

� 2

16

+1)(2

31

+2

16

+1) =

2

62

+ 1, whih the author had known for more than forty years (see Eq. 4.5.4{

(15)), polished o� most of the others.

The bottom line (see exerise 51) is that all 42,150 of the detetable single-

stuk-at faults of the parallel multipliation iruit prod (32; 32) an atually be

deteted with at most 196 well-hosen test patterns.

Learning a Boolean funtion. Sometimes we're given a \blak box" that

evaluates a Boolean funtion f(x

1

; : : : ; x

N

). We have no way to open the box,

but we suspet that the funtion is atually quite simple. By plugging in various

values for x = x

1

: : : x

N

, we an observe the box's behavior and possibly learn the

hidden rule that lies inside. For example, a seret funtion of N = 20 Boolean

variables might take on the values shown in Table 2, whih lists 16 ases where

f(x) = 1 and 16 ases where f(x) = 0.

Suppose we assume that the funtion has a DNF (disjuntive normal form)

with only a few terms. We'll see in a moment that it's easy to express suh an

assumption as a satis�ability problem. And when the author onstruted lauses

orresponding to Table 2 and presented them to a SAT solver, he did in fat learn

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 15

Table 2

VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where f(x) = 1

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

: : : x

20

1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1

1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1

0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1

0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0

0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0

0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0

1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0

1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0

0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 1

1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0

0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1

0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1

Cases where f(x) = 0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

: : : x

20

1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1

0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0

1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1

1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0

0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0

0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0

1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1

1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1

0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1

1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0

0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0

0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0

1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1

1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1

1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1

almost immediately that a very simple formula is onsistent with all of the data:

f(x

1

; : : : ; x

20

) = �x

2

�x

3

�x

10

_ �x

6

�x

10

�x

12

_ x

8

�x

13

�x

15

_ �x

8

x

10

�x

12

: (27)

This formula was disovered by onstruting lauses in 2MN variables p

i;j

and q

i;j

for 1 � i � M and 1 � j � N , where M is the maximum number of

terms allowed in the DNF (here M = 4) and where

p

i;j

= [term i ontains x

j

℄; q

i;j

= [term i ontains �x

j

℄: (28)

If the funtion is onstrained to equal 1 at P spei�ed points, we also use auxiliary

variables z

i;k

for 1 � i �M and 1 � k � P , one for eah term at every suh point.

Table 2 says that f(1; 1; 0; 0; : : : ; 1) = 1, and we an apture this spei�ation

by onstruting the lause

(z

1;1

_ z

2;1

_ � � � _ z

M;1

) (29)

together with the lauses

(�z

i;1

_ �q

i;1

) ^ (�z

i;1

_ �q

i;2

) ^ (�z

i;1

_ �p

i;3

) ^ (�z

i;1

_ �p

i;4

) ^ � � � ^ (�z

i;1

_ �q

i;20

) (30)

for 1 � i �M . Translation: (29) says that at least one of the terms in the DNF

must evaluate to true; and (30) says that, if term i is true at the point 1100 : : :1,

it annot ontain �x

1

or �x

2

or x

3

or x

4

or � � � or �x

20

.

Table 2 also tells us that f(1; 0; 1; 0; : : : ; 1) = 0. This spei�ation orre-

sponds to the lauses

(q

i;1

_ p

i;2

_ q

i;3

_ p

i;4

_ � � � _ q

i;20

) (31)

for 1 � i � M . (Eah term of the DNF must be zero at the given point; thus

either �x

1

or x

2

or �x

3

or x

4

or � � � or �x

20

must be present for eah value of i.)

In general, every ase where f(x) = 1 yields one lause like (29) of lengthM,

plus MN lauses like (30) of length 2. Every ase where f(x) = 0 yields M

lauses like (31) of length N . We use q

i;j

when x

j

= 1 at the point in question,

September 23, 2015

16 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Kamath

Karmarkar

Ramakrishnan

Resende

fallaious

training set

author

bounded model heking{

veri�ation

model heking+

transition relation

dynamial system, disrete

bug

and p

i;j

when x

j

= 0, for both (30) and (31). This onstrution is due to

A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende

[Mathematial Programming 57 (1992), 215{238℄, who presented many exam-

ples. From Table 2, with M = 4, N = 20, and P = 16, it generates 1360 lauses

of total length 3904 in 224 variables; a SAT solver then �nds a solution with

p

1;1

= q

1;1

= p

1;2

= 0, q

1;2

= 1, : : : , leading to (27).

The simpliity of (27) makes it plausible that the SAT solver has indeed

psyhed out the true nature of the hidden funtion f(x). The hane of agreeing

with the orret value 32 times out of 32 is only 1 in 2

32

, so we seem to have

overwhelming evidene in favor of that equation.

But no: Suh reasoning is fallaious. The numbers in Table 2 atually arose

in a ompletely di�erent way, and Eq. (27) has essentially no redibility as a

preditor of f(x) for any other values of x! (See exerise 53.) The fallay omes

from the fat that short-DNF Boolean funtions of 20 variables are not at all

rare; there are many more than 2

32

of them.

On the other hand, when we do know that the hidden funtion f(x) has

a DNF with at most M terms (although we know nothing else about it), the

lauses (29){(31) give us a nie way to disover those terms, provided that we

also have a suÆiently large and unbiased \training set" of observed values.

For example, let's assume that (27) atually is the funtion in the box. If

we examine f(x) at 32 random points x, we don't have enough data to make

any dedutions. But 100 random training points will almost always home in on

the orret solution (27). This alulation typially involves 3942 lauses in 344

variables; yet it goes quikly, needing only about 100 million aesses to memory.

One of the author's experiments with a 100-element training set yielded

^

f(x

1

; : : : ; x

20

) = �x

2

�x

3

�x

10

_ x

3

�x

6

�x

10

�x

12

_ x

8

�x

13

�x

15

_ �x

8

x

10

�x

12

; (32)

whih is lose to the truth but not quite exat. (Exerise 59 proves that

^

f(x)

is equal to f(x) more than 97% of the time.) Further study of this example

showed that another nine training points were enough to dedue f(x) uniquely,

thus obtaining 100% on�dene (see exerise 61).

Bounded model heking. Some of the most important appliations of SAT

solvers in pratie are related to the veri�ation of hardware or software, beause

designers generally want some kind of assurane that partiular implementations

orretly meet their spei�ations.

A typial design an usually be modeled as a transition relation between

Boolean vetors X = x

1

: : : x

n

that represent the possible states of a system. We

write X ! X

0

if state X at time t an be followed by state X

0

at time t + 1.

The task in general is to study sequenes of state transitions

X

0

! X

1

! X

2

! � � � ! X

r

; (33)

and to deide whether or not there are sequenes that have speial properties.

For example, we hope that there's no suh sequene for whih X

0

is an \initial

state" and X

r

is an \error state"; otherwise there'd be a bug in the design.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 17

auxiliary variables

Tseytin enodings

model

Conway

Life

bitmaps

ellular automaton

no-player game

universal

Berlekamp

Guy

BDD+

! ! !

Fig. 35. Conway's rule (35) de�nes these three suessive transitions.

Questions like this are readily expressed as satis�ability problems: Eah

state X

t

is a vetor of Boolean variables x

t1

: : : x

tn

, and eah transition relation

an be represented by a set of m lauses T (X

t

; X

t+1

) that must be satis�ed.

These lauses T (X;X

0

) involve 2n variables fx

1

; : : : ; x

n

; x

0

1

; : : : ; x

0

n

g, together

with q auxiliary variables fy

1

; : : : ; y

q

g that might be needed to express Boolean

formulas in lause form as we did with the Tseytin enodings in (24). Then the

existene of sequene (33) is equivalent to the satis�ability of mr lauses

T (X

0

; X

1

) ^ T (X

1

; X

2

) ^ � � � ^ T (X

r�1

; X

r

) (34)

in the n(r+1)+qr variables fx

tj

j 0� t�r; 1�j�ng[fy

tk

j 0� t<r; 1�k�qg.

We've essentially \unrolled" the sequene (33) into r opies of the transition

relation, using variables x

tj

for state X

t

and y

tk

for the auxiliary quantities

in T (X

t

; X

t+1

). Additional lauses an now be added to speify onstraints on

the initial state X

0

and/or the �nal state X

r

, as well as any other onditions

that we want to impose on the sequene.

This general setup is alled \bounded model heking," beause we're using

it to hek properties of a model (a transition relation), and beause we're

onsidering only sequenes that have a bounded number of transitions, r.

John Conway's fasinating Game of Life provides a partiularly instrutive

set of examples that illustrate basi priniples of bounded model heking. The

states X of this game are two-dimensional bitmaps, orresponding to arrays of

square ells that are either alive (1) or dead (0). Every bitmap X has a unique

suessor X

0

, determined by the ation of a simple 3 � 3 ellular automaton:

Suppose ell x has the eight neighbors fx

NW

; x

N

; x

NE

; x

W

; x

E

; x

SW

; x

S

; x

SE

g, and

let � = x

NW

+x

N

+x

NE

+x

W

+x

E

+x

SW

+x

S

+x

SE

be the number of neighbors that

are alive at time t. Then x is alive at time t+ 1 if and only if either (a) � = 3,

or (b) � = 2 and x is alive at time t. Equivalently, the transition rule

x

0

= [2<x

NW

+ x

N

+ x

NE

+ x

W

+

1

2

x+ x

E

+ x

SW

+ x

S

+ x

SE

< 4℄ (35)

holds at every ell x. (See, for example, Fig. 35, where the live ells are blak.)

Conway alled Life a \no-player game," beause it involves no strategy:

One an initial state X

0

has been set up, all subsequent states X

1

, X

2

, : : : are

ompletely determined. Yet, in spite of the simple rules, he also proved that Life

is inherently ompliated and unpreditable, indeed beyond human omprehen-

sion, in the sense that it is universal: Every �nite, disrete, deterministi system,

however omplex, an be simulated faithfully by some �nite initial state X

0

of Life. [See Berlekamp, Conway, and Guy, Winning Ways (2004), Chapter 25.℄

In exerises 7.1.4{160 through 162, we've already seen some of the amazing

Life histories that are possible, using BDD methods. And many further aspets

of Life an be explored with SAT methods, beause SAT solvers an often deal

September 23, 2015

18 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

enoded

hessboard

grid

mobile

with many more variables. For example, Fig. 35 was disovered by using 7�15 =

105 variables for eah state X

0

, X

1

, X

2

, X

3

. The values of X

3

were obviously

predetermined; but the other 105� 3 = 315 variables had to be omputed, and

BDDs an't handle that many. Moreover, additional variables were introdued

to ensure that the initial state X

0

would have as few live ells as possible.

Here's the story behind Fig. 35, in more detail: Sine Life is two-dimensional,

we use variables x

ij

instead of x

j

to indiate the states of individual ells, and x

tij

instead of x

tj

to indiate the states of ells at time t. We generally assume that

x

tij

= 0 for all ells outside of a given �nite region, although the transition rule

(35) an allow ells that are arbitrarily far away to beome alive as Life goes on.

In Fig. 35 the region was spei�ed to be a 7� 15 retangle at eah unit of time.

Furthermore, on�gurations with three onseutive live ells on a boundary edge

were forbidden, so that ells \outside the box" wouldn't be ativated.

The transitions T (X

t

; X

t+1

) an be enoded without introduing additional

variables, but only if we introdue 190 rather long lauses for eah ell not on the

boundary. There's a better way, based on the binary tree approah underlying

(20) and (21) above, whih requires only about 63 lauses of size � 3, together

with about 14 auxiliary variables per ell. This approah (see exerise 65) takes

advantage of the fat that many intermediate alulations an be shared. For

example, ells x and x

W

have four neighbors fx

NW

; x

N

; x

SW

; x

S

g in ommon; so

we need to ompute x

NW

+ x

N

+ x

SW

+ x

S

only one, not twie.

The lauses that orrespond to a four-step sequene X

0

! X

1

! X

2

!

X

3

! X

4

leading to X

4

= turn out to be unsatis�able without going

outside of the 7 � 15 frame. (Only 10 gigamems of alulation were needed to

establish this fat, using Algorithm C below, even though roughly 34000 lauses

in 9000 variables needed to be examined!) So the next step in the preparation

of Fig. 35 was to try X

3

= ; and this trial sueeded. Additional lauses,

whih permitted X

0

to have at most 39 live ells, led to the solution shown, at a

ost of about 17 gigamems; and that solution is optimum, beause a further run

(osting 12 gigamems) proved that there's no solution with at most 38.

Let's look for a moment at some of the patterns that an our on a

hessboard, an 8�8 grid. Human beings will never be able to ontemplate more

than a tiny fration of the 2

64

states that are possible; so we an be fairly sure

that \Lifenthusiasts" haven't already explored every tantalizing on�guration

that exists, even on suh a small playing �eld.

One nie way to look for a sequene of interesting Life transitions is to assert

that no ell stays alive more than four steps in a row. Let us therefore say that

a mobile Life path is a sequene of transitions X

0

! X

1

! � � � ! X

r

with the

additional property that we have

(�x

tij

_ �x

(t+1)ij

_ �x

(t+2)ij

_ �x

(t+3)ij

_ �x

(t+4)ij

); for 0 � t � r � 4. (36)

To avoid trivial solutions we also insist thatX

r

is not entirely dead. For example,

if we impose rule (36) on a hessboard, with x

tij

permitted to be alive only if

1 � i; j � 8, and with the further ondition that at most �ve ells are alive in eah

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 19

Guy

glider

population

Knuth

symmetry

osillator

yli patterns

still life

Methuselahs

Gardner

stable

generation, a SAT solver an quikly disover interesting mobile paths suh as

! ! ! ! ! ! ! ! ! � � � ; (37)

whih last quite awhile before leaving the board. And indeed, the �ve-elled

objet that moves so graefully in this path is R. K. Guy's famous glider (1970),

whih is surely the most interesting small reature in Life's universe. The glider

moves diagonally, rereating a shifted opy of itself after every four steps.

Interesting mobile paths appear also if we restrit the population at eah

time to f6; 7; 8; 9; 10g instead of f1; 2; 3; 4; 5g. For example, here are some of the

�rst suh paths that the author's solver ame up with, having length r = 8:

! ! ! ! ! ! ! ! ;

! ! ! ! ! ! ! ! ;

! ! ! ! ! ! ! ! ;

! ! ! ! ! ! ! ! ;

! ! ! ! ! ! ! ! :

These paths illustrate the fat that symmetry an be gained, but never lost, as

Life evolves deterministially. Marvelous designs are spawned in the proess.

In eah of these sequenes the next bitmap, X

9

, would break our ground rules:

The population immediately after X

8

grows to 12 in the �rst and last examples,

but shrinks to 5 in the seond-from-last; and the path beomes immobile in the

other two. Indeed, we have X

5

= X

7

in the seond example, hene X

6

= X

8

and X

7

= X

9

, et. Suh a repeating pattern is alled an osillator of period 2.

The third example ends with an osillator of period 1, known as a \still life."

What are the ultimate destinations of these paths? The �rst one beomes

still, with X

69

= X

70

; and the fourth beomes very still, with X

12

= 0! The

�fth is the most fasinating of the group, beause it ontinues to produe ever

more elaborate valentine shapes, then proeeds to dane and sparkle, until �nally

beginning to twinkle with period 2 starting at time 177. Thus its members X

2

through X

7

qualify as \Methuselahs," de�ned by Martin Gardner as \Life pat-

terns of population less than 10 that do not beome stable within 50 generations."

(A preditable pattern, like the glider or an osillator, is alled stable.)

SAT solvers are basially useless for the study of Methuselahs, beause the

state spae beomes too large. But they are quite helpful when we want to

illuminate many other aspets of Life, and exerises 66{85 disuss some notable

instanes. We will onsider one more instrutive example before moving on,

September 23, 2015

20 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

eaters

Gosper

parallel proesses

Alie{

Bob{

\maybe" state

nondeterministi

namely an appliation to \eaters." Consider a Life path of the form

X

0

= !

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

!

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

!

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

! ! = X

5

; (38)

where the gray ells form a still life and the ells of X

1

, X

2

, X

3

are unknown.

Thus X

4

= X

5

and X

0

= X

5

+ glider. Furthermore we require that the still

life X

5

does not interat with the glider's parent, ; see exerise 77. The idea

is that a glider will be gobbled up if it happens to glide into this partiular still

life, and the still life will rapidly reonstitute itself as if nothing had happened.

Algorithm C almost instantaneously (well, after about 100 megamems) �nds

! ! ! ! ! ; (39)

the four-step eater �rst observed in ation by R. W. Gosper in 1971.

Appliations to mutual exlusion. Let's look now at how bounded model

heking an help us to prove that algorithms are orret. (Or inorret.) Some

of the most hallenging issues of veri�ation arise when we onsider parallel

proesses that need to synhronize their onurrent behavior. To simplify our

disussion it will be onvenient to tell a little story about Alie and Bob.

Alie and Bob are asual friends who share an apartment. One of their joint

rooms is speial: When they're in that ritial room, whih has two doors, they

don't want the other person to be present. Furthermore, being busy people, they

don't want to interrupt eah other needlessly. So they agree to ontrol aess to

the room by using an indiator light, whih an be swithed on or o�.

The �rst protool they tried an be haraterized by symmetrial algorithms:

A0. Maybe go to A1.

A1. If l go to A1, else to A2.

A2. Set l 1, go to A3.

A3. Critial, go to A4.

A4. Set l 0, go to A0.

B0. Maybe go to B1.

B1. If l go to B1, else to B2.

B2. Set l 1, go to B3.

B3. Critial, go to B4.

B4. Set l 0, go to B0.

(40)

At any instant of time, Alie is in one of �ve states, fA0;A1;A2;A3;A4g, and

the rules of her program show how that state might hange. In state A0 she isn't

interested in the ritial room; but she goes to A1 when she does wish to use it.

She reahes that objetive in state A3. Similar remarks apply to Bob. When

the indiator light is on (l = 1), they wait until the other person has exited the

room and swithed the light bak o� (l = 0).

Alie and Bob don't neessarily operate at the same speed. But they're

allowed to dawdle only when in the \maybe" state A0 or B0. More preisely, we

model the situation by onverting every relevant senario into a disrete sequene

of state transitions. At every time t = 0, 1, 2, : : : , either Alie or Bob (but not

both) will perform the ommand assoiated with their urrent state, thereby per-

haps hanging to a di�erent state at time t+1. This hoie is nondeterministi.

Only four kinds of primitive ommands are permitted in the proedures we

shall study, all of whih are illustrated in (40): (1) \Maybe go to s"; (2) \Critial,

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 21

exlusion lauses

bumped

initial state

ritial setion

go to s"; (3) \Set v b, go to s"; and (4) \If v go to s

1

, else to s

0

". Here s

denotes a state name, v denotes a shared Boolean variable, and b is 0 or 1.

Unfortunately, Alie and Bob soon learned that protool (40) is unreliable:

One day she went from A1 to A2 and he went from B1 to B2, before either of

them had swithed the indiator on. Embarrassment (A3 and B3) followed.

They ould have disovered this problem in advane, if they'd onverted the

state transitions of (40) into lauses for bounded model heking, as in (33), then

applied a SAT solver. In this ase the vetor X

t

that orresponds to time t on-

sists of Boolean variables that enode eah of their urrent states, as well as the

urrent value of l. We an, for example, have eleven variables A0

t

, A1

t

, A2

t

, A3

t

,

A4

t

, B0

t

, B1

t

, B2

t

, B3

t

, B4

t

, l

t

, together with ten binary exlusion lauses (A0

t

_

A1

t

), (A0

t

_ A2

t

), : : : , (A3

t

_ A4

t

) to ensure that Alie is in at most one state,

and with ten similar lauses for Bob. There's also a variable �

t

, whih is true or

false depending on whether Alie or Bob exeutes their program step at time t.

(We say that Alie was \bumped" if �

t

= 1, and Bob was bumped if �

t

= 0.)

If we start with the initial state X

0

de�ned by unit lauses

A0

0

^ A1

0

^ A2

0

^ A3

0

^ A4

0

^ B0

0

^ B1

0

^ B2

0

^ B3

0

^ B4

0

^

�

l

0

; (41)

the following lauses for 0 � t < r (disussed in exerise 87) will emulate the

�rst r steps of every legitimate senario de�ned by (40):

(�

t

_ A0

t

_ A0

t+1

)

(�

t

_ A1

t

_ A1

t+1

)

(�

t

_ A2

t

_ A2

t+1

)

(�

t

_ A3

t

_ A3

t+1

)

(�

t

_ A4

t

_ A4

t+1

)

(�

t

_ B0

t

_ B0

t+1

)

(�

t

_ B1

t

_ B1

t+1

)

(�

t

_ B2

t

_ B2

t+1

)

(�

t

_ B3

t

_ B3

t+1

)

(�

t

_ B4

t

_ B4

t+1

)

(�

t

_ A0

t

_ A0

t+1

_ A1

t+1

)

(�

t

_ A1

t

_

�

l

t

_ A1

t+1

)

(�

t

_ A1

t

_ l

t

_ A2

t+1

)

(�

t

_ A2

t

_ A3

t+1

)

(�

t

_ A2

t

_ l

t+1

)

(�

t

_ A3

t

_ A4

t+1

)

(�

t

_ A4

t

_ A0

t+1

)

(�

t

_ A4

t

_

�

l

t+1

)

(�

t

_ l

t

_ A2

t

_ A4

t

_

�

l

t+1

)

(�

t

_

�

l

t

_ A2

t

_ A4

t

_ l

t+1

)

(�

t

_ B0

t

_ B0

t+1

_ B1

t+1

)

(�

t

_ B1

t

_

�

l

t

_ B1

t+1

)

(�

t

_ B1

t

_ l

t

_ B2

t+1

)

(�

t

_ B2

t

_ B3

t+1

)

(�

t

_ B2

t

_ l

t+1

)

(�

t

_ B3

t

_ B4

t+1

)

(�

t

_ B4

t

_ B0

t+1

)

(�

t

_ B4

t

_

�

l

t+1

)

(�

t

_ l

t

_ B2

t

_ B4

t

_

�

l

t+1

)

(�

t

_

�

l

t

_ B2

t

_ B4

t

_ l

t+1

)

(42)

If we now add the unit lauses (A3

r

) and (B3

r

), the resulting set of 13 + 50r

lauses in 11+12r variables is readily satis�able when r = 6, thereby proving that

the ritial room might indeed be jointly oupied. (Inidentally, standard termi-

nology for mutual exlusion protools would say that \two threads onurrently

exeute a ritial setion"; but we shall ontinue with our roommate metaphor.)

Bak at the drawing board, one idea is to modify (40) by letting Alie use

the room only when l = 1, but letting Bob in when l = 0:

A0. Maybe go to A1.

A1. If l go to A2, else to A1.

A2. Critial, go to A3.

A3. Set l 0, go to A0.

B0. Maybe go to B1.

B1. If l go to B1, else to B2.

B2. Critial, go to B3.

B3. Set l 1, go to B0.

(43)

Computer tests with r = 100 show that the orresponding lauses are unsatis�-

able; thus mutual exlusion is apparently guaranteed by (43).

September 23, 2015

22 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

deadlok

reboot

Dijkstra

starvation

But (43) is a nonstarter, beause it imposes an intolerable ost: Alie an't

use the room k times until Bob has already done so! Srap that.

How about installing another light, so that eah person ontrols one of them?

A0. Maybe go to A1.

A1. If b go to A1, else to A2.

A2. Set a 1, go to A3.

A3. Critial, go to A4.

A4. Set a 0, go to A0.

B0. Maybe go to B1.

B1. If a go to B1, else to B2.

B2. Set b 1, go to B3.

B3. Critial, go to B4.

B4. Set b 0, go to B0.

(44)

No; this su�ers from the same defet as (40). But maybe we an leverly swith

the order of steps 1 and 2:

A0. Maybe go to A1.

A1. Set a 1, go to A2.

A2. If b go to A2, else to A3.

A3. Critial, go to A4.

A4. Set a 0, go to A0.

B0. Maybe go to B1.

B1. Set b 1, go to B2.

B2. If a go to B2, else to B3.

B3. Critial, go to B4.

B4. Set b 0, go to B0.

(45)

Yes! Exerise 95 proves easily that this protool does ahieve mutual exlusion.

Alas, however, a new problem now arises, namely the problem known as

\deadlok" or \livelok." Alie and Bob an get into states A2 and B2, after

whih they're stuk|eah waiting for the other to go ritial.

In suh ases they ould agree to \reboot" somehow. But that would be

a op-out; they really seek a better solution. And they aren't alone: Many

people have struggled with this surprisingly deliate problem over the years, and

several solutions (both good and bad) appear in the exerises below. Edsger

Dijkstra, in some pioneering leture notes entitled Cooperating Sequential Pro-

esses [Tehnologial University Eindhoven (September 1965), x2.1℄, thought of

an instrutive way to improve on (45):

A0. Maybe go to A1.

A1. Set a 1, go to A2.

A2. If b go to A3, else to A4.

A3. Set a 0, go to A1.

A4. Critial, go to A5.

A5. Set a 0, go to A0.

B0. Maybe go to B1.

B1. Set b 1, go to B2.

B2. If a go to B3, else to B4.

B3. Set b 0, go to B1.

B4. Critial, go to B5.

B5. Set b 0, go to B0.

(46)

But he realized that this too is unsatisfatory, beause it permits senarios in

whih Alie, say, might wait forever while Bob repeatedly uses the ritial room.

(Indeed, if Alie and Bob are in states A1 and B2, she might go to A2, A3,

then A1, thereby letting him run to B4, B5, B0, B1, and B2; they're bak where

they started, yet she's made no progress.)

The existene of this problem, alled starvation, an also be deteted via

bounded model heking. The basi idea (see exerise 91) is that starvation

ours if and only if there is a loop of transitions

X

0

! X

1

! � � � ! X

p

! X

p+1

! � � � ! X

r

= X

p

(47)

suh that (i) Alie and Bob eah are bumped at least one during the loop; and

(ii) at least one of them is never in a \maybe" or \ritial" state during the loop.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 23

Peterson

simple path

longest simple path

invariants

And those onditions are easily enoded into lauses, beause we an identify

the variables for time r with the variables for time p, and we an append the

lauses

(�

p

_�

p+1

_ � � � _�

r�1

) ^ (�

p

_�

p+1

_ � � � _�

r�1

) (48)

to guarantee (i). Condition (ii) is simply a matter of appending unit lauses; for

example, to test whether Alie an be starved by (46), the relevant lauses are

A0

p

^ A0

p+1

^ � � � ^ A0

r�1

^ A4

p

^ A4

p+1

^ � � � ^ A4

r�1

.

The de�ienies of (43), (45), and (46) an all be viewed as instanes of

starvation, beause (47) and (48) are satis�able (see exerise 90). Thus we

an use bounded model heking to �nd ounterexamples to any unsatisfatory

protool for mutual exlusion, either by exhibiting a senario in whih Alie and

Bob are both in the ritial room or by exhibiting a feasible starvation yle (47).

Of ourse we'd like to go the other way, too: If a protool has no oun-

terexamples for, say, r = 100, we still might not know that it is really reliable;

a ounterexample might exist only when r is extremely large. Fortunately there

are ways to obtain deent upper bounds on r, so that bounded model heking

an be used to prove orretness as well as to demonstrate inorretness. For

example, we an verify the simplest known orret solution to Alie and Bob's

problem, a protool by G. L. Peterson [Information Pro. Letters 12 (1981), 115{

116℄, who notied that a areful ombination of (43) and (45) atually suÆes:

A0. Maybe go to A1.

A1. Set a 1, go to A2.

A2. Set l 0, go to A3.

A3. If b go to A4, else to A5.

A4. If l go to A5, else to A3.

A5. Critial, go to A6.

A6. Set a 0, go to A0.

B0. Maybe go to B1.

B1. Set b 1, go to B2.

B2. Set l 1, go to B3.

B3. If a go to B4, else to B5.

B4. If l go to B3, else to B5.

B5. Critial, go to B6.

B6. Set b 0, go to B0.

(49)

Now there are three signal lights, a, b, and l|one ontrolled by Alie, one

ontrolled by Bob, and one swithable by both.

To show that states A5 and B5 an't be onurrent, we an observe that the

shortest ounterexample will not repeat any state twie; in other words, it will be

a simple path of transitions (33). Thus we an assume that r is at most the total

number of states. However, (49) has 7�7�2�2�2 = 392 states; that's a �nite

bound, not really out of reah for a good SAT solver on this partiular problem,

but we an do muh better. For example, it's not hard to devise lauses that are

satis�able if and only if there's a simple path of length � r (see exerise 92), and

in this partiular ase the longest simple path turns out to have only 54 steps.

We an in fat do better yet by using the important notion of invariants,

whih we enountered in Setion 1.2.1 and have seen repeatedly throughout this

series of books. Invariant assertions are the key to most proofs of orretness,

so it's not surprising that they also give a signi�ant boost to bounded model

heking. Formally speaking, if �(X) is a Boolean funtion of the state vetorX ,

we say that � is invariant if �(X) implies �(X

0

) wheneverX ! X

0

. For example,

September 23, 2015

24 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

initial state

indution

ahe memories

write bu�ers

parallel omputation

Lamport

sequential onsisteny

tomat

Cheshire at

diagonal

Xray

pixel images

it's not hard to see that the following lauses are invariant with respet to (49):

�(X) = (A0_A1_A2_A3_A4_A5_A6) ^ (B0_B1_B2_B3_B4_B5_B6)

^ (A0_�a)^(A1_�a)^(A2_a)^(A3_a)^(A4_a)^(A5_a)^(A6_a)

^ (B0_

�

b)^(B1_

�

b)^(B2_b)^(B3_b)^(B4_b)^(B5_b)^(B6_b): (50)

(The lause A0 _ �a says that a = 0 when Alie is in state A0, et.) And we an

use a SAT solver to prove that � is invariant, by showing that the lauses

�(X) ^ (X ! X

0

) ^ :�(X

0

) (51)

are unsatis�able. Furthermore �(X

0

) holds for the initial state X

0

, beause

:�(X

0

) is unsatis�able. (See exerise 93.) Therefore �(X

t

) is true for all t � 0,

by indution, and we may add these helpful lauses to all of our formulas.

The invariant (50) redues the total number of states by a fator of 4. And

the real linher is the fat that the lauses

(X

0

! X

1

! � � � ! X

r

) ^ �(X

0

) ^ �(X

1

) ^ � � � ^ �(X

r

) ^ A5

r

^ B5

r

; (52)

where X

0

is not required to be the initial state, turn out to be unsatis�able

when r = 3. In other words, there's no way to go bak more than two steps

from a bad state, without violating the invariant. We an onlude that mutual

exlusion needs to be veri�ed for (49) only by onsidering paths of length 2(!).

Furthermore, similar ideas (exerise 98) show that (49) is starvation-free.

Caveat: Although (49) is a orret protool for mutual exlusion aording to

Alie and Bob's ground rules, it annot be used safely on most modern omputers

unless speial are is taken to synhronize ahe memories and write bu�ers. The

reason is that hardware designers use all sorts of trikery to gain speed, and those

triks might allow one proess to see a = 0 at time t + 1 even though another

proess has set a 1 at time t. We have developed the algorithms above

by assuming a model of parallel omputation that Leslie Lamport has alled

sequential onsisteny [IEEE Trans. C-28 (1979), 690{691℄.

Digital tomography. Another set of appealing questions amenable to SAT

solving omes from the study of binary images for whih partial information

is given. Consider, for example, Fig. 36, whih shows the \Cheshire at" of

Setion 7.1.3 in a new light. This image is an m� n array of Boolean variables

(x

i;j

), with m = 25 rows and n = 30 olumns: The upper left orner element,

x

1;1

, is 0, representing white; and x

1;24

= 1 orresponds to the lone blak pixel

in the top row. We are given the row sums r

i

=

P

n

j=1

x

i;j

for 1 � i � m and

the olumn sums

j

=

P

m

i=1

x

i;j

for 1 � j � n, as well as both sets of sums in

the 45

Æ

diagonal diretions, namely

a

d

=

X

i+j=d+1

x

i;j

and b

d

=

X

i�j=d�n

x

i;j

for 0 < d < m+ n: (53)

To what extent an suh an image be reonstruted from its sums r

i

,

j

,

a

d

, and b

d

? Small examples are often uniquely determined by these Xray-like

projetions (see exerise 103). But the disrete nature of pixel images makes

the reonstrution problem onsiderably more diÆult than the orresponding

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 25

8 queens problem

queens

hessboard

lexiographi order

2 2 2 10 8 10 4 6 9 7 5 7 6 8 5 7 4 6 7 6 6 11 5 7 6 8 7 7 2 2

3

0

0

0

0

0

1

3

2

2

3

3

3

1

4

3

3

4

5

3

5

5

6

3

8

5

1

5

5

12

10

6

6

3

3

3

2

8

6

12

12

5

10

11

4

12

7

14

11

4

10

3 2 4 5 7 7 7 7 7 4 4 4 4 4 4 6 5 6 4 5 5 4 1 1 0 0 0 0 0

0

0

0

0

0

0

1

2

3

1

2

3

4

3

5

5

3

3

2

4

5

4

4

6

9834247767116645764645100000000

1

= =

30

a

1

=

a

2

=

= r

1

= r

2

= b

1

= b

2

b

54

=

= a

54

Fig. 36. An array of blak and white pixels together with its

row sums r

i

, olumn sums

j

, and diagonal sums a

d

, b

d

.

ontinuous problem, in whih projetions from many di�erent angles are avail-

able. Notie, for example, that the lassial \8 queens problem"|to plae eight

nonattaking queens on a hessboard| is equivalent to solving an 8� 8 digital

tomography problem with the onstraints r

i

= 1,

j

= 1, a

d

� 1, and b

d

� 1.

The onstraints of Fig. 36 appear to be quite strit, so we might expet that

most of the pixels x

i;j

are determined uniquely by the given sums. For instane,

the fat that a

1

= � � � = a

5

= 0 tells us that x

i;j

= 0 whenever i + j � 6;

and similar dedutions are possible at all four orners of the image. A rude

\ballpark estimate" suggests that we're given a few more than 150 sums, most

of whih oupy 5 bits eah; hene we have roughly 150� 5 = 750 bits of data,

from whih we wish to reonstrut 25� 30 = 750 pixels x

i;j

. Atually, however,

this problem turns out to have many billions of solutions (see Fig. 37), most of

whih aren't atlike! Exerise 106 provides a less rude estimate, whih shows

that this abundane of solutions isn't really surprising.

(a) lexiographially �rst; (b) maximally di�erent; () lexiographially last.

Fig. 37. Extreme solutions to the onstraints of Fig. 36.

September 23, 2015

26 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

ardinality onstraints

linear equations

integer programming

Bailleux

Boufkhad

linear programming relaxation

CPLEX

IP: Integer programming

lexiographi order

runs of 1s

A digital tomography problem suh as Fig. 36 is readily represented as a

sequene of lauses to be satis�ed, beause eah of the individual requirements

is just a speial ase of the ardinality onstraints that we've already onsidered

in the lauses of (18){(21). This problem di�ers from the other instanes of SAT

that we've been disussing, primarily beause it onsists entirely of ardinality

onstraints: It is a question of solving 25 + 30 + 54 + 54 = 163 simultaneous

linear equations in 750 variables x

i;j

, where eah variable must be either 0 or 1.

So it's essentially an instane of integer programming (IP), not an instane of

satis�ability (SAT). On the other hand, Bailleux and Boufkhad devised lauses

(20) and (21) preisely beause they wanted to apply SAT solvers, not IP solvers,

to digital tomography. In the ase of Fig. 36, their method yields approximately

40,000 lauses in 9,000 variables, ontaining about 100,000 literals altogether.

Figure 37(b) illustrates a solution that di�ers as muh as possible from

Fig. 36. Thus it minimizes the sum x

1;24

+ x

2;5

+ x

2;6

+ � � � + x

25;21

of the

182 variables that orrespond to blak pixels, over all 0-or-1-valued solutions

to the linear equations. If we use linear programming to minimize that sum

over 0 � x

i;j

� 1, without requiring the variables to be integers, we �nd almost

instantly that the minimum value is � 31:38 under these relaxed onditions;

hene every blak-and-white image must have at least 32 blak pixels in ommon

with Fig. 36. Furthermore, Fig. 37(b)|whih an be omputed in a few seonds

by widely available IP solvers suh as CPLEX|atually ahieves this minimum.

By ontrast, state-of-the-art SAT solvers as of 2013 had great diÆulty �nding

suh an image, even when told that a 32-in-ommon solution is possible.

Parts (a) and () of Fig. 37 are, similarly, quite relevant to the urrent state

of the SAT-solving art: They represent hundreds of individual SAT instanes,

where the �rst k variables are set to partiular known values and we try to

�nd a solution with the next variable either 0 or 1, respetively. Several of the

subproblems that arose while omputing rows 6 and 7 of Fig. 37() turned out to

be quite hallenging, although resolvable in a few hours; and similar problems,

whih orrespond to di�erent kinds of lexiographi order, apparently still lie

beyond the reah of ontemporary SAT-oriented methods. Yet IP solvers polish

these problems o� with ease. (See exerises 109 and 111.)

If we provide more information about an image, our hanes of being able

to reonstrut it uniquely are naturally enhaned. For example, suppose we also

ompute the numbers r

0

i

,

0

j

, a

0

d

, and b

0

d

, whih ount the runs of 1s that our

in eah row, olumn, and diagonal. (We have r

0

1

= 1, r

0

2

= 2, r

0

3

= 4, and

so on.) Given this additional data, we an show that Fig. 36 is the only solution,

beause a suitable set of lauses turns out to be unsatis�able. Exerise 117

explains one way by whih (20) and (21) an be modi�ed so that they provide

onstraints based on the run ounts. Furthermore, it isn't diÆult to express

even more detailed onstraints, suh as the assertion that \olumn 4 ontains

runs of respetive lengths (6; 1; 3)," as a sequene of lauses; see exerise 438.

SAT examples| summary. We've now seen onvining evidene that simple

Boolean lauses|ANDs of ORs of literals|are enormously versatile. Among

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 27

baktraking{

notation F j l

redution of lauses

given literals

onditioning operation

ommutative

notation F jL

reursive proedure

other things, we've used them to enode problems of graph oloring, integer

fatorization, hardware fault testing, mahine learning, model heking, and

tomography. And indeed, Setion 7.9 will demonstrate that 3SAT is the \poster

hild" for NP-omplete problems in general: Any problem in NP|whih is

a huge lass, essentially omprising all yes-or-no questions of size N whose

aÆrmative answers are veri�able in N

O(1)

steps|an be formulated as an

equivalent instane of 3SAT, without greatly inreasing the problem size.

Baktraking for SAT. We've now seen a dizzying variety of intriguing and im-

portant examples of SAT that are begging to be solved. How shall we solve them?

Any instane of SAT that involves at least one variable an be solved sys-

tematially by hoosing a variable and setting it to 0 or 1. Either of those hoies

gives us a smaller instane of SAT; so we an ontinue until reahing either an

empty instane|whih is trivially satis�able, beause no lauses need to be

satis�ed|or an instane that ontains an empty lause. In the latter ase we

must bak up and reonsider one of our earlier hoies, proeeding in the same

fashion until we either sueed or exhaust all the possibilities.

For example, onsider again the formula F in (1). If we set x

1

= 0, F redues

to �x

2

^ (x

2

_x

3

), beause the �rst lause (x

1

_ �x

2

) loses its x

1

, while the last two

lauses ontain �x

1

and are satis�ed. It will be onvenient to have a notation for

this redued problem; so let's write

F j �x

1

= �x

2

^ (x

2

_x

3

): (54)

Similarly, if we set x

1

= 1, we obtain the redued problem

F jx

1

= (x

2

_x

3

) ^ �x

3

^ (�x

2

_ x

3

): (55)

F is satis�able if and only if we an satisfy either (54) or (55).

In general if F is any set of lauses and if l is any literal, then F j l (read

\F given l" or \F onditioned on l") is the set of lauses obtained from F by

� removing every lause that ontains l; and

� removing

�

l from every lause that ontains

�

l.

This onditioning operation is ommutative, in the sense that F j l j l

0

= F j l

0

j l

when l

0

6=

�

l. If L = fl

1

; : : : ; l

k

g is any set of stritly distint literals, we an also

write F jL = F j l

1

j � � � j l

k

. In these terms, F is satis�able if and only if F jL = ;

for some suh L, beause the literals of L satisfy every lause of F when F jL = ;.

The systemati strategy for SAT that was skethed above an therefore be

formulated as the following reursive proedure B(F), whih returns the speial

value ? when F is unsatis�able, otherwise it returns a set L that satis�es F :

B(F) =

8

>

>

>

<

>

>

>

:

If F = ;, return ;. (F is trivially satis�able.)

Otherwise if � 2 F , return ?. (F is unsatis�able.)

Otherwise let l be a literal in F and set L B(F j l).

If L 6= ?, return L [l. Otherwise set L B(F j

�

l).

If L 6= ?, return L [

�

l. Otherwise return ?.

(56)

Let's try to esh out this abstrat algorithm by onverting it to eÆient

ode at a lower level. From our previous experiene with baktraking, we know

September 23, 2015

28 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

data strutures{

exat over

ells

doubly linked

head of the list

that it will be ruial to have data strutures that allow us to go quikly from

F to F j l, then bak again to F if neessary, when F is a set of lauses and

l is a literal. In partiular, we'll want a good way to �nd all of the lauses that

ontain a given literal.

A ombination of sequential and linked strutures suggests itself for this

purpose, based on our experiene with exat over problems: We an represent

eah lause as a set of ells, where eah ell p ontains a literal l = L(p) together

with pointers F(p) and B(p) to other ells that ontain l, in a doubly linked list.

We'll also need C(p), the number of the lause to whih p belongs. The ells of

lause C

i

will be in onseutive loations START(i)+ j, for 0 � j < SIZE(i).

We will �nd it onvenient to represent the literals x

k

and �x

k

, whih involve

variable x

k

, by using the integers 2k and 2k + 1. With this onvention we have

�

l = l � 1 and jlj = x

l�1

: (57)

Our implementation of (56) will assume that the variables are x

1

, x

2

, : : : , x

n

;

thus the 2n possible literals will be in the range 2 � l � 2n+ 1.

Cells 0 through 2n+1 are reserved for speial purposes: Cell l is the head of

the list for the ourrenes of l in other ells. Furthermore C(l) will be the length

of that list, namely the number of urrently ative lauses in whih l appears.

For example, the m = 7 ternary lauses R

0

of (7) might be represented

internally in 2n+ 2+ 3m = 31 ells as follows, using these onventions:

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L(p)= { { { { { { { { { { 9 7 3 8 7 5 6 5 3 8 4 3 8 6 2 9 6 4 7 4 2

F(p)= { { 30 21 29 17 26 28 22 25 9 7 3 8 11 5 6 15 12 13 4 18 19 16 2 10 23 20 14 27 24

B(p)= { { 24 12 20 15 16 11 13 10 25 14 18 19 28 17 23 5 21 22 27 3 8 26 30 9 6 29 7 4 2

C(p)= { { 2 3 3 2 3 3 3 2 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1

The literals of eah lause appear in dereasing order here; for example, the

literals L(p) = (8; 4; 3) in ells 19 through 21 represent the lause x

4

_ x

2

_ �x

1

,

whih appears as the fourth lause, `4

�

12' in (7). This ordering turns out to be

quite useful, beause we'll always hoose the smallest unset variable as the l or

�

l

in (56); then l or

�

l will always appear at the right of its lauses, and we an

remove it or put it bak by simply hanging the relevant SIZE �elds.

The lauses in this example have START(i) = 31 � 3i for 1 � i � 7, and

SIZE(i) = 3 when omputation begins.

Algorithm A (Satis�ability by baktraking). Given nonempty lauses C

1

^� � �^

C

m

on n > 0 Boolean variables x

1

: : : x

n

, represented as above, this algorithm

�nds a solution if and only if the lauses are satis�able. It reords its urrent

progress in an arraym

1

: : :m

n

of \moves," whose signi�ane is explained below.

A1. [Initialize.℄ Set a m and d 1. (Here a represents the number of ative

lauses, and d represents the depth-plus-one in an impliit searh tree.)

A2. [Choose.℄ Set l 2d. If C(l) � C(l+ 1), set l l + 1. Then set m

d

(l & 1) + 4[C(l� 1)=0℄. (See below.) Terminate suessfully if C(l) = a.

A3. [Remove

�

l.℄ Delete

�

l from all ative lauses; but go to A5 if that would make

a lause empty. (We want to ignore

�

l, beause we're making l true.)

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 29

move odes

pure literals

0 1

0 1 0 1

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

1

2 2

3 3 3 3

4 4 4 4 4 412

�

3

�

1

�

23

341 23

�

4 341

�

41

�

2

�

2

�

34

�

41

�

2 4

�

12 23

�

4 4

�

12

�

3

�

4

�

1

�

2

�

34

�

3

�

4

�

1

Fig. 38. The searh tree that is impliitly traversed by Algorithm A, when

that algorithm is applied to the eight unsatis�able lauses R de�ned in (6).

Branh nodes are labeled with the variable being tested; leaf nodes are labeled

with a lause that is found to be ontradited.

A4. [Deativate l's lauses.℄ Suppress all lauses that ontain l. (Those lauses

are now satis�ed.) Then set a a� C(l), d d+ 1, and return to A2.

A5. [Try again.℄ If m

d

< 2, set m

d

 3�m

d

, l 2d+ (m

d

&1), and go to A3.

A6. [Baktrak.℄ Terminate unsuessfully if d = 1 (the lauses are unsatis�-

able). Otherwise set d d� 1 and l 2d+ (m

d

& 1).

A7. [Reativate l's lauses.℄ Set a a + C(l), and unsuppress all lauses that

ontain l. (Those lauses are now unsatis�ed, beause l is no longer true.)

A8. [Unremove

�

l.℄ Reinstate

�

l in all the ative lauses that ontain it. Then go

bak to A5.

(See exerise 121 for details of the low-level list proessing operations that are

needed to update the data strutures in steps A3 and A4, and to downdate them

in A7 and A8.)

The move odesm

j

of Algorithm A are integers between 0 and 5 that enode

the state of the algorithm's progress as follows:

� m

j

= 0 means we're trying x

j

= 1 and haven't yet tried x

j

= 0.

� m

j

= 1 means we're trying x

j

= 0 and haven't yet tried x

j

= 1.

� m

j

= 2 means we're trying x

j

= 1 after x

j

= 0 has failed.

� m

j

= 3 means we're trying x

j

= 0 after x

j

= 1 has failed.

� m

j

= 4 means we're trying x

j

= 1 when �x

j

doesn't appear.

� m

j

= 5 means we're trying x

j

= 0 when x

j

doesn't appear.

Codes 4 and 5 refer to so-alled \pure literals": If no lause ontains the literal

�

l,

we an't go wrong by assuming that l is true.

For example, when Algorithm A is presented with the lauses (7), it ruises

diretly to a solution by setting m

1

m

2

m

3

m

4

= 1014; the solution is x

1

x

2

x

3

x

4

=

0101. But when the unsatis�able lauses (6) are given, the suessive ode strings

m

1

: : :m

d

in step A2 are

1; 11; 110; 1131; 121; 1211; 1221; 21; 211; 2111; 2121; 221; 2221; (58)

before the algorithm gives up. (See Fig. 38.)

September 23, 2015

30 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

lexiographially

lazy data strutures{

Brown

Purdom

wathed literals

partial assignment

onsistent

unit

baktraking

eager

It's helpful to display the urrent string m

1

: : :m

d

now and then, as a

onvenient indiation of progress; this string inreases lexiographially. Indeed,

fasinating patterns appear as the 2s and 3s gradually move to the left. (Try it!)

When the algorithm terminates suessfully in step A2, a satisfying assign-

ment an be read o� from the move table by setting x

j

 1 � (m

j

& 1) for

1 � j � d. Algorithm A stops after �nding a single solution; see exerise 122 if

you want them all.

Lazy data strutures. Instead of using the elaborate doubly linked mahinery

that underlies Algorithm A, we an atually get by with a muh simpler sheme

disovered by Cynthia A. Brown and Paul W. Purdom, Jr. [IEEE Trans. PAMI-

4 (1982), 309{316℄, who introdued the notion of wathed literals. They observed

that we don't really need to know all of the lauses that ontain a given literal,

beause only one literal per lause is atually relevant at any partiular time.

Here's the idea: When we work on lauses F jL, the variables that our in L

have known values, but the other variables do not. For example, in Algorithm A,

variable x

j

is impliitly known to be either true or false when j � d, but its value

is unknown when j > d. Suh a situation is alled a partial assignment. A partial

assignment is onsistent with a set of lauses if no lause onsists entirely of

false literals. Algorithms for SAT usually deal exlusively with onsistent partial

assignments; the goal is to onvert them to onsistent total assignments, by

gradually eliminating the unknown values.

Thus every lause in a onsistent partial assignment has at least one nonfalse

literal; and we an assume that suh a literal appears �rst, when the lause is

represented in memory. Many nonfalse literals might be present, but only one of

them is designated as the lause's \wathee." When a wathed literal beomes

false, we an �nd another nonfalse literal to swap into its plae|unless the

lause has been redued to a unit, a lause of size 1.

With suh a sheme we need only maintain a relatively short list for every

literal l, namely a list W

l

of all lauses that urrently wath l. This list an

be singly linked. Hene we need only one link per lause; and we have a total

of only 2n +m links altogether, instead of the two links for eah ell that are

required by Algorithm A.

Furthermore|and this is the best part!| no updates need to be made

to the wath lists when baktraking. The baktrak operations never falsify

a nonfalse literal, beause they only hange values from known to unknown.

Perhaps for this reason, data strutures based on wathed literals are alled lazy,

in ontrast with the \eager" data strutures of Algorithm A.

Let us therefore redesign Algorithm A and make it more laid-bak. Our

new data struture for eah ell p has only one �eld, L(p); the other �elds F(p),

B(p), C(p) are no longer neessary, nor do we need 2n + 2 speial ells. As

before we will represent lauses sequentially, with the literals of C

j

beginning at

START(j) for 1 � j � m. The wathed literal will be the one in START(j); and a

new �eld, LINK(j), will be the number of another lause with the same wathed

literal (or 0, if C

j

is the last suh lause). Moreover, our new algorithm won't

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 31

move odes

pure literals

false literals preferred

unit lauses

Davis

Logemann

need SIZE(j). Instead, we an assume that the �nal literal of C

j

is in loation

START(j � 1)� 1, provided that we de�ne START(0) appropriately.

The resulting proedure is almost unbelievably short and sweet. It's surely

the simplest SAT solver that an laim to be eÆient on problems of modest size:

Algorithm B (Satis�ability by wathing). Given nonempty lauses C

1

^� � �^C

m

on n > 0 Boolean variables x

1

: : : x

n

, represented as above, this algorithm �nds

a solution if and only if the lauses are satis�able. It reords its urrent progress

in an array m

1

: : :m

n

of \moves," whose signi�ane was explained above.

B1. [Initialize.℄ Set d 1.

B2. [Rejoie or hoose.℄ If d > n, terminate suessfully. Otherwise set m

d

[W

2d

=0 or W

2d+1

6=0℄ and l 2d+m

d

.

B3. [Remove

�

l if possible.℄ For all j suh that

�

l is wathed in C

j

, wath another

literal of C

j

. But go to B5 if that an't be done. (See exerise 124.)

B4. [Advane.℄ Set W

�

l

 0, d d+ 1, and return to B2.

B5. [Try again.℄ If m

d

< 2, set m

d

 3�m

d

, l 2d+ (m

d

& 1), and go to B3.

B6. [Baktrak.℄ Terminate unsuessfully if d = 1 (the lauses are unsatis�-

able). Otherwise set d d� 1 and go bak to B5.

Readers are strongly enouraged to work exerise 124, whih spells out the

low-level operations that are needed in step B3. Those operations aomplish

essentially everything that Algorithm B needs to do.

This algorithm doesn't use move odes 4 or 5, beause lazy data strutures

don't have enough information to identify pure literals. Fortunately pure literals

are omparatively unimportant in pratie; problems that are helped by the pure

literal shortut an usually also be solved quikly without it.

Notie that steps A2 and B2 use di�erent riteria for deiding whether to

try x

d

= 1 or x

d

= 0 �rst at eah branh of the searh tree. Algorithm A hooses

the alternative that satis�es the most lauses; Algorithm B hooses to make l

true instead of

�

l if the wath list for

�

l is empty but the wath list for l is not.

(All lauses in whih

�

l is wathed will have to hange, but those ontaining l

are satis�ed and in good shape.) In ase of a tie, both algorithms set m

d

 1,

whih orresponds to x

d

= 0. The reason is that human-designed instanes of

SAT tend to have solutions made up of mostly false literals.

Fored moves from unit lauses. The simple logi of Algorithm B works

well on many problems that aren't too large. But its insistene on setting x

1

�rst, then x

2

, et., makes it quite ineÆient on many other problems, beause

it fails to take advantage of unit lauses. A unit lause (l) fores l to be true;

therefore two-way branhing is unneessary whenever a unit lause is present.

Furthermore, unit lauses aren't rare: Far from it. Experiene shows that they're

almost ubiquitous in pratie, so that the atual searh trees often involve only

dozens of branh nodes instead of thousands or millions.

The importane of unit lauses was reognized already in the �rst omputer

implementation of a SAT solver, designed by Martin Davis, George Logemann,

September 23, 2015

32 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Loveland

Davis

Putnam

pure literals

ready list

searh tree

magneti tape

baktraking

tape reords

DPLL algorithm

Brown

Purdom

irular list

ative ring

units

waerden

and Donald Loveland [CACM 5 (1962), 394{397℄ and based on ideas that Davis

had developed earlier with Hilary Putnam [JACM 7 (1960), 201{215℄. They

extended Algorithm A by introduing mehanisms that reognize when the size

of a lause dereases to 1, or when the number of unsatis�ed lauses ontaining

a literal drops to 0. In suh ases, they put variables onto a \ready list," and

assigned those variables to �xed values before doing any further two-way branh-

ing. The resulting program was fairly omplex; indeed, omputer memory was

so limited in those days, they implemented branhing by writing all the data for

the urrent node of the searh tree onto magneti tape, then baktraking when

neessary by restoring the data from the most reently written tape reords! The

names of these four authors are now enshrined in the term \DPLL algorithm,"

whih refers generally to SAT solving via partial assignment and baktraking.

Brown and Purdom, in the paper ited earlier, showed that unit lauses

an be deteted more simply by using wathed literals as in Algorithm B. We

an supplement the data strutures of that algorithm by introduing indies

h

1

: : : h

n

so that the variable whose value is being set at depth d is x

h

d

instead

of x

d

. Furthermore we an arrange the not-yet-set variables whose wath lists

aren't empty into a irular list alled the \ative ring"; the idea is to proeed

through the ative ring, heking to see whether any of its variables are urrently

in a unit lause. We resort to two-way branhing only if we go all around the

ring without �nding any suh units.

For example, let's onsider the 32 unsatis�able lauses of waerden (3; 3; 9)

in (9). The ative ring is initially (1 2 3 4 5 6 7), beause 8,

�

8, 9, and

�

9 aren't

being wathed anywhere. There are no unit lauses yet. The algorithm below will

deide to try

�

1 �rst; then it will hange the lauses 123, 135, 147, and 159 to 213,

315, 417, and 519, respetively, so that nobody wathes the false literal 1. The

ative ring beomes (2 3 4 5 6 7) and the next hoie is

�

2; so 213, 234, 246, and 258

morph respetively into 312, 324, 426, 528. Now, with ative ring (3 4 5 6 7), the

unit lause `3' is deteted (beause 1 and 2 are false in `312'). This preipitates

further hanges, and the �rst steps of the omputation an be summarized thus:

Ative ring x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

Units Choie Changed lauses

(1 2 3 4 5 6 7) - - - - - - - - -

�

1 213; 315; 417; 519

(2 3 4 5 6 7) 0 - - - - - - - -

�

2 312; 324; 426; 528

(3 4 5 6 7) 0 0 - - - - - - - 3 3

�

4

�

3

�

5;

�

5

�

3

�

4;

�

6

�

3

�

9

(4 5 6 7) 0 0 1 - - - - - -

�

4 624; 714; 546; 648

(5 6 7) 0 0 1 0 - - - - - 6 6

�

9

�

3

�

6;

�

7

�

6

�

8

(9 7 5) 0 0 1 0 - 1 - - -

�

9

�

9

(7 5) 0 0 1 0 - 1 - - 0 7 7

�

8

�

6

�

7;

�

8

�

7

�

9

(8 5) 0 0 1 0 - 1 1 - 0

�

8

�

8

(5) 0 0 1 0 - 1 1 0 0 5;

�

5 Baktrak

(6 9 7 8 5) 0 0 1 - - - - - - 4

�

5

�

3

�

4;

�

5

�

4

�

6;

�

6

�

4

�

8

(6 9 7 8 5) 0 0 1 1 - - - - -

�

5

�

5 456; 825; 915; 657; 759

(59)

When 6 is found, 7 is also a unit lause; but the algorithm doesn't see it yet,

beause variable x

6

is tested �rst. The ative ring hanges �rst to (7 5) after 6

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 33

empty list

yli DPLL

false literals preferred

0 1

0 1 1 0

0 1 0 1 1 0 1 0

0 1 0 1 0 1 0 1

1

2 2

3 4 3 4

4 3 4 312

�

3

�

41

�

2

�

1

�

23 4

�

12

341 23

�

4 341

�

2

�

34

�

2

�

34

�

3

�

4

�

1 23

�

4

�

3

�

4

�

1

Fig. 39. The searh tree that is impliitly traversed by Algorithm D, when

that algorithm is applied to the eight unsatis�able lauses R de�ned in (6).

Branh nodes are labeled with the variable being tested; leaf nodes are labeled

with a lause that is found to be ontradited. When the right hild of a

branh node is a leaf, the left branh was fored by a onditional unary lause.

is found, beause 5 is ylially after 6; we want to look at 7 before 5, instead of

revisiting more or less the same lauses. After 6 has been hosen, 9 is inserted at

the left, beause the wath list for

�

9 beomes nonempty. After baktraking, vari-

ables 8, 7, 9, 6 are suessively inserted at the left as they lose their fored values.

The following algorithm represents the ative ring by giving a NEXT �eld to

eah variable, with x

NEXT(k)

the suessor of x

k

. The ring is aessed via \head"

and \tail" pointers h and t at the left and right, with h = NEXT(t). If the ring

is empty, however, t = 0, and h is unde�ned.

Algorithm D (Satis�ability by yli DPLL). Given nonempty lauses C

1

^� � �^

C

m

on n > 0 Boolean variables x

1

: : : x

n

, represented with lazy data strutures

and an ative ring as explained above, this algorithm �nds a solution if and only

if the lauses are satis�able. It reords its urrent progress in an array h

1

: : : h

n

of

indies and an arraym

0

: : :m

n

of \moves," whose signi�ane is explained below.

D1. [Initialize.℄ Set m

0

 d h t 0, and do the following for k = n, n�1,

: : : , 1: Set x

k

 �1 (denoting an unset value); if W

2k

6= 0 or W

2k+1

6= 0,

set NEXT(k) h, h k, and if t = 0 also set t k. Finally, if t 6= 0,

omplete the ative ring by setting NEXT(t) h.

D2. [Suess?℄ Terminate if t = 0 (all lauses are satis�ed). Otherwise set k t.

D3. [Look for unit lauses.℄ Set h NEXT(k) and use the subroutine in exer-

ise 129 to ompute f [2h is a unit℄ + 2[2h+ 1 is a unit℄. If f = 3, go

to D7. If f = 1 or 2, set m

d+1

 f + 3, t k, and go to D5. Otherwise, if

h 6= t, set k h and repeat this step.

D4. [Two-way branh.℄ Set h NEXT(t) and m

d+1

 [W

2h

=0 or W

2h+1

6=0℄.

D5. [Move on.℄ Set d d+1, h

d

 k h. If t = k, set t 0; otherwise delete

variable k from the ring by setting NEXT(t) h NEXT(k).

D6. [Update wathes.℄ Set b (m

d

+1) mod 2, x

k

 b, and lear the wath list

for �x

k

(see exerise 130). Return to D2.

September 23, 2015

34 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

move odes

nodes

searh tree

langford (n)

Langford pairs

mems

pure literals

D7. [Baktrak.℄ Set t k. While m

d

� 2, set k h

d

, x

k

 �1; if W

2k

6= 0 or

W

2k+1

6= 0, set NEXT(k) h, h k, NEXT(t) h; and set d d� 1.

D8. [Failure?℄ If d > 0, set m

d

 3�m

d

, k h

d

, and return to D6. Otherwise

terminate the algorithm (beause the lauses aren't satis�able).

The move odes of this algorithm are slightly di�erent from the earlier ones:

� m

j

= 0 means we're trying x

h

j

= 1 and haven't yet tried x

h

j

= 0.

� m

j

= 1 means we're trying x

h

j

= 0 and haven't yet tried x

h

j

= 1.

� m

j

= 2 means we're trying x

h

j

= 1 after x

h

j

= 0 has failed.

� m

j

= 3 means we're trying x

h

j

= 0 after x

h

j

= 1 has failed.

� m

j

= 4 means we're trying x

h

j

= 1 beause it's fored by a unit lause.

� m

j

= 5 means we're trying x

h

j

= 0 beause it's fored by a unit lause.

As before, the number of two-way branh nodes in the impliit searh tree is the

number of times that m

j

is set to 0 or 1.

Comparison of the algorithms. OK, we've just seen three rudimentary SAT

solvers. How well do they atually do? Detailed performane statistis will be

given later in this setion, after we've studied several more algorithms. But a

brief quantitative study of Algorithms A, B, and D now will give us some onrete

fats with whih we an alibrate our expetations before moving on.

Consider, for example, langford (n), the problem of Langford pairs. This

problem is typial of SAT instanes where many unit lauses arise during the

omputation. For example, when Algorithm D is applied to langford (5), it

reahes a stage where the move odes are

m

1

m

2

: : :m

d

= 1255555555555555114545545; (60)

indiating only four two-way branhes (the 1s and the 2) amongst a sea of fored

moves. We therefore expet Algorithm D to outperform Algorithms A and B,

whih don't apitalize on unit lauses.

Sure enough, Algorithm D wins (slightly), even on a small example suh as

langford (5), whih has 213 lauses, 480 ells, 28 variables. The detailed stats are

Algorithm A: 5379+ 108952 mems, 10552 bytes, 705 nodes.

Algorithm B: 1206 + 30789 mems, 4320 bytes, 771 nodes.

Algorithm D: 1417+ 28372 mems, 4589 bytes, 11 nodes.

(Here \5379+108952mems" means that 5379 memory aesses were made while

initializing the data strutures before the algorithm began; then the algorithm

itself aessed otabytes of memory 108,952 times.) Notie that Algorithm B

is more than thrie as fast as Algorithm A in this example, although it makes

771 two-way branhes instead of 705. Algorithm A needs fewer nodes, beause

it reognizes pure literals; but Algorithm B does muh less work per node.

Algorithm D, on the other hand, works very hard at eah node, yet omes out

ahead beause its deision-making hoies redue the searh to only a few nodes.

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 35

benhmark test

variations in performane

waerden

These di�erenes beome more dramati when we onsider larger problems.

For instane, langford (9) has 1722 lauses, 3702 ells, 104 variables, and we �nd

Algorithm A: 332.0 megamems, 77216 bytes, 1,405,230 nodes.

Algorithm B: 53.4 megamems, 31104 bytes, 1,654,352 nodes.

Algorithm D: 23.4 megamems, 32057 bytes, 6093 nodes.

And with langford (13)'s 5875 lauses, 12356 ells, 228 variables, the results are

Algorithm A: 2699.1 gigamems, 253.9 kilobytes, 8.7 giganodes.

Algorithm B: 305.2 gigamems, 101.9 kilobytes, 10.6 giganodes.

Algorithm D: 71.7 gigamems, 104.0 kilobytes, 14.0 meganodes.

Mathematiians will reall that, at the beginning of Chapter 7, we used

elementary reasoning to prove the unsatis�ability of langford (4k + 1) for all k.

Evidently SAT solvers have great diÆulty disovering this fat, even when k is

fairly small. We are using that problem here as a benhmark test, not beause we

reommend replaing mathematis by brute fore! Its unsatis�ability atually

enhanes its utility as a benhmark, beause algorithms for satis�ability are more

easily ompared with respet to unsatis�able instanes: Extreme variations in

performane our when lauses are satis�able, beause solutions an be found

purely by luk. Still, we might as well see what happens when our three algo-

rithms are set loose on the satis�able problem langford (16), whih turns out to be

\no sweat." Its 11494 lauses, 23948 ells, and 352 variables lead to the statistis

Algorithm A: 11262.6 megamems, 489.2 kilobytes, 28.8 meganodes.

Algorithm B: 932.1 megamems, 196.2 kilobytes, 40.9 meganodes.

Algorithm D: 4.9 megamems, 199.4 kilobytes, 167 nodes.

Algorithm D is ertainly our favorite so far, based on the langford data. But

it is far from a panaea, beause it loses badly to the lightweight Algorithm B

on other problems. For example, the 2779 unsatis�able lauses, 11662 ells, and

97 variables of waerden (3; 10; 97) yield

Algorithm A: 150.9 gigamems, 212.8 kilobytes, 106.7114 meganodes.

Algorithm B: 6.2 gigamems, 71.2 kilobytes, 106.7116 meganodes.

Algorithm D: 1430.4 gigamems, 72.1 kilobytes, 102.7 meganodes.

And waerden (3; 10; 96)'s 2721 satis�able lauses, 11418 ells, 96 variables give us

Algorithm A: 96.9 megamems, 208.3 kilobytes, 72.9 kilonodes.

Algorithm B: 12.4 megamems, 69.8 kilobytes, 207.7 kilonodes.

Algorithm D: 57962.8 megamems, 70.6 kilobytes, 4447.7 kilonodes.

In suh ases unit lauses don't redue the searh tree size by very muh, so we

aren't justi�ed in spending so muh time per node.

*Speeding up by working harder. Algorithms A, B, and D are OK on smallish

problems, but they annot really ope with the larger instanes of SAT that have

arisen in our examples. Signi�ant enhanements are possible if we are willing

to do more work and to develop more elaborate algorithms.

Mathematiians generally strive for nie, short, elegant proofs of theorems;

and omputer sientists generally aim for nie, short, elegant sequenes of steps

September 23, 2015

36 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

unit propagation

lazy data struture

eager

unit lause

binary lauses

bimp table

sequential list

buddy system

ternary lauses

timp tables

with whih a problem an quikly be solved. But some theorems have no short

proofs, and some problems annot be solved eÆiently with short programs.

Let us therefore adopt a new attitude, at least temporarily, by fearlessly

deiding to throw lots of ode at SAT: Let's look at the bottleneks that hinder

Algorithm D on large problems, and let's try to devise new methods that will

streamline the alulations even though the resulting programmight be ten times

larger. In this subsetion we shall examine an advaned SAT solver, Algorithm L,

whih is able to outperform Algorithm D by many orders of magnitude on many

important problems. This algorithm annot be desribed in just a few lines;

but it does onsist of ooperating proedures that are individually nie, short,

elegant, and understandable by themselves.

The �rst important ingredient of Algorithm L is an improved mehanism

for unit propagation. Algorithm D needs only a few lines of ode in step D3 to

disover whether or not the value of an unknown variable has been fored by

previous assignments; but that mehanism isn't partiularly fast, beause it is

based on indiret inferenes from a lazy data struture. We an do better by

using \eager" data strutures that are spei�ally designed to reognize fored

values quikly, beause high-speed propagation of the onsequenes of a newly

asserted value turns out to be extremely important in pratie.

A literal l is fored true when it appears in a lause C whose other literals

have beome false, namely when the set of urrently assigned literals L has re-

dued C to the unit lause C jL = (l). Suh unit lauses arise from the redution

of binary lauses. Algorithm L therefore keeps trak of the binary lauses (u_v)

that are relevant to the urrent subproblem F j L. This information is kept

in a so-alled \bimp table" BIMP(l) for every literal l, whih is a list of other

literals l

0

whose truth is implied by the truth of l. Indeed, instead of simply

inluding binary lauses within the whole list of given lauses, as Algorithms A,

B, and D do, Algorithm L stores the relevant fats about (u _ v) diretly, in a

ready-to-use way, by listing u in BIMP(�v) and v in BIMP(�u). Eah of the 2n

tables BIMP(l) is represented internally as a sequential list of length BSIZE(l),

with memory alloated dynamially via the buddy system (see exerise 134).

Binary lauses, in turn, are spawned by ternary lauses. For simpliity,

Algorithm L assumes that all lauses have length 3 or less, beause every instane

of general SAT an readily be onverted to 3SAT form (see exerise 28). And for

speed, Algorithm L represents the ternary lauses by means of \timp tables,"

whih are analogous to the bimp tables: Every literal l has a sequential list

TIMP(l) of length TSIZE(l), onsisting of pairs p

1

= (u

1

; v

1

), p

2

= (u

2

; v

2

), : : : ,

suh that the truth of l implies that eah (u

i

_ v

i

) beomes a relevant binary

lause. If (u _ v _ w) is a ternary lause, there will be three pairs p = (v; w),

p

0

= (w; u), and p

00

= (u; v), appearing in the respetive lists TIMP(�u), TIMP(�v),

and TIMP(�w). Moreover, these three pairs are linked together ylially, with

LINK(p) = p

0

; LINK(p

0

) = p

00

; LINK(p

00

) = p: (61)

Memory is alloated for the timp tables one and for all, as the lauses are input,

beause Algorithm L does not generate new ternaries during its omputations.

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 37

waerden

degrees of truth

Heule

Dufour

van Zwieten

van Maaren

RT

real truth

NT

near truth

proto truth

PT

�xed literals

sequential

stak

breadth-�rst searh

undo

ISTAMP

Individual pairs p are, however, swapped around within these sequential tables,

so that the urrently ative ternary lauses ontaining u always appear in the

�rst TSIZE(�u) positions that have been alloated to TIMP(�u).

For example, let's onsider again the ternary lauses (9) of waerden (3; 3; 9).

Initially there are no binary lauses, so all BIMP tables are empty. Eah of the

ternary lauses appears in three of the TIMP tables. At level 0 of the searh

tree we might deide that x

5

= 0; then TIMP(

�

5) tells us that we gain eight

binary lauses, namely f13; 19; 28; 34; 37; 46; 67; 79g. These new binary lauses

are represented by sixteen entries in BIMP tables; BIMP(

�

3), for instane, will now

be f1; 4; 7g. Furthermore, we'll want all of the TIMP pairs that involve either

5 or

�

5 to beome inative, beause the ternary lauses that ontain 5 are weaker

than the new binary lauses, and the ternary lauses that ontain

�

5 are now

satis�ed. (See exerise 136.)

As in (57) above, we shall assume that the variables of a given formula are

numbered from 1 to n, and we represent the literals k and

�

k internally by the

numbers 2k and 2k+1. Algorithm L introdues a new twist, however, by allowing

variables to have many di�erent degrees of truth [see M. Heule, M. Dufour, J. van

Zwieten, and H. van Maaren, LNCS 3542 (2005), 345{359℄: We say that x

k

is

true with degree D if VAL[k℄ = D, and false with degree D if VAL[k℄ = D + 1,

where D is any even number.

The highest possible degree, typially 2

32

� 2 inside a omputer, is alled

RT for \real truth." The next highest degree, typially 2

32

� 4, is alled NT for

\near truth"; and then omes PT = 2

32

�6, \proto truth." Lower degrees PT�2,

PT� 4, : : : , 2 also turn out to be useful. A literal l is said to be �xed in ontext

T if and only if VAL[jlj℄ � T ; it is �xed true if we also have VAL[jlj℄&1 = l&1,

and it is �xed false if its omplement

�

l is �xed true.

Suppose, for example, that VAL[2℄ = RT+ 1 and VAL[7℄ = PT; hene x

2

is

\really false" while x

7

is \proto true." Then the literal `7', represented internally

by l = 14, is �xed true in ontext PT, but l is not �xed in ontexts NT or RT. The

literal `

�

2', represented internally by l = 5, is �xed true in every ontext.

Algorithm L uses a sequential stak R

0

, R

1

, : : : , to reord the names of

literals that have reeived values. The urrent stak size, E, satis�es 0 � E � n.

With those data strutures we an use a simple breadth-�rst searh proedure

to propagate the binary onsequenes of a literal l in ontext T at high speed:

Set H E; take aount of l;

while H < E, set l R

H

, H H + 1, and

take aount of l

0

for all l

0

in BIMP(l).

(62)

Here \take aount of l" means \if l is �xed true in ontext T , do nothing; if l is

�xed false in ontext T , go to step CONFLICT; otherwise set VAL[jlj℄ T+(l&1),

R

E

 l, and E E + 1." The step alled CONFLICT is hangeable.

A literal's BIMP table might grow repeatedly as omputation proeeds. But

we an undo the onsequenes of bad deisions by simply resetting BSIZE(l)

to the value that it had before those deisions were made. A speial variable

ISTAMP is inreased whenever we begin a new round of deision-making, and eah

September 23, 2015

38 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

stamp

stamping

ISTAMP

ISTACK

IST

VAR

INX

free variable

DPLL with lookahead

really true

nearly true

literal l has its private stamp IST(l). Whenever BSIZE(l) is about to inrease,

we hek if IST(l) = ISTAMP. If not, we set

IST(l) ISTAMP; ISTACK[I℄

�

l; BSIZE(l)

�

; I I + 1: (63)

Then the entries on ISTACK make it easy to downdate the BIMP tables when we

baktrak. (See step L13 in the algorithm below.)

We're ready now to look at the detailed steps of Algorithm L, exept that one

more member of its arsenal of data strutures needs to be introdued: There's

an array VAR, whih ontains a permutation of f1; : : : ; ng, with VAR[k℄ = x if

and only if INX[x℄ = k. Furthermore VAR[k℄ is a \free variable"|not �xed

in ontext RT|if and only if 0 � k < N . This setup makes it onvenient to

keep trak of the variables that are urrently free: A variable beomes �xed by

swapping it to the end of the free list and dereasing N (see exerise 137); then

we an free it later by simply inreasing N , without swapping.

Algorithm L (Satis�ability by DPLL with lookahead). Given nonempty lauses

C

1

^ � � � ^ C

m

of size � 3, on n > 0 Boolean variables x

1

: : : x

n

, this algorithm

�nds a solution if and only if the lauses are satis�able. Its family of ooperating

data strutures is disussed in the text.

L1. [Initialize.℄ Reord all binary lauses in the BIMP array and all ternary

lauses in the TIMP array. Let U be the number of distint variables in unit

lauses; terminate unsuessfully if two unit lauses ontradit eah other,

otherwise reord all distint unit literals in FORCE[k℄ for 0 � k < U . Set

VAR[k℄ k + 1 and INX[k + 1℄ k for 0 � k < n; and d F I

ISTAMP 0. (Think d = depth, F = �xed variables, I = ISTACK size.)

L2. [New node.℄ Set BRANCH[d℄ �1. If U = 0, invoke Algorithm X below

(whih looks ahead for simpli�ations and also gathers data about how to

make the next branh). Terminate happily if Algorithm X �nds all lauses

satis�ed; go to L15 if Algorithm X disovers a onit; go to L5 if U > 0.

L3. [Choose l.℄ Selet a literal l that's desirable for branhing (see exerise

168). If l = 0, set d d+ 1 and return to L2. Otherwise set DEC[d℄ l,

BACKF[d℄ F , BACKI[d℄ I , and BRANCH[d℄ 0.

L4. [Try l.℄ Set U 1, FORCE[0℄ l.

L5. [Aept near truths.℄ Set T NT, G E F , ISTAMP ISTAMP+ 1,

and CONFLICT L11. Perform the binary propagation routine (62) for

l FORCE[0℄, : : : , l FORCE[U � 1℄; then set U 0.

L6. [Choose a nearly true L.℄ (At this point the staked literals R

k

are \really

true" for 0 � k < G, and \nearly true" for G � k < E. We want them all

to be really true.) If G = E, go to L10. Otherwise set L R

G

, G G+1.

L7. [Promote L to real truth.℄ Set X jLj and VAL[X℄ RT+L&1. Remove

variable X from the free list and from all TIMP pairs (see exerise 137). Do

step L8 for all pairs (u; v) in TIMP(L), then return to L6.

L8. [Consider u _ v.℄ (We have dedued that u or v must be true; �ve ases

arise.) If either u or v is �xed true (in ontext T , whih equals NT), do

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 39

ompensation resolvents

langford

waerden

rand+

Algorithm L

0

nothing. If both u and v are �xed false, go to CONFLICT. If u is �xed false

but v isn't �xed, perform (62) with l v. If v is �xed false but u isn't

�xed, perform (62) with l u. If neither u nor v is �xed, do step L9.

L9. [Exploit u _ v.℄ If �v 2 BIMP(�u), perform (62) with l u (beause �u

implies both v and �v). Otherwise if v 2 BIMP(�u), do nothing (beause we

already have the lause u_v). Otherwise if �u 2 BIMP(�v), perform (62) with

l v. Otherwise append v to BIMP(�u) and u to BIMP(�v). (Eah hange

to BIMP means that (63) might be invoked. Exerise 139 explains how to

improve this step by deduing further impliations alled \ompensation

resolvents.")

L10. [Aept real truths.℄ Set F E. If BRANCH[d℄ � 0, set d d+ 1 and go

to L2. Otherwise go to L3 if d > 0, to L2 if d = 0.

L11. [Un�x near truths.℄ While E > G, set E E � 1 and VAL[jR

E

j℄ 0.

L12. [Un�x real truths.℄ While E > F , do the following: Set E E � 1 and

X jR

E

j; reativate the TIMP pairs that involve X and restore X to the

free list (see exerise 137); set VAL[X℄ 0.

L13. [Downdate BIMPs.℄ If BRANCH[d℄ � 0, do the following while I > BACKI[d℄:

Set I I � 1 and BSIZE(l) s, where ISTACK[I℄ = (l; s).

L14. [Try again?℄ (We've disovered that DEC[d℄ doesn't work.) If BRANCH[d℄ =

0, set l DEC[d℄, DEC[d℄ l

�

l, BRANCH[d℄ 1, and go bak to L4.

L15. [Baktrak.℄ Terminate unsuessfully if d = 0. Otherwise set d d � 1,

E F , F BACKF[d℄, and return to L12.

Exerise 143 extends this algorithm so that it will handle lauses of arbitrary size.

*Speeding up by looking ahead. Algorithm L as it stands is inomplete,

beause step L2 relies on an as-yet-unspei�ed \Algorithm X" before hoosing a

literal for branhing. If we use the simplest possible Algorithm X, by branhing

on whatever literal happens to be �rst in the urrent list of free variables, the

streamlined methods for propagating fored moves in (62) and (63) will tend to

make Algorithm L run roughly three times as fast as Algorithm D, and that isn't

a negligible improvement. But with a sophistiated Algorithm X we an often

gain another fator of 10 or more in speed, on signi�ant problems.

For example, here are some typial empirial statistis:

Problem Algorithm D Algorithm L

0

Algorithm L

+

waerden (3; 10; 97) 1430 gigamems, 391 gigamems, 772 megamems,

103 meganodes 31 meganodes 4672 nodes

langford (13) 71.7 gigamems, 21.5 gigamems, 45.7 gigamems,

14.0 meganodes 10.9 meganodes 944 kilonodes

rand (3; 420; 100; 0) 184 megamems, 34 megamems, 626 kilomems,

34 kilonodes 7489 nodes 19 nodes

Here Algorithm L

0

stands for Algorithm L with the simplest Algorithm X, while

Algorithm L

+

uses all of the lookahead heuristis that we are about to disuss.

The �rst two problems involve rather large lauses, so they use the extended

September 23, 2015

40 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

random ternary lauses

Heule

marh

heuristi sore

Algorithm L of exerise 143. The third problem onsists of 420 random ternary

lauses on 100 variables. (Algorithm B, inidentally, needs 80.1 teramems, and

a searh tree of 4.50 teranodes, to show that those lauses are unsatis�able.)

The moral of this story is that it's wise to do 100 times as muh omputation

at every node of a large searh tree, if we an thereby derease the size of the

tree by a fator of 1000.

How then an we distinguish a variable that's good for branhing from a

variable that isn't? We shall onsider a three-step approah:

� Preseleting, to identify free variables that appear to be good andidates;

� Nesting, to allow andidate literals to share implied omputations;

� Exploring, to examine the immediate onsequenes of hypothetial deisions.

While arrying out these steps, Algorithm X might disover a ontradition (in

whih ase Algorithm L will take harge again at step L15); or the lookahead

proess might disover that several of the free literals are fored to be true

(in whih ase it plaes them in the �rst U positions of the FORCE array). The

explorations might even disover a way to satisfy all of the lauses (in whih ase

Algorithm L will terminate and everybody will be happy). Thus, Algorithm X

might do muh more than simply hoose a good variable on whih to branh.

The following reommendations for Algorithm X are based on Marijn Heule's

lookahead solver alled marh, one of the world's best, as it existed in 2013.

The �rst stage, preseletion, is oneptually simplest, although it also in-

volves some \handwaving" beause it depends on neessarily shaky assumptions.

Suppose there are N free variables. Experiene has shown that we tend to get

a good heuristi sore h(l) for eah literal l, representing the relative amount by

whih asserting l will redue the urrent problem, if these sores approximately

satisfy the simultaneous nonlinear equations

h(l) = 0:1 + �

X

u2BIMP(l)

unot �xed

^

h(u) +

X

(u;v)2TIMP(l)

^

h(u)

^

h(v): (64)

Here � is a magi onstant, typially 3.5; and

^

h(l) is a multiple of h(l) hosen

so that

P

l

^

h(l) = 2N is the total number of free literals. (In other words, the h

sores on the right are \normalized" so that their average is 1.)

Any given set of sores h(l) an be used to derive a re�ned set h

0

(l) by letting

h

0

(l) = 0:1 + �

X

u2BIMP(l)

u not �xed

h(u)

h

ave

+

X

(u;v)2TIMP(l)

h(u)

h

ave

h(v)

h

ave

; h

ave

=

1

2N

X

l

h(l): (65)

Near the root of the searh tree, when d � 1, we start with h(l) = 1 for all l

and then re�ne it �ve times (say). At deeper levels we start with the h(l) values

from the parent node and re�ne them one. Exerise 145 ontains an example.

We've omputed h(l) for all of the free literals l, but we won't have time to

explore them all. The next step is to selet free variables CAND[j℄ for 0 � j < C,

where C isn't too large; we will insist that the number of andidates does not

exeed

C

max

= max(C

0

; C

1

=d); (66)

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 41

uto� parameters

partiipants

newbies

fous

heuristi sore

dependeny digraph

binary impliation graph, see dependeny digraph

Tarjan

strong omponents

using uto� parameters that are typially C

0

= 30, C

1

= 600. (See exerise 148.)

We start by dividing the free variables into \partiipants" and \newbies":

A partiipant is a variable suh that either x or �x has played the role of u or v in

step L8, at some node above us in the searh tree; a newbie is a nonpartiipant.

When d = 0 every variable is a newbie, beause we're at the root of the tree.

But usually there is at least one partiipant, and we want to branh only on

partiipants whenever possible, in order to maintain fous while baktraking.

If we've got too many potential andidates, even after restriting onsider-

ation to partiipants, we an winnow the list down by preferring the variables x

that have the largest ombined sore h(x)h(�x). Step X3 below desribes a fairly

fast way to ome up with the desired seletion of C � C

max

andidates.

A simple lookahead algorithm an now proeed to ompute a more aurate

heuristi sore H(l), for eah of the 2C literals l = CAND[j℄ or l = :CAND[j℄

that we've seleted for further srutiny. The idea is to simulate what would

happen if l were used for branhing, by mimiking steps L4{L9 (at least to a

�rst approximation): Unit literals are propagated as in the exat algorithm, but

whenever we get to the part of step L9 that hanges the BIMP tables, we don't

atually make suh a hange; we simply note that a branh on l would imply

u _ v, and we onsider the value of that potential new lause to be h(u)h(v).

The heuristi sore H(l) is then de�ned to be the sum of all suh lause weights:

H(l) =

X

�

h(u)h(v)

�

�

asserting l in L4 leads to asserting u _ v in L9

	

: (67)

For example, the problem waerden (3; 3; 9) of (9) has nine andidate variables

f1; 2; : : : ; 9g at the root of the searh tree, and exerise 145 �nds their rough

heuristi sores h(l). The more disriminating sores H(l) turn out to be

H(1) = h(2)h(3) + h(3)h(5) + h(4)h(7) + h(5)h(9) = 168:6;

H(2) = h(1)h(3) + h(3)h(4) + h(4)h(6) + h(5)h(8) = 157:3;

H(3) = h(1)h(2) + h(2)h(4) + h(4)h(5) + � � �+ h(6)h(9) = 233:4;

H(4) = h(2)h(3) + h(3)h(5) + h(5)h(6) + � � �+ h(1)h(7) = 231:8;

H(5) = h(3)h(4) + h(3)h(6) + h(6)h(7) + � � �+ h(1)h(9) = 284:0:

This problem is symmetrial, so we also have H(6) = H(

�

6) = H(4) = H(

�

4), et.

The best literal for branhing, aording to this estimate, is 5 or

�

5.

Suppose we set x

5

false and proeed to look ahead at the redued problem,

with d = 1. At this point there are eight andidates, f1; 2; 3; 4; 6; 7; 8; 9g; and

they're now related also by binary impliations, beause the original lause `357'

has, for instane, been redued to `37'. In fat, the BIMP tables now de�ne the

dependeny digraph

12 34 67 89

�

4

�

3

�

2

�

1

�

9

�

8

�

7

�

6

(68)

beause

�

3 ��! 7, et.; and in general the 2C andidate literals will de�ne a

dependeny digraph whose struture yields important lues about the urrent

subproblem. We an, for example, use Tarjan's algorithm to �nd the strong

September 23, 2015

42 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

subforest

Tarjan

preorder

postorder

lookahead forest

tree-based lookahead, see lookahead forest

proto true

PT

omponents of that digraph, as mentioned after Theorem 7.1.1K. If some strong

omponent inludes both l and

�

l, the urrent subproblem is unsatis�able. Other-

wise two literals of the same omponent are onstrained to have the same value;

so we shall hoose one literal from eah of the S � 2C strong omponents, and

use those hoies as the atual andidates for lookahead.

Continuing our example, at this point we an use a nie trik to save

redundant omputation, by extrating a subforest of the dependeny digraph:

1 2 3 4 6 7 8 9

�

4

�

3

�

2

�

1

�

9

�

8

�

7

�

6

(69)

The relation

�

8 ��! 2 means that whatever happens after asserting the literal

`2' will also happen after asserting `

�

8'; hene we need not repeat the steps for

`2' while studying `

�

8'. And similarly, eah of the other subordinate literals `

�

1',

: : : , `

�

9' inherits the assertions of its parent in this hierarhy. Tarjan's algorithm

atually produes suh a subforest with omparatively little extra work.

The nested struture of a forest also �ts beautifully with \degrees of truth"

in our data struture, if we visit the S andidate literals in preorder of the

subforest, and if we suessively assert eah literal l at the truth degree that

orresponds to twie its position in postorder . For instane, (69) beomes the

following arrangement, whih we shall all the \lookahead forest":

preorder 1 2

�

8 3 4 6

�

4 7

�

3

�

6

�

9 8

�

2 9

�

1

�

7

2�postorder 2 6 4 8 10 14 12 22 16 18 20 26 24 32 28 30

(70)

A simulation of steps L4{L9 with l 1 and T 2 makes x

1

true at degree 2 (we

say that it's \2�xed" or \2true"); it also omputes the sore H(1) h(

�

2)h(

�

3)+

h(

�

4)h(

�

7), but it spawns no other ativity if Algorithm Y below isn't ative.

Simulation with l 2 and T 6 then 6�xes 2 and omputesH(2) h(

�

1)h(

�

3)+

h(

�

4)h(

�

6); during this proess the value of x

1

isn't seen, beause it is less than T .

But things get more interesting when l

�

8 and T 4: Now we 4�x

�

8, and we're

still able to see that x

2

is true beause 6 > T . So we save a little omputation

by inheriting H(2) and setting H(

�

8) H(2) + h(4)h(6) + h(6)h(7) + h(7)h(9).

The real ation begins to break through a few steps later, when we set l

�

4

and T 12. Then (62) will 12�x not only

�

4 but also 3, sine

�

4��! 3; and the

12truth of 3 will soon take us to the simulated step L8 with u =

�

6 and v =

�

9.

Aha: We 12�x

�

9, beause 6 is 14true. Then we also 12�x the literals 7, 1, : : : , and

reah a ontradition. This ontradition shows that branhing on

�

4 will lead to

a onit; hene the literal 4 must be true, if the urrent lauses are satis�able.

Whenever the lookahead simulation of Algorithm X learns that some literal l

must be true, as in this example, it plaes l on the FORCE list and makes l proto

true (that is, true in ontext PT). A proto true literal will remain �xed true

throughout this round of lookahead, beause all relevant values of T will be

less than PT. Later, Algorithm L will promote proto truth to near truth, and

ultimately to real truth|unless a ontradition arises. (And in the ase of

waerden (3; 3; 9), suh a ontradition does in fat arise; see exerise 150.)

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 43

forests

anestor

invariant relation

nesting

lookahead forest

exploration

breadth-�rst searh

windfall

Why does the ombination of preorder and postorder work so magially

in (70)? It's beause of a basi property of forests in general, whih we noted

for example in exerise 2.3.2{20: If u and v are nodes of a forest, u is a proper

anestor of v if and only if u preedes v in preorder and u follows v in postorder.

Moreover, when we look ahead at andidate literals in this way, an important

invariant relation is maintained on the R stak, namely that truth degrees never

inrease as we move from the bottom to the top:

VAL[jR

j�1

j℄ j 1 � VAL[jR

j

j℄; for 1 < j < E: (71)

Real truths appear at the bottom, then near truths, then proto truth, et. For

example, the stak at one point in the problem above ontains seven literals,

j = 0 1 2 3 4 5 6

R

j

=

�

5 6

�

4 3

�

9 7 1

VAL[jR

j

j℄ = RT+1 14 13 12 13 12 12

:

One onsequene is that the urrent visibility of truth values mathes the reur-

sive struture by whih false literals are purged from ternary lauses.

The seond phase of Algorithm X, after preseletion of andidates, is alled

\nesting," beause it onstruts a lookahead forest analogous to (70). More

preisely, it onstruts a sequene of literals LL[j℄ and orresponding truth

o�sets LO[j℄, for 0 � j < S. It also sets up PARENT pointers to indiate the forest

struture more diretly; for example, with (69) we would have PARENT(

�

8) = 2

and PARENT(2) = �.

The third phase, \exploration," now does the real work. It uses the looka-

head forest to evaluate heuristis H(l) for the andidate literals|and also (if

it's luky) to disover literals whose values are fored.

The heart of the exploration phase is a breadth-�rst searh based on steps L5,

L6, and L8. This routine propagates truth values of degree T and also omputes

w, the weight of new binary lauses that would be spawned by branhing on l:

Set l

0

 l, i w 0, and G E F ; perform (62);

while G < E, set L R

G

, G G+ 1, and

take aount of (u; v) for all (u; v) in TIMP(L);

generate new binary lauses (

�

l

0

_W

k

) for 0 � k < i.

(72)

Here \take aount of (u; v)" means \if either u or v is �xed true (in ontext T),

do nothing; if both u and v are �xed false, go to CONFLICT; if u is �xed false but

v isn't �xed, set W

i

 v, i i + 1, and perform (62) with l v; if v is �xed

false but u isn't �xed, set W

i

 u, i i + 1, and perform (62) with l u; if

neither u nor v is �xed, set w w + h(u)h(v)."

Explanation: A ternary lause of the form

�

L _ u _ v, where L is �xed true

and u is �xed false as a onsequene of l

0

being �xed true, is alled a \windfall."

Suh lauses are good news, beause they imply that the binary lause

�

l

0

_ v

must be satis�ed in the urrent subproblem. Windfalls are reorded on a stak

alled W, and appended to the BIMP database at the end of (72).

September 23, 2015

44 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

autarky priniple

pure literal

touhes

partiipants

The exploration phase also exploits an important fat alled the autarky

priniple, whih generalizes the notion of \pure literal" that we disussed above

in onnetion with Algorithm A. An \autarky" for a SAT problem F is a set

of stritly distint literals A = fa

1

; : : : ; a

t

g with the property that every lause

of F either ontains at least one literal of A or ontains none of the literals of

A = f�a

1

; : : : ; �a

t

g. In other words, A satis�es every lause that A or A \touhes."

An autarky is a self-suÆient system. Whenever A is an autarky, we an

assume without loss of generality that all of its literals are atually true; for if F

is satis�able, the untouhed lauses are satis�able, and A tells us how to satisfy

the touhed ones. Step X9 of the following algorithm shows that we an detet

ertain autarkies easily while we're looking ahead.

Algorithm X (Lookahead for Algorithm L). This algorithm, whih is invoked

in step L2 of Algorithm L, uses the data strutures of that algorithm together

with additional arrays of its own to explore properties of the urrent subproblem.

It disovers U � 0 literals whose values are fored, and puts them in the FORCE

array. It terminates either by (i) satisfying all lauses; (ii) �nding a ontradition;

or (iii) omputing heuristi sores H(l) that will allow step L3 to hoose a good

literal for branhing. In ase (iii) it might also disover new binary lauses.

X1. [Satis�ed?℄ If F = n, terminate happily (no variables are free).

X2. [Compile rough heuristis.℄ Set N = n � F and use (65) to ompute a

rough sore h(l) for eah free literal l.

X3. [Preselet andidates.℄ Let C be the urrent number of free variables that

are \partiipants," and put them into the CAND array. If C = 0, set

C N and put all free variables into CAND; terminate happily, however,

if all lauses are satis�ed (see exerise 152). Give eah variable x in CAND

the rating r(x) = h(x)h(�x). Then while C > 2C

max

(see (66)), delete all

elements of CAND whose rating exeeds the mean rating; but terminate this

loop if no elements are atually deleted. Finally, if C > C

max

, redue C to

C

max

by retaining only top-ranked andidates. (See exerise 153.)

X4. [Nest the andidates.℄ Construt a lookahead forest, represented in LL[j℄

and LO[j℄ for 0 � j < S and by PARENT pointers (see exerise 155).

X5. [Prepare to explore.℄ Set U

0

 j

0

 BASE j 0 and CONFLICT X13.

X6. [Choose l for lookahead.℄ Set l LL[j℄ and T BASE + LO[j℄. Set

H(l) H(PARENT(l)), whereH(�) = 0. If l is not �xed in ontext T , go to

X8. Otherwise, if l is �xed false but not proto false, do step X12 with l

�

l.

X7. [Move to next.℄ If U > U

0

, set U

0

 U and j

0

 j. Then set j j +1. If

j = S, set j 0 and BASE BASE+2S. Terminate normally if j = j

0

, or

if j = 0 and BASE+ 2S � PT. Otherwise return to X6.

X8. [Compute sharper heuristi.℄ Perform (72). Then if w > 0, set H(l

0

)

H(l

0

) + w and go to X10.

X9. [Exploit an autarky.℄ IfH(l

0

) = 0, do step X12 with l l

0

. Otherwise gen-

erate the new binary lause l

0

_:PARENT(l

0

). (Exerise 166 explains why.)

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 45

neessary assignments

fored literals

double truth

DT

Dtrue

Dfalse

X10. [Optionally look deeper.℄ Perform Algorithm Y below.

X11. [Exploit neessary assignments.℄ Do step X12 for all literals l 2 BIMP(

�

l

0

)

that are �xed true but not proto true. Then go to X7. (See exerise 167.)

X12. [Fore l.℄ Set FORCE[U℄ l, U U + 1, T

0

 T , and perform (72) with

T PT. Then set T T

0

. (This step is a subroutine, used by other steps.)

X13. [Reover from onit.℄ If T < PT, do step X12 with l

�

l

0

and go to X7.

Otherwise terminate with a ontradition.

Notie that, in steps X5{X7, this algorithm proeeds ylially through the

forest, ontinuing to look ahead until ompleting a pass in whih no new fored

literals are found. The BASE address of truth values ontinues to grow, if

neessary, but it isn't allowed to beome too lose to PT.

*Looking even further ahead. If it's a good idea to look one step ahead,

maybe it's a better idea to look two steps ahead. Of ourse that's a somewhat

sary proposition, beause our data strutures are already pretty strethed; and

besides, double lookahead might take way too muh time. Nevertheless, there's

a way to pull it o�, and to make Algorithm L run even faster on many problems.

Algorithm X looks at the immediate onsequenes of assuming that some

literal l

0

is true. Algorithm Y, whih is launhed in step X10, goes further out

on that limb, and investigates what would happen if another literal,

^

l

0

, were also

true. The goal is to detet branhes that die o� early, allowing us to disover

new impliations of l

0

or even to onlude that l

0

must be false.

For this purpose Algorithm Y stakes out an area of truth spae between the

urrent ontext T and a degree of truth alled \double truth" or DT, whih is

de�ned in step Y2. The size of this area is determined by a parameter Y, whih

is typially less than 10. The same lookahead forest is used to give relative truth

degrees below DT. Double truth is less trustworthy than proto truth, PT; but

literals that are �xed at level DT are known to be onditionally true (\Dtrue")

or onditionally false (\Dfalse") under the hypothesis that l

0

is true.

Going bak to our example of waerden (3; 3; 9), the senario desribed above

was based on the assumption that double lookahead was not done. Atually,

however, further ativity by Algorithm Y will usually take plae after H(1) has

been set to h(

�

2)h(

�

3) + h(

�

4)h(

�

7). The value of DT will be set to 130, assuming

that Y = 8, beause S = 8. Literal 1 will beome Dtrue. Looking then at 2 will

6�x 2; and that will 6�x

�

3 beause of the lause

�

1

�

2

�

3. Then

�

3 will 6�x 4 and 7,

ontraditing

�

1

�

4

�

7 and ausing 2 to beome Dfalse. Other literals also will soon

beome Dtrue or Dfalse, leading to a ontradition; and that ontradition will

allow Algorithm Y to make literal 1 proto false before Algorithm X has even

begun to look ahead at literal 2.

The main loop of double lookahead is analogous to (72), but it's simpler,

beause we're further removed from reality:

Set

^

l

0

 l and G E F ; perform (62);

while G < E, set L R

G

, G G+ 1, and

take aount of (u; v) for all (u; v) in TIMP(L).

(73)

September 23, 2015

46 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Heule

van Maaren

feedbak mehanism

adaptive ontrol

trigger

damping fator

DFAIL

pi

random ternary lauses

Now \take aount of (u; v)" means \if either u or v is �xed true (in ontext T),

or if neither u nor v is �xed, do nothing; if both u and v are �xed false, go to

CONFLICT; if u is �xed false but v isn't �xed, perform (62) with l v; if v is

�xed false but u isn't �xed, perform (62) with l u."

Sine double-looking is ostly, we want to try it only when there's a fairly

good hane that it will be helpful, namely when H(l

0

) is large. But how large is

large enough? The proper threshold depends on the problem being solved: Some

sets of lauses are handled more quikly by double-looking, while others are im-

mune to suh insights. Marijn Heule and Hans van Maaren [LNCS 4501 (2007),

258{271℄ have developed an elegant feedbak mehanism that automatially

tunes itself to the harateristis of the problem at hand: Let � be a \trigger,"

initially 0. Step Y1 allows double-look only if H(l

0

) > � ; otherwise � is dereased

to �� , where � is a damping fator (typially 0.999), so that double-looking

will beome more attrative. On the other hand if double-look doesn't �nd a

ontradition that makes l

0

proto false, the trigger is raised to H(l

0

) in step Y6.

Algorithm Y (Double lookahead for Algorithm X). This algorithm, invoked in

step X10, uses the same data strutures (and a few more) to look ahead more

deeply. Parameters � and Y are explained above. Initially DFAIL(l)= 0 for all l.

Y1. [Filter.℄ Terminate if DFAIL(l

0

) = ISTAMP, or if T + 2S(Y + 1) > PT.

Otherwise, if H(l

0

) � � , set � �� and terminate.

Y2. [Initialize.℄ Set BASE T � 2, LBASE BASE+2S �Y , DT LBASE+LO[j℄,

i |̂

0

 |̂ 0, E F , and CONFLICT Y8. Perform (62) with l l

0

and T DT.

Y3. [Choose l for double look.℄ Set l LL[j℄ and T BASE+LO[j℄. If l is not

�xed in ontext T , go to Y5. Otherwise, if l is �xed false but not Dfalse, do

step Y7 with l

�

l.

Y4. [Move to next.℄ Set |̂ |̂ + 1. If |̂ = S, set |̂ 0 and BASE BASE+ 2S.

Go to Y6 if |̂

0

= |̂, or if |̂ = 0 and BASE = LBASE. Otherwise return to Y3.

Y5. [Look ahead.℄ Perform (73), and return to Y4 (if no onit arises).

Y6. [Finish.℄ Generate new binary lauses (

�

l

0

_W

k

) for 0 � k < i. Then set

BASE LBASE, T DT, � H(l

0

), DFAIL(l

0

) ISTAMP, CONFLICT

X13, and terminate.

Y7. [Make

^

l

0

false.℄ Set |̂

0

 |̂, T

0

 T , and perform (73) with l

^

l

0

and

T DT. Then set T T

0

, W

i

^

l

0

, i i+1. (This step is a subroutine.)

Y8. [Reover from onit.℄ If T < DT, do step Y7 with l :LL[|̂℄ and go

to Y4. Otherwise set CONFLICT X13 and exit to X13.

Some quantitative statistis will help to ground these algorithms in reality:

When Algorithm L was let loose on rand (3; 2062; 500; 314), a problem with 500

variables and 2062 random ternary lauses, it proved unsatis�ability after making

684,433,234,661 memory aesses and onstruting a searh tree of 9,530,489

nodes. Exerise 173 explains what would have happened if various parts of the

algorithm had been disabled. None of the other SAT solvers we shall disuss are

able to handle suh random problems in a reasonable amount of time.

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 47

random satis�ability{

3SAT{

probability of satis�ability{

Random satis�ability. There seems to be no easy way to analyze the satis�a-

bility problem under random onditions. In fat, the basi question \How many

random lauses of 3SAT on n variables do we need to onsider, on the average,

before they an't all be satis�ed?" is a famous unsolved researh problem.

From a pratial standpoint this question isn't as relevant as the analogous

questions were when we studied algorithms for sorting or searhing, beause real-

world instanes of 3SAT tend to have highly nonrandom lauses. Deviations from

randomness in ombinatorial algorithms often have a dramati e�et on running

time, while methods of sorting and searhing generally stay reasonably lose to

their expeted behavior. Thus a fous on randomness an be misleading. On the

other hand, random SAT lauses do serve as a nie, lean model, so they give us

insights into what goes on in Boolean territory. Furthermore the mathematial

issues are of great interest in their own right. And fortunately, muh of the basi

theory is in fat elementary and easy to understand. So let's take a look at it.

Exerise 180 shows that random satis�ability an be analyzed exatly, when

there are at most �ve variables. We might as well start there, beause the \tiny"

5-variable ase is still large enough to shed some light on the bigger piture.

When there are n variables and k literals per lause, the number N of possible

lauses that involve k di�erent variables is learly 2

k

�

n

k

�

: There are

�

n

k

�

ways to

hoose the variables, and 2

k

ways to either omplement or not. So we have, for

example, N = 2

3

�

5

3

�

= 80 possible lauses in a 3SAT problem on 5 variables.

Let q

m

be the probability that m of those lauses, distint but otherwise

seleted at random, are satis�able. Thus q

m

= Q

m

=

�

N

m

�

, whereQ

m

is the number

of ways to hoose m of the N lauses so that at least one Boolean vetor x =

x

1

: : : x

n

satis�es them all. Figure 40 illustrates these probabilities when k = 3

and n = 5. Suppose we're being given distint random lauses one by one.

Aording to Fig. 40, the hanes are better than 77% that we'll still be able

to satisfy them after 20 di�erent lauses have been reeived, beause q

20

�

0:776. But by the time we've aumulated 30 of the 80 lauses, the hane of

satis�ability has dropped to q

30

� 0:179; and after ten more we reah q

40

� 0:016.

1

0

0 10 20 30 40 50 60 70 80

Fig. 40. The probability q

m

that m distint lauses of 3SAT

on 5 variables are simultaneously satis�able, for 0 � m � 80.

The illustration makes it appear as if q

m

= 1 for m < 15, say, and as if

q

m

= 0 for m > 55. But q

8

is atually less than 1, beause of (6); exerise 179

gives the exat value. And q

70

is greater than 0, beause Q

70

= 32; indeed, every

Boolean vetor x satis�es exatly (2

k

� 1)

�

n

k

�

= (1 � 2

�k

)N of the N possible

k-lauses, so it's no surprise that 70 nonontraditory 3-lauses on 5 variables

an be found. Of ourse those lauses will hardly ever be the �rst 70 reeived, in

a random situation. The atual value of q

70

is 32=1646492110120� 2� 10

�11

.

September 23, 2015

48 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

solutions, number of+

standard deviation

uniquely satis�able

stopping time

summation by parts

0

8

16

24

32

0 10 20 30 40 50 60 70 80

Fig. 41. The total number T

m

of di�erent Boolean vetors x = x

1

: : : x

5

that

simultaneously satisfy m distint lauses of 3SAT on 5 variables, for 0 � m � 80.

Figure 41 portrays the same proess from another standpoint: It shows in

how many ways a random set of m lauses an be satis�ed. This value, T

m

, is a

random variable whose mean is indiated in blak, surrounded by a gray region

that shows the mean plus-or-minus the standard deviation. For example, T

0

is

always 32, and T

1

is always 28; but T

2

is either 24, 25, or 26, and it takes these

values with the respetive probabilities (2200; 480; 480)=3160. Thus the mean

for m = 2 is � 24:5, and the standard deviation is � 0:743.

When m = 20, we know from Fig. 40 that T

20

is nonzero more than 77%

of the time; yet Fig. 41 shows that T

20

� 1:47� 1:17. (Here the notation �� �

stands for the mean value � with standard deviation �.) It turns out, in fat,

that 20 random lauses are uniquely satis�able, with T

20

= 1, more than 33% of

the time; and the probability that T

20

> 4 is only 0:013. With 30 lauses, satis-

�ability gets diier and diier: T

30

� 0:20�0:45; indeed, T

30

is less than 2, more

than 98% of the time|although it an be as high as 11 if the lause-provider is

being nie to us. By the time 40 lauses are reahed, the odds that T

40

exeeds 1

are less than 1 in 4700. Figure 42 shows the probability that T

m

= 1 as m varies.

.5

0

0 10 20 30 40 50 60 70 80

Fig. 42. Pr(T

m

= 1), the probability that m distint lauses

of 3SAT on 5 variables are uniquely satis�able, for 0 � m � 80.

Let P be the number of lauses that have been reeived when we're �rst

unable to satisfy them all. Thus we have P = m with probability p

m

, where

p

m

= q

m�1

� q

m

is the probability that m� 1 random lauses are satis�able but

m are not. These probabilities are illustrated in Fig. 43. Is it surprising that

Figs. 42 and 43 look roughly the same? (See exerise 183.)

The expeted \stopping time," EP , is by de�nition equal to

P

m

mp

m

; and

it's not diÆult to see, for example by using the tehnique of summation by

parts (exerise 1.2.7{10), that we an ompute it by summing the probabilities

in Fig. 40:

EP =

X

m

q

m

: (74)

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 49

variane

kSAT

4SAT

2SAT

1SAT

sampling with and without replaement

repeated lauses

birthday paradox

.1

0

0 10 20 30 40 50 60 70 80

Fig. 43. The stopping time probabilities, p

m

, that m distint lauses

of 3SAT on 5 variables have just beome unsatis�able, for 0 � m � 80.

The variane of P , namely E(P � EP)

2

= (EP

2

) � (EP)

2

, also has a simple

expression in terms of the q's, beause

EP

2

=

X

m

(2m+ 1)q

m

: (75)

In Figs. 40 and 43 we have EP � 25:22, with variane � 35:73.

So far we've been fousing our attention on 3SAT problems, but the same

ideas apply also to kSAT for other lause sizes k. Figure 44 shows exat results

for the probabilities when n = 5 and 1 � k � 4. Larger values of k give lauses

that are easier to satisfy, so they inrease the stopping time. With �ve variables

the typial stopping times for random 1SAT, 2SAT, 3SAT, and 4SAT turn out

to be respetively 4:06� 1:19, 11:60� 3:04, 25:22� 5:98, and 43:39 � 7:62. In

general if P

k;n

is the stopping time for kSAT on n variables, we let

S

k;n

= EP

k;n

(76)

be its expeted value.

1

0

0 10 20 30 40 50 60 70 80

1SAT 2SAT 3SAT 4SAT

Fig. 44. Extension of Fig. 40 to lauses of other sizes.

Our disussions so far have been limited in another way too: We've been

assuming thatm distint lauses are being presented to a SAT solver for solution.

In pratie, however, it's muh easier to generate lauses by allowing repetitions,

so that every lause is hosen without any dependene on the past history. In

other words, there's a more natural way to approah random satis�ability, by

assuming that N

m

possible ordered sequenes of lauses are equally likely after

m steps, not that we have

�

N

m

�

equally likely sets of lauses.

Let q̂

m

be the probability thatm random lauses C

1

^� � �^C

m

are satis�able,

where eah C

j

is randomly hosen from among the N = 2

k

�

n

k

�

possibilities in a

kSAT problem on n variables. Figure 45 illustrates these probabilities in the ase

k = 3, n = 5; notie that we always have q̂

m

� q

m

. If N is large while m is small,

it's lear that q̂

m

will be very lose to q

m

, beause repeated lauses are unlikely

in suh a ase. Still, we must keep in mind that q

N

is always zero, while q̂

m

is

never zero. Furthermore, the \birthday paradox" disussed in Setion 6.4 warns

September 23, 2015

50 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

kSAT

sampled with replaement

rand

Selman

Mithell

Levesque

phase transition

density of lauses: the number of lauses per variable+

rossover point, see threshold

satis�ability thresholds

1

0

0 10 20 30 40 50 60 70 80

Fig. 45. Random 3SAT on 5 variables when the lauses are sampled

with replaement. The probabilities q̂

m

are shown with a blak line;

the smaller probabilities q

m

of Fig. 40 are shown in gray.

us that repetitions aren't as rare as we might expet. The deviations of q̂

m

from

q

m

are partiularly notieable in small ases suh as the senario of Fig. 45.

In any event, there's a diret way to ompute q̂

m

from the probabilities q

t

and the value of N (see exerise 184):

q̂

m

=

N

X

t=0

n

m

t

o

t! q

t

�

N

t

�.

N

m

: (77)

And there are surprisingly simple formulas analogous to (74) and (75) for the

stopping time

b

P , where p̂

m

= q̂

m�1

� q̂

m

, as shown in exerise 186:

E

b

P =

N�1

X

m=0

N

N �m

q

m

; (78)

E

b

P

2

=

N�1

X

m=0

N

N �m

q

m

�

1 + 2

�

N

N � 1

+ � � �+

N

N �m

��

: (79)

These formulas prove that the expeted behavior of

b

P is very muh like that

of P , if q

m

is small whenever m=N isn't small. In the ase k = 3 and n = 5, the

typial stopping times

b

P = 30:58� 9:56 are signi�antly larger than those of P ;

but we are mostly interested in ases where n is large and where q̂

m

is essentially

indistinguishable from q

m

. In order to indiate plainly that the probability q̂

m

depends on k and n as well as on m, we shall denote it heneforth by S

k

(m;n):

S

k

(m;n) = Pr(m random lauses of kSAT are satis�able); (80)

where the m lauses are \sampled with replaement" (they needn't be distint).

Suitable pseudorandom lauses rand (k;m; n; seed) an easily be generated.

Exat formulas appear to be out of reah when n > 5, but we an make

empirial tests. For example, extensive experiments on random 3SAT problems

by B. Selman, D. G. Mithell, and H. J. Levesque [Arti�ial Intelligene 81

(1996), 17{29℄ showed a dramati drop in the hanes of satis�ability when the

number of lauses exeeds about 4:27n. This \phase transition" beomes muh

sharper as n grows (see Fig. 46).

Similar behavior ours for random kSAT, and this phenomenon has spawned

an enormous amount of researh aimed at evaluating the so-alled satis�ability

thresholds

�

k

= lim

n!1

S

k;n

=n: (81)

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 51

Kaporis

Kirousis

Lalas

D��az

Mitshe

P�erez-Gim�enez

sharp threshold

Friedgut

wobble funtion

survey propagation

Mertens

M�ezard

Zehina

4SAT

5SAT

6SAT

7SAT

kSAT

Ding

Sly

Sun

2SAT{

4:27n

n=500

n=50

n=5

1

0

0 2n 4n 6n 8n 10n

Fig. 46. Empirial probability data shows that random 3SAT problems rapidly

beome unsatis�able when there are more than �

3

n lauses, if n is large enough.

Indeed, we an obtain quite diÆult kSAT problems by generating approximately

�

k

n random k-lauses, using empirially observed estimates of �

k

. If n is large,

the running time for random 3SAT with 4:3n lauses is typially orders of mag-

nitude larger than it is when the number of lauses is 4n or 4:6n. (And still

tougher problems arise in rare instanes when we have, say, 3:9n lauses that

happen to be unsatis�able.)

Stritly speaking, however, nobody has been able to prove that the so-alled

onstants �

k

atually exist, for all k! The empirial evidene is overwhelming;

but rigorous proofs for k = 3 have so far only established the bounds

lim inf

n!1

S

3;n

=n � 3:52; lim sup

n!1

S

3;n

=n � 4:49: (82)

[See A. C. Kaporis, L. M. Kirousis, and E. G. Lalas, Random Strutures &

Algorithms 28 (2006), 444{480; J. D��az, L. Kirousis, D. Mitshe, and X. P�erez-

Gim�enez, Theoretial Comp. Si. 410 (2009), 2920{2934.℄ A \sharp threshold"

result has been established by E. Friedgut [J. Amer. Math. So. 12 (1999), 1017{

1045, 1053{1054℄, who proved the existene for k � 2 of funtions �

k

(n) with

lim

n!1

S

k

�

b(�

k

(n)� �)n; n

�

= 1; lim

n!1

S

k

�

b(�

k

(n) + �)n; n

�

= 0; (83)

when � is any positive number. But those funtions might not approah a limit.

They might, for example, utuate periodially, like the \wobble funtion" that

we enountered in Eq. 5.2.2{(47).

The urrent best guess for �

3

, based on heuristis of the \survey propaga-

tion" tehnique to be disussed below, is that �

3

= 4:26675�0:00015 [S. Mertens,

M. M�ezard, and R. Zehina, Random Strutures & Algorithms 28 (2006), 340{

373℄. Similarly, it appears reasonable to believe that �

4

� 9:931, �

5

� 21:12,

�

6

� 43:37, �

7

� 87:79. The �'s grow as �(2

k

) (see exerise 195); and they

are known to be onstant when k is suÆiently large [see J. Ding, A. Sly, and

N. Sun, STOC 47 (2015), to appear℄.

Analysis of random 2SAT. Although nobody knows how to prove that random

3SAT problems almost always beome unsatis�able when the number of lauses

reahes � 4:27n, the orresponding question for 2SAT does have a nie answer:

The satis�ability threshold �

2

equals 1. For example, when the author �rst tried

1000 random 2SAT problems with a million variables, 999 of them turned out to

be satis�able when there were 960,000 lauses, while all were unsatis�able when

the number of lauses rose to 1,040,000. Figure 47 shows how this transition

beomes sharper as n inreases.

September 23, 2015

52 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Chv�atal

Reed

Goerdt

Fernandez de la Vega

impliation digraph

Karp

giant strong omponent

strong omponents

Chv�atal

Reed

s-hain

stritly distint literals

Fig. 47. Empirial satisfation

probabilities for 2SAT with ap-

proximately n random lauses.

(When n = 100, the probability

doesn't beome negligible until

more than roughly 180 lauses

have been generated.)

0:8n 0:9n 1:0n 1:1n 1:2n

n=1000000 n=10000 n=100

� � � � � �

The fat that S

2;n

� n was disovered in 1991 by V. Chv�atal and B. Reed

[FOCS 33 (1992), 620{627℄, and the same result was obtained independently

at about the same time by A. Goerdt and by W. Fernandez de la Vega [see J.

Comp. Syst. Si. 53 (1996), 469{486; Theor. Comp. Si. 265 (2001), 131{146℄.

The study of this phenomenon is instrutive, beause it relies on properties

of the digraph that haraterizes all instanes of 2SAT. Furthermore, the proof

below provides an exellent illustration of the \�rst and seond moment prini-

ples," equations MPR{(21) and MPR{(22). Armed with those priniples, we're

ready to derive the 2SAT threshold:

Theorem C. Let be a �xed onstant. Then

lim

n!1

S

2

�

bn; n

�

=

�

1; if < 1;

0; if > 1.

(84)

Proof. Every 2SAT problem orresponds to an impliation digraph on the literals,

with ars

�

l��! l

0

and

�

l

0

��! l for eah lause l_ l

0

. We know from Theorem 7.1.1K

that a set of 2SAT lauses is satis�able if and only if no strong omponent of its

impliation digraph ontains both x and �x for some variable x. That digraph

has 2m = 2bn ars and 2n verties. If it were a random digraph, well-known

theorems of Karp (whih we shall study in Setion 7.4.1) would imply that only

O(log n) verties are reahable from any given vertex when < 1, but that there

is a unique \giant strong omponent" of size
(n) when > 1.

The digraph that arises from random 2SAT isn't truly random, beause its

ars ome in pairs, u��!v and �v��! �u. But intuitively we an expet that similar

behavior will apply to digraphs that are just halfway random. For example, when

the author generated a random 2SAT problem with n = 1000000 and m = :99n,

the resulting digraph had only two omplementary pairs of strong omponents

with more than one vertex, and their sizes were only 2, 2 and 7, 7; so the lauses

were easily satis�able. Adding another :01n lauses didn't inrease the number of

nontrivial strong omponents, and the problem remained satis�able. But another

experiment with m = n = 1000000 yielded a strong omponent of size 420,

ontaining 210 variables and their omplements; that problem was unsatis�able.

Based on a similar intuition into the underlying struture, Chv�atal and

Reed introdued the following \snares and snakes" approah to the proof of

Theorem C: Let's say that an s-hain is any sequene of s stritly distint literals;

thus there are 2

s

n

s

possible s-hains. Every s-hain C orresponds to lauses

(

�

l

1

_ l

2

); (

�

l

2

_ l

3

); : : : ; (

�

l

s�1

_ l

s

); (85)

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 53

s-snare

�rst moment priniple

t-snake

whih in turn orrespond to two paths

l

1

��! l

2

��! l

3

��! � � � ��! l

s

and

�

l

s

��! � � � ��!

�

l

3

��!

�

l

2

��!

�

l

1

(86)

in the digraph. An s-snare (C; t; u) onsists of an s-hain C and two indies t

and u, where 1 < t � s and 1 � juj < s; it spei�es the lauses (85) together with

(l

t

_ l

1

) and (

�

l

s

_ l

u

) if u > 0, (

�

l

s

_

�

l

�u

) if u < 0; (87)

representing

�

l

t

��! l

1

and either l

s

��! l

juj

or l

s

��!

�

l

juj

. The number of possible

s-snares is 2

s+1

(s� 1)

2

n

s

. Their lauses are rarely all present when m is small.

Exerise 200 explains how to use these de�nitions to prove Theorem C in

the ase < 1. First we show that every unsatis�able 2SAT formula ontains all

the lauses of at least one snare. Then, if we de�ne the binary random variable

X(C; t; u) = [all lauses of (C; t; u) are present℄; (88)

it isn't diÆult to prove that the snares of every s-hain C are unlikely:

EX(C; t; u) � m

s+1

Æ�

2n(n� 1)

�

s+1

: (89)

Finally, letting X be the sum of X(C; t; u) over all snares, we obtain

EX =

X

EX(C; t; u) �

X

s�0

2

s+1

s(s�1)n

s

�

m

2n(n� 1)

�

s+1

=

2

n

�

m

n� 1�m

�

3

by Eq. 1.2.9{(20). This formula atually establishes a stronger form of (84),

beause it shows that EX is only O(n

�1=4

) when m = n� n

3=4

> n. Thus

S

2

�

bn� n

3=4

; n

�

� Pr(X = 0) = 1� Pr(X > 0) � 1�O(n

�1=4

) (90)

by the �rst moment priniple.

The other half of Theorem C an be proved by using the onept of a t-

snake, whih is the speial ase (C; t;�t) of a (2t � 1)-snare. In other words,

given any hain (l

1

; : : : ; l

t

; : : : ; l

2t�1

), with s = 2t � 1 and l

t

in the middle, a t-snake generates the lauses (85) together

with (l

t

_ l

1

) and (

�

l

s

_

�

l

t

). When t = 5, for example, and

(l

1

; : : : ; l

2t�1

) = (x

1

; : : : ; x

9

), the 2t = 10 lauses are

51;

�

12;

�

23;

�

34;

�

45;

�

56;

�

67;

�

78;

�

89;

�

9

�

5;

and they orrespond to 20 ars that loop around to form a

strong omponent as shown here. We will prove that, when > 1

in (84), the digraph almost always ontains suh impediments to satis�ability.

�

5

1

2 3

4

5

6

78

9

�

5

�

4

�

3

�

2

�

1

5

�

9

�

8

�

7

�

6

�

5

Given a (2t� 1)-hain C, where the parameter t will be hosen later, let

X

C

= [eah lause of (C; t;�t) ours exatly one℄: (91)

The expeted value EX

C

is learly f(2t), where

f(r) = m

r

�

2n(n� 1)� r

�

m�r

Æ�

2n(n� 1)

�

m

(92)

September 23, 2015

54 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

seond moment priniple

Bollob�as

Borgs

Chayes

Kim

Wilson

resolution{

axioms

Notation C

0

�C

00

direted ayli graph

dag

refutation

is the probability that r spei� lauses our one eah. Notie that

f(r) =

�

m

2n(n� 1)

�

r

�

1 +O

�

r

2

m

�

+O

�

rm

n

2

��

; (93)

thus the relative error will be O(t

2

=n) if m = �(n) as n!1.

Now let X =

P

X

C

, summed over all R = 2

2t�1

n

2t�1

possible t-snakes C;

thus EX = Rf(2t). We want to show that Pr(X > 0) is very nearly 1, using

the seond moment priniple; so we want to show that the expetation EX

2

=

E

�

P

C

X

C

��

P

D

X

D

�

=

P

C

P

D

EX

C

X

D

is small. The key observation is that

EX

C

X

D

= f(4t� r) if C and D have exatly r lauses in ommon. (94)

Let p

r

be the probability that a randomly hosen t-snake has exatly r lauses

in ommon with the �xed snake (x

1

; : : : ; x

2t�1

). Then

EX

2

(EX)

2

=

R

2

P

2t

r=0

p

r

f(4t� r)

R

2

f(2t)

2

=

2t

X

r=0

p

r

f(4t� r)

f(2t)

2

=

2t

X

r=0

p

r

�

2n(n� 1)

m

�

r

�

1 +O

�

t

2

n

��

: (95)

By studying the interation of snakes (see exerise 201) one an prove that

(2n)

r

p

r

= O(t

4

=n) +O(t)[r� t℄ +O(n)[r=2t℄; for 1 � r � 2t. (96)

Finally then, as explained in exerise 202, we an hoose t = bn

1=5

 and m =

bn+ n

5=6

, to dedue a sharper form of (84) when > 1:

S

2

�

bn+ n

5=6

; n

�

= O(n

�1=30

): (97)

(Deep breath.) Theorem C is proved.

Muh more preise results have been derived by B. Bollob�as, C. Borgs, J. T.

Chayes, J. H. Kim, and D. B. Wilson, in Random Strutures & Algorithms 18

(2001), 201{256. For example, they showed that

S

2

�

bn�n

3=4

; n

�

= exp

�

��(n

�1=4

)

�

; S

2

�

bn+n

3=4

; n

�

= exp

�

��(n

1=4

)

�

: (98)

Resolution. The baktraking proess of Algorithms A, B, D, and L is losely

onneted to a logial proof proedure alled resolution. Starting with a family of

lauses alled \axioms," there's a simple rule by whih new lauses an be derived

from this given set: Whenever both x _A

0

and �x _A

00

are in our repertoire of

lauses, we're allowed to derive the \resolvent" lause A = A

0

_A

00

, denoted by

(x _A

0

) � (�x _A

00

). (See exerises 218 and 219.)

A proof by resolution onsists of a direted ayli graph (dag) whose verties

are labeled with lauses in the following way: (i) Every soure vertex is labeled

with an axiom. (ii) Every other vertex has in-degree 2. (iii) If the predeessors

of vertex v are v

0

and v

00

, the label of v is C(v) = C(v

0

) �C(v

00

).

When suh a dag has a sink vertex labeled A, we all it a \resolution proof

of A"; and if A is the empty lause, the dag is also alled a \resolution refutation."

September 23, 2015

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 55

regular resolution

treelike resolution

Rivest

unneessary branh

lookahead

Impagliazzo

Pudl�ak

Prover{Delayer game

The dag of a proof by resolution an be expanded to a binary tree, by

repliating any vertex that has out-degree greater than 1. Suh a tree is said

to be regular if no path from the root to a leaf uses the same variable twie to

form a resolvent. For example, Fig. 48 is a regular resolution tree that refutes

Rivest's unsatis�able axioms (6). All ars in this tree are direted upwards.

1

�

1

2

�

2

�

2 2

3

�

3 4

�

4

�

3 3

�

4 4

4

�

4 3

�

3 4

�

4 3

�

3

�

1

�

1

12 1

�

2

�

1

�

2

�

12

123 1

�

24

�

1

�

2

�

3

�

12

�

412

�

3

�

41

�

2

�

1

�

23 4

�

12

341 23

�

4 341

�

2

�

34

�

2

�

34

�

3

�

4

�

1 23

�

4

�

3

�

4

�

1

Fig. 48. One way to derive � by resolving the inonsistent lauses (6).

Notie that Fig. 48 is essentially idential to Fig. 39 on page 33, the baktrak

tree by whih Algorithm D disovers that the lauses of (6) are unsatis�able.

In fat this similarity is no oinidene: Every baktrak tree that reords

the behavior of Algorithm D on a set of unsatis�able lauses orresponds to a

regular resolution tree that refutes those axioms, unless Algorithm D makes an

unneessary branh. (An unneessary branh ours if the algorithm tries x 0

and x 1 without using their onsequenes to disover an unsatis�able subset

of axioms.) Conversely, every regular refutation tree orresponds to a sequene

of hoies by whih a baktrak-based SAT solver ould prove unsatis�ability.

The reason behind this orrespondene isn't hard to see. Suppose both

values of x need to be tried in order to prove unsatis�ability. When we set

x 0 in one branh of the baktrak tree, we replae the original lauses F

by F j �x, as in (54). The key point is that we an prove the empty lause by

resolution from F j �x if and only if we an prove x by resolution from F without

resolving on x. (See exerise 224.) Similarly, setting x 1 orresponds to

hanging the lauses from F to F jx.

Consequently, if F is an inonsistent set of lauses that has no short refuta-

tion tree, Algorithm D annot onlude that those lauses are unsatis�able unless

it runs for a long time. Neither an Algorithm L, in spite of enhaned lookahead.

R. Impagliazzo and P. Pudl�ak [SODA 11 (2000), 128{136℄ have introdued

an appealing Prover{Delayer game, with whih it's relatively easy to demon-

strate that ertain sets of unsatis�able lauses require large refutation trees.

The Prover names a variable x, and the Delayer responds by saying either x 0

or x 1 or x �. In the latter ase the Prover gets to deide the value of x; but

the Delayer sores one point. The game ends when the urrent assignments have

falsi�ed at least one lause. If the Delayer has a strategy that guarantees a sore

of at least m points, exerise 226 shows that every refutation tree has at least 2

m

September 23, 2015

56 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

anti-maximal-element lauses

binary relation

irreexive

transitive

partial ordering

maximal

Lauria

St�almark

hyperresolution

leaves; hene at least 2

m

�1 resolutions must be done, and every baktrak-based

solver needs
(2

m

) operations to delare the lauses unsatis�able.

We an apply their game, for example, to the following interesting lauses:

(�x

jj

); for 1 � j � m; (99)

(�x

ij

_ �x

jk

_ x

ik

); for 1 � i; j; k � m; (100)

(x

j1

_ x

j2

_ � � � _ x

jm

); for 1 � j � m. (101)

There are m

2

variables x

jk

, for 1 � j; k � m, whih we an regard as the ini-

dene matrix for a binary relation `j � k'. With this formulation, (99) says that

the relation is irreexive, and (100) says that it's transitive; thus, (99) and (100)

amount to saying that j � k is a partial ordering. Finally, (101) says that, for ev-

ery j, there's a k with j � k. So these lauses state that there's a partial ordering

on f1; : : : ;mg in whih no element is maximal; and they an't all be satis�ed.

We an, however, always sore m� 1 points if we're playing Delayer in that

game, by using the following strategy suggested by Massimo Lauria: At every

step we know an ordered set S of elements, regarded as \small"; initially S = ;,

and we'll have S = fj

1

; : : : ; j

s

g when our sore is s. Suppose the Prover queries

x

jk

, and s < m�2. If j = k, we naturally reply that x

jk

 0. Otherwise, if j =2 S

and k =2 S, we respond x

jk

 �; then s s+1, and j

s

 j or k aording as the

Prover spei�es x

jk

 1 or x

jk

 0. Otherwise, if j 2 S and k =2 S, we respond

x

jk

 1; if j =2 S and k 2 S, we respond x

jk

 0. Finally, if j = j

a

2 S and k =

j

b

2 S, we respond x

jk

 [a< b℄. These responses always satisfy (99) and (100).

And no lause of (101) beomes false before the Delayer is asked a question with

s = m� 2. Then the response x

jk

 � gains another point. We've proved

Theorem R. Every refutation tree for the lauses (99), (100), (101) represents

at least 2

m�1

� 1 resolution steps.

On the other hand, those lauses do have a refutation dag of size O(m

3

).

Let I

j

and T

ijk

stand for the irreexivity and transitivity axioms (99) and (100);

and let M

jk

= x

j1

_ � � � _ x

jk

, so that (101) is M

jm

. Then we have

M

im

� T

imk

= M

i(m�1)

_ �x

mk

; for 1 � i; k < m. (102)

Calling this new lause M

0

imk

, we an now derive

M

j(m�1)

=

��

� � �

�

(M

mm

�M

0

jm1

) �M

0

jm2

�

� � � �

�

�M

0

jm(m�1)

�

� I

m

;

for 1 � j < m. Hene (m� 1)

2

+ (m� 1)m resolutions have essentially redued

m to m � 1. Eventually we an therefore derive M

11

; then M

11

� I

1

= �. [This

elegant refutation is due to G. St�almark, Ata Informatia 33 (1996), 277{280.℄

The method we've just used to obtain M

j(m�1)

from M

mm

is, inidentally,

a speial ase of a useful general formula alled hyperresolution that is easily

proved by indution on r:

�

� � �

�

(C

0

_ x

1

_ � � � _ x

r

) � (C

1

_ �x

1

)

�

� � � �

�

� (C

r

_ �x

r

)

= C

0

_ C

1

_ � � � _ C

r

: (103)

September 23, 2015

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 57

resolution hain

refutation hain

pigeonhole priniple

Haken

APPIER HANZELET

Ben-Sasson

Wigderson

width

notation w(�)

notation w(� ` �)

notation k� ` Ck

*Lower bounds for general resolution. Let's hange our perspetive slightly:

Instead of visualizing a proof by resolution as a direted graph, we an think of it

as a \straight line" resolution hain, analogous to the addition hains of Setion

4.6.3 and the Boolean hains of Setion 7.1.2. A resolution hain based on m

axioms C

1

, : : : , C

m

appends additional lauses C

m+1

, : : : , C

m+r

, eah of whih

is obtained by resolving two previous lauses of the hain. Formally, we have

C

i

= C

j(i)

�C

k(i)

; for m+ 1 � i � m+ r, (104)

where 1 � j(i) < i and 1 � k(i) < i. It's a refutation hain for C

1

, : : : , C

m

if

C

m+r

= �. The tree in Fig. 48, for example, yields the refutation hain

12

�

3; 23

�

4; 341; 4

�

12;

�

1

�

23;

�

2

�

34;

�

3

�

4

�

1;

�

41

�

2; 123; 1

�

24;

�

1

�

2

�

3;

�

12

�

4; 12; 1

�

2;

�

1

�

2;

�

12; 1;

�

1; �

for the axioms (6); and there are many other ways to refute those axioms, suh as

12

�

3;23

�

4;341;4

�

12;

�

1

�

23;

�

2

�

34;

�

3

�

4

�

1;

�

41

�

2;1

�

2

�

3;1

�

3;14;

�

3

�

4;24;2

�

4;2;

�

13;

�

34;1

�

4;

�

3;1;

�

1; �. (105)

This hain is quite di�erent from Fig. 48, and perhaps nier: It has three more

steps, but after forming `1

�

2

�

3' it onstruts only very short lauses.

We'll see in a moment that short lauses are ruial if we want short hains.

That fat turns out to be important when we try to prove that ertain easily

understood families of axioms are inherently more diÆult than (99), (100),

and (101), in the sense that they an't be refuted with a hain of polynomial size.

Consider, for example, the well known \pigeonhole priniple," whih states

thatm+1 pigeons don't �t inm pigeon-sized holes. If x

jk

means that pigeon j o-

upies hole k, for 0 � j � m and 1 � k � m, the relevant unsatis�able lauses are

(x

j1

_ x

j2

_ � � � _ x

jm

); for 0 � j � m; (106)

(�x

ik

_ �x

jk

); for 0 � i < j � m and 1 � k � m. (107)

(\Every pigeon has a hole, but no hole hosts more than one pigeon.") These

lauses inreased the pigeonhole priniple's fame during the 1980s, when Armin

Haken [Theoretial Computer Siene 39 (1985), 297{308℄ proved that they have

no short refutation hain. His result marked the �rst time that any set of lauses

had been shown to be intratable for resolution in general.

It is absolutely neessary that two people have equally many hairs.

| JEAN APPIER HANZELET, Rereation Mathematique (1624)

Haken's original proof was rather ompliated. But simpler approahes were

eventually found, ulminating in a method by E. Ben-Sasson and A. Wigderson

[JACM 48 (2001), 149{169℄, whih is based on lause length and applies to

many other sets of axioms. If � is any sequene of lauses, let us say that its

width, written w(�), is the length of its longest lause or lauses. Furthermore,

if �

0

= (C

1

; : : : ; C

m

), we write w(�

0

` �) for the minimum of w(�) over all

refutation hains � = (C

1

; : : : ; C

m+r

) for �

0

, and k�

0

` �k for the minimum

length r of all suh hains. The following lemma is the key to proving lower

bounds with Ben-Sasson and Wigderson's strategy:

September 23, 2015

58 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

fat

tautologial

Ben-Sasson

Wigderson

5SAT

bipartite graph

expansion

boundary

restrited pigeonhole priniple

Haken

Lemma B. k�

0

` �k � e

(w(�

0

`�)�1)

2

=(8n)

�2, for lauses in n � w(�

0

)

2

variables.

Thus there's exponential growth if we have w(�

0

) = O(1) and w(�

0

` �) =
(n).

Proof. Let � = (C

1

; : : : ; C

m+r

) be a refutation of �

0

with r = k�

0

` �k. We

will say that a lause is \fat" if its length is W or more, where W � w(�

0

) is a

parameter to be set later. If � n �

0

ontains f fat lauses, those lauses ontain

at least Wf literals; hene some literal l appears in at least Wf=(2n) of them.

Now � j l, the hain obtained by replaing eah lause C

j

by C

j

j l, is a

refutation of �

0

j l that ontains at most b�f fat lauses, where � = 1�W=(2n).

(The lause C

j

j l will be } if l 2 C

j

, thus tautologial and e�etively absent.)

Suppose f < �

�b

for some integer b. We will prove, by indution on b and

seondarily on the total length of all lauses, that there's a refutation � of �

0

suh that w(�) �W + b. This assertion holds when b = 0, sine W � w(�

0

). If

b > 0, there's a refutation �

0

of �

0

j l with w(�

0

) �W+b�1, when we hoose l as

above, beause �f < �

1�b

and � j l refutes �

0

j l. Then we an form a resolution

hain �

1

that derives

�

l from �

0

, by inserting

�

l appropriately into lauses of �

0

.

And there's a simple hain �

2

that derives the lauses of �

0

j

�

l from �

0

and

�

l.

There's also a refutation �

3

of �

0

j

�

l with w(�

3

) � W + b, by indution, beause

� j

�

l refutes �

0

j

�

l. Thus the ombination � = f�

1

; �

2

; �

3

g refutes �

0

, with

w(�) = max(w(�

0

)+1; w(�

2

); w(�

3

)) � max(W+b; w(�

0

);W+b) =W+b:

Finally, exerise 238 hooses W so that we get the laimed bound.

The pigeon axioms are too wide to be inserted diretly into Lemma B. But

Ben-Sasson and Wigderson observed that a simpli�ed version of those axioms,

involving only lauses of 5SAT, is already intratable.

Notie that we an regard the variable x

jk

as indiating the presene of an

edge between a

j

and b

k

in a bipartite graph on the verties A = fa

0

; : : : ; a

m

g

and B = fb

1

; : : : ; b

m

g. Condition (106) says that eah a

j

has degree � 1, while

ondition (107) says that eah b

k

has degree � 1. There is, however, a bipartite

graph G

0

on those verties for whih eah a

j

has degree � 5 and suh that the

following strong \expansion" ondition is satis�ed:

Every subset A

0

� A with jA

0

j � m=3000 has j�A

0

j � jA

0

j in G

0

. (108)

Here �A

0

denotes the bipartite boundary of A

0

, namely the set of all b

k

that have

exatly one neighbor in A

0

.

Given suh a graph G

0

, whose existene is proved (nononstrutively) in

exerise 240, we an formulate a restrited pigeonhole priniple, by whih the pi-

geonhole lauses are unsatis�able if we also require �x

jk

whenever a

j

/���b

k

in G

0

.

Let �(G

0

) denote the resulting lauses, whih are obtained when axioms

(106) and (107) are onditioned on all suh literals �x

jk

. Then w(�(G

0

)) � 5,

and at most 5m + 5 unspei�ed variables x

jk

remain. Lemma B tells us that

all refutation hains for �(G

0

) have length exp
(m) if we an prove that they

all have width
(m). Haken's theorem, whih asserts that all refutation hains

for (106) and (107) also have length exp
(m), will follow, beause any short

refutation would yield a short refutation of �(G

0

) after onditioning on the �x

jk

.

September 23, 2015

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 59

notation F ` C

notation �(C)

subadditive law

3SAT

random 3SAT

Chv�atal

Szemer�edi

�rst order logi

Robinson

Gentzen

ut rule

sequents

Robinson

Tseytin

graph-based axioms

Slisenko

Thus the following result gives our story a happy ending:

Theorem B. The restrited pigeonhole axioms �(G

0

) have refutation width

w(�(G

0

) ` �) � m=6000: (109)

Proof. We an assign a omplexity measure to every lause C by de�ning

�(C) = min

�

jA

0

j

�

�

A

0

� A and �(A

0

) ` C

	

: (110)

Here �(A

0

) is the set of \pigeon axioms" (106) for a

j

2 A

0

, together with all

of the \hole axioms" (107); and �(A

0

) ` C means that lause C an be proved

by resolution when starting with only those axioms. If C is one of the pigeon

axioms, this de�nition makes �(C) = 1, beause we an let A

0

= fa

j

g. And if C

is a hole axiom, learly �(C) = 0. The subadditive law

�(C

0

�C

00

) � �(C

0

) + �(C

00

) (111)

also holds, beause a proof of C

0

�C

00

needs at most the axioms of �(A

0

) [�(A

00

)

if C

0

follows from �(A

0

) and C

00

follows from �(A

00

).

We an assume that m � 6000. And we must have �(�) > m=3000, beause

of the strong expansion ondition (108). (See exerise 241.) Therefore every refu-

tation of �(G

0

) must ontain a lause C withm=6000 � �(C) < m=3000; indeed,

the �rst lause C

j

with �(C

j

) � m=6000 will satisfy this ondition, by (111).

Let A

0

be a set of verties with jA

0

j = �(C) and �(A

0

) ` C. Also let b

k

be

any element of �A

0

, with a

j

its unique neighbor in A

0

. Sine jA

0

n a

j

j < �(C),

there must be an assignment of variables that satis�es all axioms of �(A

0

n a

j

),

but falsi�es C and the pigeon axiom for j. That assignment puts no two pigeons

into the same hole, and it plaes every pigeon of A

0

n a

j

.

Now suppose C ontains no literal of the form x

j

0

k

or �x

j

0

k

, for any a

j

0

2 A.

Then we ould set x

j

0

k

 0 for all j

0

, without falsifying any axiom of �(A

0

n a

j

);

and we ould then make the axioms of �(fa

j

g) true by setting x

jk

 1. But

that hange to the assignment would leave C false, ontraditing our assumption

that �(A

0

) ` C. Thus C ontains some �x

j

0

k

for eah b

k

2 �A

0

; and we must

have w(C) � j�A

0

j � m=6000.

A similar proof establishes a linear lower bound on the refutation width,

hene an exponential lower bound on the refutation length, of almost all random

3SAT instanes with n variables and b�n lauses, for �xed � as n!1 (see exer-

ise 243), a theorem of V. Chv�atal and E. Szemer�edi [JACM 35 (1988), 759{768℄.

Historial notes: Proofs by resolution, in the more general setting of �rst

order logi, were introdued by J. A. Robinson in JACM 12 (1965), 23{41.

[They're also equivalent to G. Gentzen's \ut rule for sequents," Mathematishe

Zeitshrift 39 (1935), 176{210, III.1.2 1.℄ Inspired by Robinson's paper, Greg-

ory Tseytin developed the �rst nontrivial tehniques to prove lower bounds on

the length of resolution proofs, based on unsatis�able graph axioms that are

onsidered in exerise 245. His letures of 1966 were published in Volume 8

of the Steklov Mathematial Institute Seminars in Mathematis (1968); see

A. O. Slisenko's English translation, Studies in Construtive Mathematis and

Mathematial Logi, part 2 (1970), 115{125.

September 23, 2015

60 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Tseytin

NAND

variables, introduing new

auxiliary variables

memo ahe

extended resolution

random 3SAT

3SAT

tautology

Samson

Mueller

existential quanti�er

quanti�ers

pure literal

Tseytin pointed out that there's a simple way to get around the lower bounds

he had proved for his graph-oriented problems, by allowing new kinds of proof

steps: Given any set of axioms F , we an introdue a new variable z that doesn't

appear anywhere in F , and add three new lauses G = fxz; yz; �x�y�zg; here x

and y are arbitrary literals of F . It's lear that F is satis�able if and only if

F [G is satis�able, beause G essentially says that z = NAND(x; y). Adding

new variables in this way is somewhat analogous to using lemmas when proving

a theorem, or to introduing a memo ahe in a omputer program.

His method, whih is alled extended resolution, an be muh faster than

pure resolution. For example, it allows the pigeonhole lauses (106) and (107) to

be refuted in only O(m

4

) steps (see exerise 237). It doesn't appear to help muh

with ertain other lasses of problems suh as random 3SAT; but who knows?

SAT solving via resolution. The onept of resolution also suggests alternative

ways to solve satis�ability problems. In the �rst plae we an use it to eliminate

variables: If F is any set of lauses on n variables, and if x is one of those

variables, we an onstrut a set F

0

of lauses on the other n � 1 variables in

suh a way that F is satis�able if and only if F

0

is satis�able. The idea is simply

to resolve every lause of the form x _A

0

with every lause of the form �x _A

00

,

and then to disard those lauses.

For example, onsider the following six lauses in four variables:

1234; 1

�

2;

�

1

�

2

�

3;

�

13; 2

�

3; 3

�

4: (112)

We an eliminate the variable x

4

by forming 1234 � 3

�

4 = 123. Then we an

eliminate x

3

by resolving 123 and

�

13 with

�

1

�

2

�

3 and 2

�

3:

123 �

�

1

�

2

�

3 = }; 123 � 2

�

3 = 12;

�

13 �

�

1

�

2

�

3 =

�

1

�

2;

�

13 � 2

�

3 =

�

12:

Now we're left with f12; 1

�

2;

�

12;

�

1

�

2g, beause the tautology } goes away. Elimi-

nating x

2

gives f1;

�

1g, and eliminating x

1

gives f�g; hene (112) is unsatis�able.

This method, whih was originally proposed for hand alulation by E. W.

Samson and R. K. Mueller in 1955, works beautifully on small problems. But

why is it valid? There are (at least) two good ways to understand the reason.

First, it's easy to see that F

0

is satis�able whenever F is satis�able, beause

C

0

�C

00

is true whenever C

0

and C

00

are both true. Conversely, if F

0

is satis�ed

by some setting of the other n� 1 variables, that setting must either satisfy A

0

for all lauses of the form x _A

0

, or else it must satisfy A

00

for all lauses of the

form �x _A

00

. (Otherwise neither A

0

nor A

00

would be satis�ed, for some A

0

and

some A

00

, and the lause A

0

_A

00

in F

0

would be false.) Thus at least one of the

settings x 0 or x 1 will satisfy F .

Another good way to understand variable elimination is to notie that it

orresponds to the elimination of an existential quanti�er (see exerise 248).

Suppose p lauses of F ontain x and q lauses ontain �x. Then the elimina-

tion of x will give us at most pq new lauses, in the worst ase; so F

0

will have no

more lauses than F did, whenever pq � p+ q, namely when (p� 1)(q� 1) � 1.

This ondition learly holds whenever p = 0 or q = 0; indeed, we alled x a

\pure literal" when suh ases arose in Algorithm A. The ondition also holds

whenever p = 1 or q = 1, and even when p = q = 2.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 61

subsumed

Cook

Method I

subsumed

heuristis

Method IA

Rekhow

Furthermore we don't always get pq new lauses. Some of the resolvents

might turn out to be tautologous, as above; others might be subsumed by existing

lauses. (The lause C is said to subsume another lause C

0

if C � C

0

, in the

sense that every literal of C appears also in C

0

. In suh ases we an safely

disard C

0

.) And some of the resolvents might also subsume existing lauses.

Therefore repeated elimination of variables doesn't always ause the set of

lauses to explode. In the worst ase, however, it an be quite ineÆient.

In January of 1972, Stephen Cook showed his students at the University of

Toronto a rather di�erent way to employ resolution in SAT-solving. His elegant

proedure, whih he alled \Method I," essentially learns new lauses by doing

resolution on demand:

Algorithm I (Satis�ability by lause learning). Given m nonempty lauses

C

1

^� � �^C

m

on n Boolean variables x

1

: : : x

n

, this algorithm either proves them

unsatis�able or �nds stritly distint literals l

1

: : : l

n

that satisfy them all. In the

proess, new lauses may be generated by resolution (and m will then inrease).

I1. [Initialize.℄ Set d 0.

I2. [Advane.℄ If d = n, terminate suessfully (the literals fl

1

; : : : ; l

d

g satisfy

fC

1

; : : : ; C

m

g). Otherwise set d d+1, and let l

d

be a literal stritly distint

from l

1

, : : : , l

d�1

.

I3. [Find falsi�ed C

i

.℄ If none of C

1

, : : : , C

m

are falsi�ed by fl

1

; : : : ; l

d

g, go bak

to I2. Otherwise let C

i

be a falsi�ed lause.

I4. [Find falsi�ed C

j

.℄ (At this point we have

�

l

d

2 C

i

� f

�

l

1

; : : : ;

�

l

d

g, but no

lause is ontained in f

�

l

1

; : : : ;

�

l

d�1

g.) Set l

d

�

l

d

. If none of C

1

, : : : , C

m

are

falsi�ed by fl

1

; : : : ; l

d

g, go bak to I2. Otherwise let

�

l

d

2 C

j

� f

�

l

1

; : : : ;

�

l

d

g.

I5. [Resolve.℄ Set m m+1, C

m

 C

i

�C

j

. Terminate unsuessfully if C

m

is

empty. Otherwise set d maxft j

�

l

t

2 C

m

g, i m, and return to I4.

In step I5 the new lause C

m

annot be subsumed by any previous lause C

k

for

k < m, beause C

i

� C

j

� f

�

l

1

; : : : ;

�

l

d�1

g. Therefore, in partiular, no lause is

generated twie, and the algorithm must terminate.

This desription is intentionally vague when it uses the word \let" in steps

I2, I3, and I4: Any available literal l

d

an be seleted in step I2, and any falsi�ed

lauses C

i

and C

j

an be seleted in steps I3 and I4, without making the method

fail. Thus Algorithm I really represents a family of algorithms, depending on

what heuristis are used to make those seletions.

For example, Cook proposed the following way (\Method IA") to selet l

d

in step I2: Choose a literal that ours most frequently in the set of urrently

unsatis�ed lauses that have the fewest unspei�ed literals. When applied to the

six lauses (112), this rule would set l

1

 3 and l

2

 2 and l

3

 1; then step I3

would �nd C

i

=

�

1

�

2

�

3 false. So step I4 would set l

3

�

1 and �nd C

j

= 1

�

2 false,

and step I5 would learn C

7

=

�

2

�

3. (See exerise 249 for the sequel.)

Cook's main interest when introduing Algorithm I was to minimize the

number of resolution steps; he wasn't partiularly onerned with minimizing

the running time. Subsequent experiments by R. A. Rekhow [Ph.D. thesis

September 23, 2015

62 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

anti-maximal-element lauses

Cook

Conit driven lause learning

CDCL solver

DPLL

trail

reason

unit propagation

onit

foring lause

asserting lause, see foring lause

deisions

Level 0

(Univ. Toronto, 1976), 81{84℄ showed that, indeed, relatively short resolution

refutations are found with this approah. Furthermore, exerise 251 demon-

strates that Algorithm I an handle the anti-maximal-element lauses (99){(101)

in polynomial time; thus it trounes the exponential behavior exhibited by all

baktrak-based algorithms for this problem (see Theorem R).

On the other hand, Algorithm I does tend to �ll memory with a great many

new lauses when it is applied to large problems, and there's no obvious way to

deal with those lauses eÆiently. Therefore Cook's method did not appear to be

of pratial importane, and it remained unpublished for more than forty years.

Conit driven lause learning. Algorithm I demonstrates the fat that

unsuessful hoies of literals an lead us to disover valuable new lauses,

thereby inreasing our knowledge about the harateristis of a problem. When

that idea was redisovered from another point of view in the 1990s, it proved to

be revolutionary: Signi�ant industrial instanes of SAT with many thousands

or even millions of variables suddenly beame feasible for the �rst time.

The name CDCL solver is often given to these new methods, beause they are

based on \onit driven lause learning" rather than on lassial baktraking.

A CDCL solver shares many onepts with the DPLL algorithms that we've

already seen; yet it is suÆiently di�erent that we an understand it best by

developing the ideas from srath. Instead of impliitly exploring a searh tree

suh as Fig. 39, a CDCL solver is built on the notion of a trail, whih is a

sequene L

0

L

1

: : : L

F�1

of stritly distint literals that do not falsify any lause.

We an start with F = 0 (the empty trail). As omputation proeeds, our task

is to extend the urrent trail until F = n, thus solving the problem, or to prove

that no solution exists, by essentially learning that the empty lause is true.

Suppose there's a lause of the form l _ �a

1

_ � � � _ �a

k

, where a

1

through a

k

are in the trail but l isn't. Literals in the trail are tentatively assumed to

be true, and must be satis�ed; so we're fored to make l true. In suh

ases we therefore append l to the urrent trail and say that is its \reason."

(This operation is equivalent to what we alled \unit propagation" in previous

algorithms; those algorithms e�etively removed the literals �a

1

, : : : , �a

k

when they

beame false, thereby leaving l as a \unit" all by itself. But our new viewpoint

keeps eah lause intat, and knows all of its literals.) A onit ours if the

omplementary literal

�

l is already in the trail, beause l an't be both true and

false; but let's assume for now that no onits arise, so that l an legally be

appended by setting L

F

 l and F F + 1.

If no suh foring lause exists, and if F < n, we hoose a new distint literal

in some heuristi way, and we append it to the urrent trail with a \reason"

of �. Suh literals are alled deisions. They partition the trail into a sequene

of deision levels, whose boundaries an be indiated by a sequene of indies

with 0 = i

0

� i

1

< i

2

< i

3

< � � � ; literal L

t

belongs to level d if and only if

i

d

� t < i

d+1

. Level 0, at the beginning of the trail, is speial: It ontains literals

that are fored by lauses of length 1, if suh lauses exist. Any suh literals are

unonditionally true. Every other level begins with exatly one deision.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 63

dependene of literals

learning

onit lause

Resolving

Consider, for example, the problem waerden (3; 3; 9) of (9). The �rst items

plaed on the trail might be

t L

t

level reason

0

�

6 1 � (a deision)

1

�

9 2 � (a deision)

2 3 2 396 (rearrangement of the lause 369)

3

�

4 3 � (a deision)

4 5 3 546 (rearrangement of the lause 456)

5 8 3 846 (rearrangement of the lause 468)

6 2 3 246

7

�

7 3

�

7

�

5

�

3 (rearrangement of the lause

�

3

�

5

�

7)

8

�

2 3

�

2

�

5

�

8 (a onit!)

(113)

Three deisions were made, and they started levels at i

1

= 0, i

2

= 1, i

3

= 3.

Several lauses have been rearranged; we'll soon see why. And propagations have

led to a onit, beause both 2 and

�

2 have been fored. (We don't atually

onsider the �nal entry L

8

to be part of the trail, beause it ontradits L

6

.)

If the reason for l inludes the literal

�

l

0

, we say \l depends diretly on l

0

."

And if there's a hain of one or more diret dependenies, from l to l

1

to � � � to

l

k

= l

0

, we say simply that \l depends on l

0

." For example, 5 depends diretly

on

�

4 and

�

6 in (113), and

�

2 depends diretly on 5 and 8; hene

�

2 depends on

�

6.

Notie that a literal an depend only on literals that preede it in the trail.

Furthermore, every literal l that's fored at level d > 0 depends diretly on some

other literal on that same level d; otherwise l would already have been fored at

a previous level. Consequently l must neessarily depend on the dth deision.

The reason for reasons is that we need to deal with onits. We will see that

every onit allows us to onstrut a new lause that must be true whenever

the existing lauses are satis�able, although itself does not ontain any existing

lause. Therefore we an \learn" by adding it to the existing lauses, and we

an try again. This learning proess an't go on forever, beause only �nitely

many lauses are possible. Sooner or later we will therefore either �nd a solution

or learn the empty lause. That will be nie, espeially if it happens sooner.

A onit lause on deision level d has the form

�

l _ �a

1

_ � � � _ �a

k

, where

l and all the a's belong to the trail; furthermore l and at least one a

i

belong to

level d. We an assume that l is rightmost in the trail, of all the literals in .

Hene l annot be the dth deision; and it has a reason, say l _ �a

0

1

_ � � � _ �a

0

k

0

.

Resolving with this reason gives the lause

0

= �a

1

_ � � � _ �a

k

_ �a

0

1

_ � � � _ �a

0

k

0

,

whih inludes at least one literal belonging to level d. If more than one suh

literal is present, then

0

is itself a onit lause; we an set

0

and repeat

the proess. Eventually we are bound to obtain a new lause

0

of the form

�

l

0

_

�

b

1

� � �

�

b

r

, where l

0

is on level d and where b

1

through b

r

are on lower levels.

Suh a

0

is learnable, as desired, beause it an't ontain any existing

lauses. (Every sublause of

0

, inluding

0

itself, would otherwise have given us

something to fore at a lower level.) We an now disard levels > d

0

of the trail,

where d

0

is the maximum level of b

1

through b

r

; and|this is the punh line|

September 23, 2015

64 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

baktrak

bakjumping

look-bak, see bakjumping

stamp

waerden

we an append

�

l

0

to the end of level d

0

, with

0

as its reason. The foring proess

now resumes at level d

0

, as if the learned lause had been present all along.

For example, after the onit in (113), the initial onit lause is =

�

2

�

5

�

8,

our shorthand notation for �x

2

_�x

5

_�x

8

; and its rightmost omplemented literal in

the trail is 2, beause 5 and 8 ame earlier. So we resolve with 246, the reason

for 2, and get

0

= 4

�

56

�

8. This new lause ontains omplements of three literals

from level 3, namely

�

4, 5, and 8; so it's still a onit lause. We resolve it with

the reason for 8 and get

0

= 4

�

56. Again

0

is a onit lause. But the result

of resolving this onit with the reason for 5 is

0

= 46, a lause that is falsi�ed

by the literals urrently on the trail but has only

�

4 at level 3. Good|we have

learned `46': In every solution to waerden (3; 3; 9), either x

4

or x

6

must be true.

Thus the sequel to (113) is

t L

t

level reason

0

�

6 1 � (a deision)

1 4 1 46 (the newly learned lause)

(114)

and the next step will be to begin a new level 2, beause nothing more is fored.

Notie that the former level 2 has gone away. We've learned that there was

no need to branh on the deision variable x

9

, beause

�

6 already fores 4. This

improvement to the usual baktrak regimen is sometimes alled \bakjumping,"

beause we've jumped bak to a level that an be regarded as the root ause of

the onit that was just disovered.

Exerise 253 explores a possible ontinuation of (114); dear reader, please

jump to it now. Inidentally, the lause `46' that we learned in this example

involves the omplements of former deisions

�

4 and

�

6; but exerise 255 shows

that newly learned lauses might not ontain any deision variables whatsoever.

The proess of onstruting the learned lause from a onit is not as

diÆult as it may seem, beause there's an eÆient way to perform all of the

neessary resolution steps. Suppose, as above, that the initial onit lause is

�

l_�a

1

� � ��a

k

. Then we \stamp" eah of the literals a

i

with a unique number s;

and we also insert �a

i

into an auxiliary array, whih will eventually hold the

literals

�

b

1

, : : : ,

�

b

r

, whenever a

i

is a literal that reeived its value on a level d

0

with 0 < d

0

< d. We stamp l too; and we ount how many literals of level d

have thereby been stamped. Then we repeatedly go bak through the trail until

oming to a literal L

t

whose stamp equals s. If the ounter is bigger than 1

at this point, and if the reason of L

t

is L

t

_ �a

0

1

_ � � � _ �a

0

k

0

, we look at eah a

0

i

,

stamping it and possibly putting it into the b array if it had not already been

stamped with s. Eventually the ount of unresolved literals will derease to 1;

the learned lause is then

�

L

t

_

�

b

1

_ � � � _

�

b

r

.

These new lauses might turn out to be quite large, even when we're solving a

problem whose lauses were rather small to start with. For example, Table 3 gives

a glimpse of typial behavior in a medium-size problem. It shows the beginning

of the trail generated when a CDCL solver was applied to the 2779 lauses of

waerden (3; 10; 97), after about 10,000 lauses had been learned. (Reall that

this problem tries to �nd a binary vetor x

1

x

2

: : : x

97

that has no three equally

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 65

redundant

unit propagation

lazy data strutures

Table 3

THE FIRST LEVELS OF A MODERATE-SIZE TRAIL

t L

t

level reason

0 53 1 �

1 55 2 �

2 44 3 �

3 54 4 �

4 43 5 �

5 30 6 �

6 34 7 �

7 45 8 �

8 40 9 �

9 27 10 �

10 79 10 79 53 27

11 01 10 01 27 53

12 36 11 �

13 18 11 18 36 27

14 19 11 19 36 53

t L

t

level reason

15 70 11 70 36 53

16 35 12 �

17 39 13 �

18 37 14 �

19 38 14 38 37 36

20 47 14 47 37 27

21 17 14 17 37 27

22 32 14 32 37 27

23 69 14 69 37 53

24 21 14 21 37 53

25 46 15 �

26 28 15 28 46 37

27 41 15 41 46 36

28 26 15 26 46 36

29 56 15 56 46 36

t L

t

level reason

30 08 15 08 46 27

31 65 15 65 46 27

32 60 15 60 46 53

33 50 15 ��

34 64 15 64 50 36

35 22 15 22 50 36

36 24 15 24 50 37

37 42 15 42 50 46

38 48 15 48 50 46

39 73 15 73 50 27

40 04 15 04 50 27

41 63 15 63 50 37

42 33 16 �

43 51 17 �

44 57 18 �

(Here �� stands for the previously learned lause 50 26 47 35 41 32 38 44 27 45 55 65 60 7030.)

spaed 0s and no ten equally spaed 1s.) Level 18 in the table has just been

launhed with the deision L

44

= 57; and that deision will trigger the setting

of many more literals 15, 49, 61, 68, 77, 78, 87, 96, : : : , eventually leading to a

onit when trying to set L

67

. The onit lause turns out to have length 22:

53 27 36 70 35 37 69 21 46 28 56 65 60 50 64 24 42 73 63 33 51 57 : (115)

(Its literals are shown here in order of the appearane of their omplements in

the trail.) When we see suh a monster lause, we might well question whether

we really want to \learn" suh an obsure fat!

A loser look, however, reveals that many of the literals in (115) are redun-

dant. For example, 70 an safely be deleted, beause its reason is `70 36 53'; both

36 and 53 already appear in (115), hene (115)� (70 36 53) gets rid of 70. Indeed,

more than half of the literals in this example are redundant, and (115) an be

simpli�ed to the muh shorter and more memorable lause

53 27 36 35 37 46 50 33 51 57 : (116)

Exerise 257 explains how to disover suh simpli�ations, whih turn out to

be quite important in pratie. For example, the lauses learned while proving

waerden (3; 10; 97) unsatis�able had an average length of 19.9 before simpli�a-

tion, but only 11.2 after; simpli�ation made the algorithm run about 33% faster.

Most of the omputation time of a CDCL solver is devoted to unit propa-

gation. Thus we need to know when the value of a literal has been fored by

previous assignments, and we hope to know it quikly. The idea of \lazy data

strutures," used above in Algorithm D, works niely for this purpose, in the pres-

ene of long lauses, provided that we extend it so that every lause now has two

September 23, 2015

66 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

MEM

Unit lauses

level 0

reyling

wath list

Biere

stamp

free literals and free variables

true literals

false literals

wathed literal

wathed literals instead of one. If we know that the �rst two literals of a lause are

not false, then we needn't look at this lause until one of them beomes false, even

though other literals in the lause might be repeatedly veering between transient

states of true, false, and unde�ned. And when a wathee does beome false, we'll

try to swap it with a nonfalse partner that an be wathed instead. Propagations

or onits will arise only when all of the remaining literals are false.

Algorithm C below therefore represents lauses with the following data

strutures: A monolithi array alled MEM is assumed to be large enough to

hold all of the literals in all of the lauses, interspersed with ontrol information.

Eah lause = l

0

_ l

1

_ � � � _ l

k�1

with k > 1 is represented by its starting

position in MEM, with MEM[+ j℄ = l

j

for 0 � j < k. Its two wathed literals are

l

0

and l

1

, and its size k is stored in MEM[� 1℄. Unit lauses, for whih k = 1,

are treated di�erently; they appear in level 0 of the trail, not in MEM.

A learned lause an be distinguished from an initial lause beause it has

a relatively high number, with MINL � < MAXL. Initially MAXL is set equal to

MINL, the smallest ell in MEM that is available for learned lauses; then MAXL

grows as new lauses are added to the repertoire. The set of learned lauses is

periodially ulled, so that the less desirable ones don't lutter up memory and

slow things down. Additional information about a learned lause is kept in

MEM[� 4℄ and MEM[� 5℄, to help with this reyling proess (see below).

Individual literals x

k

and �x

k

, for 1 � k � n, are represented internally by

the numbers 2k and 2k + 1 as in (57) above. And eah of these 2n literals l has

a list pointer W

l

, whih begins a linked list of the lauses in whih l is wathed.

We have W

l

= 0 if there is no suh lause; but if W

l

= > 0, the next link in

this \wath list" is in MEM[� 2℄ if l = l

0

, in MEM[� 3℄ if l = l

1

. [See Armin

Biere, Journal on Satis�ability, Boolean Modeling and Comp. 4 (2008), 75{97.℄

For example, the �rst few ells of MEM might ontain the following data when

we are representing the lauses (9) of waerden (3; 3; 9):

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 : : :

MEM[i℄ = 9 45 3 2 4 6 15 51 3 4 6 8 21 45 3 6 8 10 : : :

(Clause 3 is `123', lause 9 is `234', lause 15 is `345', : : : , lause 45 is `135',

lause 51 is `246', : : : ; the wath lists for literals x

1

, x

2

, x

3

, x

4

begin respetively

at W

2

= 3, W

4

= 3, W

6

= 9, W

8

= 15.)

The other major data strutures of Algorithm C are foused on variables, not

lauses. Eah variable x

k

for 1 � k � n has six urrent attributes S(k), VAL(k),

OVAL(k), TLOC(k), HLOC(k), and ACT(k), whih interat as follows: S(k) is the

\stamp" that's used during lause formation. If neither x

k

nor �x

k

appears in

the urrent trail, then VAL(k) = �1, and we say that x

k

and its two literals are

\free." But if L

t

= l is a literal of the trail, belonging to level d, we have

VAL(jlj) = 2d+ (l & 1) and TLOC(jlj) = t; where jlj = l� 1, (117)

and we say that l is \true" and

�

l is \false." Thus a given literal l is false if and

only if VAL(jlj) is nonnegative and VAL(jlj)+ l is odd. In most ases a wathed

literal is not false; but there are exeptions to this rule (see exerise 261).

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 67

ativity

ACT(k)

heuristi

heap

fous

Mathews, Edwin Lee (41)

damping fator

E�en

oating point overow

resaling

Frost

Dehter

AAAI: Amerian Assoiation for Arti�ial Intelligene (founded in 1979); Assoiation for the Advanement of Arti�ial Intelligene (sine 2007)

Pipatsrisawat

Darwihe

polarities

stiking values

progress saving

phase saving

Cha�

MiniSAT

E�en

S�orensson

The attributes ACT(k) and HLOC(k) tell the algorithm how to selet the

next deision variable. Eah variable x

k

has an ativity sore ACT(k), whih

heuristially estimates its desirability for branhing. All of the free variables,

and possibly others, are kept in an array alled HEAP, whih is arranged so that

ACT(HEAP[j℄)� ACT(HEAP[(j � 1)� 1℄) for 0 < j < h (118)

when it ontains h elements (see Setion 5.2.3). Thus HEAP[0℄ will always be a

free variable of maximum ativity, if it is free; so it's the variable that will be

hosen to govern the deision when the trail starts to aquire a new level.

Ativity sores help the algorithm to fous on reent onits. Suppose,

for example, that 100 onits have been resolved, hene 100 lauses have been

learned. Suppose further that x

j

or �x

j

was stamped while resolving the onits

numbered 3, 47, 95, 99, and 100; but x

k

or �x

k

was stamped during onits 41,

87, 94, 95, 96, and 97. We ould express their reent ativity by omputing

ACT(j) = �

0

+ �

1

+ �

5

+ �

53

+ �

97

; ACT(k) = �

3

+ �

4

+ �

5

+ �

6

+ �

13

+ �

59

;

where � is a damping fator (say � = :95), beause 100� 100 = 0, 100� 99 = 1,

100� 95 = 5, : : : , 100� 41 = 59. In this partiular ase j would be onsidered

to be less ative than k unless � is less than about :8744.

In order to update the ativity sores aording to this measure, we would

have to do quite a bit of reomputation whenever a new onit ours: The new

sores would require us to multiply all n of the old sores by �, then to inrease

the ativity of every newly stamped variable by 1. But there's a muh better

way, namely to ompute �

�100

times the sores shown above:

ACT(j) = �

�3

+ �

�47

+ �

�95

+ �

�99

+ �

�100

; ACT(k) = �

�41

+ � � �+ �

�96

+ �

�97

:

These newly saled sores, suggested by Niklas E�en, give us the same information

about the relative ativity of eah variable; and they're updated easily, beause

we need to do only one addition per stamped variable when resolving onits.

The only problem is that the new sores an beome really huge, beause

�

�M

an ause oating point overow after the number M of onits beomes

large. The remedy is to divide them all by 10

100

, say, whenever any variable gets

a sore that exeeds 10

100

. The HEAP needn't hange, sine (118) still holds.

During the algorithm the variable DEL holds the urrent saling fator �

�M

,

divided by 10

100

eah time all of the ativities have been resaled.

Finally, the parity of OVAL(k) is used to ontrol the polarity of eah new

deision in step C6. Algorithm C starts by simply making eah OVAL(k) odd,

although other initialization shemes are possible. Afterwards it sets OVAL(k)

VAL(k) whenever x

k

leaves the trail and beomes free, as reommended by

D. Frost and R. Dehter [AAAI Conf. 12 (1994), 301{306℄ and independently

by K. Pipatsrisawat and A. Darwihe [LNCS 4501 (2007), 294{299℄, beause

experiene has shown that the reently fored polarities tend to remain good.

This tehnique is alled \stiking" or \progress saving" or \phase saving."

Algorithm C is based on the framework of a pioneering CDCL solver alled

Cha�, and on an early desendant of Cha� alled MiniSAT that was developed

by N. E�en and N. S�orensson [LNCS 2919 (2004), 502{518℄.

September 23, 2015

68 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

purging

ushing

breadth-�rst searh

unit propagation

Bakjump

Algorithm C (Satis�ability by CDCL). Given a set of lauses on n Boolean

variables, this algorithm �nds a solution L

0

L

1

: : : L

n�1

if and only if the lauses

are satis�able, meanwhile disovering M new ones that are onsequenes of the

originals. After disoveringM

p

new lauses, it will purge some of them from its

memory and resetM

p

; after disoveringM

f

of them, it will ush part of its trail,

resetM

f

, and start over. (Details of purging and ushing will be disussed later.)

C1. [Initialize.℄ Set VAL(k) OVAL(k) TLOC(k) �1, ACT(k) S(k) 0,

R

2k

 R

2k+1

 �, HLOC(k) p

k

� 1, and HEAP[p

k

� 1℄ k, for 1� k�n,

where p

1

: : : p

n

is a random permutation of f1; : : : ; ng. Then input the

lauses into MEM and the wath lists, as desribed above. Put the distint unit

lauses into L

0

L

1

: : : L

F�1

; but terminate unsuessfully if there are ontra-

ditory lauses (l) and (

�

l). Set MINL and MAXL to the �rst available position

in MEM. (See exerise 260.) Set i

0

 d s M G 0, h n, DEL 1.

C2. [Level omplete?℄ (The trail L

0

: : : L

F�1

now ontains all of the literals that

are fored by L

0

: : : L

G�1

.) Go to C5 if G = F .

C3. [Advane G.℄ Set l L

G

and G G+ 1. Then do step C4 for all in the

wath list of

�

l, unless that step detets a onit and jumps to C7. If there

is no onit, return to C2. (See exerise 261.)

C4. [Does fore a unit?℄ Let l

0

l

1

: : : l

k�1

be the literals of lause , where l

1

=

�

l.

(Swap l

0

$ l

1

if neessary.) If l

0

is true, do nothing. Otherwise look for a

literal l

j

with 1 < j < k that is not false. If suh a literal is found, move

to the wath list of l

j

. But if l

2

, : : : , l

k�1

are all false, jump to C7 if l

0

is

also false. On the other hand if l

0

is free, make it true by setting L

F

 l

0

,

TLOC(jl

0

j) F , VAL(jl

0

j) 2d+ (l

0

& 1), R

l

0

 , and F F + 1.

C5. [New level?℄ If F = n, terminate suessfully. Otherwise if M � M

p

, pre-

pare to purge exess lauses (see below). Otherwise ifM �M

f

, ush literals

as explained below and return to C2. Otherwise set d d+1 and i

d

 F .

C6. [Make a deision.℄ Set k HEAP[0℄ and delete k from the heap (see exerises

262 and 266). If VAL(k) � 0, repeat this step. Otherwise set l 2k +

(OVAL(k) & 1), VAL(k) 2d + (OVAL(k) & 1), L

F

 l, TLOC(jlj) F ,

R

l

 �, and F F + 1. (At this point F = G+ 1.) Go to C3.

C7. [Resolve a onit.℄ Terminate unsuessfully if d = 0. Otherwise use the

onit lause to onstrut a new lause

�

l

0

_

�

b

1

� � �

�

b

r

as desribed above.

Set ACT(jlj) ACT(jlj)+ DEL for all literals l stamped during this proess;

also set d

0

to the maximum level oupied by fb

1

; : : : ; b

r

g in the trail. (See

exerise 263. Inreasing ACT(jlj) may also hange HEAP.)

C8. [Bakjump.℄ While F > i

d

0

+1

, do the following: Set F F � 1, l L

F

,

k jlj, OVAL(k) VAL(k), VAL(k) �1, R

l

 �; and if HLOC(jlj) < 0

insert k into HEAP (see exerise 262). Then set G F and d d

0

.

C9. [Learn.℄ If d > 0, set MAXL, store the new lause in MEM at position ,

and advane MAXL to the next available position in MEM. (Exerise 263 gives

full details.) SetM M+1, L

F

 l

0

, TLOC(jl

0

j) F , R

l

0

 , F F+1,

DEL DEL=�, and return to C3.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 69

deisions

nodes

three-oloring problems

ower snarks

snark graphs

fsnark

Certi�ates of unsatis�ability

The high-level operations on data strutures in this algorithm are spelled out

in terms of elementary low-level steps in exerises 260{263. Exerises 266{271

disuss simple enhanements that were made in the experiments reported below.

Reality hek: Although detailed statistis about the performane of Algo-

rithm C on a wide variety of problems will be presented later, a few examples of

typial behavior will help now to larify how the method atually works in pra-

tie. Random hoies make the running time of this algorithm more variable than

it was in Algorithms A, B, D, or L; sometimes we're luky, sometimes we're not.

In the ase of waerden (3; 10; 97), the modest 97-variable-and-2779-lause

problem that was onsidered in Table 3, nine test runs of Algorithm C established

unsatis�ability after making between 250 and 300 million memory aesses; the

median was 272 M�. (This is more than twie as fast as our best previous time,

whih was obtained with Algorithm L.) The average number of deisions made|

namely the number of times L

F

 l was done in step C6|was about 63 thou-

sand; this ompares to 1701 \nodes" in Algorithm L, step L3, and 100 million

nodes in Algorithms A, B, D. About 53 thousand lauses were learned, having

an average size of 11.5 literals (after averaging about 19.9 before simpli�ation).

Fig. 49. It is not

possible to olor the

edges of the ower

snark graph J

q

with

three olors, when q

is odd. Algorithm C

is able to prove this

with amazing speed:

Computation times

(in megamems) are

shown for nine trials

at eah value of q.

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

0 M�

100 M�

200 M�

300 M�

400 M�

500 M�

Algorithm C often speeds things up muh more dramatially, in fat. For

example, Fig. 49 shows how it whips through a sequene of three-oloring prob-

lems that are based on \ower snarks." Exerise 176 de�nes fsnark (q), an

interesting set of 42q + 3 unsatis�able lauses on 18q variables. The running

time of Algorithms A, B, D, and L on fsnark (q) is proportional to 2

q

, so it's

way o� the hart|well over a gigamem already when q = 19. But Algorithm C

polishes o� the ase q = 99 in that same amount of time (thus winning by 24

orders of magnitude)! On the other hand, no satisfatory theoretial explanation

for the apparently linear behavior in Fig. 49 is presently known.

Certi�ates of unsatis�ability. When a SAT solver reports that a given

instane is satis�able, it also produes a set of distint literals from whih we an

easily hek that every lause is satis�ed. But if its report is negative|UNSAT|

how on�dent an we be that suh a laim is true? Maybe the implementation

ontains a subtle error; after all, large and ompliated programs are notoriously

buggy, and omputer hardware isn't perfet either. A negative answer an there-

fore leave both programmers and users unsatis�ed, as well as the problem.

September 23, 2015

70 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

resolution refutation

lausal proofs, see erti�ates of unsat

notation F `

1

�

unit propagation

unit lauses

Rivest

Goldberg

Novikov

learned lauses, sequene of

resolution

onit lause

We've seen that unsatis�ability an be proved rigorously by onstruting

a resolution refutation, namely a hain of resolution steps that ends with the

empty lause �, as in Fig. 48. But suh refutations amount to the onstrution

of a huge direted ayli graph.

A muh more ompat haraterization of unsatis�ability is possible. Let's

say that the sequene of lauses (C

1

; C

2

; : : : ; C

t

) is a erti�ate of unsatis�ability

for a family of lauses F if C

t

= �, and if we have

F ^ C

1

^ � � � ^ C

i�1

^ C

i

`

1

� for 1 � i � t: (119)

Here the subsript 1 in `G `

1

�' means that the lauses G lead to a ontradition

by unit propagation; and if C

i

is the lause (a

1

_ � � � _ a

k

), then C

i

is an

abbreviation for the onjuntion of unit lauses (�a

1

) ^ � � � ^ (�a

k

).

For example, let F = R be Rivest's lauses (6), whih were proved unsatis-

�able in Fig. 48. Then (12; 1; 2; �) is a erti�ate of unsatis�ability, beause

R ^

�

1 ^

�

2 `

1

�

3 `

1

�

4 `

1

� (using 12

�

3, 23

�

4, and 341);

R ^ 12 ^

�

1 `

1

2 `

1

�

4 `

1

�

3 `

1

� (using 12,

�

41

�

2,

�

2

�

34, and 341);

R ^ 12 ^ 1 ^

�

2 `

1

4 `

1

3 `

1

� (using 4

�

12, 23

�

4, and

�

3

�

4

�

1);

R ^ 12 ^ 1 ^ 2 `

1

3 `

1

4 `

1

� (using

�

1

�

23,

�

2

�

34, and

�

3

�

4

�

1).

A erti�ate of unsatis�ability gives a onvining proof, sine (119) implies

that eah C

i

must be true whenever F , C

1

, : : : , C

i�1

are true. And it's easy to

hek whether or not G `

1

�, for any given set of lauses G, beause everything is

fored and no hoies are involved. Unit propagation is analogous to water ow-

ing downhill; we an be pretty sure that it has been implemented orretly, even

if we don't trust the CDCL solver that generated the erti�ate being heked.

E. Goldberg and Y. Novikov [Proeedings of DATE: Design, Automation

and Test in Europe 6,1 (2003), 886{891℄ have pointed out that CDCL solvers

atually produe suh erti�ates as a natural byprodut of their operation:

Theorem G. If Algorithm C terminates unsuessfully, the sequene (C

1

; C

2

;

: : : ; C

t

) of lauses that it has learned is a erti�ate of unsatis�ability.

Proof. It suÆes to show that, whenever Algorithm C has learned the lause

C

0

=

�

l

0

_

�

b

1

� � �

�

b

r

, unit propagation will dedue � if we append the unit lauses

(l

0

) ^ (b

1

) ^ � � � ^ (b

r

) to the lauses that the algorithm already knows. The key

point is that C

0

has essentially been obtained by repeated resolution steps,

C

0

=

�

: : : ((C �R

l

1

) �R

l

2

) � � � �

�

�R

l

s

; (120)

where C is the original onit lause and R

l

1

, R

l

2

, : : : , R

l

s

are the reasons

for eah literal that was removed while C

0

was onstruted in step C7. More

preisely, we have C = A

0

and R

l

i

= l

i

_A

i

, where all literals of A

0

[A

1

[� � �[A

s

are false (their omplements appear in the trail); and

�

l

i

2 A

0

[� � � [A

i�1

, for 1 � i � s;

A

0

[A

1

[� � � [A

s

= f

�

l

0

;

�

l

1

; : : : ;

�

l

s

;

�

b

1

; : : : ;

�

b

r

g.

(121)

Thus the known lauses, plus b

1

, : : : , b

r

, and l

0

, will fore l

s

using lause R

l

s

.

And l

s�1

will then be fored, using R

l

s�1

. And so on.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 71

reverse unit propagation

Van Gelder

purges

Tseytin

extended resolution

autarkies

Wetzler

Heule

Hunt

Purging unhelpful lauses

Sine the unit literals in this proof are propagated in reverse order l

s

, l

s�1

,

: : : , l

1

from the resolution steps in (120), this erti�ate-heking proedure has

beome known as \reverse unit propagation" [see A. Van Gelder, Pro. Int. Symp.

on Arti�ial Intelligene and Math. 10 (2008), 9 pages, online as ISAIM2008℄.

Notie that the proof of Theorem G doesn't laim that reverse unit prop-

agation will reonstrut the preise reasoning by whih Algorithm C learned a

lause. Many di�erent downhill paths to �, built from `

1

steps, usually exist in

a typial situation. We merely have shown that every lause learnable from a

single onit does imply the existene of at least one suh downhill path.

Many of the lauses learned during a typial run of Algorithm C will be

\shots in the dark," whih turn out to have been aimed in unfruitful diretions.

Thus the erti�ates in Theorem G will usually be longer than atually ne-

essary to demonstrate unsatis�ability. For example, Algorithm C learns about

53,000 lauses when refuting waerden (3; 10; 97), and about 135,000 when refuting

fsnark (99); but fewer than 50,000 of the former, and fewer than 47,000 of the

latter, were atually used in subsequent steps. Exerise 284 explains how to

shorten a erti�ate of unsatis�ability while heking its validity.

An unexpeted diÆulty arises, however: We might spend more time veri-

fying a erti�ate than we needed to generate it! For example, a erti�ate for

waerden (3; 10; 97) was found in 272 megamems, but the time needed to hek it

with straightforward unit-propagations was atually 2.2 gigamems. Indeed, this

disrepany beomes signi�antly worse in larger problems, beause a simple

program for heking must keep all of the lauses ative in its memory. If there

are a million ative lauses, there are two million literals being wathed; hene

every hange to a literal will require many updates to the data strutures.

The solution to this problem is to provide extra hints to the erti�ate

heker. As we are about to see, Algorithm C does not keep all of the learned

lauses in its memory; it systematially purges its olletion, so that the total

number stays reasonable. At suh times it an also inform the erti�ate heker

that the purged lauses will no longer be relevant to the proof.

Further improvements also allow annotated erti�ates to aommodate

stronger proof rules, suh as Tseytin's extended resolution and tehniques based

on generalized autarkies; see N. Wetzler, M. J. H. Heule, and W. A. Hunt, Jr.,

LNCS 8561 (2014), 422{429.

Whenever a family of lauses has a erti�ate of unsatis�ability, a variant of

Algorithm C will atually �nd one that isn't too muh longer. (See exerise 386.)

*Purging unhelpful lauses. After thousands of onits have ourred, Algo-

rithm C has learned thousands of new lauses. New lauses guide the searh

by steering us away from unprodutive paths; but they also slow down the

propagation proess, beause we have to wath them.

We've seen that erti�ates an usually be shortened; therefore we know

that many of the learned lauses will probably never be needed again. For this

reason Algorithm C periodially attempts to weed out the ones that appear to

be more harmful than helpful, by ranking the lauses that have aumulated.

September 23, 2015

72 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

HOLMES

Doyle

waerden (3; 10; 97)

author

disarding

reason

trail

heuristis

Audemard

Simon

literal blok distane

signature

literal blok distane

gluose, see literal blok distane

I onsider that a man's brain originally is like a little empty atti, and

you have to stok it with suh furniture as you hoose. . . . the skilled workman

is very areful indeed as to what he takes into his brain-atti.

. . . It is a mistake to think that that little room has elasti walls

and an distend to any extent. . . . It is of the highest importane, therefore,

not to have useless fats elbowing out the useful ones.

| SHERLOCK HOLMES, in A Study in Sarlet (1887)

Algorithm C initiates a speial lause-re�nement proess as soon as it has

learned M � M

p

lauses and arrived at a reasonably stable state (step C5).

Let's ontinue our running example, waerden (3; 10; 97), in order to make the

issues onrete. If M

p

is so huge that no lauses are ever thrown away, a typial

run will learn roughly 48 thousand lauses, and do roughly 800 megamems of

omputation, before proving unsatis�ability. But if M

p

= 10000, it will learn

roughly 50 thousand lauses, and the omputation time will go down to about

500 megamems. In the latter ase the total number of learned lauses in memory

will rarely exeed 10 thousand.

Indeed, let's setM

p

= 10000 and take a lose look at exatly what happened

during the author's �rst experiments. Algorithm C paused to reonnoiter the

situation after having learned 10002 lauses. At that point only 6252 of those

10002 lauses were atually present in memory, however, beause of the lause-

disarding mehanism disussed in exerise 271. Some lauses had length 2, while

the maximum size was 24 and the median was 11; here's a omplete histogram:

2 9 49 126 216 371 542 719 882 1094 661 540 414 269 176 111 35 20 10 3 1 1 1:

Short lauses tend to be more useful, beause they redue more quikly to units.

A learned lause annot be purged if it is the reason for one of the literals

on the trail. In our example, 12 of the 6252 fell into this ategory; for instane,

30 appeared on level 10 of the trail beause `30 33 39 41 42 45 46 48 54 57' had

been learned, and we may need to know that lause in a future resolution step.

The purging proess will try to remove at least half of the existing learned

lauses, so that at most 3126 remain. We aren't allowed to touh the 12 reason-

bound ones; hene we want to forget 3114 of the other 6240. Whih of them

should we expel?

Among many heuristis that have been tried, the most suessful in pratie

are based on what Gilles Audemard and Laurent Simon have alled \literal blok

distane" [see Pro. Int. Joint Conferene on Arti�ial Intelligene 21 (2009),

399{404℄. They observed that eah level of the trail an be onsidered to be a

blok of more-or-less related variables; hene a long lause might turn out to be

more useful than a short lause, if the literals of the long one all lie on just one

or two levels while the literals of the short one belong to three or more.

Suppose all the literals of a lause C = l

1

_ � � �_ l

r

appear in the trail, either

positively as l

j

or negatively as

�

l

j

. We an group them by level so that exatly

p+ q levels are represented, where p of the levels ontain at least one positive l

j

and the other q ontain nothing but

�

l

j

's. Then (p; q) is the signature of C with

respet to the trail, and p+ q is the literal blok distane. For example, the very

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 73

VAL

Goultiaeva

Bahus

full run

�rst lause learned from waerden (3; 10; 97) in the author's test run was

11 16 21 26 36 46 51 61 66 91; (122)

later, when it was time to rank lauses for purging, the values and trail levels of

those literals were spei�ed by VAL(11), VAL(16), : : : , VAL(91), whih were

20 21 21 21 20 15 16 8 14 20:

Thus 61 was true on level 8� 1 = 4; 46 and 66 were true on level 15� 1 =

14� 1 = 7; 51 was false on level 8; the others were a mixture of true and false

on level 10; hene (122) had p = 3 and q = 1 with respet to the urrent trail.

If C has signature (p; q) and C

0

has signature (p

0

; q

0

), where p � p

0

and q � q

0

and (p; q) 6= (p

0

; q

0

), we an expet that C is more likely than C

0

to be useful in

future propagations. The same onlusion is plausible also when p+ q = p

0

+ q

0

and p < p

0

, beause C

0

won't fore anything until literals from at least p + 1

di�erent levels hange sign. These intuitive expetations are borne out by the

following detailed data obtained from waerden (3; 10; 97):

0

B

B

B

B

B

B

�

0 4 17 22 30 54 67 99 17

17 81 191 395 360 404 438 66 6

63 232 463 536 521 386 117 6 0

52 243 291 298 308 112 22 0 0

18 59 86 77 53 7 0 0 0

0 8 3 10 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

�

0 1 9 15 21 16 15 3 0

7 26 74 107 82 57 16 1 0

20 74 104 86 61 21 9 0 0

13 40 37 16 14 4 0 0 0

6 10 9 4 1 1 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

A

The matrix on the left shows how many of the 6240 eligible lauses had a given

signature (p; q), for 1 � p � 7 and 0 � q � 8; the matrix on the right shows how

many would have been used to resolve future onits, if none of them had been

removed. There were, for example, 536 learned lauses with p = q = 3, of whih

only 86 atually turned out to be useful. This data is illustrated graphially in

Fig. 50, whih shows gray retangles whose areas orrespond to the left matrix,

overlaid by blak retangles whose areas orrespond to the right matrix. We an't

predit the future, but small (p; q) tends to inrease the ratio of blak to gray.

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

p

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

z }| {

q

Fig. 50. Learned lauses that have

p positive and q all-negative levels.

The gray ones will never be used

again. Unfortunately, there's no easy

way to distinguish gray from blak

without being lairvoyant.

An alert reader will be wondering, however, how suh signatures were found,

beause we an't ompute them for all lauses until all variables appear in the

trail|and that doesn't happen until all lauses are satis�ed! The answer [see

A. Goultiaeva and F. Bahus, LNCS 7317 (2012), 30{43℄ is that it's quite

possible to arry out a \full run" in whih every variable is assigned a value,

by making only a slight hange to the normal behavior of Algorithm C: Instead

September 23, 2015

74 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

bakjumping

VAL

OVAL

author

tie-breakers

literal blok distane

ACT()

lause ativity

ativity sore

of resolving onits immediately and bakjumping, we an arry on after eah

onit until all propagations ease, and we an ontinue to build the trail in

the same way until every variable is present on some level. Conits may have

ourred on several di�erent levels; but we an safely resolve them later, learning

new lauses at that time. Meanwhile, a full trail allows us to ompute signatures

based on VAL �elds. And those VAL �elds go into the OVAL �elds after bakjump-

ing, so the variables in eah blok will tend to maintain their relationships.

The author's implementation of Algorithm C assigns an eight-bit value

RANGE() min

�

b16(p+ �q); 255

�

(123)

to eah lause ; here � is a parameter, 0 � � � 1. We also set RANGE() 0

if is the reason for some literal in the trail; RANGE() 256 if is satis�ed

at level 0. If there are m

j

lauses of range j, and if we want to keep at most T

lauses in memory, we �nd the largest j � 256 suh that

m

j

> 0 and s

j

= m

0

+m

1

+ � � �+m

j�1

� T: (124)

Then we retain all lauses for whih RANGE() < j, together with T � s

j

\tie-

breakers" that have RANGE() = j (unless j = 256). When � has the relatively

high value

15

16

= :9375, this rule essentially preserves as many lauses of small

literal blok distane as it an; and for onstant p+q it favors those with small p.

For example, with � =

15

16

and the data from Fig. 50, we save lauses that

have p = (1; 2; 3; 4; 5) when q � (5; 4; 3; 2; 0), respetively. This gives us s

95

=

12 + 3069 lauses, just 45 shy of our target T = 3126. So we also hoose 45

tie-breakers from among the 59 lauses that have RANGE() = 95, (p; q) = (5; 1).

Tie-breaking an be done by using a seondary heuristi ACT(), \lause

ativity," whih is analogous to the ativity sore of a variable but it is more

easily maintained. If lause has been used to resolve the onits numbered 3,

47, 95, 99, and 100, say, then

ACT() = %

�3

+ %

�47

+ %

�95

+ %

�99

+ %

�100

: (125)

This damping fator % (normally .999) is independent of the fator � that is used

for variable ativities. In the ase of Fig. 50, if the 59 lauses with (p; q) = (5; 1)

are arranged in order of inreasing ACT sores, the gray-and-blak pattern is

:

So if we retain the 45 with highest ativity, we pik up 8 of the 10 that turn out

to be useful. (Clause ativities are imperfet preditors, but they are usually

somewhat better than this example implies.)

Exerises 287 and 288 present full details of lause purging in aordane

with these ideas. One question remains: After we've ompleted a purge, when

should we shedule the next one? Suessful results are obtained by having two

parameters, �

p

and Æ

p

. Initially M

p

= �

p

; then after eah purge, we set �

p

�

p

+Æ

p

andM

p

 M

p

+�

p

. For example, if �

p

= 10000 and Æ

p

= 100, purging

will our after approximately 10000, 20100, 30300, 40600, : : : , k�

p

+

�

k

2

�

Æ

p

,

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 75

Flushing literals and restarting

van der Tak

Ramos

Heule

ativity sores

ACT(k)

phase-saving

reusing the trail

: : : lauses have been learned; and the number of lauses at the beginning of the

kth round will be approximately 20000+200k = 2�

p

+2kÆ

p

. (See exerise 289.)

We've based this disussion on waerden (3; 10; 97), whih is quite a simple

problem. Algorithm C's gain from lause-purging on larger problems is naturally

muh more substantial. For example, waerden (3; 13; 160) is only a bit larger than

waerden (3; 10; 97). With �

p

= 10000 and Æ

p

= 100, it �nishes in 132 gigamems,

after learning 9.5 million lauses and oupying only 503 thousand MEM ells.

Without purging, it proves unsatis�ability after learning only 7.1 million lauses,

yet at well over ten times the ost: 4307 gigamems, and 102 million ells of MEM.

*Flushing literals and restarting. Algorithm C interrupts itself in step C5 not

only to purge lauses but also to \ush literals" that may not have been the best

hoies for deisions in the trail. The task of solving a tough satis�ability problem

is a deliate balaning at: We don't want to get bogged down in the wrong part

of the searh spae; but we also don't want to lose the fruits of hard work by

\throwing out the baby with the bath water." A nie ompromise has been found

by Peter van der Tak, Antonio Ramos, and Marijn Heule [J. Satis�ability, Bool.

Modeling and Comp. 7 (2011), 133{138℄, who devised a useful way to rejuvenate

the trail periodially by following trends in the ativity sores ACT(k).

Let's go bak to Table 3, to illustrate their method. After learning the

lause (116), Algorithm C will update the trail by setting L

44

 57 on level

17; that will fore L

45

 66, beause 39, 42, : : : , 63 have all beome true; and

further positive literals 6, 58, 82, 86, 95, 96 will also join the trail in some order.

Step C5 might then intervene to suggest that we should ontemplate ushing

some or all of the F = 52 literals whose values are urrently assigned.

The deision literals 53, 55, 44, : : : , 51 on levels 1, 2, 3, : : : , 17 eah were

seleted beause they had the greatest urrent ativity sores when their level be-

gan. But ativity sores are ontinually being updated, so the old ones might be

onsiderably out of touh with present realities. For example, we've just boosted

ACT(53), ACT(27), ACT(36), ACT(70), : : : , in the proess of learning (116)| see

(115). Thus it's quite possible that several of the �rst 17 deisions no longer

seem wise, beause those literals haven't partiipated in any reent onits.

Let x

k

be a variable with maximum ACT(k), among all of the variables not

in the urrent trail. It's easy to �nd suh a k (see exerise 290). Now onsider,

as a thought experiment, what would happen if we were to jump bak all the

way to level 0 at this point and start over. Reall that our phase-saving strategy

ditates that we would set OVAL(j) VAL(j) just before setting VAL(j) �1,

as the variables beome unassigned.

If we now restart at step C6 with d 1, all variables whose ativity exeeds

ACT(k) will reeive their former values (although not neessarily in the same

order), beause the orresponding literals will enter the trail either as deisions

or as fored propagations. History will more or less repeat itself, beause the old

assignments did not ause any onits, and beause phases were saved.

We might as well therefore avoid most of this bak-and-forth unsetting and

resetting, by reusing the trail and jumping bak only partway, to the �rst level

September 23, 2015

76 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

literal ushing

ativity sore

lih�es

Biere

agility

damping fator

polarity

where the urrent ativity sores signi�antly hange the piture:

Set d

0

 0. While ACT(jL

i

d

0

+1

j) � ACT(k), set d

0

 d

0

+ 1.

Then if d

0

< d, jump bak to level d

0

.

(126)

This is the tehnique alled \literal ushing," beause it removes the literals on

levels d

0

+1 through d and leaves the others assigned. It e�etively redirets the

searh into new territory, without being as drasti as a full restart.

In Table 3, for example, ACT(49) might exeed the ativity sore of every

other unassigned variable; and it might also exeed ACT(46), the ativity of

the deision literal 46 on level 15. If the previous 14 deision-oriented ativities

ACT(53), ACT(55), : : : , ACT(37) are all � ACT(49), we would ush all the literals

L

25

, L

26

, : : : above level d

0

= 14, and ommene a new level 15.

Notie that some of the ushed literals other than 46 might atually have

the largest ativities of all. In suh ases they will re-insert themselves, before

49 ever enters the sene. Eventually, though, the literal 49 will inaugurate a new

level before a new onit arises. (See exerise 291.)

Experiene shows that ushing an indeed be extremely helpful. On the

other hand, it an be harmful if it auses us to abandon a fruitful line of attak.

When the solver is perking along and learning useful lauses by the dozen, we

don't want to upset the appleart by roking the boat. Armin Biere has therefore

introdued a useful statisti alled agility, whih tends to be orrelated with the

desirability of ushing at any given moment. His idea [LNCS 4996 (2008), 28{

33℄ is beautifully simple: We maintain a 32-bit integer variable alled AGILITY,

initially zero. Whenever a literal l is plaed on the trail in steps C4, C6, or C9,

we update the agility by setting

AGILITY AGILITY�(AGILITY�13)+

�

((OVAL(jlj)�VAL(jlj))&1)�19

�

: (127)

In other words, the fration AGILITY=2

32

is essentially multiplied by 1� Æ, then

inreased by Æ if the new polarity of l di�ers from its previous polarity, where

Æ = 2

�13

� :0001. High agility means that lots of the reent propagations are

ipping the values of variables and trying new possibilities; low agility means

that the algorithm is basially in a rut, spinning its wheels and getting nowhere.

Table 4

TO FLUSH OR NOT TO FLUSH?

Let a = AGILITY=2

32

when setting M

f

 M + �

f

, and let = 1=6, � = 17=16.

If �

f

is then ush if If �

f

is then ush if If �

f

is then ush if

1 a � � :17 32 a � �

5

 � :23 1024 a � �

10

 � :31

2 a � � � :18 64 a � �

6

 � :24 2048 a � �

11

 � :32

4 a � �

2

 � :19 128 a � �

7

 � :25 4096 a � �

12

 � :34

8 a � �

3

 � :20 256 a � �

8

 � :27 8192 a � �

13

 � :37

16 a � �

4

 � :21 512 a � �

9

 � :29 16384 a � �

14

 � :39

Armed with the notion of agility, we an �nally state what Algorithm C

does when step C5 �nds M � M

f

: First M

f

is reset to M + �

f

, where �

f

is

September 23, 2015

7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 77

relutant doubling

heuristi

randomized methods

stohasti loal searh

SLS: Stohasti loal searh

Gu

Papadimitriou

debug

random walks{

Papadimitriou

a power of two determined by the \relutant doubling" sequene h1, 1, 2, 1, 1,

2, 4, 1, : : : i; that sequene is disussed below and in exerise 293. Then the

agility is ompared to a threshold, depending on �

f

, aording to the shedule

in Table 4. (The parameter in that table an be raised or lowered, if you want

to inrease or derease the amount of ushing.) If the agility is suÆiently small,

x

k

is found and (126) is performed. Nothing hanges if the agility is large or if

d

0

= d; otherwise (126) has ushed some literals, using the operations of step C8.

Monte Carlo methods. Let's turn now to a ompletely di�erent way to

approah satis�ability problems, based on �nding solutions by totally heuristi

and randomized methods, often alled stohasti loal searh. We often use suh

methods in our daily lives, even though there's no guarantee of suess. The

simplest satis�ability-oriented tehnique of this kind was introdued by Jun Gu

[see SIGART Bulletin 3, 1 (January 1992), 8{12℄ and by Christos Papadimitriou

[FOCS 32 (1991), 163{169℄ as a byprodut of more general studies:

\Start with any truth assignment. While there are unsatis�ed

lauses, pik any one, and ip a random literal in it."

Some programmers are known to debug their ode in a haphazard manner,

somewhat like this approah; and we know that suh \blind" hanges are foolish

beause they usually introdue new bugs. Yet this idea does have merit when it

is applied to satis�ability, so we shall formulate it as an algorithm:

Algorithm P (Satis�ability by random walk). Given m nonempty lauses

C

1

^ � � � ^ C

m

on n Boolean variables x

1

: : : x

n

, this algorithm either �nds a

solution or terminates unsuessfully after making N trials.

P1. [Initialize.℄ Assign random Boolean values to x

1

: : : x

n

. Set j 0, s 0,

and t 0. (We know that s lauses are satis�ed after having made t ips.)

P2. [Suess?℄ If s = m, terminate suessfully with solution x

1

: : : x

n

. Other-

wise set j (j modm)+1. If lause C

j

is satis�ed by x

1

: : : x

n

, set s s+1

and repeat this step.

P3. [Done?℄ If t = N , terminate unsuessfully.

P4. [Flip one bit.℄ Let lause C

j

be (l

1

_ � � � _ l

k

). Choose a random index

i 2 f1; : : : ; kg, and hange variable jl

i

j so that literal l

i

beomes true. Set

s 1, t t+ 1, and return to P2.

Suppose, for example, that we're given the seven lauses R

0

of (7). Thus

m = 7, n = 4; and there are two solutions, 01�1. In this ase every nonsolution

violates a unique lause; for example, 1100 violates the lause

�

1

�

23, so step P4 is

equally likely to hange 1100 to 0100, 1000, or 1110, only one of whih is loser

to a solution. An exat analysis (see exerise 294) shows that Algorithm P will

�nd a solution after making 8.25 ips, on the average. That's no improvement

over a brute-fore searh through all 2

n

= 16 possibilities; but a small example

like this doesn't tell us muh about what happens when n is large.

Papadimitriou observed that Algorithm P is reasonably e�etive when it's

applied to 2SAT problems, beause eah ip has roughly a 50-50 hane of making

September 23, 2015

78 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Sh�oning

ballot number

progress in that ase. Several years later, Uwe Sh�oning [Algorithmia 32 (2002),

615{623℄ disovered that the algorithm also does surprisingly well on instanes of

3SAT, even though the ips when k > 2 in step P4 tend to go \the wrong way":

Theorem U. If the given lauses are satis�able, and if eah lause has at

most three literals, Algorithm P will sueed with probability

�

(3=4)

n

=n

�

after

making at most n ips.

Proof. By omplementing variables, if neessary, we an assume that 0 : : : 0 is

a solution; under this assumption, every lause has at least one negative literal.

Let X

t

= x

1

+ � � �+ x

n

be the number of 1s after t ips have been made. Eah

ip hanges X

t

by �1, and we want to show that there's a nontrivial hane that

X

t

will beome 0. After step P1, the random variable X

0

will be equal to q with

probability

�

n

q

�

=2

n

.

A lause that ontains three negative literals is good news for Algorithm P,

beause it is violated only when all three variables are 1; a ip will always

derease X

t

in suh a ase. Similarly, a violated lause with two negatives

and one positive will invoke a ip that makes progress 2/3 of the time. The

worst ase ours only when a problemati lause has only one negative literal.

Unfortunately, every lause might belong to this worst ase, for all we know.

Instead of studying X

t

, whih depends on the pattern of lauses, it's muh

easier to study another random variable Y

t

de�ned as follows: Initially Y

0

= X

0

;

but Y

t+1

= Y

t

� 1 only when step P4 ips the negative literal that has the

smallest subsript; otherwise Y

t+1

= Y

t

+ 1. For example, after taking are of a

violated lause suh as x

3

_�x

5

_�x

8

, we haveX

t+1

= X

t

+(+1;�1;�1) but Y

t+1

=

Y

t

+(+1;�1;+1) in the three possible ases. Furthermore, if the lause ontains

fewer than three literals, we penalize Y

t+1

even more, by allowing it to be Y

t

� 1

only with probability 1/3. (After a lause suh as x

4

_ �x

6

, for instane, we put

Y

t+1

= Y

t

�1 in only 2/3 of the ases when x

6

is ipped; otherwise Y

t+1

= Y

t

+1.)

We learly have X

t

� Y

t

for all t. Therefore Pr(X

t

= 0) � Pr(Y

t

= 0),

after t ips have been made; and we've de�ned things so that it's quite easy to

alulate Pr(Y

t

= 0), beause Y

t

doesn't depend on the urrent lause j:

Pr(Y

t+1

= Y

t

� 1) = 1=3 and Pr(Y

t+1

= Y

t

+ 1) = 2=3 when Y

t

> 0:

Indeed, the theory of random walks developed in Setion 7.2.1.6 tells us how to

ount the number of senarios that begin with Y

0

= q and end with Y

t

= 0, after

Y

t

has inreased p times and dereased p+ q times while remaining positive for

0 � t < 2p+ q. It is the \ballot number" of Eq. 7.2.1.6{(23),

C

p;p+q�1

=

q

2p+ q

�

2p+ q

p

�

: (128)

The probability that Y

0

= q and that Y

t

= 0 for the �rst time when t = 2p+ q

is therefore exatly

f(p; q) =

1

2

n

�

n

q

�

q

2p+ q

�

2p+ q

p

��

1

3

�

p+q

�

2

3

�

p

: (129)

September 23, 2015

7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 79

n-ube

WalkSAT{

Selman

Kautz

Cohen

break ount

Every value of p and q gives a lower bound for the probability that Algorithm P

sueeds; and exerise 296 shows that we get the result laimed in Theorem U

by hoosing p = q � n=3.

Theorem U might seem pointless, beause it predits suess only with

exponentially small probability when N = n. But if at �rst we don't sueed, we

an try and try again, by repeating Algorithm P with di�erent random hoies.

And if we repeat it Kn(4=3)

n

times, for large enough K, we're almost ertain to

�nd a solution unless the lauses an't all be satis�ed.

In fat, even more is true, beause the proof of Theorem U doesn't exploit the

full power of Eq. (129). Exerise 297 arries the analysis further, in a partiularly

instrutive way, and proves a muh sharper result:

Corollary W. When Algorithm P is applied K(4=3)

n

times with N = 2n to a

set of satis�able ternary lauses, its suess probability exeeds 1� e

�K=2

.

If the lauses C

1

^� � �^C

m

are unsatis�able, Algorithm P will never demon-

strate that fat onlusively. But if we repeat it 100(4=3)

n

times and get no

solution, Corollary W tells us that the hanes of satis�ability are inredibly

small (less than 10

�21

). So it's a safe bet that no solution exists in suh a ase.

Thus Algorithm P has a surprisingly good hane of �nding solutions \with

its eyes losed," while walking at random in the giganti spae of all 2

n

binary

vetors; and we an well imagine that even better results are possible if we devise

randomized walking methods that proeed with eyes wide open. Therefore many

people have experimented with strategies that try to make intelligent hoies

about whih diretion to take at eah ip-step. One of the simplest and best of

these improvements, popularly known as WalkSAT, was devised by B. Selman,

H. A. Kautz, and B. Cohen [Nat. Conf. Arti�ial Intelligene 12 (1994), 337{343℄:

Algorithm W (WalkSAT). Given m nonempty lauses C

1

^ � � � ^ C

m

on n

Boolean variables x

1

: : : x

n

, and a \greed-avoidane" parameter p, this algorithm

either �nds a solution or terminates unsuessfully after making N trials. It uses

auxiliary arrays

1

: : :

n

, f

0

: : : f

m�1

, k

1

: : : k

m

, and w

1

: : : w

m

.

W1. [Initialize.℄ Assign random Boolean values to x

1

: : : x

n

. Also set r t 0

and

1

: : :

n

 0 : : : 0. Then, for 1 � j � m, set k

j

to the number of true

literals in C

j

; and if k

j

= 0, set f

r

 j, w

j

 r, and r r + 1; or if

k

j

= 1 and the only true literal of C

j

is x

i

or �x

i

, set

i

i

+1. (Now r is

the number of unsatis�ed lauses, and the f array lists them. The number

i

is the \ost" or \break ount" for variable x

i

, namely the number of

additional lauses that will beome false if x

i

is ipped.)

W2. [Done?℄ If r = 0, terminate suessfully with solution x

1

: : : x

n

. Otherwise,

if t = N , terminate unsuessfully.

W3. [Choose j.℄ Set j f

q

, where q is uniformly random in f0; 1; : : : ; r � 1g.

(In other words, hoose an unsatis�ed lause C

j

at random, onsidering

every suh lause to be equally likely; exerise 3.4.1{3 disusses the best

way to ompute q.) Let lause C

j

be (l

1

_ � � � _ l

k

).

September 23, 2015

80 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Seitz

Alava

Orponen

3SAT

2SAT

relutant doubling

Luby

Sinlair

Zukerman

W4. [Choose l.℄ Let be the smallest ost among the literals fl

1

; : : : ; l

k

g. If

 = 0, or if � 1 and U � p where U is uniform in [0 : : 1), hoose l randomly

from among the literals of ost . (We all this a \greedy" hoie, beause

ipping l will minimize the number of newly false lauses.) Otherwise

hoose l randomly in fl

1

; : : : ; l

k

g.

W5. [Flip l.℄ Change the value of variable jlj, and update r,

1

: : :

n

, f

0

: : : f

r�1

,

k

1

: : : k

m

, w

1

: : : w

m

to agree with this new value. (Exerise 302 explains

how to implement steps W4 and W5 eÆiently, with omputer-friendly

hanges to the data strutures.) Set t t+ 1 and return to W2.

If, for example, we try to satisfy the seven lauses of (7) with Algorithm W,

as we did earlier with Algorithm P, the hoie x

1

x

2

x

3

x

4

= 0110 violates

�

2

�

34;

and

1

2

3

4

turns out to be 0110 in this situation. So step W4 will hoose to

ip x

4

, and we'll have the solution 0111. (See exerise 303.)

Notie that step W3 fouses attention on variables that need to hange.

Furthermore, a literal that appears in the most unsatis�ed lauses is most likely

to appear in the hosen lause C

j

.

If no ost-free ip is available, step W4 makes nongreedy hoies with prob-

ability p. This poliy keeps the algorithm from getting stuk in an unsatis�able

region from whih there's no greedy exit. Extensive experiments by S. Seitz,

M. Alava, and P. Orponen [J. Statistial Mehanis (June 2005), P06006:1{27℄

indiate that the best hoie of p is :57 when large random 3SAT problems are

being takled. For example, with this setting of p, and with m = 4:2n random

3-literal lauses, Algorithm W works fantastially well: It tends to �nd solutions

after making fewer than 10;000n ips when n = 10

4

, and fewer than 2500n ips

when 10

5

� n � 10

6

.

What about the parameter N? Should we set it equal to 2n (as reom-

mended for 3SAT problems with respet to Algorithm P), or perhaps to n

2

(as

reommended for 2SAT in exerise 299), or to 2500n (as just mentioned for 3SAT

in AlgorithmW), or to something else? When we use an algorithm like WalkSAT,

whose behavior an vary wildly depending on random hoies and on unknown

harateristis of the data, it's often wise to \ut our losses" and to start afresh

with a brand new pattern of random numbers.

Exerise 306 proves that suh an algorithm always has an optimum uto�

value N = N

�

, whih minimizes the expeted time to suess when the algorithm

is restarted after eah failure. Sometimes N

�

= 1 is the best hoie, meaning

that we should always keep plowing ahead; in other ases N

�

is quite small.

But N

�

exists only in theory, and the theory requires perfet knowledge of

the algorithm's behavior. In pratie we usually have little or no information

about how N should best be spei�ed. Fortunately there's still an e�etive way

to proeed, by using the notion of relutant doubling introdued by M. Luby,

A. Sinlair, and D. Zukerman [Information Pro. Letters 47 (1993), 173{180℄,

who de�ned the interesting sequene

S

1

; S

2

; : : : = 1; 1; 2; 1; 1; 2; 4; 1; 1; 2; 1; 1; 2; 4; 8; 1; 1; 2; 1; 1; 2; 4; 1; 1; 2; : : : : (130)

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 81

restart shedule

Loal Lemma{

probabilisti method

Erd}os

lique

random graph

Ramsey's theorem

Lov�asz

Erd}os

Lov�asz

Spener

The elements of this sequene are all powers of 2. Furthermore we have S

n+1

=

2S

n

if the number S

n

has already ourred an even number of times, otherwise

S

n+1

= 1. A onvenient way to generate this sequene is to work with two

integers (u; v), and to start with (u

1

; v

1

) = (1; 1); then

(u

n+1

; v

n+1

) =

�

u

n

&�u

n

= v

n

? (u

n

+ 1; 1): (u

n

; 2v

n

)

�

: (131)

The suessive pairs are (1; 1), (2; 1), (2; 2), (3; 1), (4; 1), (4; 2), (4; 4), (5; 1), : : : ,

and we have S

n

= v

n

for all n � 1.

The relutant doubling strategy is to run Algorithm W repeatedly with

N = S

1

, S

2

, S

3

, : : : , until suess is ahieved, where is some onstant.

Exerise 308 proves that the expeted running time X obtained in this way

exeeds the optimum by at most a fator of O(logX). Other sequenes besides

hS

n

i also have this property, and they're sometimes better (see exerise 311).

The best poliy is probably to use hS

n

i, where represents our best guess

about the value of N

�

; in this way we hedge our bets in ase is too small.

The Loal Lemma. The existene of partiular ombinatorial patterns is often

established by using a nononstrutive proof tehnique alled the \probabilisti

method," pioneered by Paul Erd}os. If we an show that Pr(X) > 0, in some

probability spae, then X must be true in at least one ase. For example [Bull.

Amer. Math. So. 53 (1947), 292{294℄, Erd}os famously observed that there is a

graph G on n verties suh that neither G nor G ontains a k-lique, whenever

�

n

k

�

< 2

k(k�1)=2�1

: (132)

For if we onsider a random graph G, eah of whose

�

n

2

�

edges is present with

probability 1/2, and if U is any partiular subset of k verties in G, the proba-

bility that either G jU or G jU is a omplete graph is learly 2=2

k(k�1)=2

. Hene

the probability that this doesn't happen for any of the

�

n

k

�

subsets U is at least

1�

�

n

k

�

2

1�k(k�1)=2

. This probability is positive; so suh a graph must exist.

The proof just given does not provide any expliit onstrution. But it does

show that we an �nd suh a graph by making at most 1

Æ�

1�

�

n

k

�

2

1�k(k�1)=2

�

random trials, on the average, provided that n and k are small enough that we

are able to test all

�

n

k

�

subgraphs in a reasonable amount of time.

Probability alulations of this kind are often ompliated by dependenies

between the random events being onsidered. For example, the presene of a

lique in one part of a graph a�ets the likelihood of many other liques that

share some of the same verties. But the interdependenies are often highly

loalized, so that \remote" events are essentially independent of eah other.

L�aszl�o Lov�asz introdued an important way to deal with suh situations early in

the 1970s, and his approah has beome known as the \Loal Lemma" beause it

has been used to establish many theorems. First published as a lemma on pages

616{617 of a longer paper [Erd}os and Lov�asz, In�nite and Finite Sets, Colloquia

Math. So. J�anos Bolyai 10 (1975), 609{627℄, and subsequently extended to a

\lopsided" form [P. Erd}os and J. Spener, Disrete Applied Math. 30 (1991),

151{154℄, it an be stated as follows:

September 23, 2015

82 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

R(G)

lopsidependeny graph

dependeny graph

Lov�asz

Spener

Shearer

Moser

Tardos

Lemma L. Let A

1

, : : : , A

m

be events in some probability spae. Let G be a

graph on verties f1; : : : ;mg, and let (p

1

; : : : ; p

m

) be numbers suh that

Pr(A

i

j A

j

1

\ � � � \ A

j

k

) � p

i

whenever k � 0 and i /���j

1

, : : : , i /���j

k

. (133)

Then Pr(A

1

\� � �\A

m

) > 0 whenever (p

1

; : : : ; p

m

) lies in a ertain set R(G).

In appliations we think of the A

j

as \bad" events, whih are undesirable

onditions that interfere with whatever we're trying to �nd. The graph G is

alled a \lopsidependeny graph" for our appliation; this name was oined as

an extension of Lov�asz's original term \dependeny graph," for whih the strit

ondition `= p

i

' was assumed in plae of `� p

i

' in (133).

The set R(G) of probability bounds for whih we an guarantee that all bad

events an simultaneously be avoided, given (133), will be disussed further be-

low. If G is the omplete graphK

m

, so that (133) simply states that Pr(A

i

) � p

i

,

R(G) is learly f(p

1

; : : : ; p

m

) j (p

1

; : : : ; p

m

) � (0; : : : ; 0) and p

1

+ � � �+ p

m

< 1g;

this is the smallest possible R(G). At the other extreme, if G is the empty

graphK

m

, we get f(p

1

; : : : ; p

m

) j 0 � p

j

< 1 for 1 � j � mg, the largest possible

R(G). Adding an edge to G makes R(G) smaller. Notie that, if (p

1

; : : : ; p

m

) is

in R(G) and 0 � p

0

j

� p

j

for 1 � j � m, then also (p

0

1

; : : : ; p

0

m

) 2 R(G).

Lov�asz disovered an elegant loal ondition that suÆes to make Lemma L

widely appliable [see J. Spener, Disrete Math. 20 (1977), 69{76℄:

Theorem L. The probability vetor (p

1

; : : : ; p

m

) is in R(G) when there are

numbers 0 � �

1

; : : : ; �

m

< 1 suh that

p

i

= �

i

Y

i��j inG

(1� �

j

): (134)

Proof. Exerise 344(e) proves that Pr(A

1

\ � � � \A

m

) � (1� �

1

) : : : (1� �

m

).

James B. Shearer [Combinatoria 5 (1985), 241{245℄ went on to determine

the exat maximum extent of R(G) for all graphs G, as we'll see later; and he

also established the following important speial ase:

Theorem J. Suppose every vertex of G has degree � d, where d > 1. Then

(p; : : : ; p) 2 R(G) when p � (d� 1)

d�1

=d

d

.

Proof. See the interesting indutive argument in exerise 317.

This ondition on p holds whenever p � 1=(ed) (see exerise 319).

Further study led to a big surprise: The Loal Lemma proves only that

desirable ombinatorial patterns exist, although they might be rare. But Robin

Moser and G�abor Tardos disovered [JACM 57 (2010), 11:1{11:15℄ that we an

eÆiently ompute a pattern that avoids all of the bad A

j

, using an almost

unbelievably simple algorithm analogous to WalkSAT!

Algorithm M (Loal resampling). Given m events fA

1

; : : : ; A

m

g that depend

on n Boolean variables fx

1

; : : : ; x

n

g, this algorithm either �nds a vetor x

1

: : : x

n

for whih none of the events is true, or loops forever. We assume that A

j

is a

funtion of the variables fx

k

j k 2 �

j

g for some given subset �

j

� f1; : : : ; ng.

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 83

reliability polynomial

lopsidependeny

traes{

Cartier

Foata

Keller

Mazurkiewiz

Viennot

heaps of piees

ommutativity, partial

strings

Whenever the algorithm assigns a value to x

k

, it sets x

k

 1 with probability

�

k

and x

k

 0 with probability 1� �

k

, where �

k

is another given parameter.

M1. [Initialize.℄ For 1 � k � n, set x

k

 [U <�

k

℄, where U is uniform in [0 : : 1).

M2. [Choose j.℄ Set j to the index of any event suh that A

j

is true. If no suh j

exists, terminate suessfully, having found a solution x

1

: : : x

n

.

M3. [Resample for A

j

.℄ For eah k 2 �

j

, set x

k

 [U <�

k

℄, where U is uniform

in [0 : :1). Return to M2.

(We have stated Algorithm M in terms of binary variables x

k

purely for onve-

niene. The same ideas apply when eah x

k

has a disrete probability distribution

on any set of values, possibly di�erent for eah k.)

To tie this algorithm to the Loal Lemma, we assume that event A

i

holds

with probability � p

i

whenever the variables it depends on have the given

distribution. For example, if A

i

is the event \x

3

6= x

5

" then p

i

must be at

least �

3

(1� �

5

) + (1� �

3

)�

5

.

We also assume that there's a graph G on verties f1; : : : ;mg suh that

ondition (133) is true, and that i��� j whenever i 6= j and �

i

\ �

j

6= ;. Then

G is a suitable dependeny graph for fA

1

; : : : ; A

m

g, beause the events A

j

1

,

: : : , A

j

k

an't possibly inuene A

i

when i /��� j

1

, : : : , i /��� j

k

. (Those events

share no ommon variables with A

i

.) We an also sometimes get by with fewer

edges by making G a lopsidependeny graph; see exerise 351.

Algorithm M might sueed with any given events, purely by hane. But

if the onditions of the Loal Lemma are satis�ed, suess an be guaranteed:

Theorem M. If (133) holds with probabilities that satisfy ondition (134) of

Theorem L, step M3 is performed for A

j

at most �

j

=(1� �

j

) times, on average.

Proof. Exerise 352 shows that this result is a orollary of the more general

analysis that is arried out below. The stated upper bound is good news, beause

�

j

is usually quite small.

Traes and piees. The best way to understand why AlgorithmM is so eÆient

is to view it algebraially in terms of \traes." The theory of traes is a beautiful

area of mathematis in whih amazingly simple proofs of profound results have

been disovered. Its basi ideas were �rst formulated by P. Cartier and D. Foata

[Leture Notes in Math. 85 (1969)℄, then independently developed from another

point of view by R. M. Keller [JACM 20 (1973), 514{537, 696{710℄ and A.

Mazurkiewiz [\Conurrent program shemes and their interpretations," DAIMI

Report PB 78 (Aarhus University, July 1977)℄. Signi�ant advanes were made

by G. X. Viennot [Leture Notes in Math. 1234 (1985), 321{350℄, who presented

many wide-ranging appliations and explained how the theory ould readily be

visualized in terms of what he alled \heaps of piees."

Trae theory is the study of algebrai produts whose variables are not

neessarily ommutative. Thus it forms a bridge between the study of strings

(in whih, for example, abbaa is quite distint from baaab) and the study

of ordinary ommutative algebra (in whih both of those examples are equal to

September 23, 2015

84 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

lashing pairs of letters

equivalene lass

path graph

lexiographi order

Viennot

territory

piees{

territories

staking the piees

empilement

intersetion graph

diagram of a trae

Tetris

aaabb = a

3

b

2

2

). Eah adjaent pair of letters fa; bg either ommutes, meaning

that ab = ba, or lashes, meaning that ab is di�erent from ba. If, for instane,

we speify that a ommutes with but that b lashes with both a and , then

abbaa is equal to abbaa, and it has six variants altogether; similarly, there

are ten equally good ways to write baaab.

Formally speaking, a trae is an equivalene lass of strings that an be

onverted to eah other by repeatedly interhanging pairs of adjaent letters that

don't lash. But we don't need to fuss about the fat that equivalene lasses

are present; we an simply represent a trae by any one of its equivalent strings,

just as we don't distinguish between equivalent frations suh as 1/2 and 3/6.

Every graph whose verties represent distint letters de�nes a family of

traes on those letters, when we stipulate that two letters lash if and only

if they are adjaent in the graph. For example, the path graph a ��� b ���

orresponds to the rules stated above. The distint traes for this graph are

�; a; b; ; aa; ab; a; ba; bb; b; b; ; aaa; aab; : : : ; b; ; aaaa; : : : (135)

if we list them �rst by size and then in lexiographi order. (Notie that a

is absent, beause a has already appeared.) The omplete graph K

n

de�nes

traes that are the same as strings, when nothing ommutes; the empty graph

K

n

de�nes traes that are the same as monomials, when everything ommutes. If

we use the path a���b������d���e���f to de�ne lashes, the traes bebafd

and efbdba turn out to be the same.

Viennot observed that partial ommutativity is atually a familiar onept,

if we regard the letters as \piees" that oupy \territory." Piees lash if and

only if their territories overlap; piees ommute if and only if their territories are

disjoint. A trae orresponds to staking the piees on top of one another, from

left to right, letting eah new piee \fall" until it either rests on the ground or on

another piee. In the latter ase, it must rest on the most reent piee with whih

it lashes. He alled this on�guration an empilement|a nie Frenh word.

More preisely, eah piee a is assigned a nonempty subset T (a) of some

universe, and we say that a lashes with b if and only if T (a) \ T (b) 6= ;. For

example, the onstraints of the graph a���b������d���e���f arise when we let

T (a) = f1; 2g; T (b) = f2; 3g; T () = f3; 4g; : : : ; T (f) = f6; 7g;

then the traes bebafd and efbdba both have

b

e

b

a

f

d

(136)

as their empilement. (Readers who have played the game of Tetris

R

will imme-

diately understand how suh diagrams are formed, although the piees in trae

theory di�er from those of Tetris beause they oupy only a single horizontal

level. Furthermore, eah type of piee always falls in exatly the same plae; and

a piee's territory T (a) might have \holes"| it needn't be onneted.)

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 85

topologial sorting

length of a trae

height of a trae

multipliation of traes

division of traes

right division of traes

polynomials

generating funtion

empty string

Two traes are the same if and only if they have the same empilement. In

fat, the diagram impliitly de�nes a partial ordering on the piees that appear;

and the number of di�erent strings that represent any given trae is the number

of ways to sort that ordering topologially (see exerise 324).

Every trae � has a length, denoted by j�j, whih is the number of letters in

any of its equivalent strings. It also has a height, written h(�), whih is the num-

ber of levels in its empilement. For example, jbebafd j = 8 and h(bebafd) = 4.

Arithmeti on traes. To multiply traes, we simply onatenate them. If,

for example, � = bebafd is the trae orresponding to (136), then ��

R

=

bebafddfabeb has the following empilement:

d

fa

b

e

b

�

b

e

b

a

f

d

=

b

e

b

a

f

d

d

f

a

b

e

b

(137)

The algorithm in exerise 327 formulates this proedure preisely. A moment's

thought shows that j��j = j�j+ j�j, h(��) � h(�)+h(�), and h(��

R

) = 2h(�).

Traes an also be divided, in the sense that � = (��)=� an be determined

uniquely when �� and � are given. All we have to do is remove the piees of �

from the piees of ��, one by one, working our way down from the top of the

empilements. Similarly, the value of � = � n (��) an be omputed from the

traes � and ��. (See exerises 328 and 329.)

Notie that we ould rotate diagrams like (136) and (137) by 90 degrees,

thereby letting the piees \fall" to the left instead of downwards. (We've used a

left-to-right approah for similar purposes in Setion 5.3.4, Fig. 50.) Or we ould

let them fall upwards, or to the right. Di�erent orientations are sometimes more

natural, depending on what we're trying to do.

We an also add and subtrat traes, thereby obtaining polynomials in vari-

ables that are only partially ommutative. Suh polynomials an be multiplied

in the normal way; for example, (� + �)(� Æ) = � � �Æ + � � �Æ. Indeed,

we an even work with in�nite sums, at least formally: The generating funtion

for all traes that belong to the graph a���b��� is

1+a+b++aa+ab+a+ba+bb+b+b++aaa+� � �++aaaa+� � � : (138)

(Compare with (135); we now use 1, not �, to stand for the empty string.)

The in�nite sum (138) an atually be expressed in losed form: It equals

1

1� a� b� + a

= 1 + (a+b+�a) + (a+b+�a)

2

+ � � � ; (139)

September 23, 2015

86 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Cartier

Foata

M�obius funtion of a trae

M�obius funtion

M�obius series

M�obius polynomial

multilinear

an identity that is orret not only when the variables are ommutative, but also

in the algebra of traes, when variables ommute only when they don't lash.

In their original monograph of 1969, Cartier and Foata showed that the sum

of all traes with respet to any graph an be expressed in a remarkably simple

way that generalizes (139). Let's de�ne the M�obius funtion of a trae � with

respet to a graph G by the rule

�

G

(�) =

�

0; if h

G

(�) > 1;

(�1)

j�j

; otherwise.

(140)

(The lassial M�obius funtion �(n) for integers, de�ned in exerise 4.5.2{10, is

analogous.) Then the M�obius series for G is de�ned to be

M

G

=

X

�

�

G

(�)�; (141)

where the sum is over all traes. This sum is a polynomial, when G is �nite,

beause it ontains exatly one nonzero term for every independent set of verties

in G; therefore we might all it the M�obius polynomial. For example, when G is

the path a���b���, we haveM

G

= 1�a� b� +a, the denominator in (139).

Cartier and Foata's generalization of (139) has a remarkably simple proof:

Theorem F. The generating funtion T

G

for the sum of all traes, with respet

to any graph G, is 1=M

G

.

Proof. We want to show thatM

G

T

G

= 1, in the (partially ommutative) algebra

of traes. This in�nite produt is

P

�;�

�

G

(�) =

P

P

�;�

�

G

(�)[=�� ℄. Hene

we want to show that the sum of �

G

(�), over all ways to fatorize = �� as the

produt of two traes � and �, is zero whenever is nonempty.

But that's easy. We an assume that the letters are ordered in some arbitrary

fashion. Let a be the smallest letter in the bottom level of 's empilement. We

an restrit attention to ases where � onsists of independent (ommuting) let-

ters (piees), beause �

G

(�) = 0 otherwise. Now if � = a�

0

for some trae �

0

, let

�

0

= a�; otherwise we must have � = a�

0

for some trae �

0

, and we let �

0

= a�.

In both ases �� = �

0

�

0

, (�

0

)

0

= �, (�

0

)

0

= �, and �

G

(�)+�

G

(�

0

) = 0. So we've

grouped all possible fatorizations of into pairs that anel out in the sum.

The M�obius series for any graph an be omputed reursively via the formula

M

G

= M

Gna

� aM

Gna

�

; a

�

= fag [fb j a���bg; (142)

where a is any letter (vertex) of G, beause we have a =2 I or a 2 I whenever I

is independent. For example, if G is the path a��� b��� ���d��� e���f , then

G n a

�

= G j f; d; e; fg is the path ���d���e���f ; repeated use of (142) yields

M

G

= 1� a� b� � d� e� f + a+ ad+ ae+ af

+ bd+ be+ bf + e+ f + df � ae� af � adf � bdf (143)

in this ase. Sine M

G

is a polynomial, we an indiate its dependene on the

variables by writing M

G

(a; b; ; d; e; f). Notie that M

G

is always multilinear

(this is, linear in eah variable); and M

Gna

(b; ; d; e; f) =M

G

(0; b; ; d; e; f).

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 87

maximum independent set

NP-hard

interval graphs

forests

soures

sinks

one

pyramid

Viennot

R(G)

Shearer

In appliations we often want to replae eah letter in the polynomial by

a single variable, suh as z, and write M

G

(z). The polynomial in (143) then

beomesM

G

(z) = 1�6z+10z

2

�4z

3

; and we an onlude from Theorem F that

the number of traes of length n with respet to G is [z

n

℄ 1=(1�6z+10z

2

�4z

3

) =

1

4

(2 +

p

2)

n+2

+

1

4

(2�

p

2)

n+2

� 2

n+1

.

Although (142) is a simple reurrene for M

G

, we an't onlude that M

G

is easy to ompute when G is a large and ompliated graph. Indeed, the degree

of M

G

is the size of a maximum independent set in G; and it's NP-hard to

determine that number! On the other hand, there are many lasses of graphs,

suh as interval graphs and forests, for whihM

G

an be omputed in linear time.

If � is any trae, the letters that an our �rst in a string that represents

it are alled the soures of �; these are the piees on the bottom level of �'s

empilement, also alled its minimal piees. Dually, the letters that an our

last are the sinks of �, its maximal piees. A trae that has only one soure is

alled a one; in this ase all piees are ultimately supported by a single piee

at the bottom. A trae that has only one sink is, similarly, alled a pyramid.

Viennot proved a nie generalization of Theorem F in his leture notes:

M

GnA

=M

G

is the sum of all traes whose soures are ontained in A: (144)

(See exerise 338; Theorem F is the speial ase where A is the set of all verties.)

In partiular, the ones for whih a is the only soure are generated by

M

Gna

=M

G

� 1 = aM

Gna

�
=M

G

: (145)

*Traes and the Loal Lemma. Now we're ready to see why the theory of

traes is intimately onneted with the Loal Lemma. If G is any graph on

the verties f1; : : : ;mg, we say that R(G) is the set of all nonnegative vetors

(p

1

; : : : ; p

m

) suh that M

G

(p

0

1

; : : : ; p

0

m

) > 0 whenever 0 � p

0

j

� p

j

for 1 � j � m.

This de�nition of R(G) is onsistent with the impliit de�nition already given

in Lemma L, beause of the following haraterization found by J. B. Shearer:

Theorem S. Under ondition (133) of Lemma L, (p

1

; : : : ; p

m

) 2 R(G) implies

Pr(A

1

\ � � � \ A

m

) �M

G

(p

1

; : : : ; p

m

) > 0: (146)

Conversely, if (p

1

; : : : ; p

m

) =2 R(G), there are events B

1

, : : : , B

m

suh that

Pr(B

i

j B

j

1

\ � � � \ B

j

k

) = p

i

whenever k � 0 and i /���j

1

, : : : , i /���j

k

, (147)

and Pr(B

1

\ � � � \ B

m

) = 0.

Proof. When (p

1

; : : : ; p

m

) 2 R(G), exerise 344 proves that there's a unique

distribution for events B

1

, : : : , B

m

suh that they satisfy (147) and also

Pr

�

\

j2J

A

j

�

� Pr

�

\

j2J

B

j

�

= M

G

�

p

1

[12 J ℄; : : : ; p

m

[m2 J ℄

�

(148)

for every subset J � f1; : : : ;mg. In this \extreme" worst-possible distribution,

Pr(B

i

\ B

j

) = 0 whenever i���j in G. Exerise 345 proves the onverse.

September 23, 2015

88 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Pringsheim

slak

onseutive 1s

Given a probability vetor (p

1

; : : : ; p

m

), let

M

�

G

(z) =M

G

(p

1

z; : : : ; p

m

z): (149)

Theorem F tells us that the oeÆient of z

n

in the power series 1=M

�

G

(z) is the

sum of all traes of length n for G. Sine this oeÆient is nonnegative, we know

by Pringsheim's theorem (see exerise 348) that the power series onverges for

all z < 1 + Æ, where 1 + Æ is the smallest real root of the polynomial equation

M

�

G

(z) = 0; this number Æ is alled the slak of (p

1

; : : : ; p

m

) with respet to G.

It's easy to see that (p

1

; : : : ; p

m

) 2 R(G) if and only if the slak is positive.

For if Æ � 0, the probabilities (p

0

1

; : : : ; p

0

m

) with p

0

j

= (1 + Æ)p

j

make M

G

= 0.

But if Æ > 0, the power series onverges when z = 1. And (sine it represents

the sum of all traes) it also onverges to the positive number 1=M

G

if any p

j

is

dereased; hene (p

1

; : : : ; p

m

) lies in R(G) by de�nition. Indeed, this argument

shows that, when (p

1

; : : : ; p

m

) 2 R(G), we an atually inrease the probabilities

to ((1 + �)p

1

; : : : ; (1 + �)p

m

), and they will still lie in R(G) whenever � < Æ.

Let's return now to Algorithm M. Suppose the suessive bad events A

j

that step M3 tries to quenh are X

1

, X

2

, : : : , X

N

, where N is the total number

of times step M3 is performed (possibly N =1). To prove that Algorithm M is

eÆient, we shall show that this random variable N has a small expeted value,

in the probability spae of the independent uniform deviates U that appear in

steps M1 and M3. The main idea is that X

1

X

2

: : : X

N

is essentially a trae for

the underlying graph; hene we an onsider it as an empilement of piees.

Some simple and onrete examples will help to develop our intuition; we

shall onsider two ase studies. In both ases there are m = 6 events A, B, C,

D, E, F , and there are n = 7 variables x

1

: : : x

7

. Eah variable is a random bit;

thus �

1

= � � � = �

7

= 1=2 in the algorithm. Event A depends on x

1

x

2

, while B

depends on x

2

x

3

, : : : , and F depends on x

6

x

7

. Furthermore, eah event ours

with probability 1/4. In Case 1, eah event is true when its substring is `10'; thus

all events are false if and only if x

1

: : : x

7

is sorted|that is, x

1

� x

2

� � � � � x

7

.

In Case 2, eah event is true when its substring is `11'; thus all events are false

if and only if x

1

: : : x

7

has no two onseutive 1s.

What happens when we apply Algorithm M to those two ases? One

possible senario is that step M3 is applied N = 8 times, with X

1

X

2

: : :X

8

=

BCEBAFDC . The atual hanges to the bits x

1

: : : x

7

might then be

Case 1

1

1

0

0

1

0

0

1

1

1

0

0

1

0

1

1

0

1

0

1

1

1

0

1

0

0

1

1

0

0

0

0

0

1

1

;

Case 2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

0

1

0

1

0

0

1

0

1

0

: (150)

(Read x

1

: : : x

7

from top to bottom in these diagrams, and san from left to right.

Eah module ` ' means \replae the two bad bits at the left by two random bits

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 89

handwaving

FKG inequality

Bernoulli-distributed

extreme distribution

generating funtion

at the right." In examples suh as this, any valid solution x

1

: : : x

7

an be plaed

at the far right; all values to the left of the modules are then fored.)

Notie that these diagrams are like the empilement (136), exept that they've

been rotated 90

Æ

. We know from (136) that the same diagram applies to the

senario EFBCDBCA as well as to BCEBAFDC , beause they're the same, as

traes. Well : : : , not quite! In truth, EFBCDBCA doesn't give exatly the same

result as BCEBAFDC in Algorithm M, if we exeute that algorithm as presently

written. But the results would be idential if we used separate streams of

independent random numbers U

k

for eah variable x

k

. Thus we an legitimately

equate equivalent traes, in the probability spae of our random events.

The algorithm runs muh faster in pratie when it's applied to Case 1 than

when it's applied to Case 2. How an that be? Both of the diagrams in (150)

our with the same probability, namely (1=2)

7

(1=4)

8

, as far as the random num-

bers are onerned. And every diagram for Case 1 has a orresponding diagram

for Case 2; so we an't distinguish the ases by the number of di�erent diagrams.

The real di�erene omes from the fat that, in Case 1, we never have two events

to hoose from in step M2, unless they are disjoint and an be handled in either

order. In Case 2, by ontrast, we are deluged at almost every step with events

that need to be snu�ed out. Therefore the senario at the right of (150) is atually

quite unlikely; why should the algorithm pik B as the �rst event to orret, and

then C, rather than A? Whatever method is used in step M2, we'll �nd that

the diagrams for Case 2 will our less frequently than ditated by the strit

probabilities, beause of the dereasing likelihood that any partiular event will

be worked on next, in the presene of ompeting hoies. (See also exerise 353.)

Worst-ase upper bounds on the running time of Algorithm M therefore

ome from situations like Case 1. In general, the empilement BCEBAFDC

in (150) will our in a run of Algorithm M with probability at most bebafd,

if we write `a' for the probabilisti upper bound for event A that is denoted by

`p

i

' in (133) when A is A

i

, and if `b', : : : , f̀ ' are similar for B, : : : , F . The

reason is that bebafd is learly the probability that those events are produed

by the independent random variables x

k

set by the algorithm, if the layers of

the orresponding empilement are de�ned by dependenies between the variable

sets �

j

. And even if events in the same layer are dependent (by shared variables)

yet not lopsidependent (in the sense of exerise 351), suh events are positively

orrelated; so the FKG inequality of exerise MPR{61, whih holds for the

Bernoulli-distributed variables of Algorithm M, shows that bebafd is an upper

bound. Furthermore the probability that step M2 atually hooses B, C, E, B,

A, F , D, and C to work on is at most 1.

Therefore, when (p

1

; : : : ; p

m

) 2 R(G), Algorithm M's running time is max-

imized when it is applied to events B

1

, : : : , B

m

that have the extreme distri-

bution (148) of exerise 344. And we an atually write down the generating

funtion for the running time with respet to those extreme events: We have

X

N�0

Pr(Algorithm M on B

1

; : : : ; B

m

does N resamplings)z

N

=

M

�

G

(1)

M

�

G

(z)

; (151)

September 23, 2015

90 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Kolipaka

Szegedy

message passing{

statistial mehanis

bipartite struture

survey propagation{

Braunstein

M�ezard

Zehina

whereM

�

G

(z) is de�ned in (149), beause the oeÆient of z

N

in 1=M

�

G

(z) is the

sum of the probabilities of all the traes of length N . Theorem F desribes the

meaning of 1=M

�

G

(1) as a \formal" power series in the variables p

i

; we proved

it without onsidering whether or not the in�nite sum onverges when those

variables reeive numerial values. But when (p

1

; : : : ; p

m

) 2 R(G), this series is

indeed onvergent (it even has a positive \slak").

This reasoning leads to the following theorem of K. Kolipaka and M. Szegedy

[STOC 43 (2011), 235{243℄:

Theorem K. If (p

1

; : : : ; p

m

) 2 R(G), Algorithm M resamples �

j

at most

E

j

= p

j

M

GnA

�

j

(p

1

; : : : ; p

m

)=M

G

(p

1

; : : : ; p

m

) (152)

times, on the average. In partiular, the expeted number of iterations of step M3

is at most E

1

+ � � �+E

m

� m=Æ, where Æ is the slak of (p

1

; : : : ; p

m

).

Proof. The extreme distribution B

1

, : : : , B

m

maximizes the number of times �

j

is resampled, and the generating funtion for that number in the extreme ase is

M

G

(p

1

; : : : ; p

j�1

; p

j

; p

j+1

; : : : ; p

m

)

M

G

(p

1

; : : : ; p

j�1

; p

j

z; p

j+1

; : : : ; p

m

)

: (153)

Di�erentiating with respet to z, then setting z 1, gives (152), beause the

derivative of the denominator is �p

j

M

GnA

�

j

(p

1

; : : : ; p

m

) by (141).

The stated upper bound on E

1

+ � � �+E

m

is proved in exerise 355.

*Message passing. Physiists who study statistial mehanis have developed

a signi�antly di�erent way to apply randomization to satis�ability problems,

based on their experiene with the behavior of large systems of interating

partiles. From their perspetive, a set of Boolean variables whose values are

0 or 1 is best viewed as an ensemble of partiles that have positive or negative

\spin"; these partiles a�et eah other and hange their spins aording to loal

attrations and repulsions, analogous to laws of magnetism. A satis�ability

problem an be formulated as a joint probability distribution on spins for whih

the states of minimum \energy" are ahieved preisely when the spins satisfy as

many lauses as possible.

In essene, their approah amounts to onsidering a bipartite struture in

whih eah variable is onneted to one or more lauses, and eah lause is

onneted to one or more variables. We an regard both variables and lauses

as ative agents, who ontinually tweet to their neighbors in this soial network.

A variable might inform its lauses that \I think I should probably be true";

but several of those lauses might reply, \I really wish you were false." By

arefully balaning these messages against eah other, suh loal interations

an propagate and build up more and more knowledge of distant onnetions,

often onverging to a state where the whole network is reasonably happy.

A partiular message-passing strategy alled survey propagation [A. Braun-

stein, M. M�ezard, and R. Zehina, Random Strutures & Algorithms 27 (2005),

September 23, 2015

7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 91

random satis�ability problems

threshold of unsatis�ability

Chavas

Furtlehner

M�ezard

Zehina

Braunstein

fous

exibility oeÆients

�eld

201{226℄ has proved to be astonishingly good at solving random satis�ability

problems in the \hard" region just before the threshold of unsatis�ability.

Let C be a lause and let l be one of its literals. A \survey message" �

C!l

is

a fration between 0 and 1 that represents how urgently C wants l to be true. If

�

C!l

= 1, the truth of l is desperately needed, lest C be false; but if �

C!l

= 0,

lause C isn't the least bit worried about the value of variable jlj. Initially we

set eah �

C!l

to a ompletely random fration.

We shall onsider an extension of the original survey propagation method

[see J. Chavas, C. Furtlehner, M. M�ezard, and R. Zehina, J. Statistial Me-

hanis (November 2005), P11016:1{25; A. Braunstein and R. Zehina, Physial

Review Letters 96 (27 January 2006), 030201:1{4℄, whih introdues additional

\reinforement messages" �

l

for eah literal l. These new messages, whih are

initially all zero, represent an external fore that ats on l. They help to fous

the network ativity by reinforing deisions that have turned out to be fruitful.

Suppose v is a variable that appears in just three lauses: positively in A

and B, negatively in C. This variable will respond to its inoming messages

�

A!v

, �

B!v

, �

C!�v

, �

v

, and �

�v

by omputing two \exibility oeÆients," �

v

and �

�v

, using the following formulas:

�

v

= (1� �

v

)(1� �

A!v

)(1� �

B!v

); �

�v

= (1� �

�v

)(1� �

C!�v

):

If, for instane, �

v

= �

�v

= 0 while �

A!v

= �

B!v

= �

C!�v

= 2=3, then �

v

=

1=9, �

�v

= 1=3. The �'s are essentially dual to the �'s, beause high urgeny

orresponds to low exibility and vie versa. The general formula for eah literal l

is

�

l

= (1� �

l

)

Y

l2C

(1� �

C!l

): (154)

Survey propagation uses these oeÆients to estimate variable v's tendeny

to be either 1 (true), 0 (false), or � (wild), by omputing three numbers

p =

(1� �

v

)�

�v

�

v

+ �

�v

� �

v

�

�v

; q =

(1� �

�v

)�

v

�

v

+ �

�v

� �

v

�

�v

; r =

�

v

�

�v

�

v

+ �

�v

� �

v

�

�v

; (155)

then p + q + r = 1, and (p; q; r) is alled the \�eld" of v, representing re-

spetively (truth, falsity, wildness). The

�eld turns out to be (8=11; 2=11; 1=11)

in our example above, indiating that v

should probably be assigned the value 1.

But if �

A!v

and �

B!v

had been only

1/3 instead of 2/3, the �eld would have

been (5=17; 8=17; 4=17), and we would

probably want v = 0 in order to sat-

isfy lause C. Figure 51 shows lines of

onstant p � q as a funtion of �

v

and

�

�v

; the most deisive ases (jp� qj � 1)

our at the lower right and upper left.

p�q = :8

p�q = :5

p�q = :2

q�p = :2

q�p = :5

q�p = :8

�

�v

�

v

0

1

1

Fig. 51. Lines of onstant

bias in a variable's \�eld."

September 23, 2015

92 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

bias message

monus

If �

v

= �

�v

= 0, there's no exibility at all: Variable v is being asked to

be both true and false. The �eld is unde�ned in suh ases, and the survey

propagation method hopes that this doesn't happen.

After eah literal l has omputed its exibility, the lauses that involve l or

�

l

an use �

l

and �

�

l

to re�ne their survey messages. Suppose, for example, that C

is the lause u _ �v _ w. It will replae the former messages �

C!u

, �

C!�v

, �

C!w

by

�

0

C!u

=

�v!C

w!C

; �

0

C!�v

=

u!C

w!C

; �

0

C!w

=

u!C

�v!C

;

where eah

l!C

is a \bias message" reeived from literal l,

l!C

=

(1� �

�

l

)�

l

=(1� �

C!l

)

�

�

l

+ (1� �

�

l

)�

l

=(1� �

C!l

)

; (156)

reeting l's propensity to be false in lauses other than C. In general we have

�

0

C!l

=

�

Y

l

0

2C

l

0

!C

�.

l!C

: (157)

(Appropriate onventions must be used to avoid division by zero in formulas

(156) and (157); see exerise 359.)

New reinforement messages �

0

l

an also be omputed periodially, using the

formula

�

0

l

=

�(�

�

l

.

� �

l

)

�

l

+ �

�

l

� �

l

�

�

l

(158)

for eah literal l; here x

.

� y denotes max(x � y; 0), and � is a reinforement

parameter spei�ed by the algorithm. Notie that �

0

l

> 0 only if �

0

�

l

= 0.

For example, here are messages that might be passed when we want to satisfy

the seven lauses of (7):

l

1

l

2

l

3

�

C!l

1

�

C!l

2

�

C!l

3

l

1

!C

l

2

!C

l

3

!C

1 2

�

3 0 0 0 3=5 0 0

�

1

�

2 3 1=5 0 0 0 3=5 1=3

2 3

�

4 1=5 0 0 0 1=3 3=5

�

2

�

3 4 0 0 0 3=5 0 0

1 3 4 0 0 1=5 3=5 1=3 0

�

1

�

3

�

4 0 0 0 0 0 3=5

�

1 2 4 0 0 0 0 0 0

l �

l

�

l

1 1 0

�

1 2=5 1=2

2 2=5 1=2

�

2 1 0

3 1 0

�

3 2=3 1=3

4 2=5 1=2

�

4 1 0

(159)

(Reall that the only solutions to these lauses are

�

1 2 3 4 and

�

1 2

�

34.) In this

ase the reader may verify that the messages of (159) onstitute a \�xed point":

The � messages determine the �'s; onversely, we also have �

0

C!l

= �

C!l

for all

lauses C and all literals l, if the reinforement messages �

l

remain onstant.

Exerise 361 proves that every solution to a satis�able set of lauses yields a

�xed point of the simultaneous equations (154), (156), (157), with the property

that �

l

= [l is true in the solution℄.

September 23, 2015

7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 93

WalkSAT+

Baldassi

damping fator

parameter

defaults

author

3SAT

unit propagation

Experiments with this message-passing strategy have shown, however, that

the best results are obtained by using it only for preliminary sreening, with the

goal of disovering variables whose settings are most ritial; we needn't ontinue

to transmit messages until every lause is fully satis�ed. One we've assigned

suitable values to the most deliate variables, we're usually left with a residual

problem that an readily be solved by other algorithms suh as WalkSAT.

The survey, reinforement, and bias messages an be exhanged using a wide

variety of di�erent protools. The following proedure inorporates two ideas

from an implementation prepared by C. Baldassi in 2012: (1) The reinforement

strength � begins at zero, but approahes 1 exponentially. (2) Variables are rated

1, 0, or � after eah reinforement, aording as max(p; q; r) in their urrent �eld

is p, q, or r. If every lause then has at least one literal that is true or �, message

passing will ease even though some surveys might still be utuating.

Algorithm S (Survey propagation). Given m nonempty lauses on n variables,

this algorithm tries to assign values to most of the variables in suh a way that

the still-unsatis�ed lauses will be relatively easy to satisfy. It maintains arrays

�

l

and �

l

of oating-point numbers for eah literal l, as well as �

C!l

for eah

lause C and eah l 2 C. It has a variety of parameters: � (the damping fator

for reinforement), N

0

and N (the minimum and maximum iteration limits),

� (the tolerane for onvergene), and (the on�dene level).

S1. [Initialize.℄ Set �

l

 �

l

 0 for all literals l, and �

C!l

 U for all lauses C

and l 2 C, where U is uniformly random in [0 : : 1). Also set i 0, � 1.

S2. [Done?℄ Terminate unsuessfully if i � N . If i is even or i < N

0

, go to S5.

S3. [Reinfore.℄ Set � �� and � 1 � �. Replae �

l

by �

0

l

for all literals l,

using (158); but terminate unsuessfully if �

l

= �

�

l

= 0.

S4. [Test pseudo-satis�ability.℄ Go to S5 if there is at least one lause whose

literals l all appear to be false, in the sense that �

�

l

< �

l

and �

�

l

<

1

2

(see

exerise 358). Otherwise go happily to S8.

S5. [Compute the �'s.℄ Compute eah �

l

, using (154); see also exerise 359.

S6. [Update the surveys.℄ Set Æ 0. For all lauses C and literals l 2 C, om-

pute �

0

C!l

using (157), and set Æ max

�

Æ; j�

0

C!l

� �

C!l

j

�

, �

C!l

 �

0

C!l

.

S7. [Loop on i.℄ If Æ � �, set i i+ 1 and return to S2.

S8. [Redue the problem.℄ Assign a value to eah variable whose �eld satis�es

jp� q j � . (Exerise 362 has further details.)

Computational experiene|otherwise known as trial and error| suggests

suitable parameter values. The defaults � = :995, N

0

= 5, N = 1000, � = :01,

and = :50 seem to provide a deent starting point for problems of modest

size. They worked well, for instane, when the author �rst tried a random 3SAT

problem with 42,000 lauses and 10,000 variables: These lauses were pseudo-

satis�able when i = 143 (although Æ � :43 was still rather large); then step S8

�xed the values of 8,282 variables with highly biased �elds, and unit propagation

gave values to 57 variables more. This proess needed only about 218 megamems

of alulation. The redued problem had 1526 2-lauses and 196 3-lauses on

September 23, 2015

94 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

author1464 variables (beause many other variables were no longer needed); 626 steps

of WalkSAT polished it o� after an additional 42 kilomems. By ontrast, when

WalkSAT was presented with the original problem (using p = :57), it needed

more than 31 million steps to �nd a solution after 3.4 gigamems of omputation.

Similarly, the author's �rst experiene applying survey propagation to a

random 3SAT problem on n = 10

6

variables with m = 4:2n lauses was a

smashing suess: More than 800,000 variables were eliminated after only 32.8

gigamems of omputation, and WalkSAT solved the residual lauses after 8.5

megamems more. By ontrast, pure WalkSAT needed 237 gigamems to perform

2.1 billion steps.

A million-variable problem with 4,250,000 lauses proved to be more hal-

lenging. These additional 50,000 lauses put the problem well beyond WalkSAT's

apability; and Algorithm S failed too, with its default parameters. However,

the settings � = :9999 and N

0

= 9 slowed the reinforement down satisfatorily,

and produed some instrutive behavior. Consider the matrix

0

B

B

B

B

B

B

B

B

B

B

B

B

�

3988 3651 3071 2339 1741 1338 946 702 508 329

5649 5408 4304 3349 2541 2052 1448 1050 666 510

8497 7965 6386 4918 3897 3012 2248 1508 1075 718

11807 11005 8812 7019 5328 4135 3117 2171 1475 1063

15814 14789 11726 9134 7188 5425 4121 3024 2039 1372

20437 19342 15604 12183 9397 7263 5165 3791 2603 1781

26455 24545 19917 15807 12043 9161 6820 5019 3381 2263

33203 31153 25052 19644 15587 11802 8865 6309 4417 2919

39962 38097 31060 24826 18943 14707 10993 7924 5225 3637

40731 40426 32716 26561 20557 15739 11634 8327 5591 4035

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

whih shows the distribution of �

�v

versus �

v

(see Fig. 51); for example, `3988' at

the upper left means that 3988 of the million variables had �

�v

between 0.0 and 0.1

and �

v

between 0.9 and 1.0. This distribution, whih appeared after Æ had been

redued to � 0:0098 by 110 iterations, is terrible|very few variables are biased

in a meaningful way. Therefore another run was made with � redued to .001;

but that failed to onverge after 1000 iterations. Finally, with � = :001 and

N = 2000, pseudo-satisfation ourred at i = 1373, with the nie distribution

0

B

B

B

B

B

B

B

B

B

B

B

B

�

406678 1946 1045 979 842 714 687 803 1298 167649

338 2 2 3 0 3 1 4 2 1289

156 1 0 0 0 1 0 2 1 875

118 4 0 0 0 0 0 0 1 743

99 0 0 0 0 0 0 1 0 663

62 0 0 0 0 0 1 0 3 810

41 0 0 0 0 0 0 0 0 1015

55 0 0 0 1 0 1 1 0 1139

63 0 0 1 0 0 0 1 2 1949

116 61 72 41 61 103 120 162 327 406839

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(although Æ was now � 1!). The biases were now pronouned, yet not entirely

reliable; the parameter had to be raised, in order to avoid a ontradition when

propagating unit literals in the redued problem. Finally, with = :99, more

than 800,000 variables ould be set suessfully. A solution was obtained after

210 gigamems (inluding 21 megamems for WalkSAT to �nish the job, but not

inluding the time spent learning how to set the parameters for so many lauses).

September 23, 2015

7.2.2.2 SATISFIABILITY: PREPROCESSING OF CLAUSES 95

belief propagation

Bayesian networks

Pearl

Bethe

Peierls

Gallager

M�ezard

Montanari

Preproessing{

simpli�ations

data strutures

restarting

inproessing

downhill transformations

erp rule

Suess with Algorithm S isn't guaranteed. But hey, when it works, it's

sometimes the only known way to solve a partiularly tough problem.

Survey propagation may be viewed as an extension of the \belief propaga-

tion" messages used in the study of Bayesian networks [see J. Pearl, Probabilisti

Reasoning in Intelligent Systems (1988), Chapter 4℄; it essentially goes beyond

Boolean logi on f0; 1g to a three-valued logi on f0; 1; �g. Analogous message-

passing heuristis had atually been onsidered muh earlier by H. A. Bethe

and R. E. Peierls [Pro. Royal Soiety of London A150 (1935), 552{575℄, and

independently by R. G. Gallager [IRE Transations IT-8 (1962), 21{28℄. For

further information see M. M�ezard and A. Montanari, Information, Physis, and

Computation (2009), Chapters 14{22.

*Preproessing of lauses. A SAT-solving algorithm will often run onsid-

erably faster if its input has been transformed into an equivalent but simpler

set of lauses. Suh transformations and simpli�ations typially require data

strutures that would be inappropriate for the main work of a solver, so they are

best onsidered separately.

Of ourse we an ombine a preproessor and a solver into a single program;

and \preproessing" tehniques an be applied again after new lauses have

been learned, if we reah a stage where we want to lean up and start afresh.

In the latter ase the simpli�ations are alled inproessing. But the basi ideas

are most easily explained by assuming that we just want to preproess a given

family of lauses F . Our goal is to produe nier lauses F

0

, whih are satis�able

if and only if F is satis�able.

We shall view preproessing as a sequene of elementary transformations

F = F

0

! F

1

! � � � ! F

r

= F

0

; (160)

where eah step F

j

! F

j+1

\ows downhill" in the sense that it either (i) elim-

inates a variable without inreasing the number of lauses, or (ii) retains all the

variables but dereases the number of literals in lauses. Many di�erent downhill

transformations are known; and we an try to apply eah of the gimmiks in our

repertoire, in some order, until none of them lead to any further progress.

Sometimes we'll atually solve the given problem, by reahing an F

0

that

is either trivially satis�able (;) or trivially unsatis�able (ontains �). But we

probably won't be so luky unless F was pretty easy to start with, beause we're

going to onsider only downhill transformations that are quite simple.

Before disussing partiular transformations, however, let's think about the

endgame: Suppose F has n variables but F

0

has n

0

< n. After we've fed the

lauses F

0

into a SAT solver and reeived bak a solution, x

0

1

: : : x

0

n

0

, how an

we onvert it to a full solution x

1

: : : x

n

of the original problem F ? Here's how:

For every transformation F

j

! F

j+1

that eliminates a variable x

k

, we shall

speify an erp rule (so-alled beause it reverses the e�et of preproessing). An

erp rule for elimination is simply an assignment `l E', where l is x

k

or �x

k

,

and E is a Boolean expression that involves only variables that have not been

eliminated. We undo the e�et of elimination by assigning to x

k

the value that

makes l true if and only if E is true.

September 23, 2015

96 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

postproessor

Unit onditioning

BCP (Boolean onstraint propagation), see unit onditioning

F j l

Subsumption

Self-subsumption

strengthening a lause

replaement priniple

Robinson

data strutures

Downhill resolution

variable elimination

elimination of variables

E�en

Biere

For example, suppose two transformations remove x and y with the erp rules

�x �y _ z; y 1:

To reverse these eliminations, right to left, we would set y true, then x �z.

As the preproessor disovers how to eliminate variables, it an immediately

write the orresponding erp rules to a �le, so that those rules don't onsume

memory spae. Afterwards, given a redued solution x

0

1

: : : x

0

n

0

, a postproessor

an read that �le in reverse order and provide the unredued solution x

1

: : : x

n

.

Transformation 1. Unit onditioning. If a unit lause `(l)' is present, we an

replae F by F j l and use the erp rule l 1. This elementary simpli�ation will

be arried out naturally by most solvers; but it is perhaps even more important

in a preproessor, sine it often enables further transformations that the solver

would not readily see. Conversely, other transformations in the preproessor

might enable unit onditionings that will ontinue to ripple down.

One onsequene of unit onditioning is that all lauses of F

0

will have length

two or more, unless F

0

is trivially unsatis�able.

Transformation 2. Subsumption. If every literal in lause C appears also

in another lause C

0

, we an remove C

0

. In partiular, dupliate lauses will be

disarded. No erp rule is needed, beause no variable goes away.

Transformation 3. Self-subsumption. If every literal in C exept �x appears

also in another lause C

0

, where C

0

ontains x, we an delete x from C

0

beause

C

0

nx = C �C

0

. In other words, the fat that C almost subsumes C

0

allows us at

least to strengthen C

0

, without atually removing it. Again there's no erp rule.

[Self-subsumption was alled \the replaement priniple" by J. A. Robinson in

JACM 12 (1965), 39.℄

Exerise 374 disusses data strutures and algorithms by whih subsump-

tions and self-subsumptions an be disovered with reasonable eÆieny.

Transformation 4. Downhill resolution. Suppose x appears only in lauses

C

1

, : : : , C

p

and �x appears only in C

0

1

, : : : , C

0

q

. We've observed (see (112)) that

variable x an be eliminated if we replae those p + q lauses by the pq lauses

fC

i

�C

0

j

j 1 � i � p; 1 � j � qg. The orresponding erp rule (see exerise 367) is

either �x

p

^

i=1

(C

i

n x) or x

q

^

j=1

(C

0

j

n �x). (161)

Every variable an be eliminated in this way, but we might be ooded with

too many lauses. We an prevent this by limiting ourselves to \downhill" ases,

in whih the new lauses don't outnumber the old ones. The ondition pq � p+q

is equivalent to (p�1)(q�1) � 1, as noted above following (112); the variable is

always removed in suh ases. But the number of new lauses might be small even

when pq is large, beause of tautologies or subsumption. Furthermore, N. E�en

and A. Biere wrote a fundamental paper on preproessing [LNCS 3569 (2005),

61{75℄ that introdued important speial ases in whih many of the pq potential

lauses an be omitted; see exerise 369. Therefore a preproessor typially tries

September 23, 2015

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 97

failed literals

unit propagation

lookahead

anti-maximal-element lauses

waerden

langford

Enoding{

at-most-one

Heule

auxiliary variables

to eliminate via resolution whenever min(p; q) � 10, say, and abandons the

attempt only when more than p+ q resolvents have been generated.

Many other transformations are possible, although the four listed above have

proved to be the most e�etive in pratie. We ould, for instane, look for failed

literals : If unit propagation leads to a ontradition when we assume that some

literal l is true (namely when F ^ (l) `

1

�), then we're allowed to assume that

l is false (beause the unit lause (

�

l) is erti�able). This observation and several

others related to it were exploited in the lookahead mehanisms of Algorithm Y

above. But Algorithm C generally has no trouble �nding failed literals all by

itself, as a natural byprodut of its mehanism for resolving onits. Exerises

378{384 disuss other tehniques that have been proposed for preproessing.

Sometimes preproessing turns out to be dramatially suessful. For exam-

ple, the anti-maximal-element lauses of exerise 228 an be proved unsatis�able

via transformations 1{4 after only about 400 megamems of work when m = 50.

Yet Algorithm C spends 3 gigamems on that untransformed problem when m is

only 14; and it needs 11 G� when m = 15, : : : , failing utterly before m = 20.

A more typial example arises in onnetion with Fig. 35 above: The problem

of showing that there's no 4-step path to involves 8725 variables, 33769

lauses, and 84041 literals, and Algorithm C requires about 6 gigamems to

demonstrate that those lauses are unsatis�able. Preproessing needs less than

10 megamems to redue that problem to just 3263 variables, 19778 lauses, and

56552 literals; then Algorithm C an handle those with 5 G� of further work.

On the other hand, preproessing might take too long, or it might produe

lauses that are more diÆult to deal with than the originals. It's totally useless

on the waerden or langford problems. (Further examples are disussed below.)

Enoding onstraints into lauses. Some problems, like waerden (j; k;n), are

inherently Boolean, and they're essentially given to us as native-born ANDs of

ORs. But in most ases we an represent a ombinatorial problem via lauses in

many di�erent ways, not immediately obvious, and the partiular enoding that

we hoose an have an enormous e�et on the speed with whih a SAT solver is

able to rank out an answer. Thus the art of problem enoding turns out to be

just as important as the art of devising algorithms for satis�ability.

Our study of SAT instanes has already introdued us to dozens of interesting

enodings; and new appliations often lead to further ideas, beause Boolean

algebra is so versatile. Eah problem may seem at �rst to need its own speial

triks. But we'll see that several general priniples are available for guidane.

In the �rst plae, di�erent solvers tend to like di�erent enodings: An

enoding that's good for one algorithm might be bad for another.

Consider, for example, the at-most-one onstraint, y

1

+ � � �+ y

p

� 1, whih

arises in a great many appliations. The obvious way to enfore this ondition

is to assert

�

p

2

�

binary lauses (�y

i

_ �y

j

), for 1 � i < j � p, so that y

i

= y

j

= 1 is

forbidden; but those lauses beome unwieldy when p is large. The alternative

enoding in exerise 12, due to Marijn Heule, does the same job with only

3p � 6 binary onstraints when p � 3, by introduing a few auxiliary variables

September 23, 2015

98 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Langford's problem

langford

00

(n)

unit propagations

binary representation

log enoding

diret enoding

sparse enoding, see diret enoding

order enoding

Crawford

Baker

a

1

, : : : , a

b(p�3)=2

. When we formulated Langford's problem in terms of lauses,

via (12), (13), and (14) above, we therefore onsidered two variants alled

langford (n) and langford

0

(n), where the former uses the obvious enoding of at-

most-one onstraints and the latter uses Heule's method. Furthermore, exerise

7.1.1{55(b) enoded at-most-one onstraints in yet another way, having the same

number of binary lauses but about twie as many auxiliary variables; let's give

the name langford

00

(n) to the lauses that we get from that sheme.

We weren't ready to disuss whih of the enodings works better in pratie,

when we introdued langford (n) and langford

0

(n) above, beause we hadn't yet

examined any SAT-solving algorithms. But now we're ready to reveal the answer;

and the answer is: \It depends." Sometimes langford

0

(n) wins over langford (n);

sometimes it loses. It always seems to beat langford

00

(n). Here, for example, are

typial statistis, with runtimes rounded to megamems (M�) or kilomems (K�):

variables lauses Algorithm D Algorithm L Algorithm C

langford (9) 104 1722 23M� 16M� 15M� (UNSAT)

langford

0

(9) 213 801 82M� 16M� 21M� (UNSAT)

langford

00

(9) 335 801 139M� 20M� 24M� (UNSAT)

langford (13) 228 5875 71685M� 45744M� 295571M� (UNSAT)

langford

0

(13) 502 1857 492992M� 38589M� 677815M� (UNSAT)

langford

00

(13) 795 1857 950719M� 46398M� 792757M� (UNSAT)

langford (16) 352 11494 5M� 52M� 301K� (SAT)

langford

0

(16) 796 2928 12M� 31M� 418K� (SAT)

langford

00

(16) 1264 2928 20M� 38M� 510K� (SAT)

langford (64) 6016 869650 (huge) (bigger) 35M� (SAT)

langford

0

(64) 14704 53184 (huger) (big) 73M� (SAT)

langford

00

(64) 23488 53184 (hugest) (biggest) 304M� (SAT)

Algorithm D prefers langford to langford

0

, beause it doesn't perform unit prop-

agations very eÆiently. Algorithm L, whih exels at unit propagation, likes

langford

0

better. Algorithm C also exels at unit propagation, but it exhibits

peuliar behavior: It prefers langford , and on satis�able instanes it zooms in

quikly to �nd a solution; but for some reason it runs very slowly on unsatis�able

instanes when n � 10.

Another general priniple is that short enodings|enodings with few vari-

ables and/or few lauses|are not neessarily better than longer enodings.

For example, we often need to use Boolean variables to enode the value of a

variable x that atually ranges over d > 2 di�erent values, say 0 � x < d. In

suh ases it's natural to use the binary representation x = (x

l�1

: : : x

0

)

2

, where

l = dlg de, and to onstrut lauses based on the independent bits x

j

; but that

representation, known as the log enoding, surprisingly turns out to be a bad idea

in many ases unless d is large. A diret enoding with d binary variables x

0

, x

1

,

: : : , x

d�1

, where x

j

= [x= j ℄, is often muh better. And the order enoding

with d � 1 binary variables x

1

, : : : , x

d�1

, where x

j

= [x� j ℄, is often better

yet; this enoding was introdued in 1994 by J. M. Crawford and A. B. Baker

[AAAI Conf. 12 (1994), 1092{1097℄. In fat, exerise 408 presents an important

September 23, 2015

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 99

unit propagation

Graph oloring problems

at-most-one

exlusion lauses

multivalued

kernel

\prelusion" lauses

\support" lauses

olored queens

hessboard

queens

median

appliation where the order enoding is the method of hoie even when d is 1000

or more! The order enoding is exponentially larger than the log enoding, yet it

wins in this appliation beause it allows the SAT solver to dedue onsequenes

rapidly via unit propagation.

Graph oloring problems illustrate this priniple niely. When we tried early

in this setion to olor a graph with d olors, we enoded the olor of eah vertex

with a diret representation, (15); but we ould have used binary notation for

those olors. And we ould also have used the order enoding, even though

the numerial ordering of olors is irrelevant in the problem itself. With a log

enoding, exerise 391 exhibits three distint ways to enfore the onstraint that

adjaent verties have di�erent olors. With the order enoding, exerise 395

explains that it's easy to handle graph oloring. And there also are four ways

to work with the diret enoding, namely (a) to insist on one olor per vertex

by inluding the at-most-one exlusion lauses (17); or (b) to allow multivalued

(multiolored) verties by omitting those lauses; or () to atually welome

multiolored verties, by omitting (17) and foring eah olor lass to be a kernel,

as suggested in answer 14; or (d) to inlude (17) but to replae the \prelusion"

lauses (16) by so-alled \support" lauses as explained in exerise 399.

These eight options an be ompared empirially by trying to arrange 64

olored queens on a hessboard so that no queens of the same olor appear in

the same row, olumn, or diagonal. That task is possible with 9 olors, but not

with 8. By symmetry we an prespeify the olors of all queens in the top row.

enoding olors variables lauses Algorithm L Algorithm C

univalued 8 512 7688 3333M� 9813M� (UNSAT)

multivalued 8 512 5896 1330M� 11997M� (UNSAT)

kernel 8 512 6408 4196M� 12601M� (UNSAT)

support 8 512 13512 16796M� 20990M� (UNSAT)

log(a) 8 2376 5120 (immense) 20577M� (UNSAT)

log(b) 8 192 5848 (enormous) 15033M� (UNSAT)

log() 8 192 5848 (enormous) 15033M� (UNSAT)

order 8 448 6215 43615M� 5122M� (UNSAT)

univalued 9 576 8928 2907M� 464M� (SAT)

multivalued 9 576 6624 104M� 401M� (SAT)

kernel 9 576 7200 93M� 87M� (SAT)

support 9 576 15480 2103M� 613M� (SAT)

log(a) 9 3168 6776 (giganti) 1761M� (SAT)

log(b) 9 256 6776 (olossal) 1107M� (SAT)

log() 9 256 6584 (mammoth) 555M� (SAT)

order 9 512 7008 (monstrous) 213M� (SAT)

(Eah running time shown here is the median of nine runs, made with di�erent

random seeds.) It's lear from this data that the log enodings are ompletely

unsuitable for Algorithm L; and even the order enoding onfuses that algo-

rithm's heuristis. But Algorithm L shines over Algorithm C with respet to

most of the diret enodings. On the other hand, Algorithm C loves the order

enoding, espeially in the diÆult unsatis�able ase.

September 23, 2015

100 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Tajima

Tamura

lique

hint lauses

unary representation

axiom lauses

ternary numbers

omplementation of unary representation

And that's not the end of the story. H. Tajima [M.S. thesis, Kobe University

(2008)℄ and N. Tamura notied that order enoding has another property, whih

trumps all other enodings with respet to graph oloring: Every k-lique of

verties fv

1

; : : : ; v

k

g in a graph allows us to append two additional \hint lauses"

(�v

d�k+1

1

_ � � � _ �v

d�k+1

k

) ^ (v

k�1

1

_ � � � _ v

k�1

k

) (162)

to the lauses for d-oloring|beause some vertex of the lique must have a

olor � d�k, and some vertex must have a olor � k�1. With these additional

lauses, the running time to prove unsatis�ability of the 8-oloring problem drops

drastially to just 60M� with Algorithm L, and to only 13M� with Algorithm C.

We an even redue it to just 2M�(!) by using that idea twie (see exerise 396).

The order enoding has several other nie properties, so it deserves a loser

look. When we represent a value x in the range 0 � x < d by the binary variables

x

j

= [x� j ℄ for 1 � j < d, we always have

x = x

1

+ x

2

+ � � �+ x

d�1

; (163)

hene order enoding is often known as unary representation. The axiom lauses

(�x

j+1

_ x

j

) for 1 � j < d� 1 (164)

are always inluded, representing the fat that x � j+1 implies x � j for eah j;

these lauses fore all the 1s to the left and all the 0s to the right. When d = 2

the unary representation redues to a one-bit enoding equal to x itself; when

d = 3 it's a two-bit enoding with 00, 10, and 11 representing 0, 1, and 2.

We might not know all of the bits x

j

of x's unary enoding while a problem

is in the ourse of being solved. But if we do know that, say, x

3

= 1 and x

7

= 0,

then we know that x belongs to the interval [3 : : 7).

Suppose we know the unary representation of x. Then no alulation is

neessary if we want to know the unary representation of y = x+ a, when a is a

onstant, beause y

j

= x

j�a

. Similarly, z = a� x is equivalent to z

j

= �x

a+1�j

;

and w = bx=a is equivalent to w

j

= x

aj

. Out-of-bounds supersripts are easy to

handle in formulas suh as this, beause x

i

= 1 when i � 0 and x

i

= 0 when i � d.

The speial ase �x = d� 1� x is obtained by left-right reetion of �x

1

: : : �x

j�1

:

(d� 1� x)

j

= (�x)

j

= x

d�j

: (165)

If we are using the order enoding for two independent variables x and y,

with 0 � x; y < d, it's similarly easy to enode the additional relation x � y+ a:

x� y � a () x � y + a ()

min(d�1;d+a)

^

j=max(0;a+1)

�

�x

j

_ y

j�a

�

: (166)

And there are analogous ways to plae bounds on the sum, x+ y:

x+ y � a () x � �y + a+ 1� d ()

min(d�1;a+1)

^

j=max(0;a+2�d)

�

�x

j

_ �y

a+1�j

�

; (167)

September 23, 2015

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 101

2SAT

lexiographi order

omparison

arries

CNF

eliminated

iruit

Tseytin enoding

gate

x+ y � a () �x � y � a� 1 + d ()

min(d;a)

^

j=max(1;a+1�d)

�

x

j

_ y

a+1�j

�

: (168)

In fat, exerise 405 shows that the general ondition ax+by � an be enfored

with at most d binary lauses, when a, b, and are onstant. Any set of suh rela-

tions, involving at most two variables per onstraint, is therefore a 2SAT problem.

Relations between three or more order-enoded variables an also be handled

without diÆulty, as long as d isn't too large. For example, onditions suh as

x + y � z and x + y � z an be expressed with O(d log d) lauses of length

� 3 (see exerise 407). Arbitrary linear inequalities an also be represented,

in priniple. But of ourse we shouldn't expet SAT solvers to ompete with

algebrai methods on problems that are inherently numerial.

Another onstraint of great importane in the enoding of ombinatorial

problems is the relation of lexiographi order : Given two bit vetors x

1

: : : x

n

and y

1

: : : y

n

, we want to enode the ondition (x

1

: : : x

n

)

2

� (y

1

: : : y

n

)

2

as a

onjuntion of lauses. Fortunately there's a nie way to do this with just 3n�2

ternary lauses involving n� 1 auxiliary variables a

1

, : : : , a

n�1

, namely

n�1

^

k=1

�

(�x

k

_y

k

_�a

k�1

) ^ (�x

k

_a

k

_�a

k�1

) ^ (y

k

_a

k

_�a

k�1

)

�

^ (�x

n

_y

n

_�a

n�1

); (169)

where `�a

0

' is omitted. For example, the lauses

(�x

1

_y

1

)^(�x

1

_a

1

)^(y

1

_a

1

)^(�x

2

_y

2

_�a

1

)^(�x

2

_a

2

_�a

1

)^(y

2

_a

2

_�a

1

)^(�x

3

_y

3

_�a

2

)

assert that x

1

x

2

x

3

� y

1

y

2

y

3

. And the same formula, but with the �nal term

(�x

n

_ y

n

_ �a

n�1

) replaed by (�x

n

_ �a

n�1

) ^ (y

n

_ �a

n�1

), works for the strit

omparison x

1

: : : x

n

< y

1

: : : y

n

. These formulas arise by onsidering the arries

that our when (�x

1

: : : �x

n

)

2

+(1 or 0) is added to (y

1

: : : y

n

)

2

. (See exerise 414.)

The general problem of enoding a onstraint on the Boolean variables

x

1

, : : : , x

n

is the question of �nding a family of lauses F that are satis�able

if and only if f(x

1

; : : : ; x

n

) is true, where f is a given Boolean funtion. We

usually introdue auxiliary variables a

1

, : : : , a

m

into the lauses of F , unless f

an be expressed diretly with a short CNF formula; thus the enoding problem

is to �nd a \good" family F suh that we have

f(x

1

; : : : ; x

n

) = 1 () 9a

1

: : :9a

m

^

C2F

C; (170)

where eah C is a lause on the variables fa

1

; : : : ; a

m

; x

1

; : : : ; x

n

g. The variables

a

1

, : : : , a

m

an be eliminated by resolution as in (112), at least in priniple, leav-

ing us with a CNF for f|although that CNF might be huge. (See exerise 248.)

If there's a simple iruit that omputes f , we know from (24) and exerise 42

that there's an equally simple \Tseytin enoding" F , with one auxiliary variable

for eah gate in the iruit. For example, suppose we want to enode the

ondition x

1

: : : x

n

6= y

1

: : : y

n

. The shortest CNF expression for this funtion

f(x

1

; : : : ; x

n

; y

1

; : : : ; y

n

) has 2

n

lauses (see exerise 415); but there's a simple

September 23, 2015

102 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Boolean hain

Plaisted

Greenbaum

bloked

Tseytin enoding

BDD

branhing program

Pi funtion

eliminate

iruit (Boolean hain) with just n+ 1 gates:

a

1

 x

1

� y

1

; : : : ; a

n

 x

n

� y

n

; f a

1

_ � � � _ a

n

:

Using (24) we get the 4n lauses

n

^

j=1

�

(�x

j

_ y

j

_ a

j

) ^ (x

j

_ �y

j

_ a

j

) ^ (x

j

_ y

j

_ �a

j

) ^ (�x

j

_ �y

j

_ �a

j

)

�

; (171)

together with (a

1

_ � � � _ a

n

), as a representation of `x

1

: : : x

n

6= y

1

: : : y

n

'.

But this is overkill; D. A. Plaisted and S. Greenbaum have pointed out

[Journal of Symboli Computation 2 (1986), 293{304℄ that we an often avoid

about half of the lauses in suh situations. Indeed, only 2n of the lauses (171)

are neessary (and suÆient), namely the ones involving �a

j

:

n

^

j=1

�

(x

j

_ y

j

_ �a

j

) ^ (�x

j

_ �y

j

_ �a

j

)

�

: (172)

The other lauses are \bloked" (see exerise 378) and unhelpful. Thus it's a

good idea to examine whether all of the lauses in a Tseytin enoding are really

needed. Exerise 416 illustrates another interesting ase.

An eÆient enoding is possible also when f has a small BDD, and in general

whenever f an be omputed by a short branhing program. Reall the example

\Pi funtion" introdued in 7.1.1{(22); we observed in 7.1.2{(6) that it an be

written

�

((x

2

^ �x

4

)� �x

3

) ^ �x

1

�

� x

2

. Thus it has a 12-lause Tseytin enoding

(x

2

_�a

1

)^ (�x

4

_�a

1

)^ (�x

2

_x

4

_a

1

)^ (x

3

_a

1

_a

2

)^ (�x

3

_�a

1

_a

2

)^ (�x

3

_a

1

_�a

2

)

^ (x

3

_�a

1

_�a

2

)^ (�x

1

_�a

3

)^ (a

2

_�a

3

)^ (x

1

_�a

2

_a

3

)^ (x

2

_a

3

)^ (�x

2

_�a

3

):

The Pi funtion also has a short branhing program, 7.1.4{(8), namely

I

8

= (

�

1? 7: 6); I

7

= (

�

2? 5: 4); I

6

= (

�

2? 0: 1); I

5

= (

�

3? 1: 0);

I

4

= (

�

3? 3: 2); I

3

= (

�

4? 1: 0); I

2

= (

�

4? 0: 1);

where the instrution `(�v? l:h)' means \If x

v

= 0, go to I

l

, otherwise go to I

h

,"

exept that I

0

and I

1

unonditionally produe the values 0 and 1. We an

onvert any suh branhing program into a sequene of lauses, by translating

`I

j

= (�v? l:h)' into

(�a

j

_ x

v

_ a

l

) ^ (�a

j

_ �x

v

_ a

h

); (173)

where a

0

is omitted, and where any lauses ontaining a

1

are dropped. We

also omit �a

t

, where I

t

is the �rst instrution; in this example t = 8. (These

simpli�ations orrespond to asserting the unit lauses (�a

0

) ^ (a

1

) ^ (a

t

).) The

branhing program above therefore yields ten lauses,

(x

1

_ a

7

) ^ (�x

1

_ a

6

) ^ (�a

7

_x

2

_ a

5

) ^ (�a

7

_ �x

2

_ a

4

) ^ (�a

6

_x

2

)

^ (�a

5

_ �x

3

) ^ (�a

4

_x

3

_ a

3

) ^ (�a

4

_ �x

3

_ a

2

) ^ (�a

3

_ �x

4

) ^ (�a

2

_x

4

):

We an readily eliminate a

6

, a

5

, a

3

, a

2

, thereby getting a six-lause equivalent

(x

1

_a

7

) ^ (�x

1

_x

2

) ^ (�a

7

_x

2

_ �x

3

) ^ (�a

7

_ �x

2

_a

4

) ^ (�a

4

_x

3

_ �x

4

) ^ (�a

4

_ �x

3

_x

4

);

September 23, 2015

7.2.2.2 SATISFIABILITY: UNIT PROPAGATION AND FORCING 103

preproessor

Unit propagation

foring{

CDCL solver

notation `F `

1

l'

at-most-one onstraint

iruit

BDD

and a preproessor will simplify this to the four-lause CNF

(�x

1

_x

2

) ^ (x

2

_ �x

3

) ^ (x

1

_ �x

2

_x

3

_ �x

4

) ^ (x

1

_ �x

3

_x

4

); (174)

whih appeared in exerise 7.1.1{19.

Exerise 417 explains why this translation sheme is valid. The method

applies to any branhing program whatsoever: The x variables an be tested in

any order|that is, the v's need not be dereasing as in a BDD; moreover, a

variable may be tested more than one.

Unit propagation and foring. The e�etiveness of an enoding depends

largely on how well that enoding avoids bad partial assignments to the vari-

ables. If we're trying to enode a Boolean ondition f(x

1

; x

2

; : : : ; x

n

), and if the

tentative assignments x

1

 1 and x

2

 0 ause f to be false regardless of the

values of x

3

through x

n

, we'd like the solver to dedue this fat without further

ado, ideally by unit propagation one x

1

and �x

2

have been asserted. With a

CDCL solver like Algorithm C, a quikly reognized onit means a relatively

short learned lause|and that's a hallmark of progress. Even better would be

a situation in whih unit propagation, after asserting x

1

, would already fore x

2

to be true; and furthermore if unit propagation after �x

2

would also fore �x

1

.

Suh senarios aren't equivalent to eah other. For example, onsider the

lauses F = (�x

1

_x

3

)^ (�x

1

_x

2

_ �x

3

). Then, using the notation `F `

1

l' to signify

that F leads to l via unit propagation, we have F j x

1

`

1

x

2

, but F j �x

2

6`

1

�x

1

.

And with the lauses G = (�x

1

_ x

2

_ x

3

) ^ (�x

1

_ x

2

_ �x

3

) we have G jx

1

j �x

2

`

1

�

(see Eq. (119)), but G jx

1

6`

1

x

2

and G j �x

2

6`

1

�x

1

.

Consider now the simple at-most-one onstraint on just three variables,

f(x

1

; x

2

; x

3

) = [x

1

+ x

2

+ x

3

� 1℄. We an try to represent f by proeeding

methodially using the methods suggested above, either by onstruting a iruit

for f or by onstruting f 's BDD. The �rst alternative (see exerise 420) yields

F = (x

1

_ �x

2

_ a

1

)^ (�x

1

_x

2

_ a

1

)^ (x

1

_x

2

_ �a

1

)^ (�x

1

_ �x

2

)^ (�x

3

_ �a

1

); (175)

the seond approah (see exerise 421) leads to a somewhat di�erent solution,

G = (x

1

_a

4

)^ (�x

1

_a

3

)^ (�a

4

_ �x

2

_a

2

)^ (�a

3

_x

2

_a

2

)^ (�a

3

_ �x

2

)^ (�a

2

_ �x

3

): (176)

But neither of these enodings is atually very good, beause F j x

3

6`

1

�x

1

and

G jx

3

6`

1

�x

1

. Muh better is the enoding that we get from the general sheme

of (18) and (19) in the ase n = 3, r = 1, namely

S = (�a

1

_ a

2

)^ (�x

1

_ a

1

)^ (�x

2

_ a

2

)^ (�x

2

_ �a

1

)^ (�x

3

_ �a

2

); (177)

where a

1

and a

2

stand for s

1

1

and s

1

2

; or the one obtained from (20) and (21),

B = (�x

3

_ a

1

)^ (�x

2

_ a

1

)^ (�x

2

_ �x

3

)^ (�a

1

_ �x

1

); (178)

where a

1

stands for b

2

1

. With either (177) or (178) we have S j x

i

`

1

�x

j

and

B j x

i

`

1

�x

j

by unit propagation whenever i 6= j. And of ourse the obvious

enoding for this partiular f is best of all, beause n is so small:

O = (�x

1

_ �x

2

)^ (�x

1

_ �x

3

)^ (�x

2

_ �x

3

): (179)

September 23, 2015

104 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

auxiliary variables

foring representation

primary variables

ardinality onstraint

at-most-one onstraint

Heule

feedbak

representation F

onjuntive prime form

prime lauses

Suppose f(x

1

; : : : ; x

n

) is a Boolean funtion that's represented by a family

of lauses F , possibly involving auxiliary variables fa

1

; : : : ; a

m

g, as in (170). We

say that F is a foring representation if we have

F jL ` l implies F jL `

1

l (180)

whenever L [l is a set of stritly distint literals ontained in fx

1

; : : : ; x

n

;

�x

1

; : : : ; �x

n

g. In other words, if the partial assignment represented by L logially

implies the truth of some other literal l, we insist that unit propagation alone

should be able to dedue l from F j L. The auxiliary variables fa

1

; : : : ; a

m

g

are exempt from this requirement; only the potential forings between primary

variables fx

1

; : : : ; x

n

g are supposed to be reognized easily when they our.

(Tehnial point: If F j L ` �, meaning that F j L is unsatis�able, we

impliitly have F j L ` l for all literals l. In suh a ase (180) tells us that

F jL `

1

l and F jL `

1

�

l both hold; hene F jL an then be proved unsatis�able

by unit propagation alone.)

We've seen that the lauses S and B in (177) and (178) are foring for the

onstraint [x

1

+ x

2

+ x

3

� 1℄, but the lauses F and G in (175) and (176) are not.

In fat, the lauses of (18) and (19) that led to (177) are always foring, for the

general ardinality onstraint [x

1

+ � � �+ x

n

� r℄; and so are the lauses of (20)

and (21) that led to (178). (See exerises 429 and 430.) Moreover, the general

at-most-one onstraint [x

1

+ � � �+ x

n

� 1℄ an be represented more eÆiently by

Heule's 3(n�2) binary lauses and b(n�3)=2 auxiliary variables (exerise 12), or

with about n lgn binary lauses and only dlgne auxiliary variables (exerise 394);

both of these representations are foring.

In general, we're glad to know as soon as possible when a variable's value has

been fored by other values, beause the variables of a large problem typially

partiipate in many onstraints simultaneously. If we know that x an't be 0 in

onstraint f , then we an often onlude that some other variable y an't be 1 in

some other onstraint g, if x appears in both f and g. There's lots of feedbak.

On the other hand it might be worse to use a large representation F that

is foring than to use a small representation G that isn't, beause additional

lauses an make a SAT solver work harder. The tradeo�s are deliate, and

they're diÆult to predit in advane.

Every Boolean onstraint f(x

1

; : : : ; x

n

) has at least one foring represen-

tation that involves no auxiliary variables. Indeed, it's easy to see that the

onjuntive prime form F of f|the AND of all f 's prime lauses| is foring.

Smaller representations are also often foring, even without auxiliaries. For

example, the simple onstraint [x

1

�x

2

� � � ��x

n

℄ has

�

n

2

�

prime lauses, namely

(x

j

_ �x

k

) for 1 � j < k � n; but only n � 1 of those lauses, the ases when

k = j + 1 as in (164), are neessary and suÆient for foring. Exerise 424

presents another, more-or-less random example.

In the worst ase, all foring representations of ertain onstraints are known

to be huge, even when auxiliary variables are introdued (see exerise 428).

But exerises 431{441 disuss many examples of useful and instrutive foring

representations that require relatively few lauses.

September 23, 2015

7.2.2.2 SATISFIABILITY: SYMMETRY BREAKING 105

Gwynne

Kullmann

honest representation

SLUR algorithm

baktrak

negated auxiliary variable

branh

primary variables

auxiliary variables

J�arvisalo

Niemel�a

Symmetry breaking{

symmetries

pigeons

permutation

lexiographially ordered

We've glossed over an interesting tehniality in de�nition (180), however:

A sneaky person might atually onstrut a representation F that is absolutely

useless in pratie, even though it meets all of those riteria for foring. For exam-

ple, let G(a

1

; : : : ; a

m

) be a family of lauses that are satis�able|but only when

the auxiliary variables a

j

are set to extremely hard-to-�nd values. Then we might

have f(x

1

) = x

1

and F = (x

1

)^G(a

1

; : : : ; a

m

)(!). This defet in de�nition (180)

was �rst pointed out by M. Gwynne and O. Kullmann [arXiv:1406.7398 [s.CC℄

(2014), 67 pages℄, who have also traed the history of the subjet.

To avoid suh a glith, we impliitly assume that F is an honest represen-

tation of f , in the following sense: Whenever L is a set of n literals that fully

haraterizes a solution x

1

: : : x

n

to the onstraint f(x

1

; : : : ; x

n

) = 1, the lauses

F jL must be easy to satisfy, using the SLUR algorithm of exerise 444. That

algorithm is eÆient beause it does not baktrak. All of the examples in exer-

ises 439{444 meet this test of honesty; indeed, the test is automatially passed

whenever every lause of F ontains at most one negated auxiliary variable.

Some authors have suggested that a SAT solver should branh only on

primary variables x

i

, rather than on auxiliary variables a

j

, whenever possible.

But an extensive study by M. J�arvisalo and I. Niemel�a [LNCS 4741 (2007),

348{363; J. Algorithms 63 (2008), 90{113℄ has shown that suh a restrition is

not advisable with Algorithm C, and it might lead to a severe slowdown.

Symmetry breaking. Sometimes we an ahieve enormous speedup by exploit-

ing symmetries. Consider, for example, the lauses for plaingm+1 pigeons into

m holes, (106){(107). We've seen in Lemma B and Theorem B that Algorithm C

and other resolution-related methods annot demonstrate the unsatis�ability of

those lauses without performing exponentially many steps asm grows. However,

the lauses are symmetrial with respet to pigeons; independently, they're also

symmetrial with respet to holes: If � is any permutation of f0; 1; : : : ;mg and

if � is any permutation of f1; 2; : : : ;mg, the transformation x

jk

7! x

(j�)(k�)

for

0 � j � m and 1 � k � m leaves the set of lauses (106){(107) unhanged.

Thus the pigeonhole problem has (m+ 1)!m! symmetries.

We'll prove below that the symmetries on the holes allow us to assume safely

that the hole-oupany vetors are lexiographially ordered, namely that

x

0k

x

1k

: : : x

mk

� x

0(k+1)

x

1(k+1)

: : : x

m(k+1)

; for 1 � k < m. (181)

These onstraints preserve satis�ability; and we know from (169) that they are

readily expressed as lauses. Without the help of suh additional lauses the

running time of Algorithm C rises from 19 megamems for m = 7 to 177M� for

m = 8, and then to 3.5 gigamems and 86G� for m = 9 and 10. But with (181),

the same algorithm shows unsatis�ability for m = 10 after only 1 megamem; and

for m = 20 and m = 30 after only 284 M� and 3.6 G�, respetively.

Even better results our when we order the pigeon-oupany vetors:

x

j1

x

j2

: : : x

jm

� x

(j+1)1

x

(j+1)2

: : : x

(j+1)m

; for 0 � j < m. (182)

With these onstraints added to (106) and (107), Algorithm C polishes o� the

ase m = 10 in just 69 kilomems. It an even handle m = 100 in 133 M�. This

September 23, 2015

106 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

points

lines

quad-free

binary matrix

0{1 matrix

submatrix

Zarankiewiz

avoiding submatries

Z(m;n)

Steiner triple system

blok designs

hessboard

ardinality onstraints

remarkable improvement was ahieved by adding only m

2

�m new variables and

3m

2

�2m new lauses to the originalm

2

+m variables and (m+1)+(m

3

+m

2

)=2

lauses of (106) and (107). (Moreover, the reasoning that justi�es (182) doesn't

\heat" by invoking the mathematial pigeonhole priniple behind the senes.)

Atually that's not all. The theory of olumnwise symmetry (see exer-

ise 498) also tells us that we're allowed to add the

�

m

2

�

simple binary lauses

(x

(j�1)j

_ �x

(j�1)k

) for 1 � j < k � m (183)

to (106) and (107), instead of (182). This priniple is rather weak in general; but

it turns out to be ideally suited to pigeons: It redues the running time for m =

100 to just 21 megamems, although it needs no auxiliary variables whatsoever!

Of ourse the status of (106){(107) has never been in doubt. Those lauses

serve merely as training wheels beause of their simpliity; they illustrate the

fat that many symmetry-breaking strategies exist. Let's turn now to a more

interesting problem, whih has essentially the same symmetries, but with the

roles of pigeons and holes played by \points" and \lines" instead. Consider a set

of m points and n lines, where eah line is a subset of points; we will require that

no two points appear together in more than one line. (Equivalently, no two lines

may interset in more than one point.) Suh a on�guration may be alled quad-

free, beause it is equivalent to an m � n binary matrix (x

ij

) that ontains no

\quad," namely no 2�2 submatrix of 1s; element x

ij

means that point i belongs

to line j. Quad-free matries are obviously haraterized by

�

m

2

��

n

2

�

lauses,

(�x

ij

_ �x

ij

0

_ �x

i

0

j

_ �x

i

0

j

0

); for 1 � i < i

0

� m and 1 � j < j

0

� n: (184)

What is the maximum number of 1s in an m � n quad-free matrix? [This

question, whenm = n, was posed by K. Zarankiewiz, Colloquium Mathemati�

2 (1951), 301, who also onsidered how to avoid more general submatries of 1s.℄

Let's all that value Z(m;n)� 1; then Z(m;n) is the smallest r suh that every

m� n matrix with r nonzero entries ontains a quad.

We've atually enountered examples of this problem before, but in a dis-

guised form. For example (see exerise 448), a Steiner triple system on v objets

exists if and only if v is odd and there is a quad-free matrix with m = v,

n = v(v � 1)=6, and r = v(v � 1)=2. Other ombinatorial blok designs have

similar haraterizations.

Table 5 shows the values of Z(m;n) for small ases. These values were dis-

overed by deliate ombinatorial reasoning, without omputer assistane; so it's

instrutive to see how well a SAT solver an ompete against real intelligene.

The �rst interesting ase ours when m = n = 8: One an plae 24

markers on a hessboard without forming a quad, but Z(8; 8) = 25 markers is too

many. If we simply add the ardinality onstraints

P

m

i=1

P

n

j=1

x

ij

� r to (184),

Algorithm C will quikly �nd a solution when m = n = 8 and r = 24. But it

bogs down when r = 25, requiring about 10 teramems to show unsatis�ability.

Fortunately we an take advantage of m!n! symmetries, whih permute rows

and olumns without a�eting quads. Exerise 495 shows that those symmetries

September 23, 2015

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 107

Guy

Erdos

Katona

Nowakowski

Satis�ability-preserving transformations{

Symmetry

onditional symmetry, see endomorphism

endomorphism

Table 5

Z(m;n), THE MINIMUM NUMBER OF 1S WITH (184) UNSATISFIABLE

n = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

m = 2: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

m = 3: 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

m = 4: 6 8 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

m = 5: 7 9 11 13 15 16 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

m = 6: 8 10 13 15 17 19 20 22 23 25 26 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43

m = 7: 9 11 14 16 19 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 45 46 47 48 49

m = 8: 10 12 15 18 20 23 25 27 29 31 33 34 36 37 39 40 42 43 45 46 48 49 51 52 54 55

m = 9: 11 13 16 19 22 25 27 30 32 34 37 38 40 41 43 44 46 47 49 50 52 53 55 56 58 59

m = 10: 12 14 17 21 23 26 29 32 35 37 40 41 43 45 47 48 50 52 53 55 56 58 59 61 62 64

m = 11: 13 15 18 22 25 28 31 34 37 40 43 45 46 48 51 52 54 56 58 60 61 63 64 66 67 69

m = 12: 14 16 19 23 26 29 33 37 40 43 46 49 50 52 54 56 58 61 62 64 66 67 69 71 73 74

m = 13: 15 17 20 24 28 31 34 38 41 45 49 53 54 56 58 60 62 65 67 68 80 72 74 76 79 80

m = 14: 16 18 21 25 29 32 36 40 43 46 50 54 57 59 61 64 66 69 71 73 74 76 79 81 83 85

m = 15: 17 19 22 26 31 34 37 41 45 48 52 56 59 62 65 68 70 73 76 78 79 81 83 86 87 89

m = 16: 18 20 23 27 32 35 39 43 47 51 54 58 61 65 68 71 74 77 81 82 84 86 88 91 92 94

[Referenes: R. K. Guy, in Theory of Graphs, Tihany 1966, edited by Erd}os and Katona (Aa-

demi Press, 1968), 119{150; R. J. Nowakowski, Ph.D. thesis (Univ. of Calgary, 1978), 202.℄

allow us to add the lexiographi onstraints

x

i1

x

i2

: : : x

in

� x

(i+1)1

x

(i+1)2

: : : x

(i+1)n

; for 1 � i < m; (185)

x

1j

x

2j

: : : x

mj

� x

1(j+1)

x

2(j+1)

: : : x

m(j+1)

; for 1 � j < n: (186)

(Inreasing order, with `�' in plae of `�', ould also have been used, but

dereasing order turns out to be better; see exerise 497.) The running time to

prove unsatis�ability when r = 25 now dereases dramatially, to only about 50

megamems. And it falls to 48 M� if the lexiographi onstraints are shortened

to onsider only the leading 4 elements of a row or olumn, instead of testing all 8.

The onstraints of (185) and (186) are useful in satis�able problems too|

not in the easy ase m = n = 8, when they aren't neessary, but for example in

the ase m = n = 13 when r = 52: Then they lead Algorithm C to a solution

after about 200 gigamems, while it needs more than 18 teramems to �nd a

solution without suh help. (See exerise 449.)

Satis�ability-preserving maps. Let's proeed now to the promised theory of

symmetry breaking. In fat, we will do more: Symmetry is about permutations

that preserve strutural properties, but we will onsider arbitrary mappings

instead. Mappings are more general than permutations, beause they needn't be

invertible. If x = x

1

: : : x

n

is any potential solution to a satis�ability problem,

our theory is based on transformations � that map x 7! x� = x

0

1

: : : x

0

n

, where

x� is required to be a solution whenever x is a solution.

In other words, if F is a family of lauses on n variables and if f(x) =

[x satis�es F ℄, then we are interested in all mappings � for whih f(x) � f(x�).

Suh a mapping is onventionally alled an endomorphism of the solutions.* If an

* This word is a bit of a mouthful. But it's easier to say \endomorphism" than to say

\satis�ability-preserving transformation," and you an use it to impress your friends. The

term \onditional symmetry" has also been used by several authors in speial ases.

September 23, 2015

108 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

automorphism

pi as soure of \random"

yles

oriented tree

digraph

sink omponents

strongly onneted omponents

orbits

sweep

trae

submatrix

endomorphism � is atually a permutation, it's alled an automorphism. Thus,

if there are K solutions to the problem, out of N = 2

n

possibilities, the total

number of mappings is N

N

; the total number of endomorphisms is K

K

N

N�K

;

and the total number of automorphisms is K! (N �K)!.

Notie that we don't require f(x) to be exatly equal to f(x�). An endomor-

phism is allowed to map a nonsolution into a solution, and onlyK

K

(N�K)

N�K

mappings satisfy that stronger property. On the other hand, automorphisms

always do satisfy f(x) = f(x�); see exerise 454.

Here, for instane, is a more-or-less random mapping when n = 4:

00000001 0010

0011

0100

0101 0110

0111

1000

1001

10101011

1100

1101 11101111

(187)

Exerises 455 and 456 disuss potential endomorphisms of this mapping.

In general there will be one or more yles, and every element of a yle is

the root of an oriented tree that leads to it. For example, the yles of (187) are

(0011), (1010 0101 0110), and (1000).

Several di�erent endomorphisms �

1

, �

2

, : : : , �

p

are often known. In suh

ases it's helpful to imagine the digraph with 2

n

verties that has ars from eah

vertex x to its suessors x�

1

, x�

2

, : : : , x�

p

. This digraph will have one or more

sink omponents, whih are strongly onneted omponents Y from whih there

is no esape: If x 2 Y then x�

k

2 Y for 1 � k � p. (In the speial ase where eah

�

k

is an automorphism, the sink omponents are traditionally alled orbits of the

automorphism group.) When p = 1, a sink omponent is the same as a yle.

The lauses F are satis�able if and only if f(x) = 1 for at least one x. Suh

an x will lead to at least one sink omponent Y, all of whose elements will satisfy

f(y) = 1. Thus it suÆes to test satis�ability by heking just one element y in

every sink omponent Y, to see if f(y) = 1.

Let's onsider a simple problem based on the \sweep" of anm�nmatrixX =

(x

ij

), whih is the largest diagonal sum of any t� t submatrix:

sweep(X) = max

1�i

1

<i

2

<���<i

t

�m

1�j

1

<j

2

<���<j

t

�n

(x

i

1

j

1

+ x

i

2

j

2

+ � � �+ x

i

t

j

t

): (188)

WhenX is binary, sweep(X) is the length of the longest downward-and-rightward

path that passes through its 1s. We an use satis�ability to deide whether suh

a matrix exists having sweep(X) � k and

P

m

i=1

P

n

j=1

x

ij

� r, given

m, n, k, and r; suitable lauses are exhibited in exerise 460. A

solution with m = n = 10, k = 3, and r = 51 appears at the right: It

has 51 1s, but no four of them lie in a monotoni southeasterly path.

0000111111

0000100011

0000100111

0001101101

0111111001

1111100001

1010000011

1010000010

1110111110

1111100000

This problem has 2

mn

andidate matries X , and experiments

with small m and n suggest several endomorphisms that an be

applied to suh andidates without inreasing the sweep.

� �

1

: If x

ij

= 1 and x

i(j+1)

= 0, and if x

i

0

j

= 0 for 1 � i

0

< i, we an set

x

ij

 0 and x

i(j+1)

 1.

� �

2

: If x

ij

= 1 and x

(i+1)j

= 0, and if x

ij

0

= 0 for 1 � j

0

< j, we an set

x

ij

 0 and x

(i+1)j

 1.

September 23, 2015

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 109

auxiliary variables

lexiographially

swoop

Theory and pratie

perfet mathing

exat over by pairs+

4-yle

� �

3

: If the 2� 2 submatrix in rows fi; i+1g and olumns fj; j +1g is

11

10

, we

an hange it to

01

11

.

These transformations are justi�ed in exerise 462. They're sometimes appliable

for several di�erent i and j; for instane, �

3

ould be used to hange any of eight

di�erent 2�2 submatries in the example solution. In suh ases we make an ar-

bitrary deision, by hoosing (say) the lexiographially smallest possible i and j.

The lauses that enode this problem have auxiliary variables besides x

ij

;

but we an ignore the auxiliary variables when reasoning about endomorphisms.

Eah of these endomorphisms either leaves X unhanged or replaes it by a

lexiographially smaller matrix. Therefore the sink omponents of f�

1

; �

2

; �

3

g

onsist of the matriesX that are �xed points of all three transformations. Hene

we're allowed to append additional lauses, stating that neither �

1

nor �

2

nor �

3

is appliable. For instane, transformation �

3

is ruled out by the lauses

m�1

^

i=1

n�1

^

j=1

(�x

ij

_ �x

i(j+1)

_ �x

(i+1)j

_ x

(i+1)(j+1)

); (189)

whih state that the submatrix

11

10

doesn't appear. The lauses for �

1

and �

2

are

only a bit more ompliated (see exerise 461).

These additional lauses give interesting answers in satis�able instanes,

although they aren't really helpful running-time-wise. On the other hand, they're

spetaularly suessful when the problem is unsatis�able.

For example, we an show, without endomorphisms, that the ase m = n =

10, k = 3, r = 52 is impossible, and hene that any solution for r = 51 is

optimum; Algorithm C proves this after about 16 gigamems of work. Adding

the lauses for �

1

and �

2

, but not �

3

, inreases the running time to 23G�; on

the other hand the lauses for �

3

without �

1

or �

2

redue it to 6G�. When we

use all three endomorphisms simultaneously, however, the running time to prove

unsatis�ability goes down to just 3.5 megamems, a speedup of more than 4500.

Even better is the fat that the �xed points of f�

1

; �

2

; �

3

g atually have an

extremely simple form|see exerise 463| from whih we an readily determine

the answer by hand, without running the mahine at all! Computer experiments

have helped us to guess this result; but one we've proved it, we've solved

in�nitely many ases in one fell swoop. Theory and pratie are synergisti.

Another interesting example arises when we want to test whether or not

a given graph has a perfet mathing, whih is a set of nonoverlapping edges

that exatly touh eah vertex. We'll disuss beautiful, eÆient algorithms for

this problem in Setions 7.5.1 and 7.5.5; but it's interesting to see how well a

simple-minded SAT solver an ompete with those methods.

Perfet mathing is readily expressible as a SAT problem whose variables are

alled `uv', one for eah edge u���v. Variables `uv' and `vu' are idential. When-

ever the graph ontains a 4-yle v

0

���v

1

���v

2

��� v

3

��� v

0

, we might inlude

two of its edges fv

0

v

1

; v

2

v

3

g in the mathing; but we ould equally well have in-

luded fv

1

v

2

; v

3

v

0

g instead. Thus there's an endomorphism that says, \If v

0

v

1

=

v

2

v

3

= 1 (hene v

1

v

2

= v

3

v

0

= 0), set v

0

v

1

 v

2

v

3

 0 and v

1

v

2

 v

3

v

0

 1."

September 23, 2015

110 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

dominoes

grid graph

mutilated hessboard

Danthev

Riis

resolution refutation

And we an arry this idea further: Let the edges be totally ordered in some

arbitrary fashion, and for eah edge uv onsider all 4-yles in whih uv is the

largest edge. In other words, we onsider all yles of the form u���v���u

0

���

v

0

���u in whih vu

0

, u

0

v

0

, v

0

u all preede uv in the ordering. If any suh yles

exist, hoose one of them arbitrarily, and let �

uv

be one of two endomorphisms:

�

�

uv

: \If uv = u

0

v

0

= 1, set uv u

0

v

0

 0 and vu

0

 v

0

u 1."

�

+

uv

: \If vu

0

= v

0

u = 1, set uv u

0

v

0

 1 and vu

0

 v

0

u 0."

Either �

�

uv

or �

+

uv

is stipulated, for eah uv. Exerise 465 proves that a perfet

mathing is in the sink omponent of any suh family of endomorphisms if and

only if it is �xed by all of them. Therefore we need only searh for �xed points.

For example, onsider the problem of overing anm�n board with dominoes.

This is the problem of �nding a perfet mathing on the grid graph P

m

P

n

. The

graph has mn verties (i; j), with m(n� 1) \horizontal" edges h

ij

from (i; j) to

(i; j+1) and (m� 1)n \vertial" edges v

ij

from (i; j) to (i+1; j). It has exatly

(m � 1)(n � 1) 4-yles; and if we number the edges from left to right, no two

4-yles have the same largest edge. Therefore we an onstrut (m� 1)(n� 1)

endomorphisms, in eah of whih we're free to deide whether to allow a parti-

ular yle to be �lled by two horizontal dominoes or by two vertial ones.

Let's stipulate that h

ij

and h

(i+1)j

are allowed together only when i + j

is odd; v

ij

and v

i(j+1)

are allowed together only when i + j is even. The nine

endomorphisms when m = n = 4 are then

7! 7! 7! 7! 7! 7! 7! 7! 7!

. (190)

And it's not diÆult to see that only one 4� 4 domino overing is �xed by all

nine. Indeed (exerise 466), the solution turns out to be unique for all m and n.

The famous problem of the \mutilated hessboard" asks for a domino ov-

ering when two opposite orner ells have been removed. This problem is

unsatis�able when m and n are both even, by exerise 7.1.4{213. But a SAT

solver an't disover this fat quikly from the lauses alone, beause there are

many ways to get quite lose to a solution; see the disussion following 7.1.4{

(130). [S. Danthev and S. Riis, in FOCS 42 (2001), 220{229, have proved in fat

that every resolution refutation of these lauses requires 2

(n)

steps.℄

When Algorithm C is presented with mutilated boards of sizes 6� 6, 8� 8,

10� 10, : : : , 16� 16, it needs respetively about 55K�, 1:4M�, 31M�, 668M�,

16:5G�, and :91T� (that's teramems) to prove unsatis�ability. The even-odd

endomorphisms typi�ed by (190) ome to our resue, however: They narrow the

searh spae spetaularly, reduing the respetive running times to only 15K�,

60K�, 135K�, 250K�, 470K�, 690K� (that's kilomems). They even an verify

the unsatis�ability of a mutilated 256�256 domino over after fewer than 4:2G�

of alulation, exhibiting a growth rate of roughly O(n

3

).

September 23, 2015

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 111

lexiographially

lex-leader

signed permutations

permuting variables and/or omplementing them

literals

order r

Endomorphisms an also speed up SAT solving in another important way:

Theorem E. Let p

1

p

2

: : : p

n

be any permutation of f1; 2; : : : ; ng. If the Bool-

ean funtion f(x

1

; x

2

; : : : ; x

n

) is satis�able, then it has a solution suh that

x

p

1

x

p

2

: : : x

p

n

is lexiographially less than or equal to x

0

p

1

x

0

p

2

: : : x

0

p

n

for every

endomorphism of f that takes x

1

x

2

: : : x

n

7! x

0

1

x

0

2

: : : x

0

n

.

Proof. The lexiographially smallest solution of f has this property.

Maybe we shouldn't all this a \theorem"; it's an obvious onsequene of the

fat that endomorphisms always map solutions into solutions. But it deserves to

be remembered and plaed on some sort of pedestal, beause we will see that it

has many useful appliations.

Theorem E is extremely good news, at least potentially, beause every

Boolean funtion has a huge number of endomorphisms. (See exerise 457.)

On the other hand, there's a ath: We almost never know any of those endo-

morphisms until after we've solved the problem! Still, whenever we do happen

to know one of the zillions of nontrivial endomorphisms that exist, we're allowed

to add lauses that narrow the searh. There's always a \lex-leader" solution

that satis�es x

1

x

2

: : : x

n

� x

0

1

x

0

2

: : : x

0

n

, if there's any solution at all.

A seond diÆulty that takes some of the shine away from Theorem E is

the fat that most endomorphisms are too ompliated to express neatly as

lauses. What we really want is an endomorphism that's nie and simple, so

that lexiographi ordering is equally simple.

Fortunately, suh endomorphisms are often available; in fat, they're usually

automorphisms|symmetries of the problem|de�ned by signed permutations

of the variables. A signed permutation represents the operation of permuting

variables and/or omplementing them; for example, the signed permutation

`

�

413

�

2' stands for the mapping (x

1

; x

2

; x

3

; x

4

) 7! (x

�

4

; x

1

; x

3

; x

�

2

) = (�x

4

; x

1

; x

3

; �x

2

).

This operation transforms the states in a muh more regular way than (187):

0000 0001 0010 0011 0100

0101

0110

0111

10001001 10101011

1100

1101

1110

1111

(191)

If � takes the literal u into v, we write u� = v; and in suh ases � also takes �u

into �v. Thus we always have �u� = u�. We also write x� for the result of applying

� to a sequene x of literals; for example, (x

1

; x

2

; x

3

; x

4

)� = (�x

4

; x

1

; x

3

; �x

2

). This

mapping is a symmetry or automorphism of f(x) if and only if f(x) = f(x�)

for all x. Exerises 474 and 475 disuss basi properties of suh symmetries; see

also exerise 7.2.1.2{20.

Notie that a signed permutation an be regarded as an unsigned permuta-

tion of the 2n literals fx

1

; : : : ; x

n

; �x

1

; : : : ; �x

n

g, and as suh it an be written as

a produt of yles. For instane, the symmetry

�

413

�

2 orresponds to the yles

(1

�

42)(

�

14

�

2)(3)(

�

3). We an multiply signed permutations by multiplying these

yles in the normal way, just as in Setion 1.3.3.

The produt �� of two symmetries � and � is always a symmetry. Thus in

partiular, if � is any symmetry, so are its powers �

2

, �

3

, et. We say that � has

order r if �, �

2

, : : : , �

r

are distint and �

r

is the identity. A signed permutation

September 23, 2015

112 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

signed involution

inverse

waerden

reetion

lexiographi

Aloul

Ramani

Markov

Sakallah

of order 1 or 2 is alled a signed involution; this important speial ase arises if

and only if � is its own inverse (�

2

= 1).

It's learly easier to work with permutations of 2n literals than to work

with permutations of 2

n

states x

1

: : : x

n

. The main advantage of a signed

permutation � is that we an test whether or not � preserves the family F

of lauses in a satis�ability problem. If it does, we an be sure that � also is an

automorphism when it ats on all 2

n

states. (See exerise 492.)

Let's go bak to the example waerden (3; 10; 97) that we've often disussed

above. These lauses have an obvious symmetry, whih takes x

1

x

2

: : : x

97

7!

x

97

x

96

: : : x

1

. If we don't break this symmetry, Algorithm C typially veri�es

unsatis�ability after about 530 M� of omputation. Now Theorem E tells us

that we an also assert that x

1

x

2

x

3

� x

97

x

96

x

95

, say; but that symmetry-breaker

doesn't really help at all, beause x

1

has very little inuene on x

97

. Fortunately,

however, Theorem E allows us to hoose any permutation p

1

p

2

: : : p

n

on whih to

base lexiographi omparisons. For example, we an assert that x

48

x

47

x

46

: : : �

x

50

x

51

x

52

: : : |provided that we don't also require x

1

x

2

x

3

: : : � x

97

x

96

x

95

: : : .

(One �xed global ordering must be used, but the endomorphs an be arbitrary.)

Even the simple assertion that x

48

� x

50

, whih is the lause `48 50', uts

the running time down to about 410M�, beause this new lause ombines niely

with the existing lauses 46 48 50, 48 49 50, 48 50 52 to yield the helpful binary

lauses 46 50, 49 50, 50 52. If we go further and assert that x

48

x

47

� x

50

x

51

, the

running time improves to 345M�. And the next steps x

48

x

47

x

46

� x

50

x

51

x

52

,

: : : , x

48

x

47

x

46

x

45

x

44

x

43

� x

50

x

51

x

52

x

53

x

54

x

55

take us down to 290M�, then

260M�, 235M�, 220M�; we've saved more than half of the running time by ex-

ploiting a single reetion symmetry! Only 16 simple additional lauses, namely

48 50; 48a

1

; 50 a

1

; 4751 �a

1

; 47a

2

�a

1

; 51 a

2

�a

1

; 46 52 �a

2

; : : : ; 4355 �a

5

are needed to get this speedup, using the eÆient enoding of lex order in (169).

Of ourse all good things ome to an end, and we've now reahed the point of

diminishing returns: Further lauses to assert that x

48

x

47

: : : x

42

� x

50

x

51

: : : x

56

in the waerden (3; 10; 97) problem turn out to be ounterprodutive.

A wonderful simpli�ation ours when a symmetry � is a signed involu-

tion that has omparatively few 2-yles. Suppose, for example, that � =

5

�

3

�

241

�

6

�

9

�

8

�

7; in yle form this is (15)(

�

1

�

5)(2

�

3)(

�

23)(4)(

�

4)(6

�

6)(7

�

9)(

�

79)(8

�

8). Then the

lexiographi relation x = x

1

: : : x

9

� x

0

1

: : : x

0

9

= x� holds if and only if x

1

x

2

x

6

�

x

5

�x

3

�x

6

. The reason is lear, one we look loser (see F. A. Aloul, A. Ramani, I. L.

Markov, and K. A. Sakallah, IEEE Trans. CAD-22 (2003), 1117{1137, xIII.C):

The relation x

1

: : : x

9

� x

0

1

: : : x

0

9

means, in this ase, \x

1

� x

5

; if x

1

= x

5

then

x

2

� �x

3

; if x

1

= x

5

and x

2

= �x

3

then x

3

� �x

2

; if x

1

= x

5

, x

2

= �x

3

, and x

3

= �x

2

then x

4

� x

4

; if x

1

= x

5

, x

2

= �x

3

, x

3

= �x

2

, and x

4

= x

4

then x

5

� x

1

; if

x

1

= x

5

, x

2

= �x

3

, x

3

= �x

2

, x

4

= x

4

, and x

5

= x

1

then x

6

� �x

6

; if x

1

= x

5

,

x

2

= �x

3

, x

3

= �x

2

, x

4

= x

4

, x

5

= x

1

, and x

6

= �x

6

then we're done for." With

this expanded desription the simpli�ations are obvious.

In general this reasoning allows us to improve Theorem E as follows:

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 113

Puget

Crawford

Ginsberg

Luks

Roy

Zarankiewiz problem

quad-free

ardinality lauses

monkey wrenh priniple

pigeonhole lauses

test ases{

Corollary E. Let p

1

p

2

: : : p

n

be any permutation of f1; 2; : : : ; ng. For every

signed involution � that is a symmetry of lauses F , we an write � in yle

form

(p

i

1

�p

j

1

)(�p

i

1

�p

j

1

)(p

i

2

�p

j

2

)(�p

i

2

�p

j

2

) : : : (p

i

t

�p

j

t

)(�p

i

t

�p

j

t

) (192)

with i

1

< j

1

, i

2

< j

2

, : : : , i

t

< j

t

, i

1

< i

2

< � � � < i

t

, and with (�p

i

k

�p

j

k

)

omitted when i

k

= j

k

; and we're allowed to append lauses to F that assert the

lexiographi relation x

p

i

1

x

p

i

2

: : : x

p

i

q

� x

�p

j

1

x

�p

j

2

: : : x

�p

j

q

, where q = t or q is

the smallest k with i

k

= j

k

.

In the ommon ase when � is an ordinary signless involution, all of the signs

an be eliminated here; we simply assert that x

p

i

1

: : : x

p

i

t

� x

p

j

1

: : : x

p

j

t

.

This involution priniple justi�es all of the symmetry-breaking tehniques

that we used above in the pigeonhole and quad-free matrix problems. See, for

example, the details disussed in exerise 495.

The idea of breaking symmetry by appending lauses was pioneered by J.-F.

Puget [LNCS 689 (1993), 350{361℄, then by J. Crawford, M. Ginsberg, E. Luks,

and A. Roy [Int. Conf. Knowledge Representation and Reasoning 5 (1998), 148{

159℄, who onsidered unsigned permutations only. They also attempted to dis-

over symmetries algorithmially from the lauses that were given as input. Ex-

periene has shown, however, that useful symmetries an almost always be better

supplied by a person who understands the struture of the underlying problem.

Indeed, symmetries are often \semanti" rather than \syntati." That is,

they are symmetries of the underlying Boolean funtion, but not of the lauses

themselves. In the Zarankiewiz problem about quad-free matries, for example,

we appended eÆient ardinality lauses to ensure that

P

x

ij

� r; that ondition

is symmetri under row and olumn swaps, but the lauses are not.

In this onnetion it may also be helpful to mention the monkey wrenh prin-

iple: All of the tehniques by whih we've proved quikly that the pigeonhole

lauses are unsatis�able would have been useless if there had been one more

lause suh as (x

01

_x

11

_ �x

22

); that lause would have destroyed the symmetry!

We onlude that we're allowed to remove lauses from F until reahing a

subset of lauses F

0

for whih symmetry-breakers S an be added. If F = F

0

[F

1

,

and if F

0

is satis�able () F

0

[S is satis�able, then F

0

[S ` � =) F ` �.

One hundred test ases. And now|ta da!| let's get to the limax of this

long story, by looking at how our SAT solvers perform when presented with 100

moderately hallenging instanes of the satis�ability problem. The 100 sets of

lauses summarized on the next two pages ome from a wide variety of di�erent

appliations, many of whih were disussed near the beginning of this setion,

while others appear in the exerises below.

Every test ase has a ode name, onsisting of a letter and a digit. Table 6

haraterizes eah problem and also shows exatly how many variables, lauses,

and total literals are involved. For example, the desription of problem A1

ends with `2043j24772j55195jU'; this means that A1 onsists of 24772 lauses on 2043

variables, having 55195 literals altogether, and those lauses are unsatis�able.

Furthermore, sine `24772' is underlined, all of A1's lauses have length 3 or less.

September 23, 2015

114 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

test ases, apsule summaries+

many items are indexed here

but they don't show in margin!

Table 6

CAPSULE SUMMARIES OF THE HUNDRED TEST CASES

A1. Find x = x

1

x

2

: : : x

99

with �x = 27 and

no three equally spaed 1s. (See exerise 31.)

2043j24772j55195jU

A2. Like A1, but x

1

x

2

: : : x

100

.

2071j25197j56147jS

B1. Cover a mutilated 10 � 10 board with

49 dominoes, without using extra lauses

to break symmetry. 176j572j1300jU

B2. Like B1, but a 12 � 12 board with

71 dominoes. 260j856j1948jU

C1. Find an 8-step Boolean hain that

omputes (z

2

z

1

z

0

)

2

= x

1

+ x

2

+ x

3

+ x

4

.

(See exerise 479(a).) 384j16944j66336jU

C2. Find a 7-step Boolean hain that

omputes the modi�ed full adder funtions

z

1

, z

2

, z

3

in exerise 481(b). 469j26637j100063jU

C3. Like C2, but with 8 steps.

572j33675j134868jS

C4. Find a 9-step Boolean hain that

omputes z

l

and z

r

in the mod-3 addition

problem of exerise 480(b). 678j45098j183834jS

C5. Connet A to A, : : : , J to J in Dudeney's

puzzle of exerise 392, (iv). 1980j22518j70356jS

C6. Like C5, but move the J in row 8 from

olumn 4 to olumn 5. 1980j22518j70356jU

C7. Given binary strings s

1

, : : : , s

50

of

length 200, randomly generated at distanes

� r

j

from some string x, �nd x (see

exerise 502). 65719j577368j1659623jS

C8. Given binary strings s

1

, : : : , s

40

of

length 500, inspired by biologial data, �nd

a string at distane � 42 from eah of them.

123540j909120j2569360jU

C9. Like C8, but at distane � 43.

124100j926200j2620160jS

D1. Satisfy fator �fo (18; 19; 111111111111).

(See exerise 41.) 1940j6374j16498jU

D2. Like D1, but fator lifo . 1940j6374j16498jU

D3. Like D1, but (19; 19; 111111111111).

2052j6745j17461jS

D4. Like D2, but (19; 19; 111111111111).

2052j6745j17461jS

D5. Solve (x

1

: : : x

9

)

2

� (y

1

: : : y

9

)

2

6=

(x

1

: : : x

9

)

2

�

0

(y

1

: : : y

9

)

2

, with two opies

of the same Dadda multipliation iruit.

864j2791j7236jU

E0. Find an Erd}os disrepany pattern

x

1

: : : x

500

(see exerise 482). 1603j9157j27469jS

E1. Like E0, but x

1

: : : x

750

.

2556j14949j44845jS

E2. Like E0, but x

1

: : : x

1000

.

3546j21035j63103jS

F1. Satisfy fsnark (99). (See exerise 176.)

1782j4161j8913jU

F2. Like F1, but without the lauses

(�e

1;3

_

�

f

99;3

) ^ (

�

f

1;1

_ �e

2;1

). 1782j4159j8909jS

G1. Win Late Binding Solitaire with the

\most diÆult winnable deal" in answer 486.

1242j22617j65593jS

G2. Like G1, but with the most diÆult

unwinnable deal. 1242j22612j65588jU

G3. Find a test pattern for the fault \B

43

43

stuk at 0" in prod (16; 32). 3498j11337j29097jS

G4. Like G3, but for the fault \D

13;9

34

stuk

at 0." 3502j11349j29127jS

G5. Find a 7 � 15 array X

0

leading to

X

3

= as in Fig. 35, having at most 38

live ells. 7150j28508j71873jU

G6. Like G5, but at most 39 live ells.

7152j28536j71956jS

G7. Like G5, but X

4

= and X

0

an

be arbitrary. 8725j33769j84041jU

G8. Find a on�guration in the Game

of Life that proves f

�

(7; 7) = 28 (see

exerise 83). 97909j401836j1020174jS

K0. Color the 8 � 8 queen graph with 8

olors, using the diret enoding (15) and

(16), also foring the olors of all verties

in the top row. 512j5896j12168jU

K1. Like K0, but with the exlusion lauses

(17) also. 512j7688j15752jU

K2. Like K1, but with kernel lauses instead

of (17) (see answer 14). 512j6408j24328jU

K3. Like K1, but with support lauses

instead of (16) (see exerise 399).

512j13512j97288jU

K4. Like K1, but using the order enoding

for olors. 448j6215j21159jU

K5. Like K4, but with the hint lauses

(162) appended. 448j6299j21663jU

K6. Like K5, but with double lique hints

(exerise 396). 896j8559j27927jU

K7. Like K1, but with the log enoding

of exerise 391(a). 2376j5120j15312jU

K8. Like K1, but with the log enoding

of exerise 391(b). 192j5848j34968jU

L1. Satisfy langford (10). 130j2437j5204jU

L2. Satisfy langford

0

(10). 273j1020j2370jU

L3. Satisfy langford (13). 228j5875j12356jU

L4. Satisfy langford

0

(13). 502j1857j4320jU

L5. Satisfy langford (32). 1472j102922j210068jS

L6. Satisfy langford

0

(32). 3512j12768j29760jS

L7. Satisfy langford (64). 6016j869650j1756964jS

L8. Satisfy langford

0

(64). 14704j53184j124032jS

M1. Color the MGregor graph of order

10 (Fig. 33) with 4 olors, using one olor at

most 6 times, via the ardinality onstraints

(18) and (19). 1064j2752j6244jU

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 115

M2. Like M1, but via (20) and (21).

814j2502j5744jU

M3. Like M1, but at most 7 times.

1161j2944j6726jS

M4. Like M2, but at most 7 times.

864j2647j6226jS

M5. Like M4, but order 16 and at most

11 times. 2256j7801j18756jU

M6. Like M5, but at most 12 times.

2288j8080j19564jS

M7. Color the MGregor graph of order 9

with 4 olors, and with at least 18 regions

doubly olored (see exerise 19).

952j4539j13875jS

M8. Like M7, but with at least 19 regions.

952j4540j13877jU

N1. Plae 100 nonattaking queens on

a 100 � 100 board. 10000j1151800j2313400jS

O1. Solve a random open shop sheduling

problem with 8 mahines and 8 jobs, in

1058 units of time. 50846j557823j1621693jU

O2. Like O1, but in 1059 units.

50901j558534j1623771jS

P0. Satisfy (99), (100), and (101) for

m = 20, thereby exhibiting a poset of size

20 with no maximal element. 400j7260j22080jU

P1. Like P0, but with m = 14 and using

only the lauses of exerise 228. 196j847j2667jU

P2. Like P0, but with m = 12 and using

only the lauses of exerise 229. 144j530j1674jU

P3. Like P2, but omitting the lause

(�x

31

_ �x

16

_ x

36

). 144j529j1671jS

P4. Like P3, but with m = 20. 400j2509j7827jS

Q0. Like K0, but with 9 olors.

576j6624j13688jS

Q1. Like K1, but with 9 olors.

576j8928j18296jS

Q2. Like K2, but with 9 olors.

576j7200j27368jS

Q3. Like K3, but with 9 olors.

576j15480j123128jS

Q4. Like K4, but with 9 olors.

512j7008j24200jS

Q5. Like K5, but with 9 olors.

512j7092j24704jS

Q6. Like K6, but with 9 olors.

1024j9672j31864jS

Q7. Like K7, but with 9 olors.

3168j6776j20800jS

Q8. Like K8, but with 9 olors.

256j6776j52832jS

Q9. Like Q8, but with the log enoding

of exerise 391(). 256j6584j42256jS

R1. Satisfy rand (3; 1061; 250; 314159).

250j1061j3183jS

R2. Satisfy rand (3; 1062; 250; 314159).

250j1062j3186jU

S1. Find a 4-term disjuntive normal form

on fx

1

; : : : ; x

20

g that di�ers from (27) but

agrees with it at 108 random training points.

356j4229j16596jS

S2. Like S1, but at 109 points.

360j4310j16760jU

S3. Find a sorting network on nine

elements that begins with the omparators

[1:6℄[2:7℄[3:8℄[4:9℄ and �nishes in �ve more

parallel rounds. (See exerise 64.)

5175j85768j255421jU

S4. Like S3, but in six more rounds.

6444j107800j326164jS

T1. Find a 24� 100 tatami tiling that spells

`TATAMI' as in exerise 118. 2874j10527j26112jS

T2. Like T1, but 24� 106 and the `I' should

have serifs. 3048j11177j27724jU

T3. Solve the TAOCP problem of exerise

389 with only 4 knight moves.

3752j12069j27548jU

T4. Like T3, but with 5 knight moves.

3756j12086j27598jS

T5. Find the pixel in row 5, olumn

18 of Fig. 37(), the lexiographially last

solution to the Cheshire Tom problem.

8837j39954j100314jS

T6. Like T5, but olumn 19.

8837j39955j100315jU

T7. Solve the run-ount extension of the

Cheshire Tom problem (see exerise 117).

25734j65670j167263jS

T8. Like T7, but �nd a solution that di�ers

from Fig. 36. 25734j65671j167749jU

W1. Satisfy waerden (3; 10; 97).

97j2779j11662jU

W2. Satisfy waerden (3; 13; 159).

159j7216j31398jS

W3. Satisfy waerden (5; 5; 177).

177j7656j38280jS

W4. Satisfy waerden (5; 5; 178).

178j7744j38720jU

X1. Prove that the \taking turns"

protool (43) gives mutual exlusion for

at least 100 steps. 1010j3612j10614jU

X2. Prove that assertions � for the four-bit

protool of exerise 101, analogous to (50),

are invariant. 129j354j926jU

X3. Prove that Bob won't starve in 36 steps,

assuming the � of X2. 1652j10552j28971jU

X4. Prove that there's a simple 36-step

path with the four-bit protool, assuming

the � of X2. 22199j50264j130404jS

X5. Like X4, but 37 steps. 23388j52822j137034jU

X6. Like X1, but with Peterson's proto-

ol (49) instead of (43). 2218j8020j23222jU

X7. Prove that there's a simple 54-step

path with protool (49). 26450j56312j147572jS

X8. Like X7, but 55 steps.

27407j58317j152807jU

September 23, 2015

116 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

menagerie+

graph layout++

geek art+

visualizations++

3D visualizations++

variable interation graphs++

A1

G4

B2

K6

C5

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 117

Sinz

M1

M2

S3

T3

X3

Fig. 52. The lauses of

these test ases bind

the variables together

in signi�antly di�erent

ways. (Illustrations by

Carsten Sinz.)

September 23, 2015

118 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Sinz

SATexamples.tgz

Knuth

website

Knuth

lookahead algorithm

lause-learning algorithm

Of ourse we an't distinguish hard problems from easy ones by simply

ounting variables, lauses, and literals. The great versatility with whih lauses

an apture logial relationships means that di�erent sets of lauses an lead to

wildly di�erent phenomena. Some of this immense variety is indiated in Fig. 52,

whih depits ten instrutive \variable interation graphs." Eah variable is

represented by a ball, and two variables are linked when they appear together

in at least one lause. (Some edges are darker than others; see exerise 506. For

further examples of suh 3D visualizations, presented also in olor, see Carsten

Sinz, Journal of Automated Reasoning 39 (2007), 219{243.)

A single SAT solver annot be expeted to exel on all of the many speies of

problems. Furthermore, nearly all of the 100 instanes in Table 6 are well beyond

the apabilities of the simple algorithms that we began with: Algorithms A, B,

and D are unable to rak any of those test ases without needing more than

�fty gigamems of omputation, exept for the simplest examples|L1, L2, L5,

P3, P4, and X2. Algorithm L, the souped-up re�nement of Algorithm D, also

has a lot of diÆulty with most of them. On the other hand, Algorithm C does

remarkably well. It polishes o� 79 of the given problems in fewer than ten G�.

Thus the test ases of Table 6 are tough, yet they're within reah. Almost all

of them an be solved in say two minutes, at most, with methods known today.

Complete details an be found in the �le SATexamples.tgz on the author's

website, together with many related problems both large and small.

Exatly 50 of these 100 ases are satis�able. So we're naturally led to wonder

whether Algorithm W (\WalkSAT") will handle suh ases well. The answer is

that Algorithm W sometimes sueeds brilliantly|espeially on problems C7,

C9, L5, L7, M3, M4, M6, P3, P4, Q0, Q1, R1, S1, where it typially outperforms

all the other methods we've disussed. In partiular it solved S1 in just 1M�, in

the author's tests, ompared to 25M� by the next best method, Algorithm C; it

won by 15M� versus Algorithm C's 83M� on M3, by 83M� versus Algorithm L's

104M� on Q0, by 95M� versus Algorithm C's 464M� on Q1, and by a whopping

104M� versus Algorithm C's 7036M� on C7. That was a surprise. WalkSAT

also was reasonably ompetitive on problem N1. But in all other ases it was

nowhere near the method of hoie. Therefore we'll onsider only Algorithms L

and C in the remainder of this disussion.*

When does a lookahead algorithm like Algorithm L outperform a lause-

learning algorithm like Algorithm C? Figure 53 shows how they ompare to

eah other on our 100 test ases: Eah problem is plotted with Algorithm C's

running time on the vertial axis and Algorithm L's on the horizontal axis.

Thus Algorithm L is the winner for problems that appear above the dotted line.

(This dotted line is \wavy" beause times aren't drawn to sale: The kth fastest

running time is shown as k units from the left of the page or from the bottom.)

* There atually are two variants of Algorithm L, beause the alternative heuristis of

exerise 143 must be used for looking ahead when lauses of length 4 or more are present. We

ould use exerise 143 even when given all-ternary lauses; but experiene shows that we'd tend

to lose a fator of 2 or more by doing so. Our referenes to Algorithm L therefore impliitly

assume that exerise 143 is being applied only when neessary.

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 119

A1

A2

B1

B2

C1

C2

C3

C4

C5

C6

C7

C8

C9

D1

D2

D3

D4

D5

E0

E1

E2

F1

F2

G1

G2

G3

G4

G5

G6

G7

G8

K0

K1

K2

K3

K4

K5

K6

K7

K8

L1

L2

L3L4

L5

L6

L7

L8

M1

M2

M3

M4

M5

M6

M7

M8

N1

O1

O2

P0

P1

P2

P3

P4

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

R1

R2

S1

S2

S3

S4

T1

T2

T3

T4

T5

T6

T7

T8

W1

W2

W3

W4

X1

X2

X3

X4

X5

X6

X7

X8

5

0

G

�

2

0

G

�

1

0

G

�

5

G

�

2

G

�

1

G

�

:

5

G

�

:

2

G

�

:

1

G

�

5

0

M

�

2

0

M

�

1

0

M

�

0

M

�

50 G�

20 G�

10 G�

5 G�

2 G�

1 G�

:5 G�

:2 G�

:1 G�

50 M�

20 M�

10 M�

0 M�

R

u

n

n

i

n

g

t

i

m

e

f

o

r

A

l

g

o

r

i

t

h

m

C

!

 Running time for Algorithm L !

Fig. 53. Comparison of

Algorithms C and L on

100 moderately diÆult

satis�ability problems.

September 23, 2015

120 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

deterministi

median

mean running time

average

timeouts

input/output

enodings

queen graph

order enoding

at-most-one

All of these experiments were aborted after 50G�, if neessary, sine many

of these problems ould potentially take enturies before running to ompletion.

Thus the test ases for whih Algorithm L timed out appear at the right edge of

Fig. 53, and the tough ases for Algorithm C appear at the top. Only E2 and X8

were too hard for both algorithms to handle within the spei�ed uto� time.

Algorithm L is deterministi: It uses no random variables. However, a slight

hange (see exerise 505) will randomize it, beause the inputs an be shu�ed

as they are in Algorithm C; and we might as well assume that this hange has

been made. Then both Algorithms L and C have variable running times. They

will �nd solutions or prove unsatis�ability more quikly on some runs than on

others, as we've already seen for Algorithm C in Fig. 49.

To ompensate for this variability, eah of the runtimes reported in Fig. 53 is

themedian of nine independent trials. Figure 54 shows all 9�100 of the empirial

running times obtained with Algorithm C, sorted by their median values. We

an see that many of the problems have near-onstant behavior; indeed, the ratio

max/min was less than 2 in 38 of the ases. But 10 ases turned out to be highly

errati in these experiments, with max=min > 100; problem P4 was atually

solved one after only 323 kilomems, while another run lasted 339 gigamems!

One might expet satis�able problems, suh as P4, to bene�t more from

luky guesses than unsatis�able problems do; and these experiments strongly

support that hypothesis: Of the 21 problems with max=min > 30, all but P0

are satis�able, and all 32 of the problems with max=min < 1:7 are unsatis�able.

One might also expet the mean running time (the arithmeti average) to exeed

the median running time, in problems like this|beause bad luk an be signi�-

antly bad, though hopefully rare. Yet the mean is atually smaller than the me-

dian in 30 ases, about equally distributed between satis�able and unsatis�able.

The median is a nie measure beause it is meaningful even in the presene

of oasional timeouts. It's also fair, beause we are able to ahieve the median

time, or better, more often than not.

We should point out that input/output has been exluded from these time

omparisons. Eah satis�ability problem is supposed to appear within a om-

puter's memory as a simple list of lauses, after whih the ounting of mems

atually begins. We inlude the ost of initializing the data strutures and solving

the problem, but then we stop ounting before atually outputting a solution.

Some of the test ases in Table 6 and Fig. 53 represent di�erent enodings

of the same problem. For example, problems K0{K8 all demonstrate that the

8� 8 queen graph an't be olored with 8 olors. Similarly, problems Q0{Q9 all

show that 9 olors will suÆe. We've already disussed these examples above

when onsidering alternative enodings; and we noted that the best solutions,

K6 and Q5, are obtained with an extended order enoding and with Algorithm C.

Therefore the fat that Algorithm L beats Algorithm C on problems K0, K1,

K2, and K3 is somewhat irrelevant; those problems won't our in pratie.

Problems L5 and L6 ompare di�erent ways to handle the at-most-one

onstraint. L6 is slightly better for Algorithm L, but Algorithm C prefers L5.

Similarly, M1 and M2 ompare di�erent ways to deal with a more general

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 121

ardinality onstraint

waerden

Langford

CDCL solver

Treengeling

daning links

parallel omputation

CPU: Central Proessing Unit (one omputer thread)

miter

gates

X2

K6

L5

P3

T1

T2

L6

P0

K5

X1

M4

S1

G4

N1

B1

M2

L7

E0

S4

L8

M3

Q2

X6

F2

X4

X5

M1

Q5

L1

S2

S3

Q4

L2

X3

G3

Q0

Q1

T4

Q9

Q3

W1

Q6

M6

B2

T6

D4

M5

R1

F1

O2

Q8

C5

D2

C3

D1

T5

Q7

D3

R2

O1

W3

P2

C6

E1

P1

G6

C9

C2

K4

C1

G7

C8

T7

C7

T8

W2

G5

G1

K1

X7

K0

K2

A2

K8

P4

A1

T3

K7

K3

W4

M8

G2

D5

M7

C4

G8

E2

X8

L3

L4

1 T�

:5 T�

:2 T�

:1 T�

50 G�

20 G�

10 G�

5 G�

2 G�

1 G�

:5 G�

:2 G�

:1 G�

50 M�

20 M�

10 M�

5 M�

2 M�

1 M�

Fig. 54. Nine random running times of Algorithm C, sorted by their medians.

(Unsatis�able ases have solid dots or squares; satis�able ases are hollow.)

ardinality onstraint. Here M2 turns out to be better, although both are quite

easy for Algorithm C and diÆult for Algorithm L.

We've already noted that Algorithm L shines with respet to random prob-

lems suh as R1 and R2, and it dominates all ompetitors even more when

unsatis�able random 3SAT problems get even bigger. Lookahead methods are

also suessful in waerden problems like W1{W4.

Unsatis�able Langford problems suh as L3 and L4 are de�nitely bêtes noires

for Algorithm C, although not so bad for Algorithm L. Even the world's fastest

CDCL solver, \Treengeling," was unable to refute the lauses of langford (17)

in 2013 until it had learned 26.7 billion lauses; this proess took more than a

week, using a luster of 24 omputers working together. By ontrast, the daning

links method of Setion 7.2.2.1 was able to prove unsatis�ability after fewer than

7:2T� of omputation|that's about 90 minutes on a single vintage-2013 CPU.

We've now disussed every ase where Algorithm L trumps Algorithm C,

exept for D5; and D5 is atually somewhat sandalous! It's an inherently simple

problem that hardware designers all a \miter": Imagine two idential iruits

that ompute some funtion f(x

1

; : : : ; x

n

), one with gates g

1

, : : : , g

m

and another

with orresponding gates g

0

1

, : : : , g

0

m

, all represented as in (24). The problem is

to �nd x

1

: : : x

n

for whih the �nal results g

m

and g

0

m

aren't equal. It's obviously

unsatis�able. Furthermore, there's an obvious way to refute it, by suessively

learning the lauses (�g

1

_g

0

1

), (�g

0

1

_g

1

), (�g

2

_g

0

2

), (�g

0

2

_g

2

), et. In theory, therefore,

Algorithm C will almost surely �nish in polynomial time (see exerise 386).

But in pratie, the algorithm won't disover those lauses without quite a lot

of ailing around, unless speial-purpose tehniques are introdued to help it

disover isomorphi gates.

September 23, 2015

122 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

empirial performane measurements++Thus Algorithm C does have an Ahilles heel or two. On the other hand, it

is the lear method of hoie in the vast majority of our test ases, and we an

expet it to be the major workhorse for most of the satis�ability problems that

we enounter in daily work. Therefore it behooves us to understand its behavior

in some detail, not just to look at its total ost as measured in mems.

Table 7

ALGORITHM C'S EMPIRICAL BEHAVIOR ON THE HUNDRED TEST CASES

name runtime bytes ells nodes learned of size triv dis sub ushes sat?

X2 0+2 M� 57 K 9 K 2 K 1 K 32:0! 12:0 50% 6% 1% 30 U

K6 0+2 M� 314 K 46 K 1 K 0 K 15:8! 11:8 22% 4% 3% 6 U

L5 1+1 M� 1841 K 210 K 0 K 0 K 146:1! 38:4 51% 23% 0% 0 S

P3 0+2 M� 96 K 19 K 2 K 1 K 18:4! 12:6 4% 11% 1% 45 S

T1 0+6 M� 541 K 35 K 3 K 1 K 7:4! 6:8 3% 2% 6% 9 S

T2 0+7 M� 574 K 37 K 4 K 1 K 7:2! 6:8 1% 2% 4% 6 U

L6 0+8 M� 672 K 39 K 1 K 0 K 195:9! 67:8 86% 0% 0% 0 S

P0 0+11 M� 376 K 81 K 8 K 4 K 17:8! 14:7 3% 10% 10% 28 U

K5 0+13 M� 294 K 55 K 3 K 2 K 18:6! 12:4 33% 1% 1% 14 U

X1 0+13 M� 284 K 38 K 29 K 4 K 6:3! 5:8 0% 3% 8% 53 U

M4 0+24 M� 308 K 47 K 6 K 4 K 20:5! 16:3 14% 2% 1% 3 S

S1 0+25 M� 366 K 72 K 9 K 4 K 34:0! 26:7 22% 4% 1% 14 S

G4 0+29 M� 759 K 76 K 3 K 2 K 37:1! 24:2 26% 0% 0% 1 S

N1 16+14 M� 19644 K 2314 K 41 K 0 K 629:3! 291:7 44% 6% 0% 15 S

B1 0+31 M� 251 K 55 K 10 K 7 K 13:5! 11:3 3% 5% 4% 14 U

M2 0+32 M� 326 K 53 K 7 K 5 K 18:2! 12:8 20% 1% 1% 6 U

L7 12+23 M� 14695 K 1758 K 2 K 1 K 411:2! 107:6 66% 4% 0% 0 S

E0 0+40 M� 571 K 95 K 5 K 3 K 30:2! 19:3 14% 11% 0% 6 S

S4 1+69 M� 3291 K 600 K 6 K 2 K 17:2! 12:6 19% 1% 1% 8 S

L8 1+72 M� 3047 K 224 K 3 K 2 K 547:9! 169:1 87% 0% 0% 0 S

M3 0+83 M� 493 K 84 K 13 K 9 K 28:4! 19:2 31% 0% 1% 1 S

Q2 0+87 M� 885 K 190 K 11 K 8 K 61:7! 45:8 36% 0% 0% 11 S

X6 0+93 M� 775 K 122 K 86 K 17 K 13:5! 11:4 0% 3% 3% 32 U

F2 0+95 M� 714 K 118 K 42 K 22 K 14:3! 13:1 0% 2% 4% 5 S

X4 1+98 M� 3560 K 158 K 24 K 3 K 16:2! 11:4 9% 2% 3% 623 S

X5 1+106 M� 3747 K 166 K 23 K 3 K 16:5! 11:0 11% 3% 3% 726 U

M1 0+131 M� 483 K 84 K 16 K 12 K 23:2! 13:4 33% 1% 0% 1 U

Q5 0+143 M� 708 K 157 K 13 K 11 K 28:8! 23:6 21% 2% 2% 6 S

L1 0+157 M� 597 K 139 K 21 K 18 K 36:7! 19:0 60% 3% 0% 30 U

S2 0+176 M� 722 K 161 K 29 K 17 K 37:5! 27:5 33% 3% 1% 8 U

S3 1+201 M� 2624 K 471 K 12 K 6 K 14:5! 9:8 21% 1% 2% 1 U

Q4 0+213 M� 781 K 175 K 19 K 16 K 29:2! 23:3 25% 3% 1% 6 S

L2 0+216 M� 588 K 136 K 23 K 20 K 36:2! 17:4 75% 1% 0% 6 U

X3 0+235 M� 1000 K 191 K 61 K 25 K 37:7! 19:3 34% 1% 2% 14 U

G3 0+251 M� 1035 K 145 K 12 K 9 K 57:9! 28:1 42% 1% 0% 0 S

Q0 0+401 M� 1493 K 342 K 37 K 28 K 63:3! 40:0 50% 0% 0% 14 S

Q1 0+464 M� 1516 K 343 K 41 K 33 K 63:0! 41:0 45% 0% 0% 14 S

T4 0+546 M� 2716 K 544 K 202 K 18 K 218:3! 61:5 83% 1% 0% 3018 S

Q9 0+555 M� 1409 K 343 K 152 K 71 K 26:7! 20:6 3% 5% 2% 99 S

Q3 0+613 M� 1883 K 448 K 27 K 22 K 60:1! 40:3 41% 1% 1% 7 S

W1 0+626 M� 848 K 208 K 71 K 63 K 20:8! 13:4 5% 14% 1% 28 U

Q6 0+646 M� 1211 K 266 K 40 K 35 K 30:4! 23:2 30% 1% 1% 2 S

M6 0+660 M� 1378 K 266 K 80 K 52 K 34:0! 22:2 33% 1% 1% 59 S

B2 0+668 M� 906 K 216 K 96 K 75 K 17:1! 13:2 4% 5% 2% 16 U

T6 1+668 M� 2355 K 291 K 34 K 25 K 41:4! 19:1 57% 0% 1% 11 U

D4 0+669 M� 1009 K 186 K 35 K 28 K 55:7! 15:9 70% 0% 0% 2 S

M5 0+677 M� 1183 K 219 K 73 K 48 K 32:6! 20:2 37% 1% 1% 139 U

R1 0+756 M� 913 K 220 K 87 K 74 K 17:3! 12:4 3% 8% 0% 9 S

F1 0+859 M� 1485 K 311 K 218 K 135 K 17:6! 15:1 1% 3% 3% 6 U

O2 7+1069 M� 18951 K 3144 K 3 K 2 K 17:0! 9:5 35% 0% 0% 1 S

Q8 0+1107 M� 1786 K 437 K 184 K 109 K 29:4! 20:2 6% 6% 1% 109 S

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 123

C5 0+1127 M� 1987 K 419 K 159 K 104 K 24:4! 16:5 12% 2% 1% 776 S

D2 0+1159 M� 962 K 177 K 54 K 45 K 51:8! 11:5 73% 0% 0% 2 U

C3 0+1578 M� 2375 K 571 K 190 K 96 K 49:7! 23:4 39% 3% 2% 11 S

D1 0+1707 M� 1172 K 230 K 76 K 62 K 45:1! 11:6 73% 0% 0% 2 U

T5 1+1735 M� 3658 K 617 K 80 K 59 K 72:5! 40:9 50% 0% 0% 43 S

Q7 0+1761 M� 2055 K 419 K 515 K 118 K 33:9! 20:3 9% 7% 0% 12 S

D3 0+1807 M� 1283 K 254 K 77 K 64 K 57:3! 14:0 80% 0% 0% 1 S

R2 0+1886 M� 1220 K 296 K 173 K 149 K 17:0! 11:8 3% 9% 0% 14 U

O1 7+2212 M� 18928 K 3140 K 5 K 3 K 17:3! 8:9 39% 0% 0% 4 U

W3 0+2422 M� 1819 K 448 K 191 K 174 K 19:3! 15:5 2% 12% 1% 18 S

P2 0+2435 M� 2039 K 504 K 378 K 301 K 20:9! 13:7 3% 11% 1% 45 U

C6 0+2792 M� 2551 K 560 K 305 K 217 K 27:0! 17:0 20% 2% 1% 492 U

E1 0+2902 M� 2116 K 453 K 180 K 144 K 38:0! 20:5 21% 18% 0% 2 S

P1 0+3280 M� 2726 K 674 K 819 K 549 K 18:2! 14:4 0% 9% 3% 45 U

G6 1+3941 M� 3523 K 647 K 380 K 253 K 31:0! 17:8 31% 0% 0% 0 S

C9 13+4220 M� 35486 K 4923 K 116 K 32 K 11:8! 9:9 5% 1% 1% 4986 S

C2 0+4625 M� 2942 K 712 K 442 K 255 K 46:1! 18:8 42% 4% 1% 15 U

K4 0+5122 M� 1858 K 446 K 267 K 241 K 19:6! 13:7 19% 2% 1% 5 U

C1 0+5178 M� 2532 K 613 K 510 K 311 K 48:9! 17:0 48% 6% 1% 20 U

G7 1+6070 M� 4227 K 771 K 546 K 369 K 32:5! 17:6 35% 0% 0% 0 U

C8 13+6081 M� 35014 K 4823 K 151 K 58 K 15:3! 10:7 15% 1% 1% 8067 U

T7 1+6467 M� 5428 K 544 K 333 K 108 K 26:8! 15:3 32% 1% 1% 14565 S

C7 8+7029 M� 20971 K 3174 K 908 K 32 K 9:5! 8:4 0% 3% 0% 4965 S

T8 1+7046 M� 5322 K 517 K 356 K 117 K 26:9! 15:0 33% 0% 1% 15026 U

W2 0+7785 M� 3561 K 884 K 501 K 432 K 34:7! 21:3 13% 17% 1% 28 S

G5 1+7799 M� 4312 K 844 K 642 K 446 K 33:4! 17:4 39% 0% 0% 0 U

G1 0+8681 M� 5052 K 1221 K 631 K 350 K 61:1! 34:1 38% 1% 2% 55 S

K1 0+9813 M� 2864 K 685 K 405 K 360 K 36:2! 18:4 53% 2% 0% 13 U

X7 1+11857 M� 6235 K 697 K 1955 K 224 K 40:6! 23:7 35% 0% 1% 31174 S

K0 0+11997 M� 3034 K 731 K 493 K 421 K 35:6! 19:4 45% 2% 0% 14 U

K2 0+12601 M� 3028 K 729 K 500 K 427 K 34:8! 18:0 46% 2% 0% 12 U

A2 0+13947 M� 3766 K 843 K 645 K 585 K 34:4! 15:9 32% 1% 0% 0 S

K8 0+15033 M� 2748 K 680 K 821 K 699 K 21:2! 13:1 8% 15% 1% 93 U

P4 0+16907 M� 6936 K 1721 K 1676 K 1314 K 36:5! 24:0 5% 11% 1% 33 S

A1 0+17073 M� 3647 K 815 K 763 K 701 K 30:7! 14:7 29% 2% 0% 0 U

T3 0+19266 M� 10034 K 2373 K 2663 K 323 K 291:8! 72:9 86% 1% 0% 34265 U

K7 0+20577 M� 3168 K 721 K 1286 K 828 K 23:3! 13:5 9% 15% 0% 9 U

K3 0+20990 M� 3593 K 878 K 453 K 407 K 36:7! 19:0 55% 2% 0% 6 U

W4 0+21295 M� 3362 K 834 K 977 K 899 K 19:0! 14:1 4% 15% 0% 21 U

M8 0+22281 M� 4105 K 994 K 992 K 785 K 37:3! 20:5 43% 1% 1% 6 U

G2 0+23424 M� 6910 K 1685 K 1198 K 701 K 68:8! 34:3 47% 1% 1% 120 U

D5 0+24141 M� 3232 K 779 K 787 K 654 K 63:5! 13:4 78% 0% 0% 2 U

M7 0+24435 M� 4438 K 1077 K 1047 K 819 K 40:6! 23:3 42% 1% 1% 6 S

C4 1+31898 M� 8541 K 2108 K 1883 K 1148 K 60:6! 25:7 42% 4% 1% 12 S

G8 7+35174 M� 24854 K 2992 K 4350 K 1101 K 48:0! 34:7 9% 0% 0% 1523 S

E2 0+53739 M� 5454 K 1258 K 2020 K 1658 K 41:5! 20:8 25% 21% 0% 3 S

X8 2+248789 M� 12814 K 2311 K 17005 K 3145 K 56:4! 22:5 63% 0% 0% 330557 U

L3 0+295571 M� 19653 K 4894 K 7402 K 6886 K 70:7! 31:0 63% 8% 0% 30 U

L4 0+677815 M� 22733 K 5664 K 8545 K 7931 K 78:6! 35:4 86% 0% 0% 5 U

name runtime bytes ells nodes learned of size triv dis sub ushes sat?

Table 7 summarizes the salient statistis, again listing all ases in order of

their median running time (exlusive of input and output). Eah running time

is atually broken into two parts, `x+y', where x is the time to initialize the

data strutures in step C1 and y is the time for the other steps, both rounded

to megamems. For example, the exat median proessing time for ase L5

was 1,484,489� to initialize, then 655,728� to �nd a solution; this is shown

as `1+1M�' in the third line of the table. The time for initialization is usually

negligible exept when there are many lauses, as in problem N1.

September 23, 2015

124 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

MEM

binary lauses

BIMP

searh tree

deision tree, see searh tree

nodes

deisions

learned lauses

onits

levels

trivial

subsumed on the y

on-the-y subsumption

restart

ushing

trail

agility level

purges

reyling phases

tuning of parameters{

parameters, tuning of{

The median run of problem L5 also alloated 1,841,372 bytes of memory for

data; this total inludes the spae needed for 210,361 ells in the MEM array, at

4 bytes per ell, together with other arrays suh as VAL, OVAL, HEAP, et. The

implementation onsidered here keeps unlearned binary lauses in a separate

BIMP table, as explained in the answer to exerise 267.

This run of L5 found a solution after impliitly traversing a searh tree with

138 \nodes." The number of nodes, or \deisions," is the number of times step C6

of the algorithm goes to step C3. It is shown as `0K' in Table 7, beause the

node ounts, byte ounts, and ell ounts are rounded to the nearest thousand.

The number of nodes always exeeds or equals the number of learned lauses,

whih is the number of onits deteted at levels d > 0. (See step C7.) In the

ase of problem L5, only 84 lauses were learned; so again the table reports `0K'.

These 84 lauses had average length r+1 = 146:1; then the simpli�ation proess

of exerise 257 redued this average to just 38.4. Nevertheless, the resulting

simpli�ed lauses were still suÆiently long that the \trivial" lauses disussed

in exerise 269 were sometimes used instead; this substitution happened 43

times (51%). Furthermore 19 of the learned lauses (23%) were immediately

disarded, using the method of exerise 271. These perentages show up in the

`triv' and `dis' olumns of the table.

Sometimes, as in problems D1{D5, a large majority of the learned lauses

were replaed by trivial ones; on the other hand, 27 of the 100 ases turned out

to be less than 10% trivial in this sense. Table 7 also shows that the disard

rate was 5% or more in 26 ases. The `sub' olumn refers to learned lauses that

were \subsumed on the y" by the tehnique of exerise 270; this optimization

is less ommon, yet it ours often enough to be worthwhile.

The great variety in our examples is reeted in the variety of behaviors ex-

hibited in Table 7, although several interesting trends an also be pereived. For

example, the number of nodes is naturally orrelated with the number of learned

lauses, and both statistis tend to grow as the total running time inreases. But

there are signi�ant exeptions: Two outliers, O1 and O2, have a remarkably

high ratio of mems per learned lause, beause of their voluminous data.

The penultimate olumn of Table 7 ounts how often Algorithm C deided

to restart itself after ushing unprodutive literals from its urrent trail. This

quantity does not simply represent the number of times step C5 disovers that

M � M

f

; it depends also on the urrent agility level (see (127)) and on the

parameter in Table 4. Some problems, like A1 and A2, had suh high agility

that they were solved satisfatorily with no restarts whatsoever; but another

one, T4, �nished in about 500 megamems after restarting more than 3000 times.

The number of \purges" (reyling phases) is not shown, but it an be

estimated from the number of learned lauses (see exerise 508). An aggressive

purging poliy has kept the total number of memory ells omfortably small.

Tuning up the parameters. Table 7 shows that the hardest problem of all for

Algorithm C in these experiments, L4, found itself substituting trivial lauses

86% of the time but making only 5 restarts. That test ase would probably have

September 23, 2015

7.2.2.2 SATISFIABILITY: TUNING THE PARAMETERS 125

Langford problem

RANGE sores

tradeo�s

damping fators

ACT sores

ativity sores

purging threshold

trivial lauses

warmup runs

restarts

random deision variables

initial guess for literals

OVAL

agility threshold

defaults

author

Hutter

Hoos

Leyton-Brown

St�utzle

ParamILS

ILS

iterated loal searh

training set

random walks

WalkSAT

been solved muh more quikly if the algorithm's parameters had been speially

adjusted for instanes of the Langford problem.

Algorithm C, as implemented in the experiments above, has ten major

parameters that an be modi�ed by the user on eah run:

�; tradeo� between p and q in lause RANGE sores (see Eq. (123));

�; damping fator in variable ACT sores (see after (118));

%; damping fator in lause ACT sores (see Eq. (125));

�

p

; initial value of the purging threshold M

p

(see after (125));

Æ

p

; amount of gradual inrease in M

p

(see after (125));

�; threshold used to prefer trivial lauses (see answer to exerise 269);

w; full \warmup" runs done after a restart (see answer to exerise 287);

p; probability of hoosing a deision variable at random (see exerise 266);

P; probability that OVAL(k) is initially even;

 ; agility threshold for ushing (see Table 4).

The values for these parameters initially ame from seat-of-the-pants guesses

� = 0:2; � = 0:95; % = 0:999; �

p

= 20000; Æ

p

= 500;

� = 1; w = 0; p = 0:02; P = 0; = 0:166667; (193)

and these defaults gave reasonably good results, so they were used happily for

many months (although there was no good reason to believe that they ouldn't be

improved). Then �nally, after the author had assembled the set of 100 test ases

in Table 6, it was time to deide whether to reommend the default values (193)

or to ome up with a better set of numbers.

Parameter optimization for general broad-spetrum use is a daunting task,

not only beause of signi�ant di�erenes between speies of SAT instanes but

also beause of the variability due to random hoies when solving any spei�

instane. It's hard to know whether a hange of parameter will be bene�ial or

harmful, when running times are so highly errati. Ouh|Fig. 54 illustrates

dramati variations even when all ten parameters are held �xed, and only the

seed for random numbers is hanged! Furthermore the ten parameters are not

at all independent: An inrease in �, say, might be a good thing, but only if the

other nine parameters are also modi�ed appropriately. How then ould any set

of defaults be reommended, without an enormous expense of time and money?

Fortunately there's a way out of this dilemma, thanks to advanes in the

theory of learning. F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. St�utzle have

developed a tool alled ParamILS intended spei�ally for making suh tuneups

[J. Arti�ial Intelligene Researh 36 (2009), 267{306℄; the `ILS' in this name

stands for \iterated loal searh." The basi idea is to start with a representative

training set of not-too-hard problems, and to arry out random walks in the 10-

dimensional parameter spae using sophistiated re�nements of WalkSAT-like

priniples. The best parameters disovered during this training session are then

evaluated on more diÆult problems outside the training set.

September 23, 2015

126 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Hoos

author

training set

SGB

book graphs

forty-two...

defaults

tradeo�s

damping fators

heuristi sores

adaptive ontrol

trigger

double-looking ahead

ATPG

test pattern generation

In Marh 2015, Holger Hoos helped the author to tune Algorithm C using

ParamILS. The resulting parameters then yielded Fig. 54, and Table 7, and many

other runtime values disussed above and below. Our training set onsisted

of 17 problems that usually ost less than 200M� with the original parame-

ters (193), namely fK5;K6;M2;M4;N1; S1; S4;X4;X6g together with stripped-

down versions of fA1;C2;C3;D1;D2;D3;D4;K0g. For example, instead of the

vetor x

1

: : : x

100

required by problem A1, we looked only for a shorter vetor

x = x

1

: : : x

62

, now with �x = 20; instead of D1 and D2 we sought 13-bit fators

of 31415926; instead of K0 we tried to 9-olor the SGB graph jean.

Ten independent training runs with ParamILS gave ten potential parameter

settings (�

i

; �

i

; : : : ;

i

). We evaluated them on our original 17 benhmarks,

together with 25 others that were a bit more diÆult: fF1;F2; S2; S3;T4;X5g,

plus less-stripped-down variants of fA1;A2;A2;C7;C7;D3;D4;F1;F2;G1;G1;

G2;G2;G8;K0;O1;O2;Q0;Q2g. For eah of the ten shortlisted parameter set-

tings, we ran eah of these 17 + 25 problems with eah of the random seeds

f1; 2; : : : ; 25g. Finally, hurray, we had a winner: The parameters (�

i

; �

i

; : : : ;

i

)

with minimum total running time in this experiment were

� = 0:4; � = 0:9; % = 0:9995; �

p

= 1000; Æ

p

= 500;

� = 10; w = 0; p = 0:02; P = 0:5; = 0:05: (194)

And these are now the reommended defaults for general-purpose use.

How muh have we thereby gained? Figure 55 ompares the running times of

our 100 examples, before and after tuning. It shows that the vast majority|77

of them|now run faster; these are the ases to the right of the dotted line from

(1M�; 1M�) to (1T�; 1T�). Half of the ases experiene a speedup exeeding

1.455; 27 of them now run more than twie as fast as they previously did.

Of ourse every rule has exeptions. The behavior of ase P4 has gotten

spetaularly worse, almost three orders of magnitude slower! Indeed, we saw

earlier in Fig. 54 that this ase has an amazingly unstable running time; further

peuliarities of P4 are disussed in exerise 511.

Our other major SAT solver, Algorithm L, also has parameters, notably

�; magi tradeo� oeÆient in heuristi sores (see Eq. (64));

�; damping fator for double-look triggering (see step Y1);

; lause weight per literal in heuristi sores (see exerise 175);

"; o�set in heuristi sores (see answer to exerise 146);

�; maximum heuristi sore threshold (see answer to exerise 145);

Y; maximum depth of double-lookahead (see step Y1).

ParamILS suggests the following default values, whih have been used in Fig. 53:

� = 3:5; � = 0:9998; = 0:2; " = 0:001; � = 20:0; Y = 1: (195)

Returning to Fig. 55, notie that the hange from (193) to (194) has substan-

tially hindered ases G3 and G4, whih are examples of test pattern generation.

Evidently suh lauses have speial harateristis that make them prefer speial

September 23, 2015

7.2.2.2 SATISFIABILITY: TUNING THE PARAMETERS 127

Hoos

author

waerden

I

m

p

r

o

v

e

d

r

u

n

n

i

n

g

t

i

m

e

f

r

o

m

p

a

r

a

m

e

t

e

r

s

(

1

9

4

)

!

 Original running time from parameters (193) !

A1

A2

B1

B2

C1

C2

C3

C4

C5

C6

C7

C8

C9

D1

D2

D3

D4

D5

E0

E1

E2

F1

F2

G1

G2

G3

G4

G5

G6

G7

G8

K0

K1

K2

K3

K4

K5

K6

K7

K8

L1

L2

L3

L4

L5

L6

L7

L8

M1

M2

M3

M4

M5

M6

M7

M8

N1

O1

O2

P0

P1

P2

P3

P4

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

R1

R2

S1

S2

S3

S4

T1

T2

T3

T4

T5

T6

T7

T8

W1

W2

W3

W4

X1

X2

X3

X4

X5

X6

X7

X8

5

T

�

2

T

�

1

T

�

:

5

T

�

:

2

T

�

:

1

T

�

5

0

G

�

2

0

G

�

1

0

G

�

5

G

�

2

G

�

1

G

�

:

5

G

�

:

2

G

�

:

1

G

�

5

0

M

�

2

0

M

�

1

0

M

�

5

M

�

2

M

�

1

M

�

1 T�

:5 T�

:2 T�

:1 T�

50 G�

20 G�

10 G�

5 G�

2 G�

1 G�

:5 G�

:2 G�

:1 G�

50 M�

20 M�

10 M�

5 M�

2 M�

1 M�

Fig. 55. Median running times

of Algorithm C, before and after

its parameters were tuned.

settings of the parameters. Our main reason for introduing parameters in the

�rst plae was, of ourse, to allow tweaking for di�erent families of lauses.

Instead of �nding values of (�; �; : : : ;) that give good results in a broad

spetrum of appliations, we an learly use a system like ParamILS to �nd

values that are spei�ally tailored to a partiular lass of problems. In fat,

this task is easier. For example, Hoos and the author asked for settings of the

ten parameters that will tend to make Algorithm C do its best on problems of

the form waerden (3; k;n). A pair of ParamILS runs, based solely on the easy

training ases waerden (3; 9; 77) and waerden (3; 10; 95), suggested the parameters

� = 0:5; � = 0:9995; % = 0:99; �

p

= 100; Æ

p

= 10;

� = 10; w = 8; p = 0:01; P = 0:5; = 0:15; (196)

and this set indeed works very well. Figure 56 shows typial details, with 7 �

k � 14 and with nine independent sample runs for every hoie of k and n.

Eah unsatis�able instane has n =W (3; k), as given in the table following (10)

above; eah satis�able instane has n =W (3; k)�1. The fastest run using default

September 23, 2015

128 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

parallel methods

baktraking

R

u

n

n

i

n

g

t

i

m

e

f

r

o

m

w

a

e

r

d

e

n

p

a

r

a

m

e

t

e

r

s

(

1

9

6

)

!

 Running time from default parameters (194) !

k=7

k=7

k=8

k=8

k=9

k=9

k=10

k=10

k=11

k=11

k=12

k=12

k=13

k=13

k=14

k=14

1

0

T

�

5

T

�

2

T

�

1

T

�

:

5

T

�

:

2

T

�

:

1

T

�

5

0

G

�

2

0

G

�

1

0

G

�

5

G

�

2

G

�

1

G

�

:

5

G

�

:

2

G

�

:

1

G

�

5

0

M

�

2

0

M

�

1

0

M

�

5

M

�

2

M

�

1

M

�

:

5

M

�

:

2

M

�

:

1

M

�

2 T�

1 T�

:5 T�

:2 T�

:1 T�

50 G�

20 G�

10 G�

5 G�

2 G�

1 G�

:5 G�

:2 G�

:1 G�

50 M�

20 M�

10 M�

5 M�

2 M�

1 M�

:5 M�

:2 M�

Fig. 56. Running times of Algo-

rithm C on lauses waerden (3; k;n),

with and without speial tuning.

SAT UNSAT

parameters (194) has been paired in Fig. 56 with the fastest run using waerden -

tuned parameters (196); similarly, the seond-fastest, : : : , seond-slowest, and

slowest runs have also been paired. Notie that satis�able instanes tend to take

an unpreditable amount of time, as in Fig. 54. In spite of the fat that the new

parameters (196) were found by a areful study of just two simple instanes, they

learly yield substantial savings when applied to muh, muh harder problems

of a similar nature. (See exerise 512 for another instrutive example.)

Exploiting parallelism. Our fous in the present book is almost entirely on

sequential algorithms, but we should be aware that the really tough instanes of

SAT are best solved by parallel methods.

Problems that are amenable to baktraking an readily be deomposed into

subproblems that partition the spae of solutions. For example, if we have 16

proessors available, we an start them o� on independent SAT instanes in whih

variables x

1

x

2

x

3

x

4

have been fored to equal 0000, 0001, : : : , 1111.

A na��ve deomposition of that kind is rarely the best strategy, however.

Perhaps only one of those sixteen ases is really hallenging. Perhaps some of

September 23, 2015

7.2.2.2 SATISFIABILITY: HISTORY 129

PSATO

Zhang

Bonaina

Hsiang

random numbers

ube and onquer

onit-driven lause learning

lookahead

Heule

Kullmann

Wieringa

Biere

waerden

DODGSON

tautologous

truth table

QUINE

syllogism

Sorates

resolution

Boole

Dodgson

Carroll

eliminate variables

Dodgson

Bartley

Method of Trees

Carroll

baktraking

the proessors are slower than others. Perhaps several proessors will learn new

lauses that the other proessors ought to know. Furthermore, the splitting into

subproblems need not our only at the root of the searh tree. Careful load-

balaning and sharing of information will do muh better. These hallenges were

addressed by a pioneering system alled PSATO [H. Zhang, M. P. Bonaina, and

J. Hsiang, Journal of Symboli Computation 21 (1996), 543{560℄.

A muh simpler approah should also be mentioned: We an start up many

di�erent solvers, or many opies of the same solver, with di�erent soures of

random numbers. As soon as one has �nished, we an then terminate the others.

The best parallelized SAT solvers urrently available are based on the \ube

and onquer" paradigm, whih ombines onit-driven lause learning with

lookahead tehniques that hoose branh variables for partitioning; see M. J. H.

Heule, O. Kullmann, S. Wieringa, and A. Biere, LNCS 7261 (2012), 50{65. In

partiular, this approah is exellent for the waerden problems.

Today has proved to be an epoh in my Logial work.

. . . I think of alling it the `Genealogial Method.'

| CHARLES L. DODGSON, Diary (16 July 1894)

The method of showing a statement to be tautologous

onsists merely of onstruting a table under it in the usual way

and observing that the olumn under the main onnetive

is omposed entirely of `T's.

| W. V. O. QUINE, Mathematial Logi (1940)

A brief history. The lassi syllogism \All men are mortal; Sorates is a man;

hene Sorates is mortal" shows that the notion of resolution is quite anient:

:Man _ Mortal; :Sorates _ Man;

:

:: :Sorates _ Mortal:

Of ourse, algebrai demonstrations that (:x_y)^(:z_x) implies (:z_y), when

x, y, and z are arbitrary Boolean expressions, had to wait until Boole and his

19th-entury followers brought mathematis to bear on the subjet. The most

notable ontributor, resolutionwise, was perhaps C. L. Dodgson, who spent the

last years of his life working out theories of inferene by whih omplex hains of

reasoning ould be analyzed by hand. He published Symboli Logi, Part I, in

1896, addressing it to hildren and to the young-in-heart by using his famous pen

name Lewis Carroll. Setion VII.II.x3 of that book explains and illustrates how

to eliminate variables by resolution, whih he alled the Method of Undersoring.

When Dodgson died unexpetedly at the beginning of 1898, his nearly om-

plete manusript for Symboli Logi, Part II, vanished until W. W. Bartley III

was able to resurret it in 1977. Part II was found to ontain surprisingly novel

ideas|espeially its Method of Trees, whih would have ompletely hanged

the history of mehanial theorem proving if it had ome to light earlier. In this

method, whih Carroll doumented at length in a remarkably lear and enter-

taining way, he onstruted searh trees essentially like Fig. 39, then onverted

them into proofs by resolution. Instead of baktraking as in Algorithm D,

September 23, 2015

130 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

reursive

depth-�rst

breadth-�rst

dual form

tautology problem

unsolvable

halting problem

disjuntive normal forms

Blake

onsensus

resolvent

Samson

Mills

Quine

Mueller

Davis

Putnam

�rst order logi

Samson

Mills

Mueller

unit lauses

pure literals

resolution

Logemann

Loveland

Davis

Cook

NP-omplete problems

whih is a reursive depth-�rst method, he worked breadth-�rst: Starting at the

root, he exploited unit lauses when possible, and branhed on binary (or even

ternary) lauses when neessary, suessively �lling out all un�nished branhes

level-by-level in hopes of being able to reuse omputations.

Logiians of the 20th entury took a di�erent tak. They basially dealt with

the satis�ability problem in its equivalent dual form as the tautology problem,

namely to deide when a Boolean formula is always true. But they dismissed

tautology-heking as a triviality, beause it ould always be solved in a �nite

number of steps by just looking at the truth table. Logiians were far more

interested in problems that were provably unsolvable in �nite time, suh as

the halting problem|the question of whether or not an algorithm terminates.

Nobody was bothered by the fat that an n-variable funtion has a truth table

of length 2

n

, whih exeeds the size of the universe even when n is rather small.

Pratial omputations with disjuntive normal forms were pioneered by

Arhie Blake in 1937, who introdued the \onsensus" of two impliants, whih

is dual to the resolvent of two lauses. Blake's work was, however, soon forgotten;

E. W. Samson, B. E. Mills, and (independently) W. V. O. Quine redisovered

the onsensus operation in the 1950s, as disussed in exerise 7.1.1{31.

The next important step was taken by E. W. Samson and R. K. Mueller

[Report AFCRC-TR-55-118 (Cambridge, Mass.: Air Fore Cambridge Researh

Center, 1955), 16 pages℄, who presented an algorithm for the tautology problem

that uses onsensus to eliminate variables one by one. Their algorithm therefore

was equivalent to SAT solving by suessively eliminating variables via resolu-

tion. Samson and Mueller demonstrated their algorithm by applying it to the

unsatis�able lauses that we onsidered in (112) above.

Independently, Martin Davis and Hilary Putnam had begun to work on the

satis�ability problem, motivated by the searh for algorithms to dedue formulas

in �rst order logi|unlike Samson, Mills, and Mueller, who were hiey inter-

ested in synthesizing eÆient iruits. Davis and Putnam wrote an unpublished

62-page report \Feasible omputational methods in the propositional alulus"

(Rensselaer Polytehni Institute, Otober 1958) in whih a variety of di�erent

approahes were onsidered, suh as the removal of unit lauses and pure literals,

as well as \ase analysis," that is, baktraking with respet to the subproblems

F jx and F j �x. As an alternative to ase analysis, they also disussed eliminating

the variable x by resolution. The aount of this work that was eventually pub-

lished [JACM 7 (1960), 201{215℄ onentrated on hand alulation, and omitted

ase analysis in favor of resolution; but when the proess was later implemented

on a omputer, jointly with George Logemann and Donald Loveland [CACM 5

(1962), 394{397℄, the method of baktraking through di�erent ases was found

to work better with respet to memory requirements. (See Davis's aount of

these developments in Handbook of Automated Reasoning (2001), 3{15.)

This early work didn't atually ause the satis�ability problem to appear

on many people's mental radar sreens, however. Far from it; ten years went

by before SAT beame an important buzzword. The piture hanged in 1971,

when Stephen A. Cook showed that satis�ability is the key to solving NP-

September 23, 2015

7.2.2.2 SATISFIABILITY: HISTORY 131

nondeterministi polynomial time

3SAT

Goldberg

Purdom

Brown

Frano

Haven

ompetition

Buro

Kleine B�uning

ontest

lookahead solvers

B�ohm

Spekenmeyer

Rauzy

Stamm

strong omponents

dependeny digraph

C-SAT

andidate literals

Dubois

Andre

Boufkhad

Carlier

Freeman

Li

double lookahead

Dubois

Dequen

omplete problems: He proved that any algorithm to solve a deision problem in

nondeterministi polynomial time an be represented eÆiently as a onjuntion

of ternary lauses to be satis�ed. (See STOC 3 (1971), 151{158. We'll study NP-

ompleteness in Setion 7.9.) Thus, a great multitude of hugely important prob-

lems ould all be solved rather quikly, if we ould only devise a deent algorithm

for a single problem, 3SAT; and 3SAT seemed almost absurdly simple to solve.

A year of heady optimism following the publiation of Cook's paper soon

gave way to the realization that, alas, 3SAT might not be so easy after all.

Ideas that looked promising in small ases didn't sale well, as the problem

size was inreased. Hene the entral fous of work on satis�ability largely

retreated into theoretial realms, unrelated to programming pratie, exept

for oasional studies that used SAT as a simple model for the behavior of

baktraking algorithms in general. Examples of suh investigations, pioneered

by A. T. Goldberg, P. W. Purdom, Jr., C. A. Brown, J. V. Frano, and others,

appear in exerises 213{216. See P. W. Purdom, Jr., and G. N. Haven, SICOMP

26 (1997), 456{483, for a survey of subsequent progress on questions of that kind.

The state of SAT art in the early 90s was well represented by an international

programming ompetition held in 1992 [see M. Buro and H. Kleine B�uning,

Bulletin EATCS 49 (February 1993), 143{151℄. The winning programs in that

ontest an be regarded as the �rst suessful lookahead solvers on the path from

Algorithm A to Algorithm L. Max B�ohm \took the gold" by hoosing the next

branh variable based on lexiographially maximal (H

1

(x); : : : ; H

n

(x)), where

H

k

(x) = h

k

(x)+h

k

(�x)+min

�

h

k

(x);h

k

(�x)

�

; h

k

(x) =

�

�

fC 2 F j x 2 C; jCj = kg

�

�

:

[See M. B�ohm and E. Spekenmeyer, Ann. Math. Artif. Intelligene 17 (1996),

381{400. A. Rauzy had independently proposed a somewhat similar branhing

riterion in 1988; see Revue d'intelligene arti�ielle 2 (1988), 41{60.℄ The silver

medal went to Hermann Stamm, who used strong omponents of the dependeny

digraph to narrow the searh at eah branh node.

Advanes in pratial algorithms for satis�ability now began to take o�.

The benhmark programs of 1992 had been hosen at random, but the DIMACS

Implementation Challenge of 1993 featured also a large number of strutured in-

stanes of SAT. The main purpose of this \hallenge" was not to rown a winner,

but to bring more than 100 researhers together for a three-day workshop, at

whih they ould ompare and share results. In retrospet, the best overall

performane at that time was arguably ahieved by an elaborate lookahead

solver alled C-SAT, whih introdued tehniques for detailed exploration of the

�rst-order e�ets of andidate literals [see O. Dubois, P. Andre, Y. Boufkhad,

and J. Carlier, DIMACS 26 (1996), 415{436℄. Further re�nements leading

towards the ideas in Algorithm L appeared in a Ph.D. thesis by Jon W. Freeman

(Univ. of Pennsylvania, 1995), and in the work of Chu Min Li, who introdued

double lookahead [see Information Proessing Letters 71 (1999), 75{80℄. The

weighted binary heuristi (67) was proposed by O. Dubois and G. Dequen, Pro.

International Joint Conferene on Arti�ial Intelligene 17 (2001), 248{253.

September 23, 2015

132 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Marques-Silva

Sakallah

unit-propagation

onits

unique impliation points

UIP

bakjump

Bayardo

Shrag

deision literal

purging

learned lause

St�almark

bounded model heking

Biere

Cimatti

Clarke

Zhu

planning

Kautz

Selman

BDD

Cha�

Moskewiz

Madigan

Zhao

Zhang

Malik

VSIDS

restarts

ushing

ACT

ativity sores

wathed literals

unit propagation

Zhang

Stikel

baktraking

ompetitions

BerkMin

Goldberg

Novikov

J�arvisalo

Le Berre

Roussel

Simon

SATzilla

Horn lauses

unit propagations

Meanwhile the ideas underlying Algorithm C began to emerge. Jo~ao P.

Marques-Silva, in his 1995 thesis direted by Karem A. Sakallah, disovered how

to turn unit-propagation onits into one or more lauses learned at \unique

impliation points," after whih it was often possible to bakjump past deisions

that didn't a�et the onit. [See IEEE Trans. C48 (1999), 506{521.℄ Similar

methods were developed independently by R. J. Bayardo, Jr., and R. C. Shrag

[AAAI Conf. 14 (1997), 203{208℄, who onsidered only the speial ase of lauses

that inlude the urrent deision literal, but introdued tehniques for purging

a learned lause when one of its literals was fored to ip its value. Both groups

limited the size of learned lauses, and notied that their new methods gave

signi�ant speedups on benhmark problems related to industrial appliations.

The existene of fast SAT solvers, oupled with Gunnar St�almark's new

ideas about applying logi to omputer design [see Swedish patent 467076 (1992)℄,

led to the introdution of bounded model heking tehniques by Armin Biere,

Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu [LNCS 1579 (1999),

193{207℄. Satis�ability tehniques had also been introdued to solve lassial

planning problems in arti�ial intelligene [Henry Kautz and Bart Selman, Pro.

European Conf. Arti�ial Intelligene 10 (1992), 359{363℄. Designers ould now

verify muh larger models than had been possible with BDD methods.

The major breakthroughs appeared in a solver alled Cha� [M. W. Moske-

wiz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, ACM/IEEE Design

Automation Conf. 38 (2001), 530{535℄, whih had two espeially noteworthy in-

novations: (i) \VSIDS" (the Variable State Independent Dereasing Sum heuris-

ti), a surprisingly e�etive way to selet deision literals, whih also worked well

with restarts, and whih suggested the even better ACT heuristi of Algorithm C

that soon replaed it; also (ii) lazy data strutures with two wathed literals

per lause, whih made unit propagation muh faster with respet to large

learned lauses. (A somewhat similar wathing sheme, introdued earlier by

H. Zhang and M. Stikel [J. Automated Reasoning 24 (2000), 277{296℄, had the

disadvantage that it needed to be downdated while baktraking.)

These exiting developments sparked a revival of international SAT ompe-

titions, whih have been held annually sine 2002. The winner in 2002, BerkMin

by E. Goldberg and Y. Novikov, has been desribed well in Disrete Applied

Mathematis 155 (2007), 1549{1561. And year after year, these hallenging on-

tests have ontinued to spawn further progress. By 2010, more than twie as

many benhmarks ould be solved in a given period of time as in 2002, using

the programs of 2002 and 2010 on the omputers of 2010 [see M. J�arvisalo,

D. Le Berre, O. Roussel, and L. Simon, AI Magazine 33,1 (Spring 2012), 89{94℄.

The overall hampion in 2007 was SATzilla, whih was atually not a

separate SAT solver but rather a program that knew how to hoose intelligently

between other solvers on any given instane. SATzillawould �rst take a few se-

onds to ompute basi features of a problem: the distribution of literals per lause

and lauses per literal, the balane between positive and negative ourrenes of

variables, the proximity to Horn lauses, et. Samples ould quikly be taken to

estimate how many unit propagations our at levels 1, 4, 16, 64, 256, and how

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 133

portfolio

tunes itself

Xu

Hutter

Hoos

Leyton-Brown

Tseytin

extended resolution

Pinusians

waerden

Loal Lemma

W (k

0

; k

1

; : : : ; k

b�1

)

monotoni

binary

many deisions are needed before reahing a onit. Based on these numbers,

and experiene with the performane of the other solvers on the previous year's

benhmarks, SATzilla was trained to selet the algorithm that appeared most

likely to sueed. This \portfolio" approah, whih tunes itself niely to the

harateristis of vastly di�erent sets of lauses, has ontinued to dominate the

international ompetitions ever sine. Of ourse portfolio solvers rely on the

existene of \real" solvers, invented independently and bug-free, whih shine with

respet to partiular lasses of problems. And of ourse the winner of ompeti-

tions may not be the best atual system for pratial use. [See L. Xu, F. Hutter,

H. H. Hoos, and K. Leyton-Brown, J. Arti�ial Intelligene Researh 32 (2008),

565{606; LNCS 7317 (2012), 228{241; CACM 57, 5 (May 2014), 98{107.℄

Historial notes about details of the algorithms, and about important related

tehniques suh as preproessing and enoding, have already been disussed

above as the algorithms and tehniques were desribed.

One reurring theme appears to be that the behavior of SAT solvers is full of

surprises: Some of the most important improvements have been introdued for

what has turned out to be the wrong reasons, and a theoretial understanding

is still far from adequate.

[In future, the next breakthrough might ome from \variable learning,"

as suggested by Tseytin's idea of extended resolution: Just as lause learning

inreases the number of lauses, m, we might �nd good ways to inrease the

number of variables, n. The subjet seems to be far from fully explored.℄

EXERCISES

1. [10 ℄ What are the shortest (a) satis�able (b) unsatis�able sets of lauses?

2. [20 ℄ Travelers to the remote planet Pinus have reported that all the healthy

natives like to dane, unless they're lazy. The lazy nondaners are happy, and so are

the healthy daners. The happy nondaners are healthy; but natives who are lazy and

healthy aren't happy. Although the unhappy, unhealthy ones are always lazy, the lazy

daners are healthy. What an we onlude about Pinusians, based on these reports?

3. [M21 ℄ Exatly how many lauses are in waerden (j; k;n)?

4. [22 ℄ Show that the 32 onstraints of waerden (3; 3; 9) in (9) remain unsatis�able

even if up to four of them are removed.

5. [M46 ℄ Is W (3; k) = �(k

2

)?

x 6. [HM37 ℄ Use the Loal Lemma to show that W (3; k) =
(k

2

=(log k)

3

).

7. [21 ℄ Can one satisfy the lauses f(x

i

_x

i+2

d

_x

i+2

d+1

) j 1 � i � n�2

d+1

; d � 0g[

f(�x

i

_ �x

i+2

d

_ �x

i+2

d+1

) j 1 � i � n� 2

d+1

; d � 0g?

x 8. [20 ℄ De�ne lauses waerden (k

0

; k

1

; : : : ; k

b�1

;n) that are satis�able if and only if

n < W (k

0

; k

1

; : : : ; k

b�1

).

9. [24 ℄ Determine the value of W (2; 2; k) for all k � 0. Hint: Consider k mod 6.

x 10. [21 ℄ Show that every satis�ability problem with m lauses and n variables an be

transformed into an equivalent monotoni problem withm+n lauses and 2n variables,

in whih the �rstm lauses have only negative literals, and the last n lauses are binary

with two positive literals.

September 23, 2015

134 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Tsimelzon

3D MATCHING problem

gadget

Rivest

Heule

symmetri threshold funtions

enoding

exlusion lauses

at-most-one

exat over problem

Langford pairs

langford (n) and langford

0

(n)

exlusion lauses

at-most-one

MGregor graph

kernel

strong produt

omplement of a graph

king move

torus

11. [27 ℄ (M. Tsimelzon, 1994.) Show that a general 3SAT problem with lauses

fC

1

; : : : ; C

m

g and variables f1; : : : ; ng an be redued to a 3D MATCHING problem

of size 10m that involves the following leverly designed triples:

Eah lause C

j

orresponds to 3�10 verties, namely lj,

�

lj, jljj

0

, and jljj

00

for eah

l 2 C

j

, together with wj, xj, yj, and zj, and also j

0

k and j

00

k for 1 � k � 7. If i or �{ o-

urs in t lauses C

j

1

, : : : , C

j

t

, there are t \true" triples fij

k

; ij

0

k

; ij

00

k

g and t \false" triples

f�{j

k

; ij

0

k

; ij

00

1+(k mod t)

g, for 1 � k � t. Eah lause C

j

= (l

1

_ l

2

_ l

3

) also spawns three

\satis�ability" triples f

�

l

1

j; j

0

1; j

00

1g, f

�

l

2

j; j

0

1; j

00

2g, f

�

l

3

j; j

0

1; j

00

3g; six \�ller" triples

fl

1

j; j

0

2; j

00

1g, f

�

l

1

j; j

0

3; j

00

1g, fl

2

j; j

0

4; j

00

2g, f

�

l

2

j; j

0

5; j

00

2g, fl

3

j; j

0

6; j

00

3g, f

�

l

3

j; j

0

7; j

00

3g;

and twelve \gadget" triples fwj; j

0

2; j

00

4g, fwj; j

0

4; j

00

4g, fwj; j

0

6; j

00

4g, fxj; j

0

2; j

00

5g,

fxj; j

0

5; j

00

5g, fxj; j

0

7; j

00

5g, fyj; j

0

3; j

00

6g, fyj; j

0

4; j

00

6g, fyj; j

0

7; j

00

6g, fzj; j

0

3; j

00

7g,

fzj; j

0

5; j

00

7g, fzj; j

0

6; j

00

7g. Thus there are 27m triples altogether.

For example, Rivest's satis�ability problem (6) leads to a 3D mathing prob-

lem with 216 triples on 240 verties; the triples that involve verties 18 and

�

18 are

f18; 18

0

; 18

00

g, f

�

18; 18

0

; 11

00

g, f

�

18; 8

0

1; 8

00

2g, f18; 8

0

4; 8

00

2g, f

�

18; 8

0

5; 8

00

2g.

12. [21 ℄ (M. J. H. Heule.) Simplify (13) by exploiting the identity

S

�1

(y

1

; : : : ; y

p

) = 9t (S

�1

(y

1

; : : : ; y

j

; t) ^ S

�1

(

�

t; y

j+1

; : : : ; y

p

)):

13. [24 ℄ Exerise 7.2.2.1{00 de�nes an exat over problem that orresponds to Lang-

ford pairs of order n. (See page vii.)

a) What are the onstraints analogous to (12) when n = 4?

b) Show that there's a simple way to avoid dupliate binary lauses suh as those

in (14), whenever an exat over problem is onverted to lauses using (13).

) Desribe the orresponding lauses langford (4) and langford

0

(4).

14. [22 ℄ Explain why the lauses (17) might help a SAT solver to olor a graph.

15. [24 ℄ By omparing the MGregor graph of order 10 in Fig. 33

with the MGregor graph of order 3 shown here, give a preise

de�nition of the verties and edges of the MGregor graph that

has an arbitrary order n � 3. Exatly how many verties and

edges are present in this graph, as a funtion of n?

00 01 02

11 12

22

20 21

30 31 32

10

16. [21 ℄ Do MGregor graphs have liques of size 4?

17. [26 ℄ Let f(n) and g(n) be the smallest and largest values of r suh that M-

Gregor's graph of order n an be 4-olored, and suh that some olor appears exatly

r times. Use a SAT solver to �nd as many values of f(n) and g(n) as you an.

x 18. [28 ℄ By examining the olorings found in exerise 17, de�ne an expliit way to

4-olor a MGregor graph of arbitrary order n, in suh a way that one of the olors is

used at most

5

6

n times. Hint: The onstrution depends on the value of nmod 6.

x 19. [29 ℄ Continuing exerise 17, let h(n) be the largest number of regions that an be

given two olors simultaneously (without using the lauses (17)). Investigate h(n).

20. [40 ℄ In exatly how many ways an MGregor's map (Fig. 33) be four-olored?

21. [22 ℄ Use a SAT solver to �nd a minimum-size kernel in the graph of Fig. 33.

22. [20 ℄ Color the graph C

5

�C

5

with the fewest olors. (Two verties of this graph

an reeive the same olor if and only if they are a king move apart in a 5� 5 torus.)

23. [20 ℄ Compare the lauses (18) and (19) to (20) and (21) in the ase n = 7, r = 4.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 135

pure literal

omplete binary tree

Sinz

ardinality onstraint

Bailleux

Boufkhad

3SAT

auxiliary variables

arithmeti progressions, avoiding

list oloring

double oloring

oloring, multiple

yle graphs

frational oloring number

oloring, frational

MGregor's graphs

frational exat over

exat over, frational

x 24. [M32 ℄ The lauses obtained from (20) and (21) in the previous exerise an be

simpli�ed, beause we an remove the two that ontain the pure literal b

2

1

.

a) Prove that the literal b

2

1

is always pure in (20) and (21), when r > n=2.

b) Show that b

2

1

might also be pure in some ases when r < n=2.

) The lauses obtained from (20) and (21) have many pure literals b

k

j

when r has its

maximum value n� 1. Furthermore, their removal makes other literals pure. How

many lauses will remain in this ase after all pure literals have been eliminated?

d) Show that the omplete binary tree with n � 2 leaves is obtained from omplete

binary trees with n

0

and n

00

= n� n

0

leaves, where either n

0

or n

00

is a power of 2.

e) Let a(n; r) and (n; r) be respetively the number of auxiliary variables b

k

j

and

the total number of lauses that remain after all of the pure auxiliary literals have

been removed from (20) and (21). What are a(2

k

; 2

k�1

) and (2

k

; 2

k�1

)?

f) Prove that a(n; r) = a(n; n

00

) = a(n; n

0

) for n

00

� r � n

0

, and this ommon value is

max

1�r<n

a(n; r). Also a(n; r) = a(n; n � r); and (n; r) � (n; n � r) if r � n=2.

25. [21 ℄ Show that (18){(19) and (20){(21) are equally e�etive when r = 2.

26. [22 ℄ Prove that Sinz's lauses (18) and (19) enfore the ardinality onstraint

x

1

+ � � �+x

n

� r. Hint: Show that they imply s

k

j

= 1 whenever x

1

+ � � �+x

j+k�1

� k.

27. [20 ℄ Similarly, prove the orretness of Bailleux and Boufkhad's (20) and (21).

Hint: They imply b

k

j

= 1 whenever the leaves below node k ontain j or more 1s.

x 28. [20 ℄ What lauses result from (18) and (19) when we want to ensure that x

1

+

� � � + x

n

� 1? (This speial ase onverts arbitrary lauses into 3SAT lauses.)

x 29. [20 ℄ Instead of the single onstraint x

1

+ � � �+x

n

� r, suppose we wish to impose

a sequene of onstraints x

1

+ � � �+x

i

� r

i

for 1 � i � n. Can this be done niely with

additional lauses and auxiliary variables?

x 30. [22 ℄ If auxiliary variables s

k

j

are used as in (18) and (19) to make x

1

+� � �+x

n

� r,

while s

0k

j

are used to make �x

1

+ � � � + �x

n

� n � r, show that we may unify them by

taking s

0j

k

= s

k

j

, for 1 � j � n� r, 1 � k � r. Can (20) and (21) be similarly uni�ed?

x 31. [28 ℄ Let F

t

(r) be the smallest n for whih there is a bit vetor x

1

: : : x

n

with

x

1

+ � � � + x

n

= r and with no t equally spaed 1s. For example, F

3

(12) = 30 beause

of the unique solution 101100011010000000010110001101. Disuss how F

t

(n) might be

omputed eÆiently with the help of a SAT solver.

32. [15 ℄ A list oloring is a graph oloring in whih v's olor belongs to a given

set L(v), for eah vertex v. Represent list oloring as a SAT problem.

33. [21 ℄ A double oloring of a graph is an assignment of two distint olors to every

vertex in suh a way that neighboring verties share no ommon olors. Similarly, a q-

tuple oloring assigns q distint olors to eah vertex. Find double and triple olorings

of the yle graphs C

5

, C

7

, C

9

, : : : , using as few olors as possible.

34. [HM26 ℄ The frational oloring number �

�

(G) of a graph G is de�ned to be the

minimum ratio p=q for whih G has a q-tuple oloring that uses p olors.

a) Prove that �

�

(G) � �(G), and show that equality holds in MGregor's graphs.

b) Let S

1

, : : : , S

N

be all the independent subsets of G's verties. Show that

�

�

(G) = min

�

1

;:::;�

N

�0

f�

1

+ � � �+ �

N

j

P

N

j=1

�

j

[v 2S

j

℄ = 1 for all verties vg:

(This is a frational exat over problem.)

) What is the frational oloring number �

�

(C

n

) of the yle graph C

n

?

September 23, 2015

136 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

greedy algorithm

maximum independent set

ontiguous United States

radio oloring

L(2; 1) labeling

Roberts

hannel assignment

ontiguous USA

square grid

grid graphs

triangular grid

simplex graph

n-ube

multiply

Dadda

Tseytin enoding

ternary operations

full adder

median operation

exlusive or, ternary

palindromi

Maximum ones

multipliations

palindrome

gates

wires

fanout gates

fanout gate

single-stuk-at faults

d) Consider the following greedy algorithm for oloring G: Set k 0 and G

0

 G;

while G

k

is nonempty, set k k+1 and G

k

 G

k�1

nC

k

, where C

k

is a maximum

independent set of G

k�1

. Prove that k � H

�(G)

�

�

(G), where �(G) is the size of G's

largest independent set; hene �(G)=�

�

(G) � H

�(G)

= O(log n). Hint: Let t

v

=

1=jC

i

j if v 2 C

i

, and show that

P

v2S

t

v

� H

jSj

whenever S is an independent set.

35. [22 ℄ Determine �

�

(G) when G is (a) the graph of the ontiguous United States

(see 7{(17) and exerise 7{45); (b) the graph of exerise 22.

x 36. [22 ℄ A radio oloring of a graph, also known as an L(2; 1) labeling, is an assign-

ment of integer olors to verties so that the olors of u and v di�er by at least 2

when u���v, and by at least 1 when u and v have a ommon neighbor. (This notion,

introdued by Fred Roberts in 1988, was motivated by the problem of assigning hannels

to radio transmitters, without interferene from \lose" transmitters and without strong

interferene from \very lose" transmitters.) Find a radio oloring of Fig. 33 that uses

only 16 onseutive olors.

37. [20 ℄ Find an optimum radio oloring of the ontiguous USA graph (see 7{(17)).

38. [M25 ℄ How many onseutive olors are needed for a radio oloring of (a) the

n�n square grid P

n

P

n

? (b) the verties f(x; y; z) j x; y; z � 0, x+ y+ z = ng, whih

form a triangular grid with n + 1 verties on eah side.

39. [M46 ℄ Find an optimum radio oloring of the n-ube, for some value of n > 6.

40. [01 ℄ Is the fatorization problem (22) unsatis�able whenever z is a prime number?

41. [M21 ℄ Determine the number of Boolean operations ^, _, � needed to multiply

m-bit numbers by n-bit numbers with Dadda's sheme, when 2 � m � n.

42. [21 ℄ Tseytin enoding analogous to (24) an be devised also for ternary opera-

tions, without introduing any additional variables besides those of the funtion being

enoded. Illustrate this priniple by enoding the basi operations x t� u � v and

y htuvi of a full adder diretly, instead of omposing them from �, ^, and _.

x 43. [21 ℄ For whih integers n � 2 do there exist odd palindromi binary numbers

x = (x

n

: : : x

1

)

2

= (x

1

: : : x

n

)

2

and y = (y

n

: : : y

1

)

2

= (y

1

: : : y

n

)

2

suh that their

produt xy = (z

m+n

: : : z

1

)

2

= (z

1

: : : z

m+n

)

2

is also palindromi?

x 44. [30 ℄ (Maximum ones.) Find the largest possible value of �x+ �y+ �(xy), namely

the greatest total number of 1 bits, over all multipliations of 32-bit binary x and y.

45. [20 ℄ Speify lauses that onstrain (z

t

: : : z

1

)

2

to be a perfet square.

46. [30 ℄ Find the largest perfet square less than 2

100

that is a binary palindrome.

x 47. [20 ℄ Suppose a iruit suh as Fig. 34 has m outputs and n inputs, with g gates

that transform two signals into one and h gates that transform one signal into two.

Find a relation between g and h, by expressing the total number of wires in two ways.

48. [20 ℄ The small iruit shown here has three inputs, three XOR gates,

one fanout gate, eight wires, and one output. Whih single-stuk-at faults are

deteted by eah of the eight test patterns pqr?

p q r

x y

z

z

49. [24 ℄ Write a program that determines exatly whih of the 100 single-

stuk-at faults of the iruit in Fig. 34 are deteted by eah of the 32 possible

input patterns. Also �nd all the minimum sets of test patterns that will

disover every suh fault (unless it's not detetable).

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 137

Larrabee

automati test pattern gen

single-stuk-at faults

prod

number theory

monotone dereasing

depends on

BDD

training sets

omparator modules

sorting network

Cray 2

Life

Bailleux

Boufkhad

50. [24 ℄ Demonstrate Larrabee's method of representing stuk-at faults by desribing

the lauses that haraterize test patterns for the fault \x

1

2

stuk at 1" in Fig. 34. (This

is the wire that splits o� of x

2

and feeds into x

3

2

and x

4

2

, then to b

2

and b

3

; see Table 1.)

51. [40 ℄ Study the behavior of SAT solvers on the problem of �nding a small number of

test patterns for all of the detetable single-stuk-at faults of the iruit prod (32; 32).

Can a omplete set of patterns for this large iruit be disovered \automatially"

(without relying on number theory)?

52. [15 ℄ What lauses orrespond to (29) and (30) when the seond ase on the left

of Table 2, f(1; 0; 1; 0; : : : ; 1) = 1, is taken into aount?

x 53. [M20 ℄ The numbers in Table 2 are de�nitely nonrandom. Can you see why?

x 54. [23 ℄ Extend Table 2 using the rule in the previous exerise. How many rows are

needed before f(x) has no M -term representation in DNF, when M = 3, 4, and 5?

55. [21 ℄ Find an equation analogous to (27) that is onsistent with Table 2 and has

every variable omplemented. (Thus the resulting funtion is monotone dereasing.)

x 56. [22 ℄ Equation (27) exhibits a funtion mathing Table 2 that depends on only 8

of the 20 variables. Use a SAT solver to show that we an atually �nd a suitable f

that depends on only �ve of the x

j

.

x 57. [29 ℄ Combining the previous exerise with the methods of Setion 7.1.2, exhibit

a funtion f for Table 2 that an be evaluated with only six Boolean operations(!).

x 58. [20 ℄ Disuss adding the lauses �p

i;j

_ �q

i;j

to (29), (30), and (31).

59. [M20 ℄ Compute the exat probability that

^

f(x) in (32) di�ers from f(x) in (27).

60. [24 ℄ Experiment with the problem of learning f(x) in (27) from training sets of

sizes 32 and 64. Use a SAT solver to �nd a onjetured funtion,

^

f(x); then use BDD

methods to determine the probability that this

^

f(x) di�ers from f(x) for random x.

61. [20 ℄ Explain how to test when a set of lauses generated from a training set via

(29){(31) is satis�able only by the funtion f(x) in (27).

62. [23 ℄ Try to learn a seret small-DNF funtion with N -bit training sets x

(0)

, x

(1)

,

x

(2)

, : : : , where x

(0)

is random but eah bit of x

(k)

� x

(k�1)

for k > 0 is 1 with

probability p. (Thus, if p is small, suessive data points will tend to be near eah

other.) Do suh sets turn out to be more eÆient in pratie than the purely random

ones that arise for p = 1=2?

x 63. [20 ℄ Given an n-network � = [i

1

: j

1

℄[i

2

: j

2

℄ : : : [i

r

: j

r

℄, as de�ned in the exerises

for Setion 5.3.4, explain how to use a SAT solver to test whether or not � is a sorting

network. Hint: Use Theorem 5.3.4Z.

64. [26 ℄ The exat minimum time

^

T (n) of a sorting network for n elements is a famous

unsolved problem, and the fat that

^

T (9) = 7 was �rst established in 1987 by running a

highly optimized program for many hours on a Cray 2 superomputer.

Show that this result an now be proved with a SAT solver in less than a seond(!).

x 65. [28 ℄ Desribe enodings of the Life transition funtion (35) into lauses.

a) Use only the variables x

0

ij

and x

ij

.

b) Use auxiliary variables as in the Bailleux and Boufkhad enoding (20){(21), shar-

ing intermediate results between neighboring ells as disussed in the text.

66. [24 ℄ Use a SAT solver to �nd short ounterparts to Fig. 35 in whih (a) X

1

= ;

(b) X

2

= . In eah ase X

0

should have the smallest possible number of live ells.

September 23, 2015

138 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

mobile

hessboard

glider

osillator

rotor

stator

grid

symmetries

anonial forms

fourfold symmetry

reetion

rotational symmetry

hiral symmetry [rotation but not reetion)

Wainwright

snake dane

Mobile ipops

osillator

ipop

toruses

Silver

67. [24 ℄ Find a mobile hessboard pathX

0

! X

1

! : : :! X

21

with no more than �ve

ells alive in eah X

t

. (The glider in (37) leaves the board after X

20

.) How about X

22

?

68. [39 ℄ Find a maximum-length mobile path in whih 6 to 10 ells are always alive.

69. [23 ℄ Find all (a) still lifes and (b) osillators of period > 1 that live in a 4�4 board.

70. [21 ℄ The live ells of an osillator are divided into a rotor (those that hange) and

a stator (those that stay alive).

a) Show that the rotor annot be just a single ell.

b) Find the smallest example of an osillator whose rotor is $.

) Similarly, �nd the smallest osillators of period 3 whose rotors have the following

forms: ! ! ! ; ! ! ! ; ! ! ! .

x 71. [22 ℄ When looking for sequenes of Life transition on a square grid, an asymmet-

rial solution will appear in eight di�erent forms, beause the grid has eight di�erent

symmetries. Furthermore, an asymmetrial periodi solution will appear in 8r di�erent

forms, if r is the length of the period.

Explain how to add further lauses so that essentially equivalent solutions will

our only one: Only \anonial forms" will satisfy the onditions.

72. [28 ℄ Osillators of period 3 are partiularly intriguing, beause Life seems so

inherently binary.

a) What are the smallest suh osillators (in terms of bounding box)?

b) Find period-3 osillators of sizes 9�n and 10�n, with n odd, that have \fourfold

symmetry": The patterns are unhanged after left-right and/or up-down reetion.

(Suh patterns are not only pleasant to look at, they also are muh easier to �nd,

beause we need only onsider about one-fourth as many variables.)

) What period-3 osillators with fourfold symmetry have the most possible live ells,

on grids of sizes 15 � 15, 15 � 16, and 16 � 16?

d) The period-3 osillator shown here has another kind of four-way sym-

metry, beause it's unhanged after 90

Æ

rotation. (It was disovered in

1972 by Robert Wainwright, who alled it \snake dane" beause its

stator involves four snakes.) What period-3 osillators with 90

Æ

symmetry have

the most possible live ells, on grids of sizes 15 � 15 and 16 � 16?

x 73. [21 ℄ (Mobile ipops.) An osillator of period 2 is alled a ipop, and the Life

patterns of mobile ipops are partiularly appealing: Eah ell is either blank (dead

at every time t) or type A (alive when t is even) or type B (alive when t is odd). Every

nonblank ell (i) has exatly three neighbors of the other type, and (ii) doesn't have

exatly two or three neighbors of the same type.

a) The blank ells of a mobile ipop also satisfy a speial ondition. What is it?

b) Find a mobile ipop on an 8� 8 grid, with top row

BA

ABAB

.

) Find patterns that are mobile ipops on m � n toruses for various m and n.

(Thus, if repliated inde�nitely, eah one will tile the plane with an in�nite mobile

ipop.) Hint: One solution has no blank ells whatsoever; another has blank

ells like a hekerboard.

74. [M28 ℄ Continuing the previous exerise, prove that no nonblank ell of a �nite

mobile ipop has more than one neighbor of its own type. (This fat greatly speeds

up the searh for �nite mobile ipops.) Can two type A ells be diagonally adjaent?

75. [M22 ℄ (Stephen Silver, 2000.) Show that a �nite, mobile osillator of period p � 3

must have some ell that is alive more than one during the yle.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 139

Conway

spaeship

Light speed

benhmark tests

Garden of Eden

bitmap

orphan

Alie and Bob

mutual exlusion{

76. [41 ℄ Construt a mobile Life osillator of period 3.

77. [20 ℄ \StepX

�1

," whih preedesX

0

in (38), has the glider on�guration instead

of . What onditions on the still life X

5

will ensure that state X

0

is indeed reahed?

(We don't want digestion to begin prematurely.)

78. [21 ℄ Find a solution to the four-step eater problem in (38) that works on a 7� n

grid, for some n, instead of 8� 8.

79. [23 ℄ What happens if the glider meets the eater of (39) in its opposite phase

(namely instead of)?

80. [21 ℄ To ounterat the problem in the previous exerise, �nd an eater that is

symmetrial when reeted about a diagonal, so that it eats both and . (You'll

have to go larger than 8� 8, and you'll have to wait longer for digestion.)

81. [21 ℄ Conway disovered a remarkable \spaeship," where X

4

is X

0

shifted up 2:

X

0

= ! ! ! ! = X

4

:

Is there a left-right symmetrial still life that will eat suh spaeships?

x 82. [22 ℄ (Light speed.) Imagine Life on an in�nite plane, with all ells dead at time 0

exept in the lower left quadrant. More preisely, suppose X

t

= (x

tij

) is de�ned for all

t � 0 and all integers �1 < i; j < +1, and that x

0ij

= 0 whenever i > 0 or j > 0.

a) Prove that x

tij

= 0 whenever 0 � t < max(i; j).

b) Furthermore x

tij

= 0 when 0 � �i � j and 0 � t < i+ 2j.

) And x

tij

= 0 for 0 � t < 2i + 2j, if i � 0 and j � 0. Hint: If x

tij

= 0 whenever

i � �j, prove that x

tij

= 0 whenever i > �j.

83. [21 ℄ Aording to the previous exerise, the earliest possible time that ell (i; j)

an beome alive, if all initial life is on�ned to the lower left quadrant of the plane, is

at least

f(i; j) = i[i� 0℄ + j [j � 0℄ + (i+ j)[i + j � 0℄:

For example, when jij � 5 and jjj � 5 the values of f(i; j)

are shown at the right.

Let f

�

(i; j) be the atual minimum time at whih ell

(i; j) an be alive, for some suh initial state. Devise a set

of lauses by whih a SAT solver an test whether or not

f

�

(i

0

; j

0

) = f(i

0

; j

0

), given i

0

and j

0

. (Suh lauses make

interesting benhmark tests.)

5 6 7 8 9 10 12 14 16 18 20

4 4 5 6 7 8 10 12 14 16 18

3 3 3 4 5 6 8 10 12 14 16

2 2 2 2 3 4 6 8 10 12 14

1 1 1 1 1 2 4 6 8 10 12

0 0 0 0 0 0 2 4 6 8 10

0 0 0 0 0 0 1 3 5 7 9

0 0 0 0 0 0 1 2 4 6 8

0 0 0 0 0 0 1 2 3 5 7

0 0 0 0 0 0 1 2 3 4 6

0 0 0 0 0 0 1 2 3 4 5

84. [33 ℄ Prove that f

�

(i; j) = f(i; j) in the following ases when j > 0: (a) i = j,

i = j + 1, and i = j � 1. (b) i = 0 and i = �1. () i = 1� j. (d) i = j � 2. (e) i = �2.

x 85. [39 ℄ A Garden of Eden is a state of Life that has no predeessor.

a) If the pattern of 92 ells illustrated here ours anywhere within a

bitmap X, verify that X is a Garden of Eden. (The gray ells an be

either dead or alive.)

b) This \orphan" pattern, found with a SAT solver's help, is the smallest

that is urrently known. Can you imagine how it was disovered?

86. [M23 ℄ How many Life predeessors does a random10�10 bitmap have, on average?

87. [21 ℄ Explain why the lauses (42) represent Alie and Bob's programs (40), and

give a general reipe for onverting suh programs into equivalent sets of lauses.

September 23, 2015

140 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

mutual-exlusion protool

starvation

initial state

starvation yle

simple path

invariant

mutual exlusion

Peterson

starvation yles

pure yle

simple yle

Dekker

88. [18 ℄ Satisfy (41) and (42) for 0 � t < 6, and the 20� 6 additional binary lauses

that exlude multiple states, along with the \embarrassing" unit lauses (A3

6

)^ (B3

6

).

89. [21 ℄ Here's a mutual-exlusion protool one reommended in 1966. Does it work?

A0. Maybe go to A1.

A1. Set a 1, go to A2.

A2. If l go to A3, else to A5.

A3. If b go to A3, else to A4.

A4. Set l 0, go to A2.

A5. Critial, go to A6.

A6. Set a 0, go to A0.

B0. Maybe go to B1.

B1. Set b 1, go to B2.

B2. If l go to B5, else to B3.

B3. If a go to B3, else to B4.

B4. Set l 1, go to B2.

B5. Critial, go to B6.

B6. Set b 0, go to B0.

90. [20 ℄ Show that (43), (45), and (46) permit starvation, by satisfying (47) and (48).

91. [M21 ℄ Formally speaking, Alie is said to \starve" if there is (i) an in�nite se-

quene of transitions X

0

! X

1

! � � � starting from the initial state X

0

, and (ii) an in-

�nite sequene �

0

, �

1

, : : : of Boolean \bumps" that hanges in�nitely often, suh that

(iii) Alie is in a \maybe" or \ritial" state only a �nite number of times. Prove that

this an happen if and only if there is a starvation yle (47) as disussed in the text.

92. [20 ℄ Suggest O(r

2

) lauses with whih we an determine whether or not a mutual

exlusion protool permits a path X

0

! X

1

! � � � ! X

r

of distint states.

93. [20 ℄ What lauses orrespond to the term :�(X

0

) in (51)?

x 94. [21 ℄ Suppose we know that (X

0

! X

1

! � � � ! X

r

)^:�(X

r

) is unsatis�able for

0 � r � k. What lauses will guarantee that � is invariant? (The ase k = 1 is (51).)

95. [20 ℄ Using invariants like (50), prove that (45) and (46) provide mutual exlusion.

96. [22 ℄ Find all solutions to (52) when r = 2. Also illustrate the fat that invariants

are extremely helpful, by �nding a solution with distint states X

0

, X

1

, : : : , X

r

and

with r substantially greater than 2, if the lauses involving � are removed.

97. [20 ℄ Can states A6 and B6 our simultaneously in Peterson's protool (49)?

x 98. [M23 ℄ This exerise is about proving the nonexistene of starvation yles (47).

a) A yle of states is alled \pure" if one of the players is never bumped, and \simple"

if no state is repeated. Prove that the shortest impure yle, if any, is either simple

or onsists of two simple pure yles that share a ommon state.

b) If Alie is starved by some yle with protool (49), we know that she is never in

states A0 or A5 within the yle. Show that she an't be in A1, A2, or A6 either.

) Construt lauses to test whether there exist states X

0

! X

1

! � � � ! X

r

, with

X

0

arbitrary, suh that (X

0

X

1

: : : X

k�1

) is a starvation yle for some k � r.

d) Therefore we an onlude that (49) is starvation-free without muh extra work.

99. [25 ℄ Th.Dekker devised the �rst orret mutual-exlusion protool in 1965:

A0. Maybe go to A1.

A1. Set a 1, go to A2.

A2. If b go to A3, else to A6.

A3. If l go to A4, else to A2.

A4. Set a 0, go to A5.

A5. If l go to A5, else to A1.

A6. Critial, go to A7.

A7. Set l 1, go to A8.

A8. Set a 0, go to A0.

B0. Maybe go to B1.

B1. Set b 1, go to B2.

B2. If a go to B3, else to B6.

B3. If l go to B2, else to B4.

B4. Set b 0, go to B5.

B5. If l go to B1, else to B5.

B6. Critial, go to B7.

B7. Set l 0, go to B8.

B8. Set b 0, go to B0.

Use bounded model heking to verify its orretness.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 141

simultaneous write/write

simultaneous read/write

nondeterministially

ikering

bishops

tomographially balaned

Basket weavers

gipatsi patterns

pixels, rotated

grid, rotated

100. [22 ℄ Show that the following protool an starve one player but not the other:

A0. Maybe go to A1.

A1. Set a 1, go to A2.

A2. If b go to A2, else to A3.

A3. Critial, go to A4.

A4. Set a 0, go to A0.

B0. Maybe go to B1.

B1. Set b 1, go to B2.

B2. If a go to B3, else to B5.

B3. Set b 0, go to B4.

B4. If a go to B4, else to B1.

B5. Critial, go to B6.

B6. Set b 0, go to B0.

x 101. [31 ℄ Protool (49) has the potential defet that Alie and Bob might both be

trying to set the value of l at the same time. Design a mutual-exlusion protool in

whih eah of them ontrols two binary signals, visible to the other. Hint: The method

of the previous exerise an be enlosed in another protool.

102. [22 ℄ If Alie is setting a variable at the same time that Bob is trying to read

it, we might want to onsider a more stringent model under whih he sees either 0

or 1, nondeterministially. (And if he looks k times before she moves to the next

step, he might see 2

k

possible sequenes of bits.) Explain how to handle this model of

\ikering" variables by modifying the lauses of exerise 87.

103. [18 ℄ (Do this exerise by hand, it's fun!) Find the 7�21 image whose tomographi

sums are (r

1

; : : : ; r

7

) = (1; 0; 13; 6; 12; 7; 19); (

1

; : : : ;

21

) = (4; 3; 3; 4; 1; 6; 1; 3; 3; 3; 5; 1;

1; 5; 1; 5; 1; 5; 1; 1; 1); (a

1

; : : : ; a

27

) = (0; 0; 1; 2; 2; 3; 2; 3; 3; 2; 3; 3; 4; 3; 2; 3; 3; 3; 4; 3; 2; 2; 1;

1; 1; 1; 1); (b

1

; : : : ; b

27

) = (0; 0; 0; 0; 0; 1; 3; 3; 4; 3; 2; 2; 2; 3; 3; 4; 2; 3; 3; 3; 3; 3; 4; 3; 2; 1; 1).

104. [M21 ℄ For whihm and n is it possible to satisfy the digital tomography problem

with a

d

= b

d

= 1 for 0 < d < m+ n? (Equivalently, when an m+ n� 1 nonattaking

bishops be plaed on an m� n board?)

x 105. [M28 ℄ A matrix whose entries are f�1; 0;+1g is tomographially balaned if its

row, olumn, and diagonal sums are all zero. Two binary images X = (x

ij

) and

X

0

= (x

0

ij

) learly have the same row, olumn, and diagonal sums if and only if X�X

0

is tomographially balaned.

a) Suppose Y is tomographially balaned and has m rows, n olumns, and t our-

renes of +1. How many m� n binary matries X and X

0

satisfy X �X

0

= Y ?

b) Express the ondition \Y is tomographially balaned" in terms of lauses, with

the values f�1; 0;+1g represented respetively by the 2-bit odes f10; 00; 01g.

) Count the number T (m;n) of tomographially balaned matries, for m;n � 8.

d) How many suh matries have exatly four ourrenes of +1?

e) At most how many +1s an a 2n � 2n tomographially balaned matrix have?

f) True or false: The positions of the +1s determine the positions of the �1s.

106. [M20 ℄ Determine a generous upper bound on the possible number of di�erent

sets of input data fr

i

;

j

; a

d

; b

d

g that might be given to a 25 � 30 digital tomography

problem, by assuming that eah of those sums independently has any of its possible

values. How does this bound ompare to 2

750

?

x 107. [22 ℄ Basket weavers from the Tonga ulture of Inhambane, Mozambique, have

developed appealing periodi designs alled \gipatsi patterns" suh as this:

� � � � � �

(Notie that an ordinary pixel grid has been rotated by 45

Æ

.) Formally speaking, a

gipatsi pattern of period p and width n is a p�n binary matrix (x

i;j

) in whih we have

September 23, 2015

142 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

lexiographially smallest solution

interative SAT solving

van der Waerden numbers

waerden

digital tomography

NP-omplete

0{1 matries

binary tensor ontingeny problem

ontingeny

grid

land mine

Minesweeper

x

i;1

= x

i;n

= 1 for 1 � i � p. Row i of the matrix is to be shifted right by i� 1 plaes

in the atual pattern. The example above has p = 6, n = 13, and the �rst row of its

matrix is 1111101111101. Suh a pattern has row sums r

i

=

P

n

j=1

x

i;j

for 1 � i � p and

olumn sums

j

=

P

p

i=1

x

i;j

for 1 � j � n, as usual. By analogy with (53), it also has

a

d

=

X

i+j�d (modulo p)

x

i;j

; 1 � d � p; b

d

=

X

2i+j�d (modulo 2p)

x

i;j

; 1 � d � 2p:

a) What are the tomographi parameters r

i

,

j

, a

d

, and b

d

in the example pattern?

b) Do any other gipatsi patterns have the same parameters?

108. [23 ℄ The olumn sums

j

in the previous exerise are somewhat arti�ial, beause

they ount blak pixels in only a small part of an in�nite line. If we rotate the grid at

a di�erent angle, however, we an obtain in�nite periodi patterns for whih eah of

Fig. 36's four diretions enounters only a �nite number of pixels.

Design a pattern of period 6 in whih parallel lines always have equal tomographi

projetions, by hanging eah of the gray pixels in the following diagram to either white

or blak:

� � �

6 6 6 6 6 6 444444444 12 12 12121212

� � �

x 109. [20 ℄ Explain how to �nd the lexiographially smallest solution x

1

: : : x

n

to a

satis�ability problem, using a SAT solver repeatedly. (See Fig. 37(a).)

110. [19 ℄ What are the lexiographially (�rst, last) solutions to waerden (3; 10; 96)?

111. [40 ℄ The lexiographially �rst and last solutions to the \Cheshire Tom" problem

in Fig. 37 are based on the top-to-bottom-and-left-to-right ordering of pixels. Experi-

ment with other pixel orderings| for example, try bottom-to-top-and-right-to-left.

112. [46 ℄ Exatly how many solutions does the tomography problem of Fig. 36 have?

x 113. [30 ℄ Prove that the digital tomography problem is NP-omplete, even if the

marginal sums r, , a, b are binary: Show that an eÆient algorithm to deide whether

or not an n � n pixel image (x

ij

) exists, having given 0{1 values of r

i

=

P

j

x

ij

,

j

=

P

i

x

ij

, a

d

=

P

i+j=d+1

x

ij

, and b

d

=

P

i�j=d�n

x

ij

, ould be used to solve the

binary tensor ontingeny problem of exerise 212(a).

114. [27 ℄ Eah ell (i; j) of a given retangular grid either ontains a land mine

(x

i;j

= 1) or is safe (x

i;j

= 0). In the game of Minesweeper, you are supposed to identify

all of the hidden mines, by probing loations that you hope are safe: If you deide to

probe a ell with x

i;j

= 1, the mine explodes and you die (at least virtually). But if

x

i;j

= 0 you're told the number n

i;j

of neighboring ells that ontain mines, 0 � n

i;j

� 8,

and you live to make another probe. By arefully onsidering these numeri lues, you

an often ontinue with ompletely safe probes, eventually touhing every mine-free ell.

For example, suppose the hidden mines happen to math the 25 � 30 pattern of

the Cheshire at (Fig. 36), and you start by probing the upper right orner. That ell

turns out to be safe, and you learn that n

1;30

= 0; hene it's safe to probe all three

neighbors of (1; 30). Continuing in this vein soon leads to illustration (�) below, whih

depits information about ells (i; j) for 1 � i � 9 and 21 � j � 30; unprobed ells are

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 143

Minesweeper

Life

ipops

serial orrelation oeÆient

runs of 1s

Bailleux

Boufkhad

tatami tiling

dominoes

waerden

onditioning

redued lauses

all solutions

satisfying assignments

shown in gray, otherwise the value of n

i;j

appears. From this data it's easy to dedue

that x

1;24

= x

2;24

= x

3;25

= x

4;25

= � � � = x

9;26

= 1; you'll never want to probe in those

plaes, so you an mark suh ells with X, arriving at state (�) sine n

3;24

= n

5;25

= 4.

Further progress downward to row 17, then leftward and up, leads without diÆulty to

state (). (Notie that this proess is analogous to digital tomography, beause you're

trying to reonstrut a binary array from information about partial sums.)

(�) =

200000

310000

20000

31000

2000

3000

3000

3000

3100

; (�) =

X200000

X310000

4X20000

X31000

4X2000

X3000

X3000

X3000

X3100

; () =

01 X200000

12 X310000

2X 4X20000

5X X31000

XX 4X2000

5X X3000

3X X3000

2X424X3000

12X23X3100

:

a) Now �nd safe probes for all thirteen of the ells that remain gray in ().

b) Exatly how muh of the Cheshire at an be revealed without making any unsafe

guesses, if you're told in advane that (i) x

1;1

= 0? (ii) x

1;30

= 0? (iii) x

25;1

= 0?

(iv) x

25;30

= 0? (v) all four orners are safe? Hint: A SAT solver an help.

115. [25 ℄ Empirially estimate the probability that a 9�9 game of Minesweeper, with

10 randomly plaed mines, an be won with entirely safe probes after the �rst guess.

116. [22 ℄ Find examples of Life ipops for whih X and X

0

are tomographially

equal.

117. [23 ℄ Given a sequene x = x

1

: : : x

n

, let �

(2)

x = x

1

x

2

+ x

2

x

3

+ � � � + x

n�1

x

n

.

(A similar sum appears in the serial orrelation oeÆient, 3.3.2{(23).)

a) Show that, when x is a binary sequene, the number of runs of 1s in x an be

expressed in terms of �x and �

(2)

x.

b) Explain how to enode the ondition �

(2)

x � r as a set of lauses, by modifying

the ardinality onstraints (20){(21) of Bailleux and Boufkhad.

) Similarly, enode the ondition �

(2)

x � r.

118. [20 ℄ A tatami tiling is a overing by dominoes in whih no three share a orner:

(Notie that is disallowed, but would be �ne.) Explain how to use a SAT solver

to �nd a tatami tiling that overs a given set of pixels, unless no suh tiling exists.

119. [18 ℄ Let F = waerden (3; 3; 9) be the 32 lauses in (9). For whih literal l is the

redued formula F j l smallest? Exhibit the resulting lauses.

120. [M20 ℄ True or false: F jL = fC n L j C 2 F and C \ L = ;g, if L = f

�

l j l 2 Lg.

121. [21 ℄ Spell out the hanges to the link �elds in the data strutures, by expanding

the higher-level desriptions that appear in steps A3, A4, A7, and A8 of Algorithm A.

x 122. [21 ℄ Modify Algorithm A so that it �nds all satisfying assignments of the lauses.

123. [17 ℄ Show the ontents of the internal data strutures L, START, and LINK when

Algorithm B or Algorithm D begins to proess the seven lauses R

0

of (7).

September 23, 2015

144 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

satisfying assignments

Rivest

wathed

unit lauses

wath list

branhing heuristis

2SAT

exponential time

baktrak tree, optimum

BIMP tables

sequential lists

dynami storage alloation

buddy system

impliation digraph

Compensation resolvents

resolve

x 124. [21 ℄ Spell out the low-level link �eld operations that are skethed in step B3.

x 125. [20 ℄ Modify Algorithm B so that it �nds all satisfying assignments of the lauses.

126. [20 ℄ Extend the omputation in (59) by one more step.

127. [17 ℄ What move odesm

1

: : : m

d

orrespond to the omputation skethed in (59),

just before and after baktraking ours?

128. [19 ℄ Desribe the entire omputation by whih Algorithm D proves that Rivest's

lauses (6) are unsatis�able, using a format like (59). (See Fig. 39.)

129. [20 ℄ In the ontext of Algorithm D, design a subroutine that, given a literal l,

returns 1 or 0 aording as l is or is not being wathed in some lause whose other

literals are entirely false.

130. [22 ℄ What low-level list proessing operations are needed to \lear the wath list

for �x

k

" in step D6?

x 131. [30 ℄ After Algorithm D exits step D3 without �nding any unit lauses, it has

examined the wath lists of every free variable. Therefore it ould have omputed the

lengths of those wath lists, with little additional ost; and information about those

lengths ould be used to make a more informed deision about the variable that's hosen

for branhing in step D4. Experiment with di�erent branhing heuristis of this kind.

x 132. [22 ℄ Theorem 7.1.1K tells us that every 2SAT problem an be solved in linear

time. Is there a sequene of 2SAT lauses for whih Algorithm D takes exponential time?

x 133. [25 ℄ The size of a baktrak tree suh as Fig. 39 an depend greatly on the hoie

of branhing variable that is made at every node.

a) Find a baktrak tree for waerden (3; 3; 9) that has the fewest possible nodes.

b) What's the largest baktrak tree for that problem?

134. [22 ℄ The BIMP tables used by Algorithm L are sequential lists of dynamially

varying size. One attrative way to implement them is to begin with every list having

apaity 4 (say); then when a list needs to beome larger, its apaity an be doubled.

Adapt the buddy system (Algorithm 2.5R) to this situation. (Lists that shrink

when baktraking needn't free their memory, sine they're likely to grow again later.)

x 135. [16 ℄ The literals l

0

in BIMP(l) are those for whih l ��! l

0

in the \impliation

digraph" of a given satis�ability problem. How an we easily �nd all of the literals l

00

suh that l

00

��! l, given l?

136. [15 ℄ What pairs will be in TIMP(

�

3), before and after x

5

is set to zero with respet

to the lauses (9) of waerden (3; 3; 9), assuming that we are on deision level d = 0?

137. [24 ℄ Spell out in detail the proesses of (a) removing a variable X from the free

list and from all pairs in TIMP lists (step L7 of Algorithm L), and of (b) restoring it

again later (step L12). Exatly how do the data strutures hange?

x 138. [20 ℄ Disuss what happens in step L9 of Algorithm L if we happen to have both

�v 2 BIMP(�u) and �u 2 BIMP(�v).

139. [25 ℄ (Compensation resolvents.) If w 2 BIMP(v), the binary lause u _ v implies

the binary lause u _ w, beause we an resolve u _ v with �v _ w. Thus step L9 ould

exploit eah new binary lause further, by appending w as well as v to BIMP(�u), for all

suh w. Disuss how to do this eÆiently.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 145

ISTAMP

stamping

move odes

big lause

heuristi sores

uto�s

partiipant

partiipants

140. [21 ℄ The FORCE, BRANCH, BACKF, and BACKI arrays in Algorithm L will obviously

never ontain more than n items eah. Is there a fairly small upper bound on the

maximum possible size of ISTACK?

141. [18 ℄ Algorithm L might inrease ISTAMP so often that it overows the size of the

IST(l) �elds. How an the mehanism of (63) avoid bugs in suh a ase?

142. [24 ℄ Algorithms A, B, and D an display their urrent progress by exhibiting

a sequene of move odes m

1

: : :m

d

suh as (58) and (60); but Algorithm L has no

suh odes. Show that an analogous sequene m

1

: : :m

F

ould be printed in step L2,

if desired. Use the odes of Algorithm D; but extend them to show m

j

= 6 (or 7) if

R

j�1

is a true (or false) literal whose value was found to be fored by Algorithm X, or

fored by being a unit lause in the input.

x 143. [30 ℄ Modify Algorithm L so that it will apply to nonempty lauses of any size.

Call a lause big if its size is greater than 2. Instead of TIMP tables, represent every big

lause by `KINX' and `CINX' tables: Every literal l has a sequential list KINX(l) of big

lause numbers; every big lause has a sequential list CINX() of literals; is in KINX(l)

if and only if l is in CINX(). The urrent number of ative lauses ontaining l is indi-

ated by KSIZE(l); the urrent number of ative literals in is indiated by CSIZE().

144. [15 ℄ True or false: If l doesn't appear in any lause, h

0

(l) = 0:1 in (65).

145. [23 ℄ Starting with h(l) = 1 for eah of the 18 literals l in waerden (3; 3; 9), �nd

suessively re�ned estimates h

0

(l), h

00

(l), : : : , using (65) with respet to the 32 ternary

lauses (9). Then, assuming that x

5

has been set false as in exerise 136, and that the

resulting binary lauses 13, 19, 28, 34, 37, 46, 67, 79 have been inluded in the BIMP

tables, do the same for the 16 literals that remain at depth d = 1.

146. [25 ℄ Suggest an alternative to (64) and (65) for use when Algorithm L has been

extended to nonternary lauses as in exerise 143. (Strive for simpliity.)

147. [05 ℄ Evaluate C

max

in (66) for d = 0, 1, 10, 20, 30, using the default C

0

and C

1

.

148. [21 ℄ Equation (66) bounds the maximum number of andidates using a formula

that depends on the urrent depth d, but not on the total number of free variables.

The same uto�s are used in problems with any number of variables. Why is that a

reasonable strategy?

x 149. [26 ℄ Devise a data struture that makes it onvenient to tell whether a given

variable x is a \partiipant" in Algorithm L.

150. [21 ℄ Continue the text's story of lookahead in waerden (3; 3; 9): What happens at

depth d = 1 when l 7 and T 22 (see (70)), after literal 4 has beome proto true?

(Assume that no double-lookahead is done.)

x 151. [26 ℄ The dependeny digraph (68) has 16 ars, only 8 of whih are aptured in the

subforest (69). Show that, instead of (70), we ould atually list the literals l and give

them o�sets o(l) in suh a way that u appears before v in the list and has o(u) > o(v) if

and only if v��!u in (68). Thus we ould apture all 16 dependenies via levels of truth.

152. [22 ℄ Give an instane of 3SAT for whih no free \partiipants" are found in

step X3, yet all lauses are satis�ed. Also desribe an eÆient way to verify satisfation.

153. [17 ℄ What's a good way to weed out unwanted andidates in step X3, if C>C

max

?

154. [20 ℄ Suppose we're looking ahead with just four andidate variables, fa; b; ; dg,

and that they're related by three binary lauses (a_

�

b)^(a_�)^(_

�

d). Find a subforest

and a sequene of truth levels to failitate lookaheads, analogous to (69) and (70).

September 23, 2015

146 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

lookahead forest

pure literal

autarky

Blak and white priniple

Blak and blue priniple

bloked binary lause

kSAT

3SAT

analysis of algs

kSAT

positive autarky

positive literals

autarky

neessary assignments

155. [32 ℄ Sketh an eÆient way to onstrut the lookahead forest in step X4.

156. [05 ℄ Why is a pure literal a speial ase of an autarky?

157. [10 ℄ Give an example of an autarky that is not a pure literal.

158. [15 ℄ If l is a pure literal, will Algorithm X disover it?

159. [M17 ℄ True or false: (a) A is an autarky for F if and only if F jA � F . (b) If

A is an autarky for F and A

0

� A, then A nA

0

is an autarky for F jA

0

.

160. [18 ℄ (Blak and white priniple.) Consider any rule by whih literals have been

olored white, blak, or gray in suh a way that l is white if and only if

�

l is blak. (For

example, we might say that l is white if it appears in fewer lauses than

�

l.)

a) Suppose every lause of F that ontains a white literal also ontains a blak

literal. Prove that F is satis�able if and only if its all-gray lauses are satis�able.

b) Explain why this metaphor is another way to desribe the notion of an autarky.

x 161. [21 ℄ (Blak and blue priniple.) Now onsider oloring literals either white, blak,

orange, blue, or gray, in suh a way that l is white if and only if

�

l is blak, and l is

orange if and only if

�

l is blue. (Hene l is gray if and only if

�

l is gray.) Suppose further

that F is a set of lauses in whih every lause ontaining a white literal also ontains

either a blak literal or a blue literal (or both). Let A = fa

1

; : : : ; a

p

g be the blak

literals and let L = fl

1

; : : : ; l

q

g be the blue literals. Also let F

0

be the set of lauses

obtained by adding p additional lauses (

�

l

1

_ � � � _

�

l

q

_ a

j

) to F , for 1 � j � p.

a) Prove that F is satis�able if and only if F

0

is satis�able.

b) Restate and simplify that result in the ase that p = 1.

) Restate and simplify that result in the ase that q = 1.

d) Restate and simplify that result in the ase that p = q = 1. (In this speial ase,

(

�

l _ a) is alled a bloked binary lause.)

162. [21 ℄ Devise an eÆient way to disover all of the (a) bloked binary lauses (

�

l_a)

and (b) size-two autarkies A = fa; a

0

g of a given kSAT problem F .

x 163. [M25 ℄ Prove that the following reursive proedureR(F) will solve any n-variable

3SAT problem F with at most O(�

n

) exeutions of steps R1, R2, or R3:

R1. [Chek easy ases.℄ If F = ;, return true. If ; 2 F , return false. Otherwise let

fl

1

; : : : ; l

s

g 2 F be a lause of minimum size s.

R2. [Chek autarkies.℄ If s = 1 or if fl

s

g is an autarky, set F F j l

s

and return to R1.

Otherwise if f

�

l

s

; l

s�1

g is an autarky, set F F j

�

l

s

; l

s�1

and return to R1.

R3. [Reurse.℄ If R(F j l

s

) is true, return true. Otherwise set F F j

�

l

s

, s s � 1,

and go bak to R2.

164. [M30 ℄ Continuing exerise 163, bound the running time when F is kSAT.

x 165. [26 ℄ Design an algorithm to �nd the largest positive autarky A for a given F ,

namely an autarky that ontains only positive literals. Hint: Warm up by �nding the

largest positive autarky for the lauses f12

�

3; 12

�

5;

�

1

�

3

�

4; 13

�

6; 1

�

45; 156;

�

235; 2

�

46; 345;

�

356g.

166. [30 ℄ Justify the operations of step X9. Hint: Prove that an autarky an be on-

struted, if w = 0 after (72) has been performed.

x 167. [21 ℄ Justify step X11 and the similar use of X12 in step X6.

168. [26 ℄ Suggest a way to hoose the branh literal l in step L3, based on the heuristi

sores H(l) that were ompiled by Algorithm X in step L2. Hint: Experiene shows

that it's good to have both H(l) and H(

�

l) large.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 147

Ahmed

Kullmann

� funtion

Heule

2SAT

DFAIL

random 3SAT

rand

pi

lookahead forest

ompensation resolvents

windfalls

Algorithm L

0

heuristi

preseletion

ower snark

ubi graph

trivalent graph, see ubi

line graph

hromati number �

fsnark

benhmark tests

independent sets

asymptoti

x 169. [HM30 ℄ (T. Ahmed, O. Kullmann.) Exellent results have been obtained in

some problems when the branh variable in step L3 is hosen to minimize the quantity

�(H(l);H(

�

l)), where � (a; b) is the positive solution to �

�a

+ �

�b

= 1. (For example,

� (1; 2) = � � 1:62 and � (

p

2;

p

2) = 2

1=

p

2

� 1:63, so we prefer (1; 2) to (

p

2;

p

2).)

Given a list of pairs of positive numbers (a

1

; b

1

), : : : , (a

s

; b

s

), what's an eÆient way

to determine an index j that minimizes � (a

j

; b

j

), without omputing logarithms?

170. [25 ℄ (Marijn Heule, 2013.) Show that Algorithm L solves 2SAT in linear time.

171. [20 ℄ What is the purpose of DFAIL in Algorithm Y?

172. [21 ℄ Explain why `+LO[j℄' appears in step Y2's formula for DT.

173. [40 ℄ Use an implementation of Algorithm L to experiment with random 3SAT

problems suh as rand (3; 2062; 500; 314). Examine the e�ets of suh things as (i) dis-

abling double lookahead; (ii) disabling \wraparound," by hanging the ases j = S and

|̂ = S in X7 and Y4 so that they simply go to X6 and Y3; (iii) disabling the lookahead

forest, by letting all andidate literals have null PARENT; (iv) disabling ompensation

resolvents in step L9; (v) disabling \windfalls" in (72); (vi) branhing on a random free

andidate l in L3, instead of using the H sores as in exerise 168; or (vii) disabling all

lookahead entirely as in \Algorithm L

0

."

174. [15 ℄ What's an easy way to aomplish (i) in the previous exerise?

175. [32 ℄ When Algorithm L is extended to nonternary lauses as in exerise 143, how

should Algorithms X and Y also hange? (Instead of using (64) and (65) to ompute a

heuristi for preseletion, use the muh simpler formula in answer 146. And instead of

using h(u)h(v) in (67) to estimate the weight of a ternary lause that will be redued

to binary, onsider a simulated redued lause of size s � 2 to have weight K

s

�

s�2

,

where is a onstant (typially 0.2).)

176. [M25 ℄ The \ower snark" J

q

is a ubi graph with 4q verties t

j

, u

j

, v

j

, w

j

, and

6q edges t

j

���t

j+1

, t

j

���u

j

, u

j

���v

j

, u

j

���w

j

, v

j

���w

j+1

, w

j

���v

j+1

, for 1 � j � q,

with subsripts treated modulo q. Here, for example, are J

5

and its line graph L(J

5

):

J

5

= ; L(J

5

) = :

a) Give labels a

j

, b

j

,

j

, d

j

, e

j

, and f

j

to the edges of J

q

, for 1 � j � q. (Thus a

j

denotes t

j

���t

j+1

and b

j

denotes t

j

���u

j

, et.) What are the edges of L(J

q

)?

b) Show that �(J

q

) = 2 and �(L(J

q

)) = 3 when q is even.

) Show that �(J

q

) = 3 and �(L(J

q

)) = 4 when q is odd. Note: Let fsnark (q) denote

the lauses (15) and (16) that orrespond to 3-oloring L(J

q

), together with b

1;1

^

1;2

^d

1;3

to set the olors of (b

1

;

1

; d

1

) to (1; 2; 3). Also let fsnark

0

(q) be fsnark (q)

augmented by (17). These lauses make exellent benhmark tests for SAT solvers.

177. [HM26 ℄ Let I

q

be the number of independent sets of the ower snark line graph

L(J

q

). Compute I

q

for 1 � q � 8, and determine the asymptoti growth rate.

x 178. [M23 ℄ When Algorithm B is presented with the unsatis�able lauses fsnark (q)

of exerise 176, with q odd, its speed depends ritially on the ordering of the variables.

September 23, 2015

148 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

sububes

n-ube

BDD

1SAT

BDD

3SAT{

3CNF

auxiliary variables

random satis�ability

stopping time

Frano

Paull

kSAT

�rst moment priniple

Show that the running time is �(2

q

) when the variables are onsidered in the order

a

1;1

a

1;2

a

1;3

b

1;1

b

1;2

b

1;3

1;1

1;2

1;3

d

1;1

d

1;2

d

1;3

e

1;1

e

1;2

e

1;3

f

1;1

f

1;2

f

1;3

a

2;1

a

2;2

a

2;3

: : : ;

but muh, muh more time is needed when the order is

a

1;1

b

1;1

1;1

d

1;1

e

1;1

f

1;1

a

2;1

b

2;1

2;1

d

2;1

e

2;1

f

2;1

: : : a

q;1

b

q;1

q;1

d

q;1

e

q;1

f

q;1

a

1;2

b

1;2

1;2

: : : :

179. [25 ℄ Show that there are exatly 4380 ways to �ll the 32 ells of the 5-ube with

eight 4-element sububes. For example, one suh way is to use the sububes 000��,

001��, : : : , 111��, in the notation of 7.1.1{(29); a more interesting way is to use

0�0�0; 1�0�0; ��001; ��110; �010�; �110�; 0��11; 1��11:

What does this fat tell you about the value of q

8

in Fig. 40?

x 180. [25 ℄ Explain how to use BDDs to ompute the numbersQ

m

that underlie Fig. 40.

What is max

0�m�80

Q

m

?

x 181. [25 ℄ Extend the idea of the previous exerise so that it is possible to determine

the probability distributions T

m

of Fig. 41.

182. [M16 ℄ For whih values of m in Fig. 41 does T

m

have a onstant value?

183. [M30 ℄ Disuss the relation between Figs. 42 and 43.

184. [M20 ℄ Why does (77) haraterize the relation between q̂

m

and q

m

?

185. [M20 ℄ Use (77) to prove the intuitively obvious fat that q̂

m

� q

m

.

186. [M21 ℄ Use (77) to redue

P

m

q̂

m

and

P

m

(2m+ 1)q̂

m

to (78) and (79).

187. [M20 ℄ Analyze random satis�ability in the ase k = n: What are S

n;n

and

b

S

n;n

?

x 188. [HM25 ℄ Analyze random 1SAT, the ase k = 1: What are S

1;n

and

b

S

1;n

?

189. [27 ℄ Apply BDD methods to random 3SAT problems on 50 variables. What is the

approximate BDD size after m distint lauses have been ANDed together, as m grows?

190. [M20 ℄ Exhibit a Boolean funtion of 4 variables that an't be expressed in 3CNF.

(No auxiliary variables are allowed: Only x

1

, x

2

, x

3

, and x

4

may appear.)

191. [M25 ℄ How many Boolean funtions of 4 variables an be expressed in 3CNF?

x 192. [HM21 ℄ Another way to model satis�ability when there are N equally likely

lauses is to study S(p), the probability of satis�ability when eah lause is indepen-

dently present with probability p.

a) Express S(p) in terms of the numbers Q

m

=

�

N

m

�

q

m

.

b) Assign uniform random numbers in [0 : : 1) to eah lause; then at time t, for

0 � t � N , onsider all lauses that have been assigned a number less than t=N .

(Approximately t lauses will therefore be seleted, when N is large.) Show that

S

k;n

=

R

N

0

S

k;n

(t=N) dt, the expeted amount of time during whih the hosen

lauses remain satis�able, is very similar to the satis�ability threshold S

k;n

of (76).

193. [HM48 ℄ Determine the satis�ability threshold (81) of random 3SAT. Is it true

that lim inf

n!1

S

3;n

=n = lim sup

n!1

S

3;n

=n? If so, is the limit � 4:2667?

194. [HM49 ℄ If � < lim inf

n!1

S

3;n

=n, is there a polynomial-time algorithm that is

able to satisfy b�n random 3SAT lauses with probability � Æ, for some Æ > 0?

195. [HM21 ℄ (J. Frano and M. Paull, 1983.) Use the �rst moment priniple MPR{(21)

to prove that b(2

k

ln 2)n random kSAT lauses are almost always unsatis�able. Hint:

Let X =

P

x

[x satis�es all lauses℄, summed over all 2

n

binary vetors x = x

1

: : : x

n

.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 149

Wilson

easy lauses

bystanders, see easy lauses

binomial oeÆients

phase transition

sharp threshold

random word

Stirling subset numbers

2SAT

snare

t-snake

Xu

Li

exlusion lauses

at-most-one

Model RB

random 2SAT

threshold of satis�ability

q.s.

a.s.

x 196. [HM25 ℄ (D. B. Wilson.) A lause of a satis�ability problem is \easy" if it

ontains one or more variables that don't appear in any other lauses. Prove that,

with probability 1 � O(n

�2�

), a kSAT problem that has m = b�n random lauses

ontains (1� (1� e

�k�

)

k

)m+O(n

1=2+�

) easy ones. (For example, about 0:000035n of

the 4:27n lauses in a random 3SAT problem near the threshold will be easy.)

197. [HM21 ℄ Prove that the quotient q(a; b; A;B; n) =

�

(a+b)n

an

��

(A+B)n

An

�

/

�

(a+b+A+B)n

(a+A)n

�

is O(n

�1=2

) as n!1, if a; b; A;B > 0.

x 198. [HM30 ℄ Use exerises 196 and 197 to show that the phase transition in Fig. 46 is

not extremely abrupt: If S

3

(m;n) >

2

3

and S

3

(m

0

; n) <

1

3

, prove thatm

0

= m+
(

p

n).

199. [M21 ℄ Let p(t;m;N) be the probability that t spei�ed letters eah our at least

one within a random m-letter word on an N -letter alphabet.

a) Prove that p(t;m;N) � m

t

=N

t

.

b) Derive the exat formula p(t;m;N) =

P

k

�

t

k

�

(�1)

k

(N � k)

m

=N

m

.

) And p(t;m;N)=t! =

�

t

t

	�

m

t

�

=N

t

�

�

t+1

t

	�

m

t+1

�

=N

t+1

+

�

t+2

t

	�

m

t+2

�

=N

t+2

� � � � .

x 200. [M21 ℄ Complete the text's proof of (84) when < 1:

a) Show that every unsatis�able 2SAT formula ontains lauses of a snare.

b) Conversely, are the lauses of a snare always unsatis�able?

) Verify the inequality (89). Hint: See exerise 199.

201. [HM29 ℄ The t-snake lauses spei�ed by a hain (l

1

; : : : ; l

2t�1

) an be written

(

�

l

i

_ l

i+1

) for 0 � i < 2t, where l

0

=

�

l

t

and subsripts are treated mod 2t.

a) Desribe all ways to set two of the l's so that (�x

1

_ x

2

) is one of those 2t lauses.

b) Similarly, set three l's in order to obtain (�x

1

_ x

2

) and (�x

2

_ x

3

).

) Also set three to obtain both (�x

0

_ x

1

) and (�x

t�1

_ x

t

); here �x

0

� x

t

and t > 2.

d) How an the lauses (�x

i

_x

i+1

) for 0 � i < t all be obtained by setting t of the l's?

e) In general, let N(q; r) be the number of ways to hoose r of the standard lauses

(�x

i

_ x

i+1

), whih involve exatly q of the variables fx

1

; : : : ; x

2t�1

g, and to set q

values of fl

1

; : : : ; l

2t�1

g in order to obtain the r hosen lauses. Evaluate N(2; 1).

f) Similarly, evaluate N(3; 2), N(t; t), and N(2t� 1; 2t).

g) Show that the probability p

r

in (95) is �

P

q

N(q; r)=(2

q

n

q

).

h) Therefore the upper bound (96) is valid.

202. [HM21 ℄ This exerise ampli�es the text's proof of Theorem C when > 1.

a) Explain the right-hand side of Eq. (93).

b) Why does (97) follow from (95), (96), and the stated hoies of t and m?

x 203. [HM33 ℄ (K. Xu and W. Li, 2000.) Beginning with the n graph-oloring lauses

(15), and optionally the n

�

d

2

�

exlusion lauses (17), onsider using randomly generated

binary lauses instead of (16). There are mq random binary lauses, obtained as m

independent sets of q lauses eah, where every suh set is seleted by hoosing distint

verties u and v, then hoosing q distint binary lauses (�u

i

_ �v

j

) for 1 � i; j � d.

(The number of di�erent possible sequenes of random lauses is therefore exatly

(

�

n

2

��

d

2

q

�

)

m

and eah sequene is equally likely.) This method of lause generation is

known as \Model RB"; it generalizes random 2SAT, whih is the ase d = 2 and q = 1.

Suppose d = n

�

and q = pd

2

, where we require

1

2

< � < 1 and 0 � p �

1

2

.

Also let m = rn ln d. For this range of the parameters, we will prove that there is

a sharp threshold of satis�ability: The lauses are unsatis�able q.s., as n ! 1, if

r ln(1� p) + 1 < 0; but they are satis�able a.s. if r ln(1� p) + 1 > 0.

September 23, 2015

150 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

�rst moment priniple

onditional expetation inequality

4SAT

minimally unsatis�able

lauses per literal

Tovey

bipartite mathing

mathing

Let X(j

1

; : : : ; j

n

) = [all lauses are satis�ed when eah ith variable v has v

j

i

= 1℄;

here 1 � j

1

; : : : ; j

n

� d. Also let X =

P

1�j

1

;:::;j

n

�d

X(j

1

; : : : ; j

n

). Then X = 0 if and

only if the lauses are unsatis�able.

a) Use the �rst moment priniple to prove that X = 0 q.s. when r ln(1� p)+ 1 < 0.

b) Find a formula for p

s

= Pr(X(j

1

; : : : ; j

n

) = 1 j X(1; : : : ; 1) = 1), given that

exatly s of the olors fj

1

; : : : ; j

n

g are equal to 1.

) Use (b) and the onditional expetation inequality MPR{(24) to prove thatX > 0

a.s. if

n

X

s=0

�

n

s

��

1

d

�

s

�

1�

1

d

�

n�s

�

1 +

p

1� p

s

2

n

2

�

m

! 1 as n!1:

d) Letting t

s

denote the term for s in that sum, prove that

P

3n=d

s=0

t

s

� 1.

e) Suppose r ln(1 � p) + 1 = � > 0, where � is small. Show that the terms t

s

�rst

inrease, then derease, then inrease, then derease again, as s grows from 0

to n. Hint: Consider the ratio x

s

= t

s+1

=t

s

.

f) Finally, prove that t

s

is exponentially small for 3n=d � s � n.

x 204. [28 ℄ Figure 46 might suggest that 3SAT problems on n variables are always easy

when there are fewer than 2n lauses. We shall prove, however, that any set of m

ternary lauses on n variables an be transformed mehanially into another set of

ternary lauses on N = O(m) variables in whih no variable ours more than four

times. The transformed problem is satis�able if and only if the original problem was;

thus it isn't any simpler, although (with at most 4N literals) it has at most

4

3

N lauses.

a) First replae the originalm lauses bym new lauses (X

1

_X

2

_X

3

), : : : , (X

3m�2

_

X

3m�1

_X

3m

), on 3m new variables, and show how to add 3m lauses of size 2

so that the resulting 4m lauses have exatly as many solutions as the original.

b) Construt 16 unsatis�able ternary lauses on 15 variables, where eah variable

ours at most four times. Hint: If F and F

0

are sets of lauses, let F tF

0

stand

for any other set obtained from F [F

0

by replaing one or more lauses C of F by

x[C and one or more lauses C

0

of F

0

by �x[C

0

, where x is a new variable; then

F tF

0

is unsatis�able whenever F and F

0

are both unsatis�able. For example, if

F = f�g and F

0

= f1;

�

1g, then F tF

0

is either f2; 1

�

2;

�

1

�

2g or f2; 1;

�

1

�

2g or f2; 1

�

2;

�

1g.

) Remove one of the lauses from solution (b) and �nd all solutions of the 15 lauses

that remain. (At least three of the variables will have fored values.)

d) Use (a), (b), and () to prove the N -variable result laimed above.

205. [26 ℄ Construt an unsatis�able 4SAT problem in whih every variable ours at

most 5 times. Hint: Use the t operation as in the previous exerise.

206. [M22 ℄ A set of lauses is minimally unsatis�able if it is unsatis�able, yet beomes

satis�able if any lause is deleted. Show that, if F and F

0

have no variables in ommon,

then FtF

0

is minimally unsatis�able if and only if F and F

0

are minimally unsatis�able.

207. [25 ℄ Eah of the literals f1;

�

1; 2;

�

2; 3;

�

3; 4;

�

4g ours exatly thrie in the eight

unsatis�able lauses (6). Construt an unsatis�able 3SAT problem with 15 variables in

whih eah of the 30 literals ours exatly twie. Hint: Consider f

�

12;

�

23;

�

31; 123;

�

1

�

2

�

3g.

208. [25 ℄ Via exerises 204(a) and 207, show that any 3SAT problem an be trans-

formed into an equivalent set of ternary lauses where every literal ours just twie.

209. [25 ℄ (C. A. Tovey.) Prove that every kSAT formula in whih no variable ours

more than k times is satis�able. (Thus the limits on ourrenes in exerises 204{208

annot be lowered, when k = 3 and k = 4.) Hint: Use the theory of bipartite mathing.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 151

Loal Lemma

7SAT

Irving

Jerrum

list oloring

grid graph

latin retangle onstrution

NP-omplete

grid list oloring

partial latin square onstrution

binary matries

tensor

row sums

olumn sums

pile sums

ontingeny tables, 3D

random satis�ability

reurrene

generating funtions

Mellin transforms

asymptotis

wobble

pro�le

baktrak

asymptotis

Purdom

Brown

210. [M36 ℄ But the result in the previous exerise an be improved when k is large.

Use the Loal Lemma to show that every 7SAT problem with at most 13 ourrenes

of eah variable is satis�able.

211. [30 ℄ (R. W. Irving and M. Jerrum, 1994.) Use exerise 208 to redue 3SAT to the

problem of list oloring a grid graph of the form K

N

K

3

. (Hene the latter problem,

whih is also alled latin retangle onstrution, is NP-omplete.)

212. [32 ℄ Continuing the previous exerise, we shall redue grid list oloring to another

interesting problem alled partial latin square onstrution. Given three n � n binary

matries (r

ik

), (

jk

), (p

ij

), the task is to onstrut an n� n array (X

ij

) suh that X

ij

is blank when p

ij

= 0, otherwise X

ij

= k for some k with r

ik

=

jk

= 1; furthermore

the nonblank entries must be distint in eah row and olumn.

a) Show that this problem is symmetrial in all three oordinates: It's equivalent to

onstruting a binary n � n � n tensor (x

ijk

) suh that x

�jk

=

jk

, x

i�k

= r

ik

,

and x

ij�

= p

ij

, for 1 � i; j; k � n, where `�' denotes summing an index from 1

to n. (Therefore it is also known as the binary n � n � n ontingeny problem,

given n

2

row sums, n

2

olumn sums, and n

2

pile sums.)

b) A neessary ondition for solution is that

�k

= r

�k

,

j�

= p

�j

, and r

i�

= p

i�

.

Exhibit a small example where this ondition is not suÆient.

) IfM < N , redue K

M

K

N

list oloring to the problem of K

N

K

N

list oloring.

d) Finally, explain how to redueK

N

K

N

list oloring to the problem of onstruting

an n � n partial latin square, where n = N +

P

I;J

jL(I; J)j. Hint: Instead of

onsidering integers 1 � i; j; k � n, let i, j, k range over a set of n elements.

De�ne p

ij

= 0 for most values of i and j; also make r

ik

=

ik

for all i and k.

x 213. [M20 ℄ Experiene with the analyses of sorting algorithms in Chapter 5 suggests

that random satis�ability problems might be modeled niely if we assume that, in eah

of m independent lauses, the literals x

j

and �x

j

our with respetive probabilities p

and q, independently for 1 � j � n, where p + q � 1. Why is this not an interesting

model as n ! 1, when p and q are onstant? Hint: What is the probability that

x

1

: : : x

n

= b

1

: : : b

n

satis�es all of the lauses, when b

1

: : : b

n

is a given binary vetor?

214. [HM38 ℄ Although the random model in the preeding exerise doesn't teah us

how to solve SAT problems, it does lead to interesting mathematis: Let 0 < p < 1 and

onsider the reurrene

T

0

= 0; T

n

= n+ 2

n�1

X

k=0

�

n

k

�

p

k

(1� p)

n�k

T

k

; for n > 0.

a) Find a funtional relation satis�ed by T (z) =

P

1

n=0

T

n

z

n

=n!.

b) Dedue that we have T (z) = ze

z

P

1

m=0

(2p)

m

Q

m�1

k=0

(1� e

�p

k

(1�p)z

).

) Hene, if p 6= 1=2, we an use Mellin transforms (as in the derivation of 5.2.2{(50))

to show that T

n

= C

p

n

�

(1 + Æ(n) +O(1=n))+ n=(1� 2p), where � = 1=lg(1=p),

C

p

is a onstant, and Æ is a small \wobble" with Æ(n) = Æ(pn).

x 215. [HM23 ℄ What is the expeted pro�le of the searh tree when a simple baktrak

proedure is used to �nd all solutions to a random 3SAT problem with m independent

lauses on n variables? (There is a node on level l for every partial solution x

1

: : : x

l

that doesn't ontradit any of the lauses.) Compute these values when m = 200 and

n = 50. Also estimate the total tree size when m = �n, for �xed � as n!1.

216. [HM38 ℄ (P. W. Purdom, Jr., and C. A. Brown.) Extend the previous exerise to

a more sophistiated kind of baktraking, where all hoies fored by unit lauses are

September 23, 2015

152 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

pure literal

if-then-else operator

Notation C

0

�C

00

Notation C � C

0

Notation F ` C

resolution hain

searh tree

resolution refutation

Kullmann

autarky

resolution tree

Tseytin

regular resolution

treelike resolution

refutation tree

Prover{Delayer game

Horton{Strahler number

Strahler

pursued before two-way branhing is done. (The \pure literal rule" is not exploited,

however, beause it doesn't �nd all solutions.) Prove that the expeted tree size is

greatly redued when m = 200 and n = 50. (An upper bound is suÆient.)

217. [20 ℄ True or false: If A and B are arbitrary lauses that are simultaneously

satis�able, and if l is any literal, then the lause C = (A[B) n fl;

�

lg is also satis�able.

(We're thinking here of A, B, and C as sets of literals, not as disjuntions of literals.)

218. [20 ℄ Express the formula (x_A)^(�x_B) in terms of the ternary operator u? v:w.

x 219. [M20 ℄ Formulate a general de�nition of the resolution operator C = C

0

�C

00

that

(i) agrees with the text's de�nition when C

0

= x _A

0

and C

00

= �x _A

00

; (ii) applies to

arbitrary lauses C

0

and C

00

; (iii) has the property that C

0

^ C

00

implies C

0

� C

00

.

220. [M24 ℄ We say that lause C subsumes lause C

0

, written C � C

0

, if C

0

= } or if

C

0

6= } and every literal of C appears in C

0

.

a) True or false: C � C

0

and C

0

� C

00

implies C � C

00

.

b) True or false: (C _ �) � (C

0

_ �

0

) � (C � C

0

) _ � _ �

0

, with � as in exerise 219.

) True or false: C

0

� C

00

implies C �C

0

� C � C

00

.

d) The notation C

1

; : : : ; C

m

` C means that a resolution hain C

1

; : : : ; C

m+r

exists

with C

m+r

� C, for some r � 0. Show that we might have C

1

; : : : ; C

m

` C even

though C annot be obtained from fC

1

; : : : ; C

m

g by suessive resolutions (104).

e) Prove that if C

1

� C

0

1

, : : : , C

m

� C

0

m

, and C

0

1

; : : : ; C

0

m

` C, then C

1

; : : : ; C

m

` C.

f) Furthermore C

1

; : : : ; C

m

` C implies C

1

_ �

1

; : : : ; C

m

_ �

m

` C _ �

1

_ � � � _ �

m

.

221. [16 ℄ Draw the searh tree analogous to Fig. 38 that is impliitly traversed when

Algorithm A is applied to the unsatis�able lauses f12; 2;

�

2g. Explain why it does not

orrespond to a resolution refutation that is analogous to Fig. 48.

222. [M30 ℄ (Oliver Kullmann, 2000.) Prove that, for every lause C in a satis�ability

problem F , there is an autarky satisfying C if and only if C annot be used as the label

of a soure vertex in any resolution refutation of F .

223. [HM40 ℄ Step X9 dedues a binary lause that annot be derived by resolution

(see exerise 166). Prove that, nevertheless, the running time of Algorithm L on un-

satis�able input will never be less than the length of a shortest treelike refutation.

224. [M20 ℄ Given a resolution tree that refutes the axioms F j �x, show how to onstrut

a resolution tree of the same size that either refutes the axioms F or derives the lause

fxg from F without resolving on the variable x.

x 225. [M31 ℄ (G. S. Tseytin, 1966.) If T is any resolution tree that refutes a set of

axioms F , show how to onvert it to a regular resolution tree T

r

that refutes F , where

T

r

is no larger than T .

226. [M20 ℄ If � is a node in a refutation tree, let C(�) be its label, and let k�k denote

the number of leaves in its subtree. Show that, given a refutation tree with N leaves,

the Prover an �nd a node with k�k � N=2

s

for whih the urrent assignment falsi�es

C(�), whenever the Delayer has sored s points in the Prover{Delayer game.

227. [M27 ℄ Given an extended binary tree, exerise 7.2.1.6{124 explains how to label

eah node with its Horton{Strahler number. For example, the nodes at depth 2 in

Fig. 48 are labeled 1, beause their hildren have the labels 1 and 0; the root is labeled 3.

Prove that the maximum sore that the Delayer an guarantee, when playing

the Prover{Delayer game for a set of unsatis�able lauses F , is equal to the minimum

possible Horton{Strahler root label in a tree refutation of F .

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 153

St�almark

anti-maximal-element lauses

minimal unsatis�able set

Buss

fsnark

treelike resolution

ower snark

Delayer

pigeonhole

pigeonhole

olor

omplete graph

exlusion lauses

Ben-Sasson

Wigderson

random 3SAT

3SAT

notation: �(C)

notation F ` C

a.s.: almost surely

q.s.: quite surely

x 228. [M21 ℄ St�almark's refutation of (99){(101) atually obtains � without using all of

the axioms! Show that only about 1/3 of those lauses are suÆient for unsatis�ability.

x 229. [M21 ℄ Continuing exerise 228, prove also that the set of lauses (99), (100

0

),

(101) is unsatis�able, where (100

0

) denotes (100) restrited to the ases i � k and j < k.

230. [M22 ℄ Show that the lauses with i 6= j in the previous exerise form a minimal

unsatis�able set: Removing any one of them leaves a satis�able remainder.

231. [M30 ℄ (Sam Buss.) Refute the lauses of exerise 229 with a resolution hain of

length O(m

3

). Hint: Derive the lauses G

ij

= (x

ij

_x

i(j+1)

_� � �_x

im

) for 1 � i � j � m.

x 232. [M28 ℄ Prove that the lauses fsnark (q) of exerise 176 an be refuted by treelike

resolution in O(q

6

) steps.

233. [16 ℄ Explain why (105) satis�es (104), by exhibiting j(i) and k(i) for 9 � i � 22.

234. [20 ℄ Show that the Delayer an sore at least m points against any Prover who

tries to refute the pigeonhole lauses (106) and (107).

x 235. [30 ℄ Refute those pigeonhole lauses with a hain of length m(m+3)2

m�2

.

236. [48 ℄ Is the hain in the previous exerise as short as possible?

x 237. [28 ℄ Show that a polynomial number of steps suÆe to refute the pigeonhole

lauses (106), (107), if the extended resolution trik is used to append new lauses.

238. [HM21 ℄ Complete the proof of Lemma B. Hint: Make r � �

�b

when W = b.

x 239. [M21 ℄ What lauses �

0

on n variables make k�

0

` �k as large as possible?

x 240. [HM23 ℄ Choose integers f

ij

2 f1; : : : ;mg uniformly at random, for 1 � i � 5

and 0 � j � m, and let G

0

be the bipartite graph with edges a

j

���b

k

if and only if k 2

ff

1j

; : : : ; f

5j

g. Show that Pr(G

0

satis�es the strong expansion ondition (108)) � 1=2.

241. [20 ℄ Prove that any set of at most m=3000 pigeons an be mathed to distint

holes, under the restrited pigeonhole onstraints G

0

of Theorem B.

242. [M20 ℄ The pigeonhole axioms (106) and (107) are equivalent to the lauses (15)

and (16) that arise if we try to olor the omplete graph K

m+1

with m olors.

Suppose we inlude further axioms orresponding to (17), namely

(�x

jk

_ �x

jk

0

); for 0 � j � m and 1 � k < k

0

� m.

Does Theorem B still hold, or do these additional axioms derease the refutation width?

243. [HM31 ℄ (E. Ben-Sasson and A. Wigderson.) Let F be a set of b�n random

3SAT lauses on n variables, where � > 1=e is a given onstant. For any lause C on

those variables, de�ne �(C) = minf jF

0

j j F

0

� F and F

0

` Cg. Also let V (F

0

) denote

the variables that our in a given family of lauses F

0

.

a) Prove that jV (F

0

)j � jF

0

j a.s., when F

0

� F and jF

0

j � n=(2�e

2

).

b) Therefore either F is satis�able or �(�) > n=(2�e

2

), a.s.

) Let n

0

= n=(1000000�

4

), and assume that n

0

� 2. Prove that 2jV (F

0

)j � 3jF

0

j �

n

0

=4 q.s., when F

0

� F and n

0

=2 � jF

0

j < n

0

.

d) Consequently either F is satis�able or w(F ` �) � n

0

=4, a.s.

244. [M20 ℄ If A is a set of variables, let [A℄

0

or [A℄

1

stand for the set of all lauses

that an be formed from A with an even or odd number of negative literals, respe-

tively; eah lause should involve all of the variables. (For example, [f1; 2; 3g℄

1

=

f12

�

3; 1

�

23;

�

123;

�

1

�

2

�

3g.) If A and B are disjoint, express [A [B ℄

0

in terms of the sets

[A℄

0

, [A℄

1

, [B ℄

0

, [B ℄

1

.

September 23, 2015

154 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

graph-based axioms

ubi

Ramanujan graph

Tseytin

extended resolution

variable elimination

quanti�ed formula

CNF

Cook

Method IA

lause learning

x 245. [M27 ℄ Let G be a onneted graph whose verties v 2 V have eah been labeled

0 or 1, where the sum of all labels is odd. We will onstrut lauses on the set of

variables e

uv

, one for eah edge u��� v in G. The axioms are �(v) = [E(v)℄

l(v)�1

for

eah v 2 V (see exerise 244), where E(v) = fe

uv

j u���vg and l(v) is the label of v.

For example, vertex 1 of the graph below is shown as a blak dot in order to

indiate that l(1) = 1, while the other verties appear as white dots and are labeled

l(2) = � � � = l(6) = 0. The graph and its axioms are

G =

1

2 3

4

56

a

b

d

e

f

g h

;

�(1) = faf; �a

�

fg;

�(2) = fab�g; a

�

bg; �abg; �a

�

b�gg;

�(3) = fb

�

h; b�h;

�

bh;

�

b�

�

hg;

�(4) = f

�

d; �dg;

�(5) = fde

�

h; d�eh;

�

deh;

�

d�e

�

hg;

�(6) = fef�g; e

�

fg; �efg; �e

�

f�gg:

Notie that, when v has d > 0 neighbors in G, the set �(v) onsists of 2

d�1

lauses of

size d. Furthermore, the axioms of �(v) are all satis�ed if and only if

M

e

uv

2E(v)

e

uv

= `(v):

If we sum this equation over all verties v, mod 2, we get 0 on the left, beause eah

edge e

uv

ours exatly twie (one in E(u) and one in E(v)). But we get 1 on the

right. Therefore the lauses �(G) =

S

v

�(v) are unsatis�able.

a) The axioms �(G) jb and �(G) j

�

b in this example turn out to be �(G

0

) and �(G

00

),

where G

0

= and G

00

= . Explain what happens in general.

b) Let �(C) = minf jV

0

j j V

0

� V and

S

v2V

0

�(v) ` Cg, for every lause C involv-

ing the variables e

uv

. Show that �(C)=1 for every axiom C2�(G). What is �(�)?

) If V

0

� V , let �V

0

= f e

uv

j u 2 V

0

and v =2 V

0

g. Prove that, if jV

0

j = �(C),

every variable of �V

0

appears in C.

d) A nonbipartite ubi Ramanujan graphG onm verties V has three edges v���v�,

v���v�, v���v� touhing eah vertex, where �, �, and � are permutations with

the following properties: (i) � = �

�

and � = �

�

; (ii) G is onneted; (iii) If V

0

is

any subset of s verties, and if there are t edges between V

0

and V n V

0

, then we

have s=(s+ t) � (s=n+ 8)=9. Prove that w(�(G) ` �) > m=78.

x 246. [M28 ℄ (G. S. Tseytin.) Given a labeled graph G with m edges, n verties, and

N unsatis�able lauses �(G) as in the previous exerise, explain how to refute those

lauses with O(mn+N) steps of extended resolution.

247. [18 ℄ Apply variable elimination to just �ve of the six lauses (112), omitting `1

�

2'.

248. [M20 ℄ Formally speaking, SAT is the problem of evaluating the quanti�ed for-

mula

9x

1

: : : 9x

n�1

9x

n

F (x

1

; : : : ; x

n�1

; x

n

);

where F is a Boolean funtion given in CNF as a onjuntion of lauses. Explain how

to transform the CNF for F into the CNF for F

0

in the redued problem

9x

1

: : : 9x

n�1

F

0

(x

1

; : : : ; x

n�1

); F

0

(x

1

; : : : ; x

n�1

) = F (x

1

; : : : ; x

n�1

; 0)_F (x

1

; : : : ; x

n�1

; 1):

249. [18 ℄ Apply Algorithm I to (112) using Cook's Method IA.

250. [25 ℄ Sine the lauses R

0

in (7) are satis�able, Algorithm I might disover a

solution without ever reahing step I4. Try, however, to make the hoies in steps I2,

I3, and I4 so that the algorithm takes as long as possible to disover a solution.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 155

anti-maximal-element

variable elimination

subsumption

CDCL solver

S�orensson

redundant

stamps

ativity sores

damping fator

unit-propagation

move odes

wathed literals

random deisions

binary lauses

unit-propagation

wathed literals

x 251. [30 ℄ Show that Algorithm I an prove the unsatis�ability of the anti-maximal-

element lauses (99){(101) by making O(m

3

) resolutions, if suitably lairvoyant hoies

are made in steps I2, I3, and I4.

252. [M26 ℄ Can the unsatis�ability of (99){(101) be proved in polynomial time by

repeatedly performing variable elimination and subsumption?

x 253. [18 ℄ What are the next two lauses learned if deision `5' follows next after (114)?

254. [16 ℄ Given the binary lauses f12;

�

13; 2

�

3;

�

2

�

4;

�

34g, what lause will a CDCL solver

learn �rst if it begins by deiding that 1 is true?

x 255. [20 ℄ Construt a satis�ability problem with ternary lauses, for whih a CDCL

solver that is started with deision literals `1', `2', `3' on levels 1, 2, and 3 will learn

the lause `45' after a onit on level 3.

256. [20 ℄ How might the lause `��' in Table 3 have been easily learned?

x 257. [30 ℄ (Niklas S�orensson.) A literal

�

l is said to be redundant, with respet to a given

lause and the urrent trail, if l is in the trail and either (i) l is de�ned at level 0, or (ii) l

is not a deision literal and every false literal in l's reason is either in or (reursively)

redundant. (This de�nition is stronger than the speial ases by whih (115) redues

to (116), beause

�

l itself needn't belong to .) If, for example, = (

�

l

0

_

�

b

1

_

�

b

2

_

�

b

3

_

�

b

4

),

let the reason for b

4

be (b

4

_

�

b

1

_ �a

1

), where the reason for a

1

is (a

1

_

�

b

2

_ �a

2

) and the

reason for a

2

is (a

2

_

�

b

1

_

�

b

3

). Then

�

b

4

is redundant, beause �a

2

and �a

1

are redundant.

a) Suppose = (

�

l

0

_

�

b

1

_ � � � _

�

b

r

) is a newly learned lause. Prove that if

�

b

j

2 is

redundant, some other

�

b

i

2 beame false on the same level of the trail as

�

b

j

did.

b) Devise an eÆient algorithm that disovers all of the redundant literals

�

b

i

in a

given newly learned lause = (

�

l

0

_

�

b

1

_ � � � _

�

b

r

). Hint: Use stamps.

258. [21 ℄ A non-deision literal l in Algorithm C's trail always has a reason R

l

=

(l

0

_ l

1

_ � � � _ l

k�1

), where l

0

= l and

�

l

1

, : : : ,

�

l

k�1

preede l in the trail. Furthermore,

the algorithm disovered this lause while looking at the wath list of l

1

. True or false:

�

l

2

, : : : ,

�

l

k�1

preede

�

l

1

in the trail. Hint: Consider Table 3 and its sequel.

259. [M20 ℄ Can ACT(j) exeed ACT(k) for values of � near 0 or 1, but not for all �?

260. [18 ℄ Desribe in detail step C1's setting-up of MEM, the wath lists, and the trail.

261. [21 ℄ The main loop of Algorithm C is the unit-propagation proess of steps C3

and C4. Desribe the low-level details of link adjustment, et., to be done in those steps.

262. [20 ℄ What low-level operations underlie hanges to the heap in steps C6{C8?

263. [21 ℄ Write out the gory details by whih step C7 onstruts a new lause and

step C9 puts it into the data strutures of Algorithm C.

264. [20 ℄ Suggest a way by whih Algorithm C ould indiate progress by displaying

\move odes" analogous to those of Algorithms A, B, D, and L. (See exerise 142.)

265. [21 ℄ Desribe several irumstanes in whih the wathed literals l

0

and/or l

1

of

a lause atually beome false during the exeution of Algorithm C.

266. [20 ℄ In order to keep from getting into a rut, CDCL solvers are often designed to

make deisions at random, with a small probability p (say p = :02), instead of always

hoosing a variable of maximum ativity. How would this poliy hange step C6?

x 267. [25 ℄ Instanes of SAT often ontain numerous binary lauses, whih are handled

eÆiently by the unit-propagation loop (62) of Algorithm L but not by the orrespond-

ing loop in step C3 of Algorithm C. (The tehnique of wathed literals is great for long

September 23, 2015

156 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

level 0

eagerly

lazy

MEM

in situ

trivial lause

redundant

On-the-y subsumption

subsumption

strengthen

learned lauses, sequene of

subsumes

disard

MEM

waerden

on-the-y subsumptions

waerden

symmetrial

reetion

van der Waerden numbers

lauses, but it is omparatively umbersome for short ones.) What additional data

strutures will speed up Algorithm C's inner loop, when binary lauses are abundant?

268. [21 ℄ When Algorithm C makes a literal false at level 0 of the trail, we an remove

it from all of the lauses. Suh updating might take a long time, if we did it \eagerly";

but there's a lazy way out: We an delete a permanently false literal if we happen to

enounter it in step C3 while looking for a new literal to wath (see exerise 261).

Explain how to adapt the MEM data struture onventions so that suh deletions

an be done in situ, without opying lauses from one loation into another.

269. [23 ℄ Suppose Algorithm C reahes a onit at level d of the trail, after having

hosen the deision literals u

1

, u

2

, : : : , u

d

. Then the \trivial lause" (

�

l

0

_ �u

1

_ � � �_ �u

d

0

)

must be true if the given lauses are satis�able, where l

0

and d

0

are de�ned in step C7.

a) Show that, if we start with the lause (

�

l

0

_

�

b

1

_ � � � _

�

b

r

) that is obtained in

step C7 and then resolve it somehow with zero or more known lauses, we an

always reah a lause that subsumes the trivial lause.

b) Sometimes, as in (115), the lause that is slated to be learned in step C9 is muh

longer than the trivial lause. Construt an example in whih d = 3, d

0

= 1, and

r = 10, yet none of

�

b

1

, : : : ,

�

b

r

are redundant in the sense of exerise 257.

) Suggest a way to improve Algorithm C aordingly.

270. [25 ℄ (On-the-y subsumption.) The intermediate lauses that arise in step C7,

immediately after resolving with a reason R

l

, oasionally turn out to be equal to the

shorter lause R

l

n l. In suh ases we have an opportunity to strengthen that lause

by deleting l from it, thus making it potentially more useful in the future.

a) Construt an example where two lauses an eah be subsumed in this way while

resolving a single onit. The subsumed lauses should both ontain two literals

assigned at the urrent level in the trail, as well as one literal from a lower level.

b) Show that it's easy to reognize suh opportunities, and to strengthen suh lauses

eÆiently, by modifying the steps of answer 263.

x 271. [25 ℄ The sequene of learned lauses C

1

, C

2

, : : : often inludes ases where C

i

subsumes its immediate predeessor, C

i�1

. In suh ases we might as well disard

C

i�1

, whih appears at the very end of MEM, and store C

i

in its plae, unless C

i�1

is

still in use as a reason for some literal on the trail. (For example, more than 8,600

of the 52,000 lauses typially learned from waerden (3; 10; 97) by Algorithm C an be

disarded in this way. Suh disards are di�erent from the on-the-y subsumptions

onsidered in exerise 270, beause the subsumed C

i�1

inludes only one literal from

its original onit level; furthermore, learned lauses have usually been signi�antly

simpli�ed by the proedure of exerise 257, unless they're trivial.)

Design an eÆient way to disover when C

i�1

an be safely disarded.

272. [30 ℄ Experiment with the following idea: The lauses of waerden (j; k;n) are

symmetrial under reetion, in the sense that they remain unhanged overall if we

replae x

k

by x

R

k

= x

n+1�k

for 1 � k � n. Therefore, whenever Algorithm C learns

a lause C = (

�

l

0

_

�

b

1

_ � � � _

�

b

r

), it is also entitled to learn the reeted lause C

R

=

(

�

l

0R

_

�

b

R

1

_ � � � _

�

b

R

r

).

273. [27 ℄ A lause C that is learned from waerden (j; k;n) is valid also with respet

to waerden (j; k;n

0

) when n

0

> n; and so are the lauses C + i that are obtained by

adding i to eah literal of C, for 1 � i � n

0

�n. For example, the fat that `35' follows

from waerden (3; 3; 7) allows us to add the lauses 35, 46, 57 to waerden (3; 3; 9).

a) Exploit this idea to speed up the alulation of van der Waerden numbers.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 157

bounded model heking

better reason

lexiographially smallest solution

notation F jL

notation F `

1

�

erti�ate of unsatis�ability

unit lause

2SAT

positive j-lauses

negative k-lauses

ook

purging

ushing

maximal elements

fsnark

ower snark

reason

b) Explain how to apply it also to bounded model heking.

274. [35 ℄ Algorithm C sets the \reason" for a literal l as soon as it noties a lause

that fores l to be true. Later on, other lauses that fore l are often enountered, in

pratie; but Algorithm C ignores them, even though one of them might be a \better

reason." (For example, another foring lause might be signi�antly shorter.) Explore

a modi�ation of Algorithm C that tries to improve the reasons of non-deision literals.

x 275. [22 ℄ Adapt Algorithm C to the problem of �nding the lexiographially smallest

solution to a satis�ability problem, by inorporating the ideas of exerise 109.

276. [M15 ℄ True or false: If F is a family of lauses and L is a set of stritly distint

literals, then F ^ L `

1

� if and only if (F jL) `

1

�.

277. [M18 ℄ If (C

1

; : : : ; C

t

) is a erti�ate of unsatis�ability for F , and if all lauses

of F have length � 2, prove that some C

i

is a unit lause.

278. [22 ℄ Find a six-step erti�ate of unsatis�ability for waerden (3; 3; 9).

279. [M20 ℄ True or false: Every unsatis�able 2SAT problem has a erti�ate `(l; �)'.

x 280. [M26 ℄ The problem ook (j; k) onsists of all

�

n

j

�

positive j-lauses and all

�

n

k

�

negative k-lauses on f1; : : : ; ng, where n = j + k � 1. For example, ook (2; 3) is

f12; 13; 14; 23; 24; 34;

�

1

�

2

�

3;

�

1

�

2

�

4;

�

1

�

3

�

4;

�

2

�

3

�

4g:

a) Why are these lauses obviously unsatis�able?

b) Find a totally positive erti�ate for ook (j; k), of length

�

n�1

j�1

�

.

) Prove in fat that Algorithm C always learns exatly

�

n�1

j�1

�

lauses when it proves

the unsatis�ability of ook (j; k), if M

p

=M

f

=1 (no purging or ushing).

281. [21 ℄ Construt a erti�ate of unsatis�ability that refutes (99), (100), (101).

x 282. [M33 ℄ Construt a erti�ate of unsatis�ability for the lauses fsnark (q) of exer-

ise 176 when q � 3 is odd, using O(q) lauses, all having length � 4. Hint: Inlude the

lauses (�a

j;p

_�e

j;p

), (�a

j;p

_

�

f

j;p

), (�e

j;p

_

�

f

j;p

), and (a

j;p

_e

j;p

_f

j;p

) for 1 � j � q, 1 � p � 3.

283. [HM46 ℄ Does Algorithm C solve the ower snark problem in linear time? More

preisely, let p

q

(M) be the probability that the algorithm refutes fsnark (q) while mak-

ing at mostM referenes to MEM. Is there a onstant N suh that p

q

(Nq) >

1

2

for all q?

284. [23 ℄ Given F and (C

1

; : : : ; C

t

), a erti�ate-heking program tests ondition

(119) by verifying that F and lauses C

1

, : : : , C

i�1

will fore a onit when they

are augmented by the unit literals of C

i

. While doing this, it an mark eah lause

of F [fC

1

; : : : ; C

i�1

g that was redued to a unit during the foring proess; then the

truth of C

i

does not depend on the truth of any unmarked lause.

In pratie, many lauses of F are never marked at all, hene F will remain

unsatis�able even if we leave them out. Furthermore, many lauses C

i

are not marked

during the veri�ation of any of their suessors, fC

i+1

; : : : ; C

t

g; suh lauses C

i

needn't

be veri�ed, nor need we mark any of the lauses on whih they depend.

Therefore we an save work by heking the erti�ate bakwards: Start by

marking the �nal lause C

t

, whih is � and always needs to be veri�ed. Then, for

i = t, t� 1, : : : , hek C

i

only if it has been marked.

The unit propagations an all be done without reording the \reason" R

l

that

has aused any literal l to be fored. In pratie, however, many of the fored literals

don't atually ontribute to the onits that arise, and we don't want to mark any

lauses that aren't really involved.

Explain how to use reasons, as in Algorithm C, so that lauses are marked by the

veri�er only if they atually partiipate in the proof of a marked lause C

i

.

September 23, 2015

158 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

signature

knapsak problem with a partial ordering

full run

ompressing

purging

ushing literals

HEAP

AGILITY

agility threshold

generating funtion

variane

Welzl

Markov's inequality

bitwise operations

broadword omputation

MMIX

285. [19 ℄ Using the data in Fig. 50, the text observes that Eq. (124) gives j = 95,

s

j

= 3081, and m

j

= 59 when � =

15

16

. What are j, s

j

, and m

j

when (a) � =

9

16

?

(b) � =

1

2

? () � =

7

16

? Also ompare the e�etiveness of di�erent �'s by omputing the

number b

j

of \blak" lauses (those with 0 < RANGE() < j that proved to be useful).

286. [M24 ℄ What hoie of signatures-to-keep in Fig. 50 is optimum, in the sense that

it maximizes

P

b

pq

x

pq

subjet to the onditions

P

a

pq

x

pq

� 3114, x

pq

2 f0; 1g, and

x

pq

� x

p

0

q

0

for 1 � p � p

0

� 7, 0 � q � q

0

� 8? Here a

pq

and b

pq

are the areas of the

gray and blak lauses that have signature (p; q), as given by the matries in the text.

[This is a speial ase of the \knapsak problem with a partial ordering."℄

287. [25 ℄ What hanges to Algorithm C are neessary to make it do a \full run," and

later to learn from all of the onits that arose during that run?

288. [28 ℄ Spell out the details of omputing RANGE sores and then ompressing the

database of learned lauses, during a round of purging.

289. [M20 ℄ Assume that the kth round of purging begins with y

k

lauses in memory

after k� +

�

k

2

�

Æ lauses have been learned, and that purging removes

1

2

y

k

of those

lauses. Find a losed formula for y

k

as a funtion of k.

290. [17 ℄ Explain how to �nd x

k

, the unassigned variable of maximum ativity that

is used for ushing literals. Hint: It's in the HEAP array.

291. [20 ℄ In the text's hypothetial senario about ushing Table 3 bak to level 15,

why will 49 soon appear on the trail, instead of 49?

292. [M21 ℄ How large an AGILITY get after repeatedly exeuting (127)?

293. [21 ℄ Spell out the details of updatingM

f

toM+�

f

when deiding whether or not

to ush. Also ompute the agility threshold that's spei�ed in Table 4. Hint: See (131).

294. [HM21 ℄ For eah binary vetor � = x

1

x

2

x

3

x

4

, �nd the generating funtion

g

�

(z) =

P

1

j=0

p

�;j

z

j

, where p

�;j

is the probability that Algorithm P will solve the

seven lauses of (7) after making exatly j ips, given the initial values � in step P1.

Dedue the mean and variane of the number of steps needed to �nd a solution.

295. [M23 ℄ Algorithm P often �nds solutions muh more quikly than predited by

Corollary W. But show that some 3SAT lauses will indeed require
((4=3)

n

) trials.

296. [HM20 ℄ Complete the proof of Theorem U by (approximately) maximizing the

quantity f(p; q) in (129). Hint: Consider f(p+ 1; q)=f(p; q).

x 297. [HM26 ℄ (Emo Welzl.) Let G

q

(z) =

P

p

C

p;p+q�1

(z=3)

p+q

(2z=3)

p

be the generat-

ing funtion for stopping time t = 2p+ q when Y

0

= q in the proof of Theorem U.

a) Find a losed form for G

q

(z), using formulas from Setion 7.2.1.6.

b) Explain why G

q

(1) is less than 1.

) Evaluate and interpret the quantity G

0

q

(1)=G

q

(1).

d) Use Markov's inequality to bound the probability that Y

t

= 0 for some t � N .

e) Show that Corollary W follows from this analysis.

298. [HM22 ℄ Generalize Theorem U and Corollary W to the ase where eah lause

has at most k literals, where k � 3.

299. [HM23 ℄ Continuing the previous exerise, investigate the ase k = 2.

x 300. [25 ℄ Modify Algorithm P so that it an be implemented with bitwise operations,

thereby running (say) 64 independent trials simultaneously.

x 301. [25 ℄ Disuss implementing the algorithm of exerise 300 eÆiently on MMIX.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 159

WalkSAT+

analysis of algorithms

Luby

Sinlair

Zukerman

Las Vegas algorithm

uniform distribution

relutant doubling

generating funtion

302. [26 ℄ Expand the text's high-level desription of steps W4 and W5, by providing

low-level details about exatly what the omputer should do.

303. [HM20 ℄ Solve exerise 294 with Algorithm W in plae of Algorithm P.

304. [HM34 ℄ Consider the 2SAT problem with n(n� 1) lauses (�x

j

_x

k

) for all j 6= k.

Find the generating funtions for the number of ips taken by Algorithms P and W.

Hint: Exerises 1.2.6{68 and MPR{105 are helpful for �nding the exat formulas.

x 305. [M25 ℄ Add one more lause, (�x

1

_ �x

2

), to the previous exerise and �nd the

resulting generating funtions when n = 4. What happens when p = 0 in AlgorithmW?

x 306. [HM32 ℄ (Luby, Sinlair, and Zukerman, 1993.) Consider a \Las Vegas algo-

rithm" that sueeds or fails; it sueeds at step t with probability p

t

, and fails with

probability p

1

< 1. Let q

t

= p

1

+ p

2

+ � � �+ p

t

and E

t

= p

1

+ 2p

2

+ � � �+ tp

t

; also let

E

1

=1 if p

1

> 0, otherwise E

1

=

P

t

tp

t

. (The latter sum might be 1.)

a) Suppose we abort the algorithm and restart it again, whenever the �rst N steps

have not sueeded. Show that if q

N

> 0, this strategy will sueed after per-

forming an average of l(N) <1 steps. What is l(N)?

b) Compute l(N) when p

m

=

m

n

, p

1

=

n�m

n

, otherwise p

t

= 0, where 1 � m � n.

) Given the uniform distribution, p

t

=

1

n

for 1 � t � n, what is l(N)?

d) Find all probability distributions suh that l(N) = l(1) for all N � 1.

e) Find all probability distributions suh that l(N) = l(n) for all N � n.

f) Find all probability distributions suh that q

n+1

= 1 and l(n) � l(n + 1).

g) Find all probability distributions suh that q

3

= 1 and l(1) < l(3) < l(2).

h) Let l = inf

N�1

l(N), and let N

�

be the least positive integer suh that l(N

�

) = l,

or 1 if no suh integer exists. Prove that N

�

=1 implies l = E

1

<1.

i) Find N

�

for the probability distribution p

t

=[t>n℄=((t�n)(t+1�n)), given n�0.

j) Exhibit a simple example of a probability distribution for whih N

�

=1.

k) Let L = min

t�1

t=q

t

. Prove that l � L � 2l � 1.

307. [HM28 ℄ Continuing exerise 306, onsider a more general strategy de�ned by an

in�nite sequene of positive integers (N

1

; N

2

; : : :): \Set j 0; then, while suess has

not yet been ahieved, set j j+1 and run the algorithm with uto� parameter N

j

."

a) Explain how to ompute EX, where X is the number of steps taken before this

strategy sueeds.

b) Let T

j

= N

1

+ � � � + N

j

. Prove that EX =

P

1

j=1

Pr(T

j�1

<X�T

j

) l(N

j

), if we

have q

N

j

> 0 for all j.

) Consequently the steady strategy (N

�

; N

�

; : : :) is best: EX � l(N

�

) = l.

d) Given n, exerise 306(b) de�nes n simple probability distributions p

(m)

that have

l(N

�

) = n, but the value of N

�

= m is di�erent in eah ase. Prove that any

sequene (N

1

; N

2

; : : :) must have EX >

1

4

nH

n

�

1

2

n =

1

4

lH

l

�

1

2

l on at least one

of those p

(m)

. Hint: Consider the smallest r suh that, for eahm, the probability

is �

1

2

that r trial runs suÆe; show that � n=(2m) of fN

1

; : : : ; N

r

g are � m.

308. [M29 ℄ This exerise explores the \relutant doubling" sequene (130).

a) What is the smallest n suh that S

n

= 2

a

, given a � 0?

b) Show that fn j S

n

= 1g = f2k + 1� �k j k � 0g; hene the generating funtion

P

n

z

n

[S

n

=1℄ is the in�nite produt z(1 + z)(1 + z

3

)(1 + z

7

)(1 + z

15

) : : : .

) Find similar expressions for fn j S

n

= 2

a

g and

P

n

z

n

[S

n

=2

a

℄.

d) Let �(a; b; k) =

P

r(a;b;k)

n=1

S

n

, where S

r(a;b;k)

is the 2

b

kth ourrene of 2

a

in hS

n

i.

For example, �(1; 0; 3) = S

1

+ � � �+ S

10

= 16. Evaluate �(a; b; 1) in losed form.

e) Show that �(a; b; k+1)� �(a; b; k) � (a+ b+ 2k � 1)2

a+b

, for all k � 1.

September 23, 2015

160 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Las Vegas

relutant Fibonai sequene

Fibonai numbers

ruler doubling

Hoos

Shearer

omplete t-ary trees

lopsidependeny graph

ourrene threshold

M�obius polynomial

path

phi

yle graph

f) Given any probability distribution as in exerise 306(k), let a = dlg te and b =

dlg 1=q

t

e, where t=q

t

= L; thus L � 2

a+b

< 4L. Prove that if the strategy of

exerise 307 is used with N

j

= S

j

, we have

EX � �(a; b; 1) +

X

k�1

Q

k

(�(a; b; k+1)� �(a; b; k)); where Q = (1� q

2

a

)

2

b

.

g) Therefore hS

n

i gives EX < 13l lg l + 49l, for every probability distribution.

309. [20 ℄ Exerise 293 explains how to use the relutant doubling sequene with

Algorithm C. Is Algorithm C a Las Vegas algorithm?

310. [M25 ℄ Explain how to ompute the \relutant Fibonai sequene"

1; 1; 2; 1; 2; 3; 1; 1; 2; 3; 5; 1; 1; 2; 1; 2; 3; 5; 8; 1; 1; 2; 1; 2; 3; 1; 1; 2; 3; 5; 8; 13; 1; : : : ;

whih is somewhat like (130) and useful as in exerise 308, but its elements are Fibonai

numbers instead of powers of 2.

311. [21 ℄ Compute approximate values of EX for the 100 probability distributions of

exerise 306(b) when n = l = 100, using the method of exerise 307 with the sequenes

hS

n

i of exerise 308 and hS

0

n

i of exerise 310. Also onsider the more easily generated

\ruler doubling" sequene hR

n

i, where R

n

= n&�n = 2

�n

. Whih sequene is best?

312. [HM24 ℄ Let T (m;n) = EX when the relutant doubling method is applied to

the probability distribution de�ned in exerise 306(b). Express T (m;n) in terms of the

generating funtions in exerise 308().

x 313. [22 ℄ Algorithm W always ips a ost-free literal if one is present in C

j

, without

onsidering its parameter p. Show that suh a ip always dereases the number of

unsatis�ed lauses, r; but it might inrease the distane from x to the nearest solution.

x 314. [36 ℄ (H. H. Hoos, 1998.) If the given lauses are satis�able, and if p > 0, an

there be an initial x for whih Algorithm W always loops forever?

315. [M18 ℄ What value of p is appropriate in Theorem J when d = 1?

316. [HM20 ℄ Is Theorem J a onsequene of Theorem L?

x 317. [M26 ℄ Let �(G) = Pr(A

1

\ � � � \A

m

) under the assumptions of (133), when p

i

=

p = (d�1)

d�1

=d

d

for 1 � i � m and every vertex of G has degree at most d > 1. Prove,

by indution onm, that �(G) > 0 and that �(G) >

d�1

d

�(Gnv) when v has degree < d.

318. [HM27 ℄ (J. B. Shearer.) Prove that Theorem J is the best possible result of its

kind: If p > (d � 1)

d�1

=d

d

and d > 1, there is a graph G of maximum degree d for

whih (p; : : : ; p) =2 R(G). Hint: Consider omplete t-ary trees, where t = d� 1.

319. [HM20 ℄ Show that pde < 1 implies p � (d� 1)

d�1

=d

d

.

320. [M24 ℄ Given a lopsidependeny graph G, the ourrene threshold �(G) is the

smallest value p suh that it's sometimes impossible to avoid all events when eah

event ours with probability p. For example, the M�obius polynomial for the path P

3

is

1�p

1

�p

2

�p

3

+p

1

p

3

; so the ourrene threshold is �

�2

, the least p with 1�3p+p

2

� 0.

a) Prove that the ourrene threshold for P

m

is 1=(4 os

2
�

m+2

).

b) What is the ourrene threshold for the yle graph C

m

?

321. [M24 ℄ Suppose eah of four random events A, B, C, D ours with probability p,

where fA;Cg and fB;Dg are independent. Aording to exerise 320(b) with m = 4,

there's a joint distribution of (A;B;C;D) suh that at least one of the events always

ours, whenever p � (2�

p

2)=2 � 0:293. Exhibit suh a distribution when p = 3=10.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 161

Kolipaka

Szegedy

ayli orientation

digraph

territory sets

bitwise operations

territories

multipliation of traes

right fator

right division of traes

left fator

left division of traes

territory sets

intersetion graphs

empilements

x 322. [HM35 ℄ (K. Kolipaka and M. Szegedy, 2011.) Surprisingly, the previous exerise

annot be solved in the setting of Algorithm M! Suppose we have independent random

variables (W;X; Y; Z) suh that A depends on W and X, B depends on X and Y,

C depends on Y and Z, D depends on Z and W. Here W equals j with probability w

j

for all integers j; X, Y, and Z are similar. This exerise will prove that the onstraint

A \B \ C \D is always satis�able, even when p is as large as 0.333.

a) Express the probability Pr(A \B \ C \D) in a onvenient way.

b) Suppose there's a distribution of W, X, Y, Z with Pr(A) = Pr(B) = Pr(C) =

Pr(D) = p and Pr(A\B \C \D) = 0. Show that there are ten values suh that

0 � a; b; ; d; a

0

; b

0

;

0

; d

0

� 1; 0 < �; � < 1;

�a+ (1� �)a

0

� p; �b+ (1� �)b

0

� p;

�+ (1� �)

0

� p; �d+ (1� �)d

0

� p;

a+ d � 1 or b+ � 1, a+ d

0

� 1 or b+

0

� 1;

a

0

+ d � 1 or b

0

+ � 1, a

0

+ d

0

� 1 or b

0

+

0

� 1.

) Find all solutions to those onstraints when p = 1=3.

d) Convert those solutions to distributions that have Pr(A \ B \ C \D) = 0.

323. [10 ℄ What trae preedes b in the list (135)?

x 324. [22 ℄ Given a trae � = x

1

x

2

: : : x

n

for a graph G, explain how to �nd all strings �

that are equivalent to �, using Algorithm 7.2.1.2V. How many strings yield (136)?

x 325. [20 ℄ An ayli orientation of a graph G is an assignment of diretions to eah of

its edges so that the resulting digraph has no oriented yles. Show that the number of

traes for G that are permutations of the verties (with eah vertex appearing exatly

one in the trae) is the number of ayli orientations of G.

326. [20 ℄ True or false: If � and � are traes with � = �, then �

R

= �

R

. (See (137).)

x 327. [22 ℄ Design an algorithm to multiply two traes � and �, when lashing is de�ned

by territory sets T (a) in some universe U . Assume that U is small (say jU j � 64), so

that bitwise operations an be used to represent the territories.

328. [20 ℄ Continuing exerise 327, design an algorithm that omputes �=�. More

preisely, if � is a right fator of �, in the sense that � = � for some trae , your

algorithm should ompute ; otherwise it should report that � is not a right fator.

329. [21 ℄ Similarly, design an algorithm that either omputes � n � or reports that

� isn't a left fator of �.

x 330. [21 ℄ Given any graphG, explain how to de�ne territory sets T (a) for its verties a

in suh a way that we have a = b or a���b if and only if T (a)\T (b) 6= ;. (Thus traes

an always be modeled by empilements of piees.) Under what irumstanes is it

possible to do this with jT (a)j = 2 for all a, as in the text's example (136)?

331. [M20 ℄ What happens if the right-hand side of (139) is expanded without allowing

any of the variables to ommute with eah other?

332. [20 ℄ When a trae is represented by its lexiographially smallest string, no letter

in that representative string is followed by a smaller letter with whih it ommutes.

(For example, no is followed by a in (135), beause we ould get an equivalent smaller

string by hanging a to a.)

Conversely, given any ordered set of letters, some of whih ommute, onsider all

strings having no letter followed by a smaller letter with whih it ommutes. Is every

suh string the lexiographially smallest of its trae?

September 23, 2015

162 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Carlitz

Soville

Vaughan

digraph

nonommutative variables

lexiographially smallest

determinant

M�obius series

diret sum of graphs

join of graphs

lique

Viennot

Viennot

pyramids

left fator

labeled trae

labeled pyramid

generating funtions, exponential

x 333. [M20 ℄ (Carlitz, Soville, and Vaughan, 1976.) Let D be a digraph on f1; : : : ;mg,

and let A be the set of all strings a

j

1

: : : a

j

n

suh that j

i

��! j

i+1

in D for 1 � i < n.

Similarly let B be the set of all strings a

j

1

: : : a

j

n

suh that j

i

6��! j

i+1

for 1 � i < n.

Prove that

X

�2A

� = 1

.

X

�2B

(�1)

j�j

� =

X

k�0

�

1�

X

�2B

(�1)

j�j

�

�

k

is an identity in the nonommutative variables fa

1

; : : : ; a

m

g. (For example, we have

1 + a+ b+ ab+ ba+ aba+ bab+ � � � =

X

k�0

(a+ b� aa� bb+ aaa+ bbb� � � �)

k

in the ase m = 2, 1 6��!1, 1��!2, 2��!1, 2 6��!2.)

x 334. [25 ℄ Design an algorithm to generate all traes of length n that orrespond to a

given graph on the alphabet f1; : : : ;mg, representing eah trae by its lexiographially

smallest string.

335. [HM26 ℄ If the verties of G an be ordered in suh a way that x < y < z and

x /���y and y /���z implies x /���z, show that the M�obius series M

G

an be expressed as

a determinant. For example,

if G =

a b

 d

e f

then M

G

= det

0

B

B

B

B

B

�

1� a �b � 0 0 0

�a 1� b 0 �d 0 0

�a �b 1� �d �e 0

�a �b � 1� d 0 �f

�a �b � �d 1� e �f

�a �b � �d �e 1� f

1

C

C

C

C

C

A

:

x 336. [M20 ℄ If graphsG andH on distint verties have the M�obius seriesM

G

andM

H

,

what are the M�obius series for (a) G�H and (b) G���H?

337. [M20 ℄ Suppose we obtain the graph G

0

from G by substituting a lique of verties

fa

1

; : : : ; a

k

g for some vertex a, then inluding edges from a

j

to eah neighbor of a for

1 � j � k. Desribe the relation between M

G

0

and M

G

.

338. [M21 ℄ Prove Viennot's general identity (144) for soure-onstrained traes.

x 339. [HM26 ℄ (G. Viennot.) This exerise explores fatorization of traes into pyramids.

a) Eah letter x

j

of a given trae � = x

1

: : : x

n

lies at the top of a unique pyramid �

j

suh that �

j

is a left fator of �. For example, in the trae bebafd of (136), the

pyramids �

1

, : : : , �

8

are respetively b, b, e, bb, bba, ef, bed, and bebd.

Explain intuitively how to �nd these pyramidal left fators from �'s empilement.

b) A labeled trae is an assignment of distint numbers to the letters of a trae; for

example, aba might beome a

4

b

7

6

a

3

. A labeled pyramid is the speial ase when

the pyramid's top element is required to have the smallest label. Prove that every

labeled trae is uniquely fatorizable into labeled pyramids whose topmost labels

are in asending order. (For example, b

6

2

e

4

b

7

a

8

f

5

d

1

3

= b

6

2

e

4

d

1

� b

7

a

8

3

� f

5

.)

) Suppose there are t

n

traes of length n, and p

n

pyramids. Then there are T

n

=

n! t

n

labeled traes and P

n

= (n � 1)! p

n

labeled pyramids (beause only the

relative order of the labels is signi�ant). Letting T (z) =

P

n�0

T

n

z

n

=n! and

P (z) =

P

n�1

P

n

z

n

=n!, prove that the number of labeled traes of length n whose

fatorization in part (b) has exatly l pyramids is n! [z

n

℄P (z)

l

=l!.

d) Consequently T (z) = e

P (z)

.

e) Therefore (and this is the punh line!) lnM

G

(z) = �

P

n�1

p

n

z

n

=n.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 163

yli permutation

weighted permutations

permutations, weighted

permutation polynomial

determinant

involution polynomial

real roots of polynomials

interlaed roots

Cartier

Foata

harateristi polynomial

ograph

extreme distribution

monotoni

hordal

territory sets

interval graphs

forests

x 340. [M20 ℄ If we assign a weight w(�) to every yli permutation �, then every per-

mutation � has a weight w(�) that is the produt of the weights of its yles. For

example, if � =

�

1 2 3 4 5 6 7

3 1 4 2 7 6 5

�

= (1 3 4 2)(5 7)(6) then w(�) = w((1 3 4 2))w((5 7))w((6)).

The permutation polynomial of a set S is the sum of w(�) over all permutations

of S. Given any n � n matrix A = (a

ij

), show that it's possible to de�ne appropriate

yle weights so that the permutation polynomial of f1; : : : ; ng is the determinant of A.

341. [M25 ℄ The involution polynomial of a set S is the speial ase of the permuta-

tion polynomial when the yle weights have the form w

jj

x for the 1-yle (j) and

�w

ij

for the 2-yle (i j), otherwise w(�) = 0. For example, the involution polyno-

mial of f1; 2; 3; 4g is w

11

w

22

w

33

w

44

x

4

�w

11

w

22

w

34

x

2

�w

11

w

23

w

44

x

2

�w

11

w

24

w

33

x

2

�

w

12

w

33

w

44

x

2

� w

13

w

22

w

44

x

2

�w

14

w

22

w

33

x

2

+ w

12

w

34

+ w

13

w

24

+ w

14

w

23

.

Prove that, if w

ij

> 0 for 1 � i � j � n, the involution polynomial of f1; : : : ; ng

has n distint real roots. Hint: Show also that, if the roots for f1; : : : ; n � 1g are

q

1

< � � � < q

n�1

, then the roots r

k

for f1; : : : ; ng satisfy r

1

< q

1

< r

2

< � � � < q

n�1

< r

n

.

342. [HM25 ℄ (Cartier and Foata, 1969.) Let G

n

be the graph whose verties are the

P

n

k=1

�

n

k

�

(k� 1)! yli permutations of subsets of f1; : : : ; ng, with ����� when � and

� interset. For example, the verties of G

3

are (1), (2), (3), (12), (13), (23), (123),

(132); and they're mutually adjaent exept that (1) /��� (2), (1) /��� (3), (1) /��� (23),

(2) /��� (3), (2) /��� (13), (12) /��� (3). Find a beautiful relation between M

G

n

and the

harateristi polynomial of an n � n matrix.

x 343. [M25 ℄ If G is any ograph, show that (p

1

; : : : ; p

m

) 2 R(G) if and only if we have

M

G

(p

1

; : : : ; p

m

) > 0. Exhibit a non-ograph for whih the latter statement is not true.

344. [M33 ℄ Given a graph G as in Theorem S, let B

1

, : : : , B

m

have the joint probabil-

ity distribution of exerise MPR{31, with �

I

= 0 whenever I ontains distint verties

fi; jg with i���j, otherwise �

I

=

Q

i2I

p

i

.

a) Show that this distribution is legal (see exerise MPR{32) if (p

1

; : : : ; p

m

) 2 R(G).

b) Show that this \extreme distribution" also satis�es ondition (147).

) Let �(G) = Pr(B

1

\� � �\B

m

). If J � f1; : : : ;mg, express �(GjJ) in terms ofM

G

.

d) De�ning �(G) as in exerise 317, with events A

j

satisfying (133) and probabilities

(p

1

; : : : ; p

m

) 2 R(G), show that �(G j J) � �(G j J) for all J � f1; : : : ;mg.

e) If p

i

satis�es (134), show that �(GjJ) �

Q

j2J

(1� �

j

).

345. [M30 ℄ Construt unavoidable events that satisfy (147) when (p

1

; : : : ; p

m

) =2 R(G).

x 346. [HM28 ℄ Write (142) as M

G

=M

Gna

(1� aK

a;G

) where K

a;G

=M

Gna

�

=M

Gna

.

a) If (p

1

; : : : ; p

m

) 2 R(G), prove that K

a;G

is monotoni in all of its parameters: It

does not inrease if any of p

1

, : : : , p

m

are dereased.

b) Exploit this fat to design an algorithm that omputes M

G

(p

1

; : : : ; p

m

) and

deides whether or not (p

1

; : : : ; p

m

) 2 R(G), given a graph G and probabilities

(p

1

; : : : ; p

m

). Illustrate your algorithm on the graph G = P

3

P

2

of exerise 335.

x 347. [M28 ℄ A graph is alled hordal when it has no indued yle C

k

for k > 3.

Equivalently (see Setion 7.4.2), a graph is hordal if and only if its edges an be

de�ned by territory sets T (a) that indue onneted subgraphs of some tree. For

example, interval graphs and forests are hordal.

a) Say that a graph is tree-ordered if its verties an be arranged as nodes of a forest

in suh a way that

a���b implies a � b or b � a;

a � b � and a��� implies a���b.

(�)

September 23, 2015

164 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

proper anestor

tree-ordered graph

Pringsheim

nonnegative oeÆients

analysis of algorithms

variane

Pegden

asymptoti

Loal Lemma

dependeny graph

resolvable

lopsidependeny graph

(Here `a � b' means that a is a proper anestor of b in the forest.) Prove that

every tree-ordered graph is hordal.

b) Conversely, show that every hordal graph an be tree-ordered.

) Show that the algorithm in the previous exerise beomes quite simple when it

is applied to a tree-ordered graph, if a is eliminated before b whenever a � b.

d) Consequently Theorem L an be substantially strengthened when G is a hordal

graph: When G is tree-ordered by �, the probability vetor (p

1

; : : : ; p

m

) is in

R(G) if and only if there are numbers 0 � �

1

; : : : ; �

m

< 1 suh that

p

i

= �

i

Y

i��j inG; i�j

(1� �

j

):

348. [HM26 ℄ (A. Pringsheim, 1894.) Show that any power series f(z) =

P

1

n=0

a

n

z

n

with a

n

� 0 and radius of onvergene �, where 0 < � <1, has a singularity at z = �.

x 349. [M24 ℄ Analyze Algorithm M exatly in the two examples onsidered in the text

(see (150)): For eah binary vetor x = x

1

: : : x

7

, ompute the generating funtion

g

x

(z) =

P

t

p

x;t

z

t

, where p

x;t

is the probability that step M3 will be exeuted exatly

t times after step M1 produes x. Assume that step M2 always hooses the smallest

possible value of j. (Thus the `Case 2' senario in (150) will never our.)

What are the mean and variane of the running times, in (i) Case 1? (ii) Case 2?

x 350. [HM26 ℄ (W. Pegden.) Suppose Algorithm M is applied to the m = n+ 1 events

A

j

= x

j

for 1 � j � n; A

m

= x

1

_ � � � _ x

n

:

Thus A

m

is true whenever any of the other A

j

is true; so we ould implement step M2

by never setting j m. Alternatively, we ould deide to set j m whenever possible.

Let (N

i

; N

ii

; N

iii

; N

iv

; N

v

) be the number of resamplings performed when parameter �

k

of the algorithm is (i) 1/2; (ii) 1=(2n); (iii) 1=2

n

; (iv) 1=(n + k); (v) 1=(n + k)

2

.

a) Find the asymptoti mean and variane of eah N , if j is never equal to m.

b) Find the asymptoti mean and variane of eah N , if j is never less than m.

) Let G be the graph on f1; : : : ; n+ 1g with edges j���(n+ 1) for 1 � j � n, and

let p

j

= Pr(A

j

). For whih of the �ve hoies of �

k

is (p

1

; : : : ; p

n+1

) 2 R(G)?

x 351. [25 ℄ The Loal Lemma an be applied to the satis�ability problem for m lauses

on n variables if we let A

j

be the event \C

j

is not satis�ed." The dependeny graph G

then has i��� j whenever two lauses C

i

and C

j

share at least one ommon variable.

If, say, C

i

is (x

3

_ �x

5

_x

6

), then (133) holds whenever p

i

� (1� �

3

)�

5

(1� �

6

), assuming

that eah x

k

is true with probability �

k

, independent of the other x's.

But if, say, C

j

is (�x

2

_ x

3

_ x

7

), ondition (133) remains true even if we don't

stipulate that i ��� j. Variable x

3

appears in both lauses, yet the ases when C

j

is

satis�ed are never bad news for C

i

. We need to require that i��� j in ondition (133)

only when C

i

and C

j

are \resolvable" lauses, namely when some variable ours

positively in one and negatively in the other.

Extend this reasoning to the general setting of Algorithm M, where we have

arbitrary events A

j

that depend on variables �

j

: De�ne a lopsidependeny graph G for

whih (133) holds even though we might have i /���j in some ases when �

i

\ �

j

6= ;.

352. [M21 ℄ Show that E

j

� �

j

=(1� �

j

) in (152), when (134) holds.

353. [M21 ℄ Consider Case 1 and Case 2 of Algorithm M as illustrated in (150).

a) How many solutions x

1

: : : x

n

are possible? (Generalize from n = 7 to any n.)

b) How many solutions are predited by Theorem S?

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 165

lopsidependeny graph

dependeny graph

Clique Loal Lemma

lique over

�eld

Latties of partial assignments

partial assignment

stable

valid partial assignment

onsistent

unit propagation

onstrained

reason

stritly distint literals

) Show that in Case 2 the lopsidependeny graph is muh smaller than the depend-

eny graph. How many solutions are predited when the smaller graph is used?

354. [HM20 ℄ Show that the expeted number EN of resampling steps in Algorithm M

is at most �M

�0

G

(1)=M

�

G

(1).

355. [HM21 ℄ In (152), prove that E

j

� 1=Æ when (p

1

; : : : ; p

m

) has positive slak Æ.

Hint: Consider replaing p

j

by p

j

+ Æp

j

.

x 356. [M33 ℄ (The Clique Loal Lemma.) Let G be a graph on f1; : : : ;mg, and let

G j U

1

, : : : , G j U

t

be liques that over all the edges of G. Assign numbers �

ij

� 0 to

the verties of eah U

j

, suh that �

j

=

P

i2U

j

�

ij

< 1. Assume that

Pr(A

i

) = p

i

� �

ij

Y

k 6=j; i2U

k

(1 + �

ik

��

k

) whenever 1 � i � m and i 2 U

j

:

a) Prove that (p

1

; : : : ; p

m

) 2 R(G). Hint: Letting A

S

denote

T

i2S

A

i

, show that

Pr(A

i

j A

S

) � �

ij

whenever 1 � i � m and i 2 U

j

and S \ U

j

= ;:

b) Also E

i

in (152) is at most min

i���j inG

�

ij

=(1��

j

). (See Theorems M and K.)

) Improve Theorem L by showing that, if 0��

j

<

1

2

, then (p

1

; : : : ; p

m

)2R(G) when

p

i

= �

i

�

Y

i���j inG

(1� �

j

)

�.

max

i���j inG

(1� �

j

):

x 357. [M20 ℄ Let x = �

�v

and y = �

v

in (155), and suppose the �eld of variable v is

(p; q; r). Express x and y as funtions of p, q, and r.

358. [M20 ℄ Continuing exerise 357, prove that r = max(p; q; r) if and only if x; y �

1

2

.

359. [20 ℄ Equations (156) and (157) should atually have been written

l!C

=

(1� �

�

l

)(1� �

l

)

Q

l2C

0

6=C

(1� �

C!l

)

�

�

l

+ (1� �

�

l

)(1� �

l

)

Q

l2C

0

6=C

(1� �

C!l

)

and �

0

C!l

=

Y

C3l

0

6=l

l

0

!C

;

to avoid division by zero. Suggest an eÆient way to implement these alulations.

360. [M23 ℄ Find all �xed points of the seven-lause system illustrated in (159), given

that �

1

= �

�

2

= �

�

4

= 1. Assume also that �

l

�

�

l

= 0 for all l.

x 361. [M22 ℄ Desribe all �xed points �

C!l

= �

0

C!l

of the equations (154), (156), (157),

for whih eah �

C!l

and eah �

l

is either 0 or 1.

362. [20 ℄ Spell out the omputations needed to �nish Algorithm S in step S8.

x 363. [M30 ℄ (Latties of partial assignments.) A partial assignment to the variables

of a satis�ability problem is alled stable (or \valid") if it is onsistent and annot be

extended by unit propagation. In other words, it's stable if and only if no lause is

entirely false, or entirely false exept for at most one unassigned literal. Variable x

k

of

a partial assignment is alled onstrained if it appears in a lause where �x

k

is true

but all the other literals are false (thus its value has a \reason").

The 3

n

partial assignments of an n-variable problem an be represented either as

strings x = x

1

: : : x

n

on the alphabet f0; 1; �g or as sets L of stritly distint literals. For

example, the string x = �1�01� orresponds to the set L = f2;

�

4; 5g. We write x � x

0

if x

0

is equal to x exept that x

k

= � and x

0

k

2 f0; 1g; equivalently L � L

0

if L

0

= L[k

or L

0

= L [

�

k. Also x v x

0

if there are t � 0 stable partial assignments x

(j)

with

x = x

(0)

� x

(1)

� � � � � x

(t)

= x

0

:

September 23, 2015

166 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

Maneva

Mossel

Wainwright

message-passing algorithms

survey propagation

trail

Horn lauses

overing assignment

ore assignment

empty partial assignment

satisfying assignment

lusters

waerden

Preproess

erp rules

elimination by resolution

downhill resolution

unit onditioning

E�en

Biere

erp rule

Let p

1

, : : : , p

n

, q

1

, : : : , q

n

be probabilities, with p

k

+q

k

= 1 for 1 � k � n. De�ne

the weight W (x) of a partial assignment to be 0 if x is unstable, otherwise

W (x) =

Y

fp

k

j x

k

= �g �

Y

fq

k

j x

k

6= � and x

k

is unonstrainedg:

[E. Maneva, E. Mossel, and M. J. Wainwright, in JACM 54 (2007), 17:1{17:41, studied

general message-passing algorithms on partial assignments that are distributed with

probability proportional to their weights, in the ase p

1

= � � � = p

n

= p, showing that

survey propagation (Algorithm S) orresponds to the limit as p! 1.℄

a) True or false: The partial assignment spei�ed by the literals urrently on the

trail in step C5 of Algorithm C is stable.

b) What weights W (x) orrespond to the lauses F in (1)?

) Let x be a stable partial assignment with x

k

= 1, and let x

0

and x

00

be obtained

from x by setting x

0

k

 0, x

00

k

 �. True or false: x

k

is unonstrained in x if and

only if (i) x

0

is onsistent; (ii) x

0

is stable; (iii) x

00

is stable.

d) If the only lause is 123 = (x

1

_ x

2

_ x

3

), �nd all sets L suh that L v f1;

�

2;

�

3g.

e) What are the weights when there's only a single lause 123 = (x

1

_ x

2

_ x

3

)?

f) Find lauses suh that the sets L with L v f1; 2; 3; 4; 5g are ;, f4g, f5g, f1; 4g,

f2; 5g, f4; 5g, f1; 4; 5g, f2; 4; 5g, f3; 4; 5g, f1; 3; 4; 5g, f2; 3; 4; 5g, f1; 2; 3; 4; 5g.

g) Let L be a family of sets � f1; : : : ; ng, losed under intersetion, with the property

that L 2 L implies L = L

(0)

� L

(1)

� � � � � L

(t)

= f1; : : : ; ng for some L

(j)

2 L.

(The sets in (d) form one suh family, with n = 5.) Construt strit Horn lauses

with the property that L 2 L if and only if L v f1; : : : ; ng.

h) True or false: If L, L

0

, L

00

are stable and L

0

� L, L

00

� L, then L

0

\L

00

is stable.

i) If L

0

v L and L

00

v L, prove that L

0

\ L

00

v L.

j) Prove that

P

x

0

vx

W (x

0

) =

Q

fp

k

j x

k

= �g whenever x is stable.

x 364. [M21 ℄ A overing assignment is a stable partial assignment in whih every as-

signed variable is onstrained. A ore assignment is a overing assignment L that

satis�es L v L

0

for some total assignment L

0

.

a) True or false: The empty partial assignment L = ; is always overing.

b) Find all the overing and ore assignments of the lauses F in (1).

) Find all the overing and ore assignments of the lauses R

0

in (7).

d) Show that every satisfying assignment L

0

has a unique ore.

e) The satisfying assignments form a graph, if two of them are adjaent when they

di�er by omplementing just one literal. The onneted omponents of this graph

are alled lusters. Prove that the elements of eah luster have the same ore.

f) If L

0

and L

00

have the same ore, do they belong to the same luster?

365. [M27 ℄ Prove that the lauses waerden (3; 3;n) have a nontrivial (i.e., nonempty)

overing assignment for all suÆiently large n (although they're unsatis�able).

x 366. [18 ℄ Preproess the lauses R

0

of (7). What erp rules are generated?

x 367. [20 ℄ Justify the erp rule (161) for elimination by resolution.

368. [16 ℄ Show that subsumption and downhill resolution imply unit onditioning:

Any preproessor that does transformations 2 and 4 will also do transformation 1.

x 369. [21 ℄ (N. E�en and A. Biere.) Suppose l appears only in lauses C

1

, : : : , C

p

and

�

l

appears only in lauses C

0

1

, : : : , C

0

q

, where we have C

1

= (l_l

1

_� � �_l

r

) and C

0

j

= (

�

l_

�

l

j

)

for 1 � j � r. Prove that we an eliminate jlj by using the erp rule

�

l (l

1

_ � � � _ l

r

)

and replaing those p+ q lauses by only (p� 2)r + q others, namely

fC

1

�C

0

j

j r < j � qg [fC

i

�C

0

j

j 1 < i � p; 1 � j � rg:

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 167

fault testing

tomography

Life in 4

resolution

waerden

anti-maximal-element

data strutures

preproessor

resolution, implementation of

subsumption, implementation of

self-subsumed

Vassilevska Williams

lique

failed literal

triangle-free graph

Bloked lause elimination

erp rule

Bloked self-subsumption

self-subsumption

(The ase r = 1 is espeially important. In many appliations| for example in the

examples of fault testing, tomography, and the \Life in 4" problem about extending

Fig. 35|more than half of all variable eliminations admit this simpli�ation.)

370. [20 ℄ The lauses obtained by resolution might be needlessly omplex even when

exerise 369 doesn't apply. For example, suppose that variable x appears only in the

lauses (x_ a)^ (x_ �a_)^ (�x_ b)^ (�x_

�

b_ �). Resolution replaes those four lauses

by three others: (a_ b)^ (a_

�

b_ �)^ (�a_ b_). Show, however, that only two lauses,

both binary, would atually suÆe in this partiular ase.

371. [24 ℄ By preproessing repeatedly with transformations 1{4, and using exerise

369, prove that the 32 lauses (9) of waerden (3; 3; 9) are unsatis�able.

372. [25 ℄ Find a \small" set of lauses that annot by solved entirely via transforma-

tions 1{4 and the use of exerise 369.

373. [25 ℄ The answer to exerise 228 de�nes 2m +

P

m

j=1

(j � 1)

2

� m

3

=3 lauses

in m

2

variables that suÆe to refute the anti-maximal-element axioms of (99){(101).

Algorithm L needs exponential time to handle these lauses, aording to Theorem R;

and experiments show that they are bad news for Algorithm C too. Show, however,

that preproessing with transformations 1{4 will rapidly prove them unsatis�able.

x 374. [32 ℄ Design data strutures for the eÆient representation of lauses within a SAT

preproessor. Also design algorithms that (a) resolve lauses C and C

0

with respet to

a variable x; (b) �nd all lauses C

0

that are subsumed by a given lause C; () �nd all

lauses C

0

that are self-subsumed by a given lause C and a literal l 2 C.

375. [21 ℄ Given jlj, how an one test eÆiently whether or not the speial situation in

exerise 369 applies, using (and slightly extending) the data strutures of exerise 374?

x 376. [32 ℄ After a preproessor has found a transformation that redues the urrent set

of lauses, it is supposed to try again and look for further simpli�ations. (See (160).)

Suggest methods that will avoid unneessary repetition of previous work, by using (and

slightly extending) the data strutures of exerise 374.

377. [22 ℄ (V. Vassilevska Williams.) If G is a graph with n verties and m edges,

onstrut a 2SAT problem F with 3n variables and 6m lauses, suh that G ontains a

triangle (a 3-lique) if and only if F has a failed literal.

378. [20 ℄ (Bloked lause elimination.) Clause C = (l _ l

1

_ � � � _ l

q

) is said to be

bloked by the literal l if every lause that ontains

�

l also ontains either

�

l

1

or � � � or

�

l

q

.

Exerise 161(b) proves that lause C an be removed without making an unsatis�able

problem satis�able. Show that this transformation requires an erp rule, even though it

doesn't eliminate any of the variables. What erp rule works?

x 379. [20 ℄ (Bloked self-subsumption.) Consider the lause (a_ b_ _ d), and suppose

that every lause ontaining �a but not

�

b nor � also ontains d. Show that we an then

shorten the lause to (b _ _ d) without a�eting satis�ability. Is an erp rule needed?

380. [21 ℄ Sometimes we an use self-subsumption bakwards, for example by weaken-

ing the lause (l

1

_l

2

_l

3

) to (l

1

_� � �_l

k

) if eah intermediate replaement of (l

1

_� � �_l

j

)

by (l

1

_� � �_l

j�1

) is justi�able for 3 < j � k. Then, if we're luky, the lause (l

1

_� � �_l

k

)

is weak enough to be eliminated; in suh ases we are allowed to eliminate (l

1

_ l

2

_ l

3

).

a) Show that (a _ b _) an be eliminated if it is aompanied by the additional

lauses (a _ b _

�

d), (a _ d _ e), (b _ d _ �e).

b) Show that (a _ b _) an also be eliminated when aompanied by (a _ b _

�

d),

(a _ � _

�

d), (b _ d _ �e), (b _ � _ �e), provided that no other lauses ontain �.

September 23, 2015

168 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

lookahead forest

dependeny digraph

Inproessing

hard

soft

Learning

Forgetting

purge

erp rules

erti�able

subsumed

self-subsumption

variable elimination

Tseytin

extended resolution

erp rule

erti�able

absorbed

asymmetri tautology, see erti�able lause

) What erp rules, if any, are needed for those eliminations?

381. [22 ℄ Combining exerises 379 and 380, show that any one of the lauses in

(�x

1

_ x

2

) ^ (�x

2

_ x

3

) ^ � � � ^ (�x

n�1

_ x

n

) ^ (�x

n

_ x

1

)

an be removed if there are no other lauses with negative literals. State the erp rules.

382. [30 ℄ Although the tehniques in the preeding exerises are omputationally

diÆult to apply, show that a lookahead forest based on the dependeny digraph an

be used to disover some of those simpli�ations eÆiently.

x 383. [23 ℄ (Inproessing.) A SAT solver an partition its database of urrent lauses

into two parts, the \hard" lauses � and the \soft" lauses 	. Initially 	 is empty, while

� is F , the set of all input lauses. Four kinds of hanges are subsequently allowed:

� Learning. We an append a new soft lause C, provided that � [[C is

satis�able whenever � [is satis�able.

� Forgetting. We an disard (purge) any soft lause.

� Hardening. We an relassify any soft lause and all it hard.

� Softening. We an relassify any hard lause C and all it soft, provided that

� is satis�able whenever � n C is satis�able. In this ase we also should output any

neessary erp rules, whih hange the settings of variables in suh a way that any

solution to � n C beomes a solution to �.

a) Prove that, throughout any suh proedure, F is satis�able () � is satis�able

() � [is satis�able.

b) Furthermore, given any solution to �, we obtain a solution to F by applying the

erp rules in reverse order.

) What is wrong with the following senario? Start with one hard lause, (x), and

no soft lauses. Relassify (x) as soft, using the erp rule x 1. Then append a

new soft lause (�x).

d) If C is erti�able for � (see exerise 385), an we safely learn C?

e) If C is erti�able for � n C, an we safely forget C?

f) In what ases is it legitimate to disard a lause, hard or soft, that is subsumed

by another lause, hard or soft?

g) In what ases is self-subsumption permissible?

h) Explain how to eliminate all lauses that involve a partiular variable x.

i) Show that, if z is a new variable, we an safely learn the three new soft lauses

(x _ z), (y _ z), (�x _ �y _ �z) in Tseytin's onept of extended resolution.

384. [25 ℄ Continuing the previous exerise, show that we an always safely forget any

lause C that ontains a literal l for whih C � C

0

is erti�able for � n C whenever

C

0

2 � ontains

�

l. What erp rule is appropriate?

385. [22 ℄ Clause C is alled erti�able for a set of lauses F if F ^C `

1

�, as in (119).

It is said to be absorbed by F if it is nonempty and F ^C n l `

1

l for every l 2 C, or if

it is empty and F `

1

�. (Every lause of F is obviously absorbed by F .)

a) True or false: If C is absorbed by F , it is erti�able for F .

b) Whih of f

�

1;

�

12;

�

123g are implied by, erti�able for, or absorbed by R

0

in (7)?

) If C is erti�able for F and if all lauses of F are absorbed by F

0

, prove that C

is erti�able for F

0

.

d) If C is absorbed by F and if all lauses of F are absorbed by F

0

, prove that C is

absorbed by F

0

.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 169

helpful round

erti�ate of unsatis�ability

embedded

homomorphi embedding

lique

Hamiltonian yle

king moves

knight moves

path

reahability in a graph

onneted

path

x 386. [M25 ℄ Let Algorithm C

0

be a variant of Algorithm C that (i) makes all deisions

at random; (ii) never forgets a learned lause; and (iii) restarts whenever a new lause

has been learned. (Thus, step C5 ignores M

p

and M

f

; step C6 hooses l uniformly at

random from among the 2(n�F) urrently unassigned literals; step C8 bakjumps while

F > i

1

, instead of while F > i

d

0

+1

; and after step C9 has stored a new lause, with

d > 0, it simply sets d 0 and returns to C2. The data strutures HEAP, OVAL, and ACT

are no longer used.) We will prove that Algorithm C

0

is, nevertheless, quite powerful.

In the remainder of this exerise, F denotes the set of lauses known by Algo-

rithm C

0

, both original and learned; in partiular, the unit lauses of F will be the

�rst literals L

0

, L

1

, : : : , L

i

1

�1

on the trail. If C is any lause and if l 2 C, we de�ne

sore(F;C; l) =

(

1; if F ^ C n l `

1

l;

jfl

0

j F ^ C n l `

1

l

0

gj; otherwise.

Thus sore(F;C; l) represents the total number of literals on the trail after making all

the unfored deisions of C n

�

l, if no onit arises. We say that Algorithm C

0

performs

a \helpful round" for C and l if (i) every deision literal belongs to C; and (ii)

�

l is

hosen as a deision literal only if the other elements of C are already in the trail.

a) Let C be erti�able for F , and suppose that sore(F;C; l) < 1 for some l 2 C.

Prove that if F

0

denotes F together with a lause learned on a helpful round,

then sore(F

0

; C; l) > sore(F;C; l).

b) Furthermore sore(F

0

; C; l) � sore(F;C; l) after an unhelpful round.

) Therefore C will be absorbed by the set F

0

of known lauses after at most jCjn

helpful rounds have ourred.

d) If jCj = k, show that Pr(helpful round) � (k � 1)!=(2n)

k

� 1=(4n

k

).

e) Consequently, by exerise 385(), if there exists a erti�ate of unsatis�ability

(C

1

; : : : ; C

t

) for a family of lauses F with n variables, Algorithm C

0

will prove

F unsatis�able after learning an average of � � 4

P

t

i=1

jC

i

jn

1+jC

i

j

lauses. (And

it will q.s. need to learn at most � lnn ln lnn lauses, by exerise MPR{102.)

x 387. [21 ℄ Graph G is said to be embedded in graph G

0

if every vertex v of G orre-

sponds to a distint vertex v

0

of G

0

, where u

0

���v

0

in G

0

whenever u���v in G. Explain

how to onstrut lauses that are satis�able if and only if G an be embedded in G

0

.

388. [20 ℄ Show that the problems of deiding whether or not a given graph G (a) on-

tains a k-lique, (b) an be k-olored, or () has a Hamiltonian yle an all be regarded

as graph embedding problems.

x 389. [22 ℄ In this 4 � 4 diagram, it's possible to trae out the phrase

`THE ART OF COMPUTER PROGRAMMING ' by making only king moves and

knight moves, exept for the �nal step from N to G.

Rearrange the letters so that the entire phrase an be traed.

N T E F

H I R

U P O A

M M C G

x 390. [23 ℄ Let G be a graph with verties V, edges E, jEj = m, jV j = n, and s; t 2 V .

a) Construt O(kn) lauses that are satis�able if and only if there's a path of length

k or less from s to t, given k.

b) Construt O(m) lauses that are satis�able if and only if there's at least one path

from s to t.

) Construt O(n

2

) lauses that are satis�able if and only if G is onneted.

d) Construt O(km) lauses that are unsatis�able if and only if there's a path of

length k or less from s to t, given k.

September 23, 2015

170 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

onneted

enode

rookwise onneted

multiommodity ow

routing, disjoint

onnetion puzzles

kingwise onnetedness

Dawson

hess diagram

noninterseting paths

at-most-one

auxiliary variables

broadast

Langford's problem

order enoding

e) Construt O(m) lauses that are unsatis�able if and only if there's at least one

path from s to t.

f) Construt O(m) lauses that are unsatis�able if and only if G is onneted. (This

onstrution is muh better than (), in a sparse graph.)

391. [M25 ℄ The values of two integer variables satisfy 0 � x; y < d, and they are to

be represented as l-bit quantities x

l�1

: : : x

0

, y

l�1

: : : y

0

, where l = dlg de. Speify three

di�erent ways to enode the relation x 6= y:

a) Let x = (x

l�1

: : : x

0

)

2

and y = (y

l�1

: : : y

0

)

2

; and let the enoding enfore the

onditions (x

l�1

: : : x

0

)

2

< d, and (y

l�1

: : : y

0

)

2

< d, as well as ensuring that

x 6= y by introduing 2l + 1 additional lauses in l auxiliary variables.

b) Like (a), but there are d additional lauses (not 2l + 1), and no auxiliaries.

) All bit patterns x

l�1

: : : x

0

and y

l�1

: : : y

0

are valid, but some values might have

two di�erent patterns. The enoding has d lauses and no auxiliary variables.

392. [22 ℄ The blank spaes in the following diagrams an be �lled with letters in suh

a way that all ourrenes of the same letter are rookwise onneted:

A

B B

C C

A

A

D E

C D

B B

E

C A

A B B

C C

A

B

D C E

F D E

A

D B

F F E

H A

B C D C

E E

G G

F J F

J

I H I A

B D

A

B C

D

E

F A E D

C B F

(i) (ii) (iii) (iv) (v)

a) Demonstrate how to do it. (Puzzle (i) is easy; the others less so.)

b) Similarly, solve the following puzzles|but use kingwise onnetedness instead.

A H

B G

C F

D E

E D

F C

G B

H A

A

B G

C F

D E

E D

F C

G B

A

A B C D A

D B

C

C

B D

A D C B A

(vi) (vii) (viii)

) Construt lauses with whih a SAT solver an solve general puzzles of this kind:

Given a graph G and disjoint sets of verties T

1

, T

2

, : : : , T

t

, a solution should ex-

hibit disjoint onneted sets of verties S

1

, S

2

, : : : , S

t

, with T

j

� S

j

for 1 � j � t.

393. [25 ℄ (T. R. Dawson, 1911.) Show that it's possible for eah white

piee in the aompanying hess diagram to apture the orresponding

blak piee, via a path that doesn't interset any of the other paths. How

an SAT help to solve this problem?

bZ0Z0Z0Z

Z0Z0Z0a0

0Z0Z0Z0l

Z0m0Z0Z0

0Z0Z0Z0s

Z0L0ZNZ0

0Z0Z0Z0S

Z0Z0A0ZB

394. [25 ℄ One way to enode the at-most-one onstraint S

�1

(y

1

; : : : ; y

p

)

is to introdue l = dlg pe auxiliary variables together with the following nl + n � 2

l

lauses, whih essentially \broadast" the value of j when y

j

beomes true:

(�y

j

_ (�1)

b

t

a

t

) for 1 � j � p, 1 � t � q = blg(2p� j), where 2p� j = (1b

1

: : : b

q

)

2

.

For example, the lauses when p = 3 are (�y

1

_a

1

)^(�y

1

_�a

2

)^(�y

2

_a

1

)^(�y

2

_a

2

)^(�y

3

_�a

1

).

Experiment with this enoding by applying it to Langford's problem, using it in

plae of (13) whenever p � 7.

395. [20 ℄ What lauses should replae (15), (16), and (17) if we want to use the order

enoding for a graph oloring problem?

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 171

Double lique hints

order enoding

graph oloring

hints

redundant representation

lique

queens graph

organ-pipe permutation

Tamura

order enoding

all-di�erent

diret enoding

diret enoding

at-least-one

at-most-one

binary onstraint

graph-oloring

prelusion lauses

onit lauses, see also prelusion lauses

support lauses

unit propagation

n queens problem

unary representation

x 396. [23 ℄ (Double lique hints.) If x has one of the d values f0; 1; : : : ; d � 1g, we an

represent it binarywise with respet to two di�erent orderings by letting x

j

= [x� j ℄

and x̂

j

= [x�� j ℄ for 1 � j < d, where � is any given permutation. For example, if

d = 4 and (0�; 1�; 2�; 3�) = (2; 3; 0; 1), the representations x

1

x

2

x

3

:x̂

1

x̂

2

x̂

3

of 0, 1, 2,

and 3 are respetively 000:110, 100:111, 110:000, and 111:100. This double ordering

allows us to enode graph oloring problems by inluding not only the hints (162) but

also

(v̂

d�k+1

1

_ � � � _ v̂

d�k+1

k

) ^ (v̂

k�1

1

_ � � � _ v̂

k�1

k

);

whenever the verties fv

1

; : : : ; v

k

g form a k-lique.

Explain how to onstrut lauses for this enoding, and experiment with oloring

the n � n queens graph when (0�; 1�; 2�; 3�; 4�; : : :) = (0; d�1; 1; d�2; 2; : : :) is the

inverse of the organ-pipe permutation.

x 397. [22 ℄ (N. Tamura, 2014.) Suppose x

0

, x

1

, : : : , x

p�1

are integer variables with the

range 0 � x

i

< d, represented in order enoding by Boolean variables x

j

i

= [x

i

� j ℄

for 0 � i < p and 1 � j < d. Show that the all-di�erent onstraint, \x

i

6= x

j

for

0 � i < j < p," an be niely enoded by introduing auxiliary integer variables y

0

,

y

1

, : : : , y

d�1

with the range 0 � y

j

< p, represented in order enoding by Boolean

variables y

i

j

= [y

j

� i℄ for 1 � i < p and 0 � j < d, and by devising lauses to enfore

the ondition x

i

= j =) y

j

= i. Furthermore, hints analogous to (162) an be given.

398. [18 ℄ Continuing exerise 397, what's an appropriate way to enfore the all-

di�erent onstraint when x

0

, : : : , x

p�1

are represented in the diret enoding?

x 399. [23 ℄ If the variables u and v range over d values f1; : : : ; dg, it's natural to enode

them diretly as sequenes u

1

: : : u

d

and v

1

: : : v

d

, where u

i

= [u= i℄ and v

j

= [v= j ℄,

using the at-least-one lauses (15) and the at-most-one lauses (17). A binary onstraint

tells us whih pairs (i; j) are legal; for example, the graph-oloring onstraint says that

i 6= j when i and j are the olors of adjaent verties in some graph.

One way to speify suh a onstraint is to assert the prelusion lauses (�u

i

_ �v

j

)

for all illegal pairs (i; j), as we did for graph oloring in (16). But there's also another

general way: We an assert the support lauses

d

^

i=1

�

�u

i

_

W

fv

j

j (i; j) is legalg

�

^

d

^

j=1

�

�v

j

_

W

fu

i

j (i; j) is legalg

�

instead. Graph oloring with d olors would then be represented by lauses suh as

(�u

3

_ v

1

_ v

2

_ v

4

_ � � � _ v

d

), when u and v are adjaent.

a) Suppose t of the d

2

pairs (i; j) are legal. How many prelusion lauses are needed?

How many support lauses?

b) Prove that the support lauses are always at least as strong as the prelusion

lauses, in the sense that all onsequenes of the prelusion lauses under unit

propagation are also onsequenes of the support lauses under unit propagation,

given any partial assignment to the binary variables fu

1

; : : : ; u

d

; v

1

; : : : ; v

d

g.

) Conversely, in the ase of the graph-oloring onstraint, the prelusion lauses

are also at least as strong as the support lauses (hene equally strong).

d) However, exhibit a binary onstraint for whih the support lauses are stritly

stronger than the prelusion lauses.

400. [25 ℄ Experiment with prelusion lauses versus support lauses by applying them

to the n queens problem. Use Algorithms L, C, and W for omparison.

401. [16 ℄ If x has the unary representation x

1

x

2

: : : x

d�1

, what is the unary represen-

tation of (a) y = dx=2e? (b) z = b(x+ 1)=3?

September 23, 2015

172 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

auxiliary variables

linear inequalities

reursively

Open shop sheduling

job shop problems

makespan

\greedy" algorithm

402. [18 ℄ If x has the unary representation x

1

x

2

: : : x

d�1

, enode the further ondition

that x is (a) even; (b) odd.

403. [20 ℄ Suppose x, y, z have the order enoding, with 0 � x; y; z < d. What lauses

enfore (a) min(x; y) � z? (b) max(x; y) � z? () min(x; y) � z? (d) max(x; y) � z?

x 404. [21 ℄ Continuing exerise 403, enode the ondition jx � yj � a, for a given

onstant a � 1, using either (a) d lauses of length � 4 and no auxiliary variables;

or (b) 2d�O(a) lauses of length � 3, and one auxiliary variable.

x 405. [M23 ℄ The purpose of this exerise is to enode the onstraint ax+ by � , when

a, b, are integer onstants, assuming that x, y are order-enoded with range [0 : : d).

a) Prove that it suÆes to onsider ases where a; b; > 0.

b) Exhibit a suitable enoding for the speial ase 13x� 8y � 7, d = 8.

) Exhibit a suitable enoding for the speial ase 13x� 8y � 1, d = 8.

d) Speify an enoding that works for general a, b, , d.

406. [M24 ℄ Order-enode (a) xy � a and (b) xy � a, when a is an integer onstant.

x 407. [M22 ℄ If x, y, z are order-enoded, with 0�x; y<d and 0�z<2d�1, the lauses

2d�2

^

k=1

k

^

j=max(0;k+1�d)

(�x

j

_ �y

k�j

_ z

k

)

are satis�able if and only if x+y � z; this is the basi idea underlying (20). Another way

to enode the same relation is to introdue new order-enoded variables u and v, and to

onstrut lauses for the relations bx=2+by=2 � u and dx=2e+dy=2e � v, reursively

using methods for numbers less than dd=2e and bd=2+ 1. Then we an �nish the job

by letting z

1

= v

1

, z

2d�2

= v

d

(d even) or u

d�1

(d odd), and appending the lauses

(�u

j

_ z

2j

) ^ (�v

j+1

_ z

2j

) ^ (�u

j

_ �v

j+1

_ z

2j+1

); for 1 � j � d� 2:

a) Explain why the alternative method is valid.

b) For what values of d does that method produe fewer lauses?

) Consider analogous methods for the relation x+ y � z.

x 408. [25 ℄ (Open shop sheduling.) Consider a system of m mahines and n jobs,

together with an m�n matrix of nonnegative integer weights W = (w

ij

) that represent

the amount of uninterrupted time on mahine i that is needed by job j.

The open shop sheduling problem seeks a way to get all the work done in t units

of time, without assigning two jobs simultaneously to the same mahine and without

having two mahines simultaneously assigned to the same job. We want to minimize t,

whih is alled the \makespan" of the shedule.

For example, suppose m = n = 3 and W =

�

703

172

235

�

. A \greedy" algorithm, whih

repeatedly �lls the lexiographially smallest time slot (t; i; j) suh that w

ij

> 0 but

neither mahine i nor job j have yet been sheduled at time t, ahieves a makespan

of 12 with the following shedule:

M1:

M2:

M3:

J1 J3

J2 J1 J3

J3 J2 J1

a) Is 12 the optimum makespan for this W ?

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 173

order enoding

linear inequalities

log-enoded

Napier

Dadda

multipliation

radix-d representation

order enoding

auxiliary variables

eliminated

resolution

lexiographi order

order enoding

CNF

Tseytin enoding

mux operation

branhing programs

hidden weighted bit funtion

Boolean hain

b) Prove that the greedy algorithm always produes a shedule whose makespan is

less than (max

m

i=1

P

n

j=1

w

ij

)+ (max

n

j=1

P

m

i=1

w

ij

), unless W is entirely zero.

) Suppose mahine i begins to work on job j at time s

ij

, when w

ij

> 0. What

onditions should these starting times satisfy, in order to ahieve the makespan t?

d) Show that the order enoding of these variables s

ij

yields SAT lauses that niely

represent any open shop sheduling problem.

e) Let bW=k be the matrix obtained by replaing eah element w

ij

ofW by bw

ij

=k.

Prove that if the open shop sheduling problem for bW=k and t is unsatis�able,

so is the problem for W and kt.

x 409. [M26 ℄ Continuing exerise 408, �nd the best makespans in the following ases:

a) m = 3, n = 3r + 1; w

1j

= w

2(r+j)

= w

3(2r+j)

= a

j

for 1 � j � r; w

1n

= w

2n

=

w

3n

= b(a

1

+ � � �+a

r

)=2; otherwise w

ij

= 0. (The positive integers a

j

are given.)

b) m = 4, n = r + 2; w

1j

= (r + 1)a

j

and w

2j

= 1 for 1 � j � r; w

2(n�1)

= w

2n

=

(r + 1)b(a

1

+ � � �+ a

r

)=2; w

3(n�1)

= w

4n

= w

2n

+ r; otherwise w

ij

= 0.

) m = n; w

jj

= n� 2, w

jn

= w

nj

= 1 for 1 � j < n; otherwise w

ij

= 0.

d) m = 2; w

1j

= a

j

and w

2j

= b

j

for 1 � j � n, where a

1

+� � �+a

n

= b

1

+� � �+b

n

= s

and a

j

+ b

j

� s for 1 � j � n.

410. [24 ℄ Exhibit lauses for the onstraint 13x�8y � 7 when x and y are log-enoded

as 3-bit integers x = (x

2

x

1

x

0

)

2

and y = (y

2

y

1

y

0

)

2

. (Compare with exerise 405(b).)

x 411. [25 ℄ If x = (x

m

: : : x

1

)

2

, y = (y

n

: : : y

1

)

2

, and z = (z

m+n

: : : z

1

)

2

stand for

binary numbers, the text explains how to enode the relation xy = z with fewer than

20mn lauses, using Napier{Dadda multipliation. Explain how to enode the relations

xy � z and xy � z with fewer than 9mn and 11mn lauses, respetively.

412. [40 ℄ Experiment with the enoding of somewhat large numbers by using a radix-d

representation in whih eah digit has the order enoding.

413. [M20 ℄ How many lauses will remain after the auxiliary variables a

1

, : : : , a

n�1

of (169) have been eliminated by resolution?

x 414. [M22 ℄ Generalize (169) to an enoding of lexiographi order on d-ary vetors,

(x

1

: : : x

n

)

d

� (y

1

: : : y

n

)

d

, where eah x

k

= x

1

k

+ � � � + x

d�1

k

and y

k

= y

1

k

+ � � � + y

d�1

k

has the order enoding. What modi�ations to your onstrution will enode the strit

relation x

1

: : : x

n

< y

1

: : : y

n

?

415. [M22 ℄ Find all CNF formulas for the funtion (x

1

� y

1

) _ � � � _ (x

n

� y

n

).

416. [20 ℄ Enode the ondition `if x

1

: : : x

n

= y

1

: : : y

n

then u

1

: : : u

m

= v

1

: : : v

m

', us-

ing 2m+2n+1 lauses and n+1 auxiliary variables. Hint: 2n of the lauses are in (172).

417. [21 ℄ Continuing exerise 42, what is the Tseytin enoding of the ternary mux op-

eration `s t?u: v' ? Use it to justify the translation of branhing programs via (174).

418. [23 ℄ Use a branhing program to onstrut lauses that are satis�able if and

only if (x

ij

) is an m � n Boolean matrix whose rows satisfy the hidden weighted bit

funtion h

n

and whose olumns satisfy the omplementary funtion

�

h

m

. In other words,

r

i

=

n

X

j=1

x

ij

;

j

=

m

X

i=1

x

ij

; and x

ir

i

= 1; x

j

j

= 0; assuming that x

i0

= x

0j

= 0:

419. [M21 ℄ If m;n � 3, �nd (by hand) all solutions to the problem of exerise 418

suh that (a)

P

x

ij

= m+1 (the minimum); (b)

P

x

ij

= mn� n� 1 (the maximum).

420. [18 ℄ Derive (175) mehanially (that is, \without thinking") from the Boolean

hain s x

1

� x

2

, x

1

^ x

2

, t s� x

3

,

0

 s ^ x

3

, requiring =

0

= 0.

September 23, 2015

174 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

branhing program

weakly foring

BDD

dual

Pi funtion

prime lauses

foring representation

de�nite Horn lause

Horn ore

eliminated

auxiliary variables

generi graph

foring

Alon

Boppana

Bailleux

Boufkhad

foring

unit propagation

Sinz

equal sums

regular expression

421. [18 ℄ Derive (176) mehanially from the branhing program I

5

= (

�

1? 4: 3), I

4

=

(

�

2? 1: 2), I

3

= (

�

2? 2: 0), I

2

= (

�

3? 1: 0), beginning at I

5

.

422. [11 ℄ What does unit propagation dedue when the additional lause (x

1

) or (x

2

)

is appended to (a) F in (175)? (b) G in (176)?

423. [22 ℄ A representation F that satis�es a ondition like (180) but with l replaed

by � an be alled \weakly foring." Exerise 422 shows that (175) and (176) are weakly

foring. Does the BDD of every funtion de�ne a weakly foring enoding, via (173)?

x 424. [20 ℄ The dual of the Pi funtion has the prime lauses f

�

1

�

2

�

3;

�

1

�

3

�

4; 2

�

3

�

4; 234; 12g

(see 7.1.1{(30)). Can any of them be omitted from a foring representation?

425. [18 ℄ A lause with exatly one positive literal is alled a de�nite Horn lause,

and Algorithm 7.1.1C omputes the \ore" of suh lauses. If F onsists of de�nite

Horn lauses, prove that x is in the ore if and only if F `

1

x, if and only if F ^(�x) `

1

�.

x 426. [M20 ℄ Suppose F is a set of lauses that represent f(x

1

; : : : ; x

n

) using auxiliary

variables fa

1

; : : : ; a

m

g as in (170), where m > 0. Let G be the lauses that result after

variable a

m

has been eliminated as in (112).

a) True or false: If F is foring then G is foring.

b) True or false: If F is not foring then G is not foring.

427. [M30 ℄ Exhibit a funtion f(x

1

; : : : ; x

n

) for whih every set of foring lauses that

uses no auxiliary variables has size
(3

n

=n

2

), although f an atually be represented

by a polynomial number of foring lauses when auxiliary variables are introdued.

Hint: See exerise 7.1.1{116.

428. [M27 ℄ A generi graph G on verties f1; : : : ; ng an be haraterized by

�

n

2

�

Boolean variables X = fx

ij

j 1 � i < j � ng, where x

ij

= [i���j in G℄. Properties

of G an therefore be regarded as Boolean funtions, f(X).

a) Let f

nd

(X) = [�(G)�d℄; that is, f

nd

is true if and only if G has a d-oloring.

Construt lauses F

nd

that represent the funtion f

nd

(X) _ y, using auxiliary

variables Z = fz

jk

j 1 � j � n; 1 � k � dg that mean \vertex j has olor k."

b) Let G

nd

be a foring representation of the Boolean funtion F

nd

(X; y; Z), and

suppose that G

nd

has M lauses in N variables. (These N variables should

inlude the

�

n

2

�

+ 1 + nd variables of F

nd

, along with an arbitrary number of

additional auxiliaries.) Explain how to onstrut a monotone Boolean hain of

ost O(MN

2

) for the funtion

�

f

nd

(see exerise 7.1.2{84), given the lauses of G

nd

.

Note: Noga Alon and Ravi B. Boppana, Combinatoria 7 (1987), 1{22, proved that

every monotone hain for this funtion has length exp
((n= log n)

1=3

) when d + 1 =

b(n= lg n)

2=3

=4. Hene M and N annot be of polynomial size.

429. [22 ℄ Prove that Bailleux and Boufkhad's lauses (20), (21) are foring: If any r

of the x's have been set to 1, then unit propagation will fore all the others to 0.

430. [25 ℄ Similarly, Sinz's lauses (18) and (19) are foring.

x 431. [20 ℄ Construt eÆient, foring lauses for the relation x

1

+� � �+x

m

�y

1

+� � �+y

n

.

432. [24 ℄ Exerise 404 gives lauses for the relation jx� yj � a. Are they foring?

433. [25 ℄ Are the lexiographi-onstraint lauses in (169) foring?

434. [21 ℄ Let L

l

be the language de�ned by the regular expression 0

�

1

l

0

�

; in other

words, the binary string x

1

: : : x

n

is in L

l

if and only if it onsists of zero or more 0s

followed by exatly l 1s followed by zero or more 0s.

a) Explain why the following lauses are satis�able if and only if x

1

: : : x

n

2 L

l

:

(i) (�p

k

_�x

k

), (�p

k

_p

k�1

), and (�p

k�1

_x

k

_p

k

) for 1 � k � n, also (p

0

); (ii) (�q

k

_�x

k

),

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 175

foring

Nondeterministi �nite-state automata

�nite-state automata

regular language

input states

output states

transition rules

foring

runs of 1s

regular expression

onseutive 1s

ontext free languages

prodution rules

nonterminal symbols

threshold funtion

Pseudo-Boolean onstraints, see threshold funtions

unit propagation

propagation, kth order

failed literals

(�q

k

_ q

k+1

), and (�q

k+1

_ x

k

_ q

k

) for 1 � k � n, also (q

n+1

); (iii) (�r

k

_ p

k�1

) ^

V

0�d<l

(�r

k

_ x

k+d

) ^ (�r

k

_ q

k+l

) for 1 � k � n + 1� l, also (r

1

_ � � � _ r

n+1�l

).

b) Show that those lauses are foring when l = 1 but not when l = 2.

x 435. [28 ℄ Given l � 2, onstrut a set of O(n log l) lauses that haraterize the

language L

l

of exerise 434 and are foring.

436. [M32 ℄ (Nondeterministi �nite-state automata.) A regular language L on the

alphabet A an be de�ned in the following well-known way: Let Q be a �nite set of

\states," and let I � Q and O � Q be designated \input states" and \output states."

Also let T � Q�A�Q be a set of \transition rules." Then the string x

1

: : : x

n

is in L if

and only if there's a sequene of states q

0

, q

1

, : : : , q

n

suh that q

0

2 I, (q

k�1

; x

k

; q

k

) 2 T

for 1 � k � n, and q

n

2 O.

Given suh a de�nition, where A = f0; 1g, use auxiliary variables to onstrut

lauses that are satis�able if and only if x

1

: : : x

n

2 L. The lauses should be foring,

and there should be at most O(njT j) of them.

As an example, write out the lauses for the language L

2

= 0

�

1

2

0

�

of exerise 434.

437. [M21 ℄ Extend exerise 436 to the general ase where A has more than two letters.

438. [21 ℄ Construt a set of foring lauses that are satis�able if and only if a given

binary string x

1

: : : x

n

ontains exatly t runs of 1s, having lengths (l

1

; l

2

; : : : ; l

t

) from

left to right. (Equivalently, the string x

1

: : : x

n

should belong to the language de�ned

by the regular expression 0

�

1

l

1

0

+

1

l

2

0

+

: : : 0

+

1

l

t

0

�

.)

x 439. [30 ℄ Find eÆient foring lauses for the onstraint that x

1

+ � � � + x

n

= t and

that there are no two onseutive 1s. (This is the speial ase l

1

= � � � = l

t

= 1 of the

previous exerise, but a muh simpler onstrution is possible.)

440. [M33 ℄ Extend exerise 436 to ontext free languages, whih an be de�ned by

a set S � N and by prodution rules U and W of the following well-known forms:

U � fP ! a j P 2 N; a 2 Ag and W � fP ! QR j P;Q;R 2 Ng, where N is a set of

\nonterminal symbols." A string x

1

: : : x

n

with eah x

j

2 A belongs to the language if

and only if it an be produed from a nonterminal symbol P 2 S.

441. [M35 ℄ Show that any threshold funtion f(x

1

; : : : ; x

n

) = [w

1

x

1

+ � � �+ w

n

x

n

� t℄

has a foring representation whose size is polynomial in log jw

1

j+ � � � + log jw

n

j.

x 442. [M27 ℄ The unit propagation relation `

1

an be generalized to kth order propa-

gation `

k

as follows: Let F be a family of lauses and let l be a literal. If (l

1

; l

2

; : : : ; l

p

)

is a sequene of literals, we write L

�

q

= fl

1

; : : : ; l

q�1

;

�

l

q

g for 1 � q � p. Then

F `

0

l () � 2 F ;

F `

k+1

l () F jL

�

1

`

k

�, F jL

�

2

`

k

�, : : : , and F jL

�

p

`

k

�

for some stritly distint literals l

1

, l

2

, : : : , l

p

with l

p

= l;

F `

k

� () F `

k

l and F `

k

�

l for some literal l:

a) Verify that `

1

orresponds to unit propagation aording to this de�nition.

b) Desribe `

2

informally, using the onept of \failed literals."

) Prove that F `

k

� or F `

k

�

l implies F j l `

k

� for all literals l, and furthermore

that F `

k

� implies F `

k+1

�, for all k � 0.

d) True or false: F `

k

l implies F `

k+1

l.

e) Let L

k

(F) = fl j F `

k

lg. What is L

k

(R

0

), where R

0

appears in (7) and k � 0?

f) Given k � 1, explain how to ompute L

k

(F) and F jL

k

(F) in O(n

2k�1

m) steps,

when F has m lauses in n variables.

September 23, 2015

176 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

hierarhy of hardness

UC

k

partial assignment

propagation ompleteness, see UC

1

PC

k

single lookahead unit resolution

SLUR

lookahead

baktrak

Horn lauses

renamed

erti�ates of unsatis�ability

pigeonhole

K

m;n

girth

Z(m; n)

nonhromati retangle

443. [M24 ℄ (A hierarhy of hardness.) Continuing the previous exerise, a family of

lauses F is said to belong to lass UC

k

if it has the property that

F jL ` � implies F jL `

k

� for all sets of stritly distint literals L.

(\Whenever a partial assignment yields unsatis�able lauses, the inonsisteny an be

deteted by kth order propagation.") And F is said to belong to lass PC

k

if

F jL ` l implies F jL `

k

l for all sets of stritly distint literals L [l.

a) Prove that PC

0

� UC

0

� PC

1

� UC

1

� PC

2

� UC

2

� � � � , where the set

inlusions are strit (eah lass is ontained in but unequal to its suessor).

b) Desribe all families F that belong to the smallest lass, PC

0

.

) Give interesting examples of families in the next smallest lass, UC

0

.

d) True or false: If F ontains n variables, F 2 PC

n

.

e) True or false: If F ontains n variables, F 2 UC

n�1

.

f) Where do the lauses R

0

of (7) fall in the hierarhy?

444. [M26 ℄ The following single lookahead unit resolution algorithm, alled SLUR,

returns either `sat', `unsat', or `maybe', depending on whether a given set F of lauses

is satis�able, unsatis�able, or beyond its ability to deide via easy propagations:

E1. [Propagate.℄ If F `

1

�, terminate (`unsat'). Otherwise set F F j fl j F `

1

lg.

E2. [Satis�ed?℄ If F = ;, terminate (`sat'). Otherwise set l to any literal within F .

E3. [Lookahead and propagate.℄ If F j l 6`

1

�, set F F j l j fl

0

j F j l `

1

l

0

g and

return to E2. Otherwise if F j

�

l 6`

1

�, F F j

�

l j fl

0

j F j

�

l `

1

l

0

g and return to E2.

Otherwise terminate (`maybe').

Notie that this algorithm doesn't baktrak after ommitting itself in E2 to either l or

�

l.

a) If F onsists of Horn lauses, possibly renamed (see exerise 7.1.1{55), prove that

SLUR will never return `maybe', regardless of how it hooses l in step E2.

b) Find four lauses F on three variables suh that SLUR always returns `sat',

although F is not a set of possibly renamed Horn lauses.

) Prove that SLUR never returns `maybe' if and only if F 2 UC

1

(see exerise 443).

d) Explain how to implement SLUR in linear time with respet to total lause length.

x 445. [22 ℄ Find short erti�ates of unsatis�ability for the pigeonhole lauses (106){

(107), when they are supplemented by (a) (181); (b) (182); () (183).

446. [M10 ℄ What's the maximum number of edges in a subgraph of K

m;n

that has

girth � 6? (Express your answer in terms of Z(m;n).)

x 447. [22 ℄ Determine the maximum number of edges in a girth-8 subgraph of K

8;8

.

448. [M25 ℄ What is Z(m;n) whenm is odd and n = m(m�1)=6? Hint: See 6.5{(16).

449. [21 ℄ Exhibit n � n quad-free matries that ontain the maximum number of 1s

and obey the lexiographi onstraints (185), (186), for 8 � n � 16.

450. [25 ℄ Prove that there is essentially only one 10 � 10 quad-free system of points

and lines with 34 inidenes. Hint: First show that every line must ontain either 3

points or 4 points; hene every point must belong to either 3 lines or 4 lines.

x 451. [28 ℄ Find a way to olor the squares of a 10�10 board with three olors, so that

no retangle has four orners of the same olor. Prove furthermore that every suh

\nonhromati retangle" board has the olor distribution f34; 34; 32g, not f34; 33; 33g.

But show that if any square of the board is removed, a nonhromati retangle is

possible with 33 squares of eah olor.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 177

deomposable

bipartite graph

indeomposable

onneted

diret sum

notation A�B

blok diagonal

lexiographially

endomorphism

autarky

submatrix

sweep

reurrene

perfet mathing

domino overings

�xed point

Mutilate

even-odd endomorphisms

452. [34 ℄ Find a nonhromati retangle with four olors on an 18 � 18 board.

453. [M23 ℄ Anm�n matrix X = (x

ij

) is said to be deomposable if it has row indies

R � f1; : : : ; mg and olumn indies C � f1; : : : ; ng suh that 0 < jRj + jCj < m+ n,

with x

ij

= 0 whenever (i 2 R and j =2 C) or (i =2 R and j 2 C). It represents a

bipartite graph on the verties fu

1

; : : : ; u

m

g and fv

1

; : : : ; v

n

g, if [u

i

���v

j

℄ = [x

ij

6=0℄.

a) Prove that X is indeomposable if and only if its bipartite graph is onneted.

b) The diret sum X

0

�X

00

of matries X

0

and X

00

, where X

0

is m

0

� n

0

and X

00

is

m

00

� n

00

, is the (m

0

+m

00

) � (n

0

+ n

00

) \blok diagonal" matrix X that has X

0

in its upper left orner, X

00

in the lower right orner, and zeros elsewhere (see

7{(40)). True or false: If the rows and olumns of X

0

and X

00

are nonnegative and

lexiographially ordered as in (185) and (186), so are the rows and olumns of X.

) Let X be any nonnegative matrix whose rows and olumns are lexiographially

noninreasing, as in (185) and (186). True or false: X is deomposable if and

only if X is a diret sum of smaller matries X

0

and X

00

.

454. [15 ℄ If � is an endomorphism for the solutions of f , show that f(x) = f(x�) for

every yli element x (every element that's in a yle of �).

455. [M20 ℄ Suppose we know that (187) is an endomorphism of some given lauses F

on the variables fx

1

; x

2

; x

3

; x

4

g. Can we be sure that F is satis�able if and only if F ^C

is satis�able, when (a) C =

�

12

�

4, i.e., C = (�x

1

_ x

2

_ �x

4

)? (b) C = 2

�

3

�

4? () C = 123?

(d) C = 1

�

34?

456. [M21 ℄ For how many funtions f(x

1

; x

2

; x

3

; x

4

) is (187) an endomorphism?

457. [HM19 ℄ Show that every Boolean f(x

1

; x

2

; x

3

; x

4

) has more than 51 quadrillion

endomorphisms, and an n-variable funtion has more than 2

2

n

(n�1)

.

458. [20 ℄ The simpli�ation of lauses by removing an autarky an be regarded as the

exploitation of an endomorphism. Explain why.

x 459. [20 ℄ Let X

ij

denote the submatrix of X onsisting of the �rst i rows and the

�rst j olumns. Show that the numbers sweep(X

ij

) satisfy a simple reurrene, from

whih it's easy to ompute sweep(X) = sweep(X

mn

).

460. [21 ℄ Given m, n, k, and r, onstrut lauses that are satis�ed by an m�n binary

matrix X = (x

ij

) if and only if sweep(X) � k and

P

i;j

x

ij

� r.

461. [20 ℄ What additional lauses will rule out non-�xed points of �

1

and �

2

?

462. [M22 ℄ Explain why �

1

, �

2

, and �

3

preserve satis�ability in the sweep problem.

x 463. [M21 ℄ Show that X is a �xed point of �

1

, �

2

, and �

3

if and only if its rows and

olumns are nondereasing. Therefore the maximum of �X =

P

i;j

x

ij

over all binary

matries of sweep k is a simple funtion of m, n, and k.

x 464. [M25 ℄ Transformations �

1

and �

2

don't hange the text's example 10�10 matrix.

Prove that they will never hange any 10 � 10 matrix of sweep 3 that has �X = 51.

465. [M21 ℄ Justify the text's rule for simultaneous endomorphisms in the perfet

mathing problem: Any perfet mathing must lead to one that's �xed by every �

uv

.

466. [M23 ℄ Prove that when mn is even, the text's even-odd rule (190) for endomor-

phisms of m� n domino overings has exatly one �xed point.

467. [20 ℄ Mutilate the 7�8 and 8�7 boards by removing the upper right and lower left

ells. What domino overings are �xed by all the even-odd endomorphisms like (190)?

September 23, 2015

178 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

erti�ate of unsatis�ability

PC

2

hierarhy

4-yle

omplete graph

Tseytin

graph-based axioms

parity-related lauses

signed permutation

antisymmetry

yle form

asymmetri

equivalene of Boolean funtions

evaluation of Boolean funtions

Boolean hain

468. [20 ℄ Experiment with the mutilated hessboard problem when the even-odd

endomorphisms are modi�ed so that (a) they use the same rule for all i and j; or

(b) they eah make an independent random hoie between horizontal and vertial.

x 469. [M25 ℄ Find a erti�ate of unsatis�ability (C

1

; C

2

; : : : ; C

t

) for the fat that an

8�8 hessboard minus ells (1; 8) and (8; 1) annot be exatly overed by dominoes h

ij

and v

ij

that are �xed under all of the even-odd endomorphisms. Eah C

k

for 1 � k < t

should be a single positive literal. (Therefore the lauses for this problem belong to

the relatively simple lass PC

2

in the hierarhy of exerise 443.)

x 470. [M22 ℄ Another lass of endomorphisms, one for every 4-yle, an also be used in

perfet mathing problems: Let the verties (instead of the edges) be totally ordered

in some fashion. Every 4-yle an be written v

0

��� v

1

��� v

2

��� v

3

��� v

0

, with

v

0

> v

1

> v

3

and v

0

> v

2

; the orresponding endomorphism hanges any solution for

whih v

0

v

1

= v

2

v

3

= 1 by setting v

0

v

1

 v

2

v

3

 0 and v

1

v

2

 v

3

v

0

 1. Prove that

every perfet mathing leads to a �xed point of all these transformations.

471. [16 ℄ Find all �xed points of the mappings in exerise 470 when the graph is K

2n

.

472. [M25 ℄ Prove that even-odd endomorphisms suh as (190) in the domino overing

problem an be regarded as instanes of the endomorphisms in exerise 470.

x 473. [M23 ℄ Generalize exerise 470 to endomorphisms for the unsatis�able lauses of

Tseytin's graph parity problems in exerise 245.

474. [M20 ℄ A signed permutation is a symmetry of f(x) if and only if f(x) = f(x�)

for all x, and it is an antisymmetry if and only if we have f(x) =

�

f(x�) for all x.

a) How many signed permutations of n elements are possible?

b) Write 75

�

1

�

4

�

26

�

3 in yle form, as an unsigned permutation of f1; : : : ; 7;

�

1; : : : ;

�

7g.

) For how many funtions f of four variables is

�

413

�

2 a symmetry?

d) For how many funtions f of four variables is

�

413

�

2 an antisymmetry?

e) For how many f(x

1

; : : : ; x

7

) is 75

�

1

�

4

�

26

�

3 a symmetry or antisymmetry?

475. [M22 ℄ Continuing exerise 474, a Boolean funtion is alled asymmetri if the

identity is its only symmetry; it is totally asymmetri if it is asymmetri and has no

antisymmetries.

a) If f is totally asymmetri, how many funtions are equivalent to f under the op-

erations of permuting variables, omplementing variables, and/or omplementing

the funtion?

b) Aording to (a) and 7.1.1{(95), the funtion (x _ y) ^ (x � z) is not totally

asymmetri. What is its nontrivial symmetry?

) Prove that if f is not asymmetri, it has an automorphism of prime order p.

d) Show that if (uvw)(�u�v �w) is a symmetry of f , so is (uv)(�u�v).

e) Make a similar statement if f has a symmetry of the form (uvwxy)(�u�v �w�x�y).

f) Conlude that, if n � 5, the Boolean funtion f(x

1

; : : : ; x

n

) is totally asymmetri

if and only if no signed involution is a symmetry or antisymmetry of f .

g) However, exhibit a ounterexample to that statement when n = 6.

476. [M23 ℄ For n � 5, �nd Boolean funtions of n variables that are (a) asymmetri

but not totally asymmetri; (b) totally asymmetri. Furthermore, your funtions should

be the easiest to evaluate (in the sense of having a smallest possible Boolean hain),

among all funtions that qualify. Hint: Combine exerises 475 and 477.

x 477. [23 ℄ (Optimum Boolean evaluation.) Construt lauses that are satis�able if and

only if there is an r-step normal Boolean hain that omputes m given funtions g

1

,

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 179

full adder

truth tables

break symmetry

symmetri funtions

Mod 4 parity

minterms

binary deoder

enoding of ternary data

representing three states with two bits

mapping three items into two-bit odes

Mod 3 parity

sideways sum

Erd}os disrepany patterns

strongly balaned

Symmetry between olors

oloring problems

lique

enode

restrited growth string

book graphs

Stanford GraphBase

Graph quenhing

quenhable

model-heking problem

: : : , g

m

on n variables. (For example, if n = 3 and g

1

= hx

1

x

2

x

3

i, g

2

= x

1

� x

2

� x

3

,

suh lauses with r = 4 and 5 enable a SAT solver to disover a \full adder" of minimum

ost; see 7.1.2{(1) and 7.1.2{(22).) Hint: Represent eah bit of the truth tables.

x 478. [23 ℄ Suggest ways to break symmetry in the lauses of exerise 477.

x 479. [25 ℄ Use SAT tehnology to �nd optimum iruits for the following problems:

a) Compute z

2

, z

1

, and z

0

, when x

1

+ x

2

+ x

3

+ x

4

= (z

2

z

1

z

0

)

2

(see 7.1.2{(27)).

b) Compute z

2

, z

1

, and z

0

, when x

1

+ x

2

+ x

3

+ x

4

+ x

5

= (z

2

z

1

z

0

)

2

.

) Compute all four symmetri funtions S

0

, S

1

, S

2

, S

3

of fx

1

; x

2

; x

3

g.

d) Compute all �ve symmetri funtions S

0

, S

1

, S

2

, S

3

, S

4

of fx

1

; x

2

; x

3

; x

4

g.

e) Compute the symmetri funtion S

3

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

).

f) Compute the symmetri funtion S

0;4

(x

1

; : : : ; x

6

) = [(x

1

+ � � �+ x

6

) mod 4 = 0℄.

g) Compute all eight minterms of fx

1

; x

2

; x

3

g (see 7.1.2{(30)).

480. [25 ℄ Suppose the values 0, 1, 2 are enoded by the two-bit odes x

l

x

r

= 00, 01,

and 1�, respetively, where 10 and 11 both represent 2. (See Eq. 7.1.3{(120).)

a) Find an optimum iruit for mod 3 addition: z

l

z

r

= (x

l

x

r

+ y

l

y

r

) mod 3.

b) Find an optimum iruit that omputes z

l

z

r

= (x

1

+ x

2

+ x

3

+ y

l

y

r

) mod 3.

) Conlude that [x

1

+ � � �+ x

n

� a (modulo 3)℄ an be omputed in < 3n steps.

x 481. [28 ℄ An ordered bit pair xy an be enoded by another ordered bit pair [[xy℄℄ =

(x�y)y without loss of information, beause [[xy℄℄ = uv implies [[uv℄℄ = xy.

a) Find an optimum iruit that omputes ([[zz

0

℄℄)

2

= x

1

+ x

2

+ x

3

.

b) Let �[[uv℄℄ = (u � v) + v, and note that �[[00℄℄ = 0, �[[01℄℄ = 2, �[[1�℄℄ = 1. Find

an optimum iruit that, given x

1

: : : x

5

, omputes z

1

z

2

z

3

suh that we have

�[[x

1

x

2

℄℄ + �[[x

3

x

4

℄℄ + x

5

= 2�[[z

1

z

2

℄℄ + z

3

.

) Use that iruit to prove by indution that the \sideways sum" (z

blgn

: : : z

1

z

0

)

2

=

x

1

+ x

2

+ � � �+ x

n

an always be omputed with fewer than 4:5n gates.

x 482. [26 ℄ (Erd}os disrepany patterns.) The binary sequene y

1

: : : y

t

is alled strongly

balaned if we have j

P

k

j=1

(2y

j

� 1)j � 2 for 1 � k � t.

a) Show that this balane ondition needs to be heked only for odd k � 3.

b) Desribe lauses that eÆiently haraterize a strongly balaned sequene.

) Construt lauses that are satis�ed by x

1

x

2

: : : x

n

if and only if x

d

x

2d

: : : x

bn=dd

is strongly balaned for 1 � d � n.

483. [21 ℄ Symmetry between olors was broken in the oloring problems of Table 6

by assigning �xed olors to a large lique in eah graph. But many graphs have no

large lique, so a di�erent strategy is neessary. Explain how to enode the \restrited

growth string" priniple (see Setion 7.2.1.5) with appropriate lauses, given an ordering

v

1

v

2

: : : v

n

of the verties: The olor of v

j

must be at most one greater than the largest

olor assigned to fv

1

; : : : ; v

j�1

g. (In partiular, v

1

always has olor 1.)

Experiment with this sheme by applying it to the book graphs anna, david,

homer, huk, and jean of the Stanford GraphBase.

484. [22 ℄ (Graph quenhing.) A graph with verties (v

1

; : : : ; v

n

) is alled \quenhable"

if either (i) n = 1; or (ii) there's a k suh that v

k

��� v

k+1

and the graph on

(v

1

; : : : ; v

k�1

; v

k+1

; : : : ; v

n

) an be quenhed; or (iii) there's an l suh that v

l

��� v

l+3

and the graph on (v

1

; : : : ; v

l�1

; v

l+3

; v

l+1

; v

l+2

; v

l+4

; : : : ; v

n

) an be quenhed.

a) Find a 4-element graph that is quenhable although v

3

/���v

4

.

b) Construt lauses that are satis�able if and only if a given graph is quenhable.

Hint: Use the following three kinds of variables for this model-heking problem:

September 23, 2015

180 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

ommutative

break symmetry

Late Binding solitaire

solitaire

patiene

playing ards

Idle Year

Dik

queens

hessboard

Turton

Ball

boundary sets

queen graph

armies of queens

queens

symmetry breaking

oexisting armies of queens

signed involutions

signed

automorphism

signed mapping

tautology

x

t;i;j

= [v

i

���v

j

at time t℄, for 1 � i < j � n�t; q

t;k

= [a quenhing move of type

(ii) leads to time t+1℄; s

t;l

= [a quenhing move of type (iii) leads to time t+1℄.

x 485. [23 ℄ Sometimes suessive transitions in the previous exerise are ommutative:

For example, the e�et of q

t;k

and q

t+1;k+1

is the same as q

t;k+2

and q

t+1;k

. Explain

how to break symmetry in suh ases, by allowing only one of the two possibilities.

486. [21 ℄ (Late Binding solitaire.) Shu�e a dek and deal out 18 ards; then try to

redue these 18 piles to a single pile, using a sequene of \aptures" in whih one pile is

plaed on top of another pile. A pile an apture only the pile to its immediate left, or

the pile found by skipping left over two other piles. Furthermore a apture is permitted

only if the top ard in the apturing pile has the same suit or the same rank as the top

ard in the aptured pile. For example, onsider the following deal:

J~ 5~10| 8} J| A| K� A~ 4| 8� 5� 5} 2} 10� A� 6~ 3~10}

Ten aptures are initially possible, inluding 5~�J~, A|��10|, and 5}�5�. Some

aptures then make others possible, as in 8��� K��� 8}.

If aptures must be made \greedily" from left to right as soon as possible, this

game is the same as the �rst 18 steps of a lassi one-player game alled \Idle Year,"

and we wind up with �ve piles [see Dik's Games of Patiene (1883), 50{52℄. But if we

leverly hold bak until all 18 ards have been dealt, we an do muh better.

Show that one an win from this position, but not if the �rst move is A|� J|.

x 487. [27 ℄ There are

�

64

8

�

= 4426165368 ways to plae eight queens on a hessboard.

Long ago, W. H. Turton asked whih of them auses the maximum number of vaant

squares to remain unattaked. [See W. W. Rouse Ball, Mathematial Rereations and

Problems, third edition (London: Mamillan, 1896), 109{110.℄

Every subset S of the verties of a graph has three boundary sets de�ned thus:

�S = the set of all edges with exatly one endpoint 2 S;

�

out

S = the set of all verties =2 S with at least one neighbor 2 S;

�

in

S = the set of all verties 2 S with at least one neighbor =2 S:

Find the minimum and maximum sizes of �S, �

out

S, and �

in

S, over all 8-element sets S

in the queen graph Q

8

(exerise 7.1.4{241). Whih set answers Turton's question?

x 488. [24 ℄ (Peaeable armies of queens.) Prove that armies of nine white queens and

nine blak queens an oexist on a hessboard without attaking eah other, but armies

of size 10 annot, by devising appropriate sets of lauses and applying Algorithm C.

Also examine the e�ets of symmetry breaking. (This problem has sixteen symmetries,

beause we an swap olors and/or rotate and/or reet the board.) How large an

oexisting armies of queens be on n � n boards, for n � 11?

489. [M21 ℄ Find a reurrene for T

n

, the number of signed involutions on n elements.

x 490. [15 ℄ Does Theorem E hold also when p

1

p

2

: : : p

n

is any signed permutation?

x 491. [22 ℄ The unsatis�able lauses R in (6) have the signed permutation 234

�

1 as an

automorphism. How an this fat help us to verify their unsatis�ability?

492. [M20 ℄ Let � be a signed mapping of the variables fx

1

; : : : ; x

n

g; for example,

the signed mapping `

�

413

�

3' stands for the operation (x

1

; x

2

; x

3

; x

4

) 7! (x

�

4

; x

1

; x

3

; x

�

3

) =

(�x

4

; x

1

; x

3

; �x

3

). When a signed mapping is applied to a lause, some of the resulting lit-

erals might oinide; or two literals might beome omplementary, making a tautology.

When � =

�

413

�

3, for instane, we have (123)� =

�

413, (13

�

4)� =

�

43, (1

�

3

�

4)� = }.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 181

subsumed

waerden

Dull

pigeonhole

BDD

lexiographi order

Quik

monkey wrenh priniple

Gardner

queen plaement

Closest strings

binary strings

noisy data

Covering strings

NP-omplete

A family F of lauses is said to be \losed" under a signed mapping � if C� is

subsumed by some lause of F whenever C 2 F . Prove that � is an endomorphism

of F in suh a ase.

493. [20 ℄ The problem waerden (3; 3; 9) has four symmetries, beause we an reet

and/or omplement all the variables. How an we speed up the proof of unsatis�ability

by adding lauses to break those symmetries?

494. [21 ℄ Show that if (uvw)(�u�v �w) is a symmetry of some lauses F , we're allowed to

break symmetries as if (uv)(�u�v), (uw)(�u �w), and (vw)(�v �w) were also symmetries. For

example, if i < j < k and if (ijk)(

�

i

�

j

�

k) is a symmetry, we an assert (�x

i

_x

j

)^ (�x

j

_x

k

)

with respet to the global ordering p

1

: : : p

n

= 1 : : : n. What are the orresponding

binary lauses when the symmetry is (i) (ij

�

k)(

�

i

�

jk)? (ii) (i

�

jk)(

�

ij

�

k)? (iii) (i

�

j

�

k)(

�

i

�

jk)?

495. [M22 ℄ Spell out the details of how we an justify appending lauses to assert (185)

and (186), using Corollary E, whenever we have an m�n problem whose variables x

ij

possess both row and olumn symmetry. (In other words we assume that x

ij

7! x

(i�)(j�)

is an automorphism for all permutations � of f1; : : : ;mg and � of f1; : : : ; ng.)

x 496. [M20 ℄ B. C. Dull reasoned as follows: \The pigeonhole lauses have row and ol-

umn symmetry. Therefore we an assume that the rows are lexiographially inreasing

from top to bottom, and the olumns are lexiographially inreasing from right to left.

Consequently the problem is easily seen to be unsatis�able." Was he orret?

497. [22 ℄ Use BDD methods to determine the number of 8 � 8 binary matries that

have both rows and olumns in nondereasing lexiographi order. How many of them

have exatly r 1s, for r = 24, r = 25, r = 64 � 25 = 39, and r = 64 � 24 = 40?

498. [22 ℄ Justify adding the symmetry-breakers (183) to the pigeonhole lauses.

499. [21 ℄ In the pigeonhole problem, is it legitimate to inlude the lauses (183)

together with lauses that enfore lexiographi row and olumn order?

500. [16 ℄ The preoious student J. H. Quik deided to extend the monkey wrenh

priniple, arguing that if F

0

[S ` l then the original lauses F an be replaed by F j l.

But he soon realized his mistake. What was it?

501. [22 ℄ Martin Gardner introdued an interesting queen plaement problem in Si-

enti� Amerian 235, 4 (Otober 1976), 134{137: \Plae r queens on an m� n hess-

board so that (i) no three are in the same row, olumn, or diagonal; (ii) no empty square

an be oupied without breaking rule (i); and (iii) r is as small as possible." Construt

lauses that are satis�able if and only if there's a solution to onditions (i) and (ii) with

at most r queens. (A similar problem was onsidered in exerise 7.1.4{242.)

502. [16 ℄ (Closest strings.) Given binary strings s

1

, : : : , s

m

of length n, and threshold

parameters r

1

, : : : , r

m

, onstrut lauses that are satis�able by x = x

1

: : : x

n

if and

only if x di�ers from s

j

in at most r

j

positions, for 1 � j � m.

503. [M20 ℄ (Covering strings.) Given s

j

and r

j

as in exerise 502, show that every

string of length n is within r

j

bits of some s

j

if and only if the losest string problem

has no solution with parameters r

0

j

= n � 1� r

j

.

x 504. [M21 ℄ The problem in exerise 502 an be proved NP-omplete as follows:

a) Let w

j

be the string of length 2n that is entirely 0 exept for 1s in positions 2j�1

and 2j, and let w

n+j

= �w

j

, for 1 � j � n. Desribe all binary strings of length 2n

that di�er from eah of w

1

, : : : , w

2n

in at most n bit positions.

b) Given a lause (l

1

_ l

2

_ l

3

) with stritly distint literals l

1

; l

2

; l

3

2 fx

1

; : : : ; x

n

;

�x

1

; : : : ; �x

n

g, let y be the string of length 2n that is entirely zero exept that it has

September 23, 2015

182 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

3SAT

losest string

Rivest's lauses

nondeterministi

randomizing

variable interation graph

Heule

windfalls

miter problems

purging

training set

tuning

over�tting

preproessing

lookahead solver versus onit driven

WalkSAT

Erd}os disrepany pattern

disrepany

rand

WalkSAT

1 in position 2k � 1 when some l

i

is �x

k

, and 1 in position 2k when some l

i

is x

k

.

In how many bit positions does a string that satis�es (a) di�er from y?

) Given a 3SAT problem F with m lauses and n variables, use (a) and (b) to

onstrut strings s

1

, : : : , s

m+2n

of length 2n suh that F is satis�able if and only

if the losest string problem is satis�able with r

j

= n + [j > 2n℄.

d) Illustrate your onstrution in () by exhibiting the losest string problems that

orrespond to the simple 3SAT problems R and R

0

in (6) and (7).

505. [21 ℄ Experiment with making Algorithm L nondeterministi, by randomizing the

initial order of VAR in step L1 just as HEAP is initialized randomly in step C1. How does

the modi�ed algorithm perform on, say, problems D3, K0, and W2 of Table 6?

506. [22 ℄ The weighted variable interation graph of a family of lauses has one vertex

for eah variable and the weight

P

2=(jj(jj � 1)) between verties u and v, where the

sum is over all lauses that ontain both �u and�v. Figure 52 indiates these weights

indiretly, by making the heavier edges darker.

a) True or false: The sum of all edge weights is the total number of lauses.

b) Explain why the graph for test ase B2 has exatly 6 edges of weight 2. What

are the weights of the other edges in that graph?

x 507. [21 ℄ (Marijn Heule.) Explain why \windfalls" (see (72)) help Algorithm L to

deal with miter problems suh as D5.

508. [M20 ℄ Aording to Table 7, Algorithm C proved problem T3 to be unsatis�able

after learning about 323 thousand lauses. About how many times did it enter a purging

phase in step C7?

509. [20 ℄ Several of the \training set" tasks used when tuning Algorithm C's param-

eters were taken from the 100 test ases of Table 6. Why didn't this lead to a problem

of \over�tting" (namely, of hoosing parameters that are too losely assoiated with

the trainees)?

510. [18 ℄ When the data points A1, A2, : : : , X8 were plotted in Fig. 55, one by one,

they sometimes overed parts of previously plotted points, beause of overlaps. What

test ases are partially hidden by (a) T2? (b) X6? () X7?

511. [22 ℄ Problem P4 in Table 6 is a strange set of lauses that lead to extreme behav-

ior of Algorithm C in Figs. 54 and 55; and it auses Algorithm L to \time out" in Fig. 53.

a) The preproessing algorithm of the text needs about 1.5 megamems to onvert

those 2509 lauses in 400 variables into just 2414 lauses in 339 variables. Show

empirially that Algorithm L makes short work of the resulting 2414 lauses.

b) How eÆient is Algorithm C on those preproessed lauses?

) What is the behavior of WalkSAT on P4, with and without preproessing?

512. [29 ℄ Find parameters for Algorithm C that will �nd an Erd}os disrepany pattern

x

1

x

2

: : : x

n

rapidly when n = 500. (This is problem E0 in Table 6.) Then ompare

the running times of nine random runs with your parameters versus nine random runs

with (194), when n = 400, 500, 600, : : : , 1100, 1160, and 1161.

513. [24 ℄ Find parameters for Algorithm L that tune it for rand (3; m; n; seed).

514. [24 ℄ The timings quoted in the text for Algorithm W, for problems in Table 6,

are based on the median of nine runs using the parameters p = :4 and N = 50n,

restarting from srath if neessary until a solution is found. Those parameters worked

�ne in most ases, unless Algorithm W was unsuited to the task. But problem C9 was

solved more quikly with p = :6 and N = 2500n (943M� versus 9:1G�).

Find values of p and N=n that give near-optimum performane for problem C9.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 183

Hard sudoku

sudoku

exat over problem

strong exponential time hypothesis

kSAT

one-per-lause

NP-omplete

3SAT

one-in-three

ternary

permanent

gadget

x 515. [23 ℄ (Hard sudoku.) Speify SAT lauses with whih a designer of sudoku puzzles

an meet the following spei�ations: (i) If ell (i; j) of the puzzle is blank, so is

ell (10�i; 10�j), for 1 � i; j � 9. (ii) Every row, every olumn, and every box ontains

at least one blank. (Here \box" means one of sudoku's nine speial 3 � 3 subarrays.)

(iii) No box ontains an all-blank row or an all-blank olumn. (iv) There are at least

two ways to �ll every blank ell, without oniting with nonblank entries in the same

row, olumn, or box. (v) If a row, olumn, or box doesn't already ontain k, there are

at least two plaes to put k into that row, olumn, or box, without onit. (vi) If the

solution has a 2� 2 subarray of the form

k l

l k

, those four ells must not all be blank.

(Condition (i) is a feature of \lassi" sudoku puzzles. Conditions (iv) and (v)

ensure that the orresponding exat over problem has no fored moves; see Setion

7.2.2.1. Condition (vi) rules out ommon ases with non-unique solutions.)

516. [M49 ℄ Prove or disprove the strong exponential time hypothesis: \If � < 2, there

is an integer k suh that no randomized algorithm an solve every kSAT problem in

fewer than �

n

steps, where n is the number of variables."

517. [25 ℄ Given lauses C

1

, : : : , C

m

, the one-per-lause satis�ability problem asks if

there is a Boolean assignment x

1

: : : x

n

suh that every lause is satis�ed by a unique

literal. In other words, we want to solve the simultaneous equations �C

j

= 1 for

1 � j � m, where �C is the sum of the literals of lause C.

a) Prove that this problem is NP-omplete, by reduing 3SAT to it.

b) Prove that this problem, in turn, an be redued to its speial ase \one-in-three

satis�ability," where every given lause is required to be ternary.

518. [M32 ℄ Given a 3SAT problem with m lauses and

n variables, we shall onstrut a (6m + n) � (6m + n)

matrix M of integers suh that the permanent, perM ,

is zero if and only if the lauses are unsatis�able. For

example, the solvable problem (7) orresponds to the

46 � 46 matrix indiated here; eah shaded box stands

for a �xed 6� 6 matrix A that orresponds to a lause.

Eah A has three \inputs" in olumns 1, 3, 5 and

three \outputs" in rows 2, 4, 6. The �rst n rows and the

last n olumns orrespond to variables. Outside of the

As, all entries are either 0 or 2; and the 2s link variables

to lauses, aording to a sheme muh like the data

strutures in several of the algorithms in this setion:

Let I

ij

andO

ij

denote the jth input and output of lause i, for 1 � i � m and 1 � j � 3.

Then, if literal l appears in t � 0 lauses i

1

< � � � < i

t

, as element j

1

, : : : , j

t

, we put `2'

in olumn I

i

k+1

j

k+1

of row O

i

k

j

k

for 0 � k � t (O

i

0

j

is row jlj, I

i

t+1

j

is olumn 6m+jlj).

2000000000000000000020000000000000000000000000

0020000000000000000000000020000000000000000000

0000200020000000000000000000000000000000000000

0000000000200020000000000000000000000000000000

00

0000000000200000000000000000000000000000

00

2000000000000000000000000000000000000000

00

0000000000000000000000000020000000000000

000000 0000000000000000000000000000000000

000000 0000000000200000000000000000000000

000000 0000000000000000000000000000000000

000000 2000000000000000000000000000000000

000000 0000000000000000000000000000000000

000000 0000000000000000000000000000000000

000000000000 0000000000000000000000000000

000000000000 0000000000200000000000000000

000000000000 0000000000000000000000000000

000000000000 2000000000000000000000000000

000000000000 0000000000000000000000000000

000000000000 0000000000000000000000002000

000000000000000000 0000000000000000000000

000000000000000000 0000000000200000000000

000000000000000000 0000000000000000000000

000000000000000000 2000000000000000000000

000000000000000000 0000000000000000000000

000000000000000000 0000000000000000000200

000000000000000000000000 0000000000000000

000000000000000000000000 0000000000200000

000000000000000000000000 0000000000000000

000000000000000000000000 2000000000000000

000000000000000000000000 0000000000000000

000000000000000000000000 0000000000000020

000000000000000000000000000000 0000000000

000000000000000000000000000000 0000000200

000000000000000000000000000000 0000000000

000000000000000000000000000000 2000000000

000000000000000000000000000000 0000000000

000000000000000000000000000000 0000000002

000000000000000000000000000000000000 0000

000000000000000000000000000000000000 0020

000000000000000000000000000000000000 0000

000000000000000000000000000000000000 0002

000000000000000000000000000000000000 0000

000000000000000000000000000000000000 2000

12

�

3

23

�

4

341

4

�

12

�

1

�

23

�

2

�

34

�

3

�

4

�

1

a) Find a 6� 6 matrix A = (a

ij

), whose elements are either 0, 1, or �1, suh that

per

0

B

B

B

B

B

�

a

11

a

12

a

13

a

14

a

15

a

16

a

21

+2r a

22

a

23

+2s a

24

a

25

+2t a

26

a

31

a

32

a

33

a

34

a

35

a

36

a

41

+2u a

42

a

43

+2v a

44

a

45

+2w a

46

a

51

a

52

a

53

a

54

a

55

a

56

a

61

+2x a

62

a

63

+2y a

64

a

65

+2z a

66

1

C

C

C

C

C

A

= 16

per

0

�

r+1 s t

u v+1 w

x y z+1

1

A

� 1

!

:

Hint: There's a solution with lots of symmetry.

b) In whih of the rows and olumns of M does `2' our twie? one? not at all?

) Conlude that perM = 2

4m+n

s, when the 3SAT problem has exatly s solutions.

September 23, 2015

184 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2

fator �fo

fator lifo

fator rand

integer programming

linear inequalities

IP solvers

utting planes

100 sets of lauses

purging

Loopless shadows

shadows

projeted

Hamiltonian paths

diÆult

3SAT

Johnson

MAXSAT lower bound

519. [20 ℄ Table 7 shows inonlusive results in a rae for fatoring between fator �fo

and fator lifo . What is the omparable performane of fator rand (m;n; z; 314159)?

x 520. [24 ℄ Every instane of SAT orresponds in a natural way to an integer program-

ming feasility problem: To �nd, if possible, integers x

1

, : : : , x

n

that satisfy the linear

inequalities 0 � x

j

� 1 for 1 � j � n and

l

1

+ l

2

+ � � �+ l

k

� 1 for eah lause C = (l

1

_ l

2

_ � � � _ l

k

).

For example, the inequality that orresponds to the lause (x

1

_ �x

3

_ �x

4

_ x

7

) is

x

1

+ (1�x

3

) + (1�x

4

) + x

7

� 1; i.e., x

1

� x

3

� x

4

+ x

7

� �1.

Sophistiated \IP solvers" have been developed by numerous researhers for solv-

ing general systems of integer linear inequalities, based on tehniques of \utting

planes" in high-dimensional geometry. Thus we an solve any satis�ability problem

by using suh general-purpose software, as an alternative to trying a SAT solver.

Study the performane of the best available IP solvers, with respet to the 100

sets of lauses in Table 6, and ompare it to the performane of Algorithm C in Table 7.

521. [30 ℄ Experiment with the following idea, whih is muh simpler than the lause-

purging method desribed in the text: \Forget a learned lause of length k with

probability p

k

," where p

1

� p

2

� p

3

� � � � is a tunable sequene of probabilities.

x 522. [26 ℄ (Loopless shadows.) A yli path within the

ube P

3

P

3

P

3

is shown here, together with the three

\shadows" that appear when it is projeted onto eah o-

ordinate plane. Notie that the shadow at the bottom

ontains a loop, but the other two shadows do not. Does

this ube ontain a yle whose three shadows are entirely

without loops? Use SAT tehnology to �nd out.

523. [30 ℄ Prove that, for any m or n, no yle of

the graph P

m

P

n

P

2

has loopless shadows.

x 524. [22 ℄ Find all Hamiltonian paths of the ube

P

3

P

3

P

3

that have loopless shadows.

x 525. [40 ℄ Find the most diÆult 3SAT problem you an that has at most 100 variables.

526. [M25 ℄ (David S. Johnson, 1974.) If F has m lauses, all of size � k, prove that

some assignment leaves at most m=2

k

lauses unsatis�ed.

999. [M00 ℄ this is a temporary exerise (for dummies)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 185

;

empty lause

nullary lause

empty sets

unsatis�able ore

Graham

Bloom

lopsidependeny graph

Brown

Landman

Robertson

Chv�atal

Kouril

Landman

Robertson

Culver

resolving

not-all-equal SAT

hypergraph 2-olorability

2-olorability of hypergraphs

Lov�asz

Kleine B�uning

Lettmann

SECTION 7.2.2.2

1. (a) ; (no lauses). (b) f�g (one lause, whih is empty).

2. Letting 1 $ lazy, 2 $ happy, 3 $ unhealthy, 4 $ daner, we're given the

respetive lauses f314;

�

142; 3

�

42;

�

24

�

3;

�

13

�

2; 2

�

31;

�

1

�

4

�

3g, mathing R

0

in (7). So all known

Pinusians dane happily, and none are lazy. But we know nothing about their health.

[And we might wonder why travelers have bothered to desribe so many empty sets.℄

3. f(j � 1; n) + f(k � 1; n), where f(p; n) =

P

q

d=1

(n � pd) = p

�

q

2

�

+ q(nmod p) �

n

2

=(2p), if we set q = bn=p.

4. Those onstraints are unsatis�able if and only if we remove a subset of either

f357; 456;

�

3

�

5

�

7;

�

4

�

5

�

6g, f246; 468;

�

2

�

4

�

6;

�

4

�

6

�

8g, f246; 357; 468;

�

4

�

5

�

6g, or f456;

�

2

�

4

�

6;

�

3

�

5

�

7;

�

4

�

6

�

8g.

5. No polynomial upper bound for W (3; k) is urrently known. Clearly W (3; k) is

less than W (3; k), the minimum n that guarantees either three equally spaed 0s or k

onseutive 1s. An analysis by R. L. Graham in Integers 6 (2006), A29:1{A29:5, beefed

up by a subsequent theorem of T. H. Bloom in arXiv:1405.5800 [math.NT℄ (2014),

22 pages, shows that W (3; k) = expO(k(log k)

4

).

6. Let eah x

i

be 0 with probability p = (2 lnk)=k, and let n be at most k

2

=(ln k)

3

.

There are two kinds of \bad events": A

i

, a set of three equally spaed 0s, ours

with probability P = p

3

; and A

0

j

, a set of k equally spaed 1s, ours with probability

P

0

= (1 � p)

k

� exp(�kp) = 1=k

2

. In the lopsidependeny graph, whih is bipartite,

eah A

i

is adjaent to at most D = 3k

3

=((k � 1)(ln k)

3

) nodes A

0

j

; eah A

0

j

is adjaent

to at most d =

3

2

k

3

=(ln k)

3

nodes A

i

. By Theorem J, we want to show that, for all

suÆiently large values of k, P � y(1� x)

D

and P

0

� x(1� y)

d

, for some x and y.

Choose x and y so that (1�x)

D

= 1=2 and y = 2P . Then x = �((log k)

3

=k

2

) and

y = �((log k)

3

=k

3

); hene (1�y)

d

= exp(�yd+O(y

2

d)) = O(1). [See T. Brown, B. M.

Landman, and A. Robertson, J. Combinatorial Theory A115 (2008), 1304{1309.℄

7. Yes, for all n, when x

1

x

2

x

3

: : : = 001001001 : : : .

8. For example, let x

i;a

signify that x

i

= a, for 1 � i � n and 0 � a < b. The relevant

lauses are then x

i;0

_ � � � _ x

i;b�1

for 1 � i � n; and �x

i;a

_ �x

i+d;a

_ � � � _ �x

i+(k

a

�1)d;a

,

for 1 � i � n � (k

a

� 1)d and d � 1. Optionally inlude the lauses �x

i;a

_ �x

i;a

0

for

0 � a < a

0

< b. (Whenever the relevant lauses are satis�able, we an also satisfy the

optional ones by falsifying some variables if neessary.)

[V. Chv�atal found W (3; 3; 3) = 27. Kouril's paper shows that W (2; 4; 8) = 157,

W (2; 3; 14) = 202, W (2; 5; 6) = 246, W (4; 4; 4) = 293, and lists many smaller values.℄

9. W (2; 2; k) = 3k � (2; 0; 2; 2; 1; 0) when k mod 6 = (0; 1; 2; 3; 4; 5). The sequene

2

k�1

02

k�1

12

k�1

is maximal when k ? 6; also 2

k�1

02

k�1

12

k�3

when kmod 6 = 3;

also 2

k�1

02

k�2

12

k�1

when k mod 6 = 4; otherwise 2

k�1

02

k�2

12

k�2

. [See B. Landman,

A. Robertson, and C. Culver, Integers 5 (2005), A10:1{A10:11, where many other

values of W (2; : : : ; 2; k) are also established.℄

10. If the original variables are f1; : : : ; ng, let the new ones be f1; : : : ; ng[f1

0

; : : : ; n

0

g.

The new problem has positive lauses f11

0

; : : : ; nn

0

g. Its negative lauses are, for

example,

�

2

0

�

6

�

7

�

9

0

if 2

�

6

�

79 was an original lause. The original problem is equivalent

beause it an be obtained from the new one by resolving away the primed variables.

[One an in fat onstrut an equivalent monotoni problem of size O(m + n) in

whih (x

1

_ � � � _ x

k

) is a positive lause if and only if (�x

1

_ � � � _ �x

k

) is a negative

lause. Suh a problem, \not-all-equal SAT," is equivalent to 2-olorability of hyper-

graphs. See L. Lov�asz, Congressus Numerantium 8 (1973), 3{12; H. Kleine B�uning and

T. Lettmann, Propositional Logi (Cambridge Univ. Press, 1999), x3.2, Problems 4{8.℄

September 23, 2015

186 ANSWERS TO EXERCISES 7.2.2.2

auxiliary variables

Langford's problem

exat over problem

nonprimary olumns

Heule

omplete graph

pigeons

kernel

maximal planar graph

11. For eah variable i, the only way to math verties of the forms ij

0

and ij

00

is to

hoose all of its true triples or all of its false triples.

For eah lause j, the vertex pairs fj

0

2; j

0

3g, fj

0

4; j

0

5g, fj

0

6; j

0

7g de�ne three

\slots"; hene two of the verties fwj; xj; yj; zjg must be mathed into the same slot.

Furthermore we an't have two in one slot and two in another, beause the remaining

slot would then be unmathed. Thus two of the

�

lj verties are mathed in their slot,

while the other is mathed with j

0

1, whenever we have a perfet mathing.

Conversely, if all lauses are satis�ed, with l

k

true in lause j, there always are

exatly two ways to math

�

l

k

j with j

0

1 while mathing wj, xj, yj, zj, and the other

two

�

lj verties with j

0

2, : : : , j

0

7. (It's a beautiful onstrution! Notie that no vertex

appears in more than three triples.)

12. Equation (13) says S

1

(y

1

; : : : ; y

p

) = S

�1

(y

1

; : : : ; y

p

) ^ S

�1

(y

1

; : : : ; y

p

). If p � 4,

use

V

1�j<k�p

(�y

j

_ �y

k

) for S

�1

(y

1

; : : : ; y

p

); otherwise S

�1

(y

1

; : : : ; y

p

) an be enoded

reursively via the lauses S

�1

(y

1

; y

2

; y

3

; t)^S

�1

(

�

t; y

4

; : : : ; y

p

), where t is a new variable.

[This method saves half of the auxiliary variables in the answer to exerise 7.1.1{55(b).℄

Note: Langford's problem involves primary olumns only; in an exat over prob-

lem with nonprimary olumns, suh olumns only need the onstraint S

�1

(y

1

; : : : ; y

p

).

13. (a) S

1

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

) ^ S

1

(x

7

; x

8

; x

9

; x

10

; x

11

) ^ S

1

(x

12

; x

13

) ^ S

1

(x

14

; x

15

;

x

16

)^S

1

(x

1

; x

7

; x

12

; x

14

)^S

1

(x

2

; x

8

; x

13

; x

15

)^S

1

(x

1

; x

3

; x

9

; x

16

)^S

1

(x

2

; x

4

; x

7

; x

10

)^

S

1

(x

3

; x

5

; x

8

; x

11

; x

12

) ^ S

1

(x

4

; x

6

; x

9

; x

13

; x

14

) ^ S

1

(x

5

; x

10

; x

15

) ^ S

1

(x

6

; x

11

; x

16

).

(b) Dupliate lauses our when rows interset more than one. We avoid them

if we simply generate lauses �x

i

_ �x

j

for every pair (i; j) of interseting rows.

() When langford (4) is generated in this way, it has 85 distint lauses in 16 vari-

ables, namely (x

1

_x

2

_x

3

_x

4

_x

5

_x

6

)^(x

7

_x

8

_x

9

_x

10

_x

11

)^� � �^(x

6

_x

11

_x

16

)^

(�x

1

_�x

2

) ^ (�x

1

_�x

3

) ^ � � � ^ (�x

15

_�x

16

).

But langford

0

(4) annot use the trik of (b). It has 85 (nondistint) lauses in 20

variables, beginning with 123456,

�

1

�

2,

�

1

�

3,

�

1

�

1

0

,

�

2

�

3,

�

2

�

1

0

,

�

3

�

1

0

, 1

0

�

4, 1

0

�

5, 1

0

�

6,

�

4

�

5,

�

4

�

6,

�

5

�

6, : : : ,

if we denote the auxiliary variables by 1

0

, 2

0

, : : : . Two of those lauses (

�

1

�

3 and

�

4

�

6) are

repeated. (Inidentally, langford

0

(12) has 1548 lauses, 417 variables, 3600 ells.)

14. (Answer by M. Heule.) Those lauses sometimes help to fous the searh. For

example, if we're trying to olor the omplete graph K

n

with n olors (or pigeons), we

don't want to waste time trying v

2

= 1 when v

1

is already 1.

On the other hand, other instanes of SAT often run slower when redundant lauses

are present, beause more updates to the data strutures are needed.

We might also take an opposite approah, and replae (17) by nd lauses that

fore every olor lass to be a kernel. (See exerise 21.) Suh lauses sometimes speed

up a proof of unolorability.

15. There are N = n(n+1) verties (j; k) for 0 � j � n and 0 � k < n. If (j; k) = (1; 0)

we de�ne (j; k) ��� (n; i) for x � i < n, where x = bn=2. Otherwise we de�ne the

following edges: (j; k)��� (j + 1; k + 1) if j < n and k < n � 1; (j; k)��� (j + 1; k) if

j < n and j 6= k; (j; k)��� (j; k + 1) if k < n � 1 and j 6= k + 1; (j; k)��� (n; n � 1) if

j = 0; (j; k)��� (n � j; 0) if k < n � 1 and j = k; (j; k)��� (n + 1 � j; 0) if j > 0 and

j = k; (j; k)���(n� j; n� j � 1) if k = n� 1 and 0 < j < k; (j; k)���(n+ 1� j; n� j)

if k = n � 1 and 0 < j < n. Finally, (0; 0)��� (1; 0), and (0; 0)��� (n; i) for 1 � i � x.

That makes a grand total of 3N � 6 edges (as it should in a maximal planar graph,

aording to exerise 7{46).

16. There's a unique 4-lique when n � 5, namely f(0; n � 2); (0; n � 1); (1; n � 1);

(n; n � 1)g. All other verties, exept (0; 0) and (1; 0), are surrounded by neighbors

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 187

Laurier

mgregor (n)

symmetri threshold funtions

symmetry breaking

Binary searh

maximum independent set

Bryant

maximum independent set

that form an indued yle of length 4 or more (usually 6). [See J.-L. Laurier, Arti�ial

Intelligene 14 (1978), 117.℄

17. Let mgregor (n) be the lauses (15) and (16) for the graph. Add lauses (19), for

symmetri threshold funtions to bound the number of variables v

1

for olor 1; the kth

vertex x

k

an be spei�ed by the ordering in answer 20. Then if, for instane, we an sat-

isfy those lauses together with the unit lause s

N

r

, where N = n(n+1), we have proved

that f(n) < r. Similarly, if we an satisfy them together with �s

N

r

, we have proved that

g(n) � r. Additional unit lauses that speify the olors of the four lique verties will

speed up the omputation: Four ases should be run, one with eah lique vertex reeiv-

ing olor 1. If all four ases are unsatis�able, we've proved that f(n) � r or g(n) < r,

respetively. Binary searh with di�erent values of r will identify the optimum.

For speedier g(n), �rst �nd a maximum independent set instead of a omplete

4-oloring; then notie that the olorings for f(n) already ahieve this maximum.

The results turn out to be f(n) = (2, 2, 3, 4, 5, 7, 7, 7, 8, 9, 10, 12, 12, 12) for

n = (3; 4; : : : ; 16), and g(n) = (4, 6, 10, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88).

18. Assuming that n � 4, �rst assign to vertex (j; k) the following \default olor":

1 + (j + k) mod 3 if j � k; 1 + (j + k + 1 � n) mod 3 if k < j=2; otherwise 1 + (j +

k + 2 � n) mod 3. Then make the following hanges to exeptional verties: Vertex

(1; 0) is olored 2 if nmod 6 = 0 or 5, otherwise 3. Vertex (n; n � 1) is olored 4. For

k 0 up to n � 2, hange the olor of vertex (n; k) to 4, if its default olor mathes

vertex (0; 0) when k � n=2 or vertex (1; 0) when k > n=2. And make �nal touhups

for 1 � j < n=2, depending again on nmod 6:

Case 0: Give olor 4 to vertex (2j; j � 1) and olor 1 to vertex (2j + 1; j).

Case 1: Give olor 4 to vertex (2j; j) and olor 2 to vertex (2j + 1; j).

Case 2: Give olor 4 to vertex (2j; j) and olor 1 to vertex (2j + 1; j). Also give

(n; n � 2) the olor 1 and (n� 1; n � 3) the olor 4.

Cases 3, 4, 5: Give olor 4 to vertex (2j + 1; j).

For example, the oloring for the ase n = 10 (found by Bryant) is shown in Fig. A{5(a).

(a) (b) ()

Fig. A{5. Colorings and kernels of MGregor's graph.

The olor distribution is (bn

2

=3; bn

2

=3; bn

2

=3; 5k) + ((0; 1; k;�1), (1; k; 1; 0),

(�1; k+1; 1; 2), (0; k; 1; 2), (1; k+1; 1; 2), (0; 2; k+1; 3)), for nmod 6 = (0; 1; 2; 3; 4; 5),

k = bn=6. Sine this onstrution ahieves all of the optimum values for f(n) and g(n),

when n � 16, it probably is optimum for all n. Moreover, the value of g(n) agrees with

the size of the maximum independent set in all known ases. A further onjeture is

that the maximum independent set is unique, whenever nmod 6 = 0 and n > 6.

September 23, 2015

188 ANSWERS TO EXERCISES 7.2.2.2

symmetry breaking

kernel

MGregor

Biere

Bernhart

Gardner

frontier

gigamems

BDD

QDD

symmetri threshold funtion

BDD

generating funtion

19. Use the lauses of mgregor (n), together with (v

1

_v

2

_v

3

_�v

x

)^(v

1

_v

2

_v

4

_�v

x

)^

(v

1

_ v

3

_ v

4

_ �v

x

)^ (v

2

_ v

3

_ v

4

_ �v

x

) for eah vertex, together with lauses from (20)

and (21) that require at least r of the verties v

x

to be true. Also assign unique olors

to the four lique verties. (One assignment, not four, is suÆient to break symmetry

here, beause h(n) is a more symmetrial property than f(n) or g(n).) These lauses

are satis�able if and only if h(n) � r. The SAT omputation goes faster if we also

provide lauses that require eah olor lass to be a kernel (see exerise 21).

The values h(n) = (1, 3, 4, 8, 9, 13) for n = (3; 4; : : : ; 8)

are readily obtained in this way. Furthermore, if we extend

olor lass 4 in the onstrution of answer 18 to a suitable ker-

nel, we �nd h(9) � 17 and h(10) � 23. The resulting diagram

for n=10, illustrated in Fig. A{5(b), niely exhibits 2

23

so-

lutions to MGregor's original oloring problem, all at one.

A good SAT solver also shows that h(9) � 18 and h(10) �

23, thus proving that h(10) = 23. And Armin Biere's solver

proved in 2013 that h(9) = 18, by disovering the surprising

solution shown here. (This exerise was inspired by Frank Bernhart, who sent a diagram

like Fig. A{5(b) to Martin Gardner in 1975; his diagram ahieved 2

21

solutions.)

20. Arrange the verties (j; k) of answer 15 in the following order v

0

, v

1

, : : : : (n; n�1);

(0; n � 1), (0; n � 2), : : : , (0; 0); (1; n � 1), (1; n � 2), : : : , (1; 1); : : : ; (n � 2; n � 1),

(n� 2; n� 2); (n� 1; n� 2), (n� 2; n� 3), : : : , (2; 1); (n� 1; n� 1); (2; 0), (3; 1), : : : ,

(n; n�2); (3; 0), (4; 1), : : : , (n; n�3); (1; 0); (4; 0), : : : , (n; n�4); : : : ; (n�1; 0), (n; 1);

(n; 0). Then if V

t

= fv

0

; : : : ; v

t�1

g, let the \frontier" F

t

onsist of all verties 2 V

t

that

have at least one neighbor =2 V

t

. We an assume that (v

0

; v

1

; v

2

) are olored (0; 1; 2),

beause they are part of the 4-lique.

All 4-olorings of V

t

that have a given sequene of olors on F

t

an be enumerated

if we know the orresponding ounts for F

t�1

. The stated ordering ensures that F

t

never will ontain more than 2n�1 elements; in fat, at most 3

2n�2

sequenes of olors

are feasible, for any given t. Sine 3

18

is less than 400 million, it's quite feasible to do

these inremental alulations. The total (obtained with about 6 gigabytes of memory

and after about 500 gigamems of omputation) turns out to be 898,431,907,970,211.

This problem is too large to be handled eÆiently by BDD methods when n = 10,

but BDD alulations for n � 8 an be used to hek the algorithm. The frontiers essen-

tially represent level-by-level slies of a QDD for this problem. The 4-oloring ounts

for 3 � n � 9 are respetively 6, 99, 1814, 107907, 9351764, 2035931737, 847019915170.

21. With one Boolean variable v for every vertex of a graph G, the kernels are

haraterized by the lauses (i) �u _ �v whenever u ��� v; (ii) v _

W

u��v

u for all v.

Adding to these the lauses for the symmetri threshold funtion S

�r

(x

1

; : : : ; x

N

), we

an �nd the least r for whih all lauses are satis�able. The graph of Fig. 33 yields

satis�ability for r = 17; and one of its 46 kernels of size 17 is shown in Fig. A{5().

[BDD methods are slower for this problem; but they enumerate all 520,428,275,749

of the kernels, as well as the generating funtion 46z

17

+47180z

18

+ � � �+317z

34

+2z

35

.℄

22. Eight olors are needed. The oloring

12771

22788

33668

34655

14451

is \balaned," with eah olor used

at least thrie.

23. Writing k for x

k

and

k

j

for s

k

j

, the lauses from (18){(19) are

�

1

1

1

2

,

�

1

2

1

3

,

�

2

1

2

2

,

�

2

2

2

3

,

�

3

1

3

2

,

�

3

2

3

3

,

�

4

1

4

2

,

�

4

2

4

3

;

�

1

1

1

,

�

2

1

2

,

�

3

1

3

,

�

2

�

1

1

2

1

,

�

3

�

1

2

2

2

,

�

4

�

1

3

2

3

,

�

3

�

2

1

3

1

,

�

4

�

2

2

3

2

,

�

5

�

2

3

3

3

,

�

4

�

3

1

4

1

,

�

5

�

3

2

4

2

,

�

6

�

3

3

4

3

,

�

5

�

4

1

,

�

6

�

4

2

,

�

7

�

4

3

.

Similarly, (20) and (21) de�ne the lauses

�

7

6

1

,

�

6

6

1

,

�

6

�

7

6

2

;

�

5

5

1

,

�

4

5

1

,

�

4

�

5

5

2

;

�

3

4

1

,

�

2

4

1

,

�

2

�

3

4

2

;

�

1

3

1

,

�

6

1

3

1

,

�

6

1

�

1

3

2

,

�

6

2

3

2

,

�

6

2

�

1

3

3

;

�

5

1

2

1

,

�

4

1

2

1

,

�

5

2

2

2

,

�

4

2

2

2

,

�

4

1

�

5

1

2

2

,

�

4

1

�

5

2

2

3

,

�

4

2

�

5

1

2

3

,

�

4

2

�

5

2

2

4

;

�

2

4

�

3

1

,

�

2

3

�

3

2

,

�

2

2

�

3

3

. So

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 189

binary reurrene relations

reurrene relations

Sinz

this tree-based method apparently needs one more variable and two more lauses when

(n; r) = (7; 4). But the next exerise shows that (18) and (19) don't really win!

24. (a) The lause (

�

b

2

1

_

�

b

3

r

) appears only if t

3

= r; and t

3

� n=2.

(b) For example, t

3

= min(r; 4) < r when n = 11 and r = 5.

() In this ase t

k

is the number of leaves below node k, and the only auxiliary

variables that survive pure literal elimination are b

k

t

k

. We're left with just n�1 surviving

lauses, namely (

�

b

2k

t

2k

_

�

b

2k+1

t

2k+1

_ b

k

t

k

) for 1 < k < n, plus (

�

b

2

t

2

_

�

b

3

t

3

).

(d) If 2

k

� n � 2

k

+ 2

k�1

we have (n

0

; n

00

) = (n� 2

k�1

; 2

k�1

); on the other hand

if 2

k

+ 2

k�1

� n � 2

k+1

we have (n

0

; n

00

) = (2

k

; n � 2

k

). (Notie that n

00

� n

0

� 2n

00

.)

(e) No pure literals are removed in this ompletely balaned ase (whih is the

easiest to analyze). We �nd a(2

k

; 2

k�1

) = (k�1)2

k

and (2

k

; 2

k�1

) = (2

k�2

+k�1)2

k

.

(f) One an show that a(n; r) = (r � n

00

? b(n

0

; r) + b(n

00

; r): r � n

0

? b(n

0

; n

00

) +

b(n

00

; n

00

): b(n

0

; n�r)+b(n

00

; n�r)), where b(1; 1) = 0 and b(n; r) = r+b(n

0

;min(r; n

0

))+

b(n

00

;min(r; n

00

)) for n � 2. Similarly, (n; r) = (r � n

00

? r + f(n

0

; 0; r) + f(n

00

; 0; r):

r � n

0

? n

00

+ f(n

0

; r�n

00

; r)+ f(n

00

; 0; n

00

): n� r+ f(n

0

; r�n

00

; n

0

)+ f(n

00

; r�n

0

; n

00

)),

where f(n; l; r)=

P

r

k=l+1

min(k+1; n

00

+1; n+1�k)+(r � n

00

? r+f(n

0

; 0; r)+f(n

00

; 0; r):

r � n

0

? n

00

+ f(n

0

; 0; r) + f(n

00

; 0; n

00

): r < n? n � r + f(n

0

; 0; n

0

) + f(n

00

; 0; n

00

):

r� l < n

00

? f(n

0

; n

0

� r+ l; n

0

) + f(n

00

; n

00

� r+ l; n

00

): r� l < n

0

? f(n

0

; n

0

� r+ l; n

0

) +

f(n

00

; 0; n

00

): f(n

0

; 0; n

0

)+f(n

00

; 0; n

00

)) for n � 2 and f(1; 0; 1) = 0. The desired results

follow by indution from these reurrene relations.

Inidentally, ternary branhing an give further savings. We an, for example,

handle the ase n = 6, r = 3 with 17 lauses in the 6 variables b

2

1

, b

2

2

, b

2

3

, b

3

1

, b

3

2

, b

3

3

.

25. From (18) and (19) we obtain 5n � 12 lauses in 2n � 4 variables, with a simple

lattie-like struture. But (20) and (21) produe a more omplex tree-like pattern, with

2n� 4 variables and with bn=2 nodes overing just two leaves. So we get bn=2 nodes

with 3 lauses, nmod 2 nodes with 5 lauses, dn=2e nodes with 7 lauses, and 2 lauses

from (21), totalling 5n � 12 as before (assuming that n > 3). In fat, all but n � 2 of

the lauses are binary in both ases.

26. Imagine the boundary onditions s

0

j

= 1, s

r+1

j

= 0, s

k

0

= 0, for 1 � j � n� r and

1 � k � r. The lauses say that s

k

1

� � � � � s

k

n�r

and that x

j+k

s

k

j

� s

k+1

j

; so the hint

follows by indution on j and k.

Setting j = n�r and k = r+1 shows that we annot satisfy the new lauses when

x

1

+ � � � + x

n

� r + 1. Conversely, if we an satisfy F with x

1

+ � � � + x

n

� r then we

an satisfy (18) and (19) by setting s

k

j

 [x

1

+ � � � + x

j+k�1

� k℄.

27. Argue as in the previous answer, but imagine that b

k

0

= 1, b

1

r+1

= 0; prove the

hint by indution on j and n�k (beginning with k = n�1, then k = n�2, and so on).

28. For example, the lauses for �x

1

+ � � � + �x

n

� n � 1 when n = 5 are (x

1

_ s

1

1

),

(x

2

_ �s

1

1

_ s

2

1

), (x

3

_ �s

2

1

_ s

3

1

), (x

4

_ �s

3

1

_ s

4

1

), (x

5

_ �s

4

1

). We may assume that n � 4;

then the �rst two lauses an be replaed by (x

1

_ x

2

_ s

2

1

), and the last two by

(x

n�1

_ x

n

_ �s

n�2

1

), yielding n � 2 lauses of length 3 in n � 3 auxiliary variables.

29. We an assume that 1 � r

1

� � � � � r

n

= r < n. Sinz's lauses (18) and (19) atu-

ally do the job niely if we also assert that s

k

j

is false whenever k = r

i

+1 and j = i�r

i

.

30. The lauses now are (�s

k

j

_ s

k

j+1

), (�x

j+k

_ �s

k

j

_ s

k+1

j

), (s

k

j

_ �s

k+1

j

), (x

j+k

_ s

k

j

_ �s

k

j+1

),

hene they de�ne the quantities s

k

j

= [x

1

+ � � �+ x

j+k�1

� k℄; impliitly s

k

0

= s

r+1

j

= 0

and s

0

j

= s

k

n�r+1

= 1. The new lauses in answer 23 are

1

1

�

2

1

,

2

1

�

3

1

,

3

1

�

4

1

,

1

2

�

2

2

,

2

2

�

3

2

,

3

2

�

4

2

,

1

3

�

2

3

,

2

3

�

3

3

,

3

3

�

4

3

; 1

�

1

1

, 2

�

2

1

, 3

�

3

1

, 4

�

4

1

, 2

1

1

�

1

2

, 3

2

1

�

2

2

, 4

3

1

�

3

2

, 5

4

1

�

4

2

, 3

1

2

�

1

3

, 4

2

2

�

2

3

, 5

3

2

�

3

3

, 6

4

2

�

4

3

, 4

1

3

, 5

2

3

, 6

3

3

, 7

4

3

.

September 23, 2015

190 ANSWERS TO EXERCISES 7.2.2.2

unary enoding

ardinality onstraints, intervals

subinterval onstraints

ardinality onstraints, subintervals

symmetry

benhmark

baktrak

Theobald

Niborski

Erd�os

Tur�an

Wagsta�

lique

With (20) and (21) we an identify b

0k

j

with

�

b

k

l

k

+1�j

, when l

k

> 1 leaves are below

node k. Then b

k

j

is true if and only if the leaves below k have j or more 1s. For

example, answer 23 gets the new lauses 7

�

6

2

, 6

�

6

2

, 67

�

6

1

; 5

�

5

2

, 4

�

5

2

, 45

�

5

1

; 3

�

4

2

, 2

�

4

2

, 23

�

4

1

; 1

�

3

3

,

6

2

�

3

3

, 1

6

2

�

3

2

,

6

1

�

3

2

, 1

6

1

�

3

1

;

4

2

�

2

4

,

5

2

�

2

4

,

4

1

�

2

3

,

4

2

5

2

�

2

3

,

5

1

�

2

3

,

4

1

5

2

�

2

2

,

4

2

5

1

�

2

2

,

4

1

5

1

;

2

4

3

1

,

2

3

3

2

,

2

2

3

3

.

Furthermore, (20) and (21) an be uni�ed in the same way with the weaker

onstraints r

0

� x

1

+ � � �+x

n

� r. If we want, say, 2 � x

1

+ � � �+x

7

� 4, we an simply

replae the �nal four lauses of the previous paragraph by

4

1

5

1

�

2

1

,

2

2

3

1

,

2

1

3

2

. Under the on-

ventions of (18) and (19), by ontrast, these weaker onstraints would generate a ompa-

rable number of new lauses, namely

1

1

�

2

1

,

1

2

�

2

2

,

1

3

�

2

3

,

1

4

�

2

4

,

1

5

�

2

5

and 1

�

1

1

, 2

�

2

1

, 3

2

1

�

2

2

, 3

1

2

�

1

3

, 4

2

2

�

2

3

,

4

1

3

�

1

4

, 5

2

3

�

2

4

, 5

1

4

�

1

5

, 6

2

4

�

2

5

, 6

1

5

, 7

2

5

; but those lauses involve the new variables

1

4

,

1

5

,

2

4

,

2

5

.

31. We an use the onstraints on the seond line of (10), together with the onstraints

of exerise 30 that fore x

1

+ � � �+ x

n

= r. Then we seek n for whih this problem is

satis�able, while the same problem with x

n

= 0 is not. The following small values an

be used to hek the alulations:

r = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

F

3

(r) = 1 2 4 5 9 11 13 14 20 24 26 30 32 36 40 41 51 54 58 63 71 74 82 84 92 95100

F

4

(r) = 1 2 3 5 6 8 9 10 13 15 17 19 21 23 25 27 28 30 33 34 37 40 43 45 48 50 53

F

5

(r) = 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 24 25 27 28 29 31 33 34 36 37 38

F

6

(r) = 1 2 3 4 5 7 8 9 10 12 13 14 15 17 18 19 20 22 23 24 25 26 29 32 33 35 36

Furthermore, signi�ant speedup is possible if we also make use of previously

omputed values F

t

(1), : : : , F

t

(r�1). For example, when t = 3 and r � 5 we must have

x

a+1

+� � �+x

a+8

� 4 for 0 � a � n�8, beause F

3

(5) = 9. These additional subinterval

onstraints blend beautifully with those of exerise 30, beause x

a+1

+ � � � + x

a+p

� q

for 0 � a � n � p implies �s

k

b+p�q

_ s

k�q

b

for 0 � b � n+ 1� p+ q � r and q < k � r.

We an also take advantage of left-right symmetry by appending the unit lause

�s

dr=2e

d(n�r)=2e

when r is odd; s

r=2

n=2�r=2+1

when n and r are both even.

Suitable benhmark examples arise when omputing, say, F

3

(27) or F

4

(36). But for

large ases, general SAT-based methods do not seem to ompete with the best speial-

purpose baktrak routines. For example, Gavin Theobald and Rodolfo Niborski have

obtained the value F

3

(41) = 194, whih seems well beyond the reah of these ideas.

[See P. Erd�os and P. Tur�an, J. London Math. So. (2) 11 (1936), 261{264; errata,

34 (1959), 480; S. S. Wagsta�, Jr., Math. Comp. 26 (1972), 767{771.℄

32. Use (15) and (16), and optionally (17), but omit variable v

j

unless j 2 L(v).

33. To double-olor a graph with k olors, hange (15) to the set of k lauses v

1

� � �

v

j�1

_ v

j+1

_ v

k

, for 1 � j � k; similarly,

�

k

2

�

lauses of length k � 2 will yield a triple

oloring. Small examples reveal that C

2l+1

for l � 2 an be double-olored with �ve

olors: f1; 2g(f3; 4gf5; 1g)

l�1

f2; 3gf4; 5g; furthermore, seven olors suÆe for triple

oloring when l � 3: f1; 2; 3g(f4; 5; 6gf7; 1; 2g)

l�2

f3; 4; 5gf6; 7; 1gf2; 3; 4gf5; 6; 7g. The

following exerise proves that those olorings are in fat optimum.

34. (a) We an obviously �nd a q-tuple oloring with q�(G) olors. And MGregor's

graph has a four-lique, hene �

�

(G) � 4.

(b) Any q-tuple oloring with p olors yields a solution to the frational exat over

problem, if we let �

j

=

P

p

i=1

[S

j

is the set of verties olored i℄=q. Conversely, the

theory of linear equalities tells us that there is always an optimum solution with rational

f�

1

; : : : ; �

N

g; suh a solution yields a q-tuple oloring when eah q�

j

is an integer.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 191

Johnson

Lov�asz

Hilton

Rado

Sott

wheel

degree

WalkSAT

symmetry

() �

�

(C

n

) = �(C

n

) = 2 when n is even; and �

�

(C

2l+1

) � 2 + 1=l = n=�(C

2l+1

),

beause there's an l-tuple oloring with n olors as in the previous exerise. Also

�

�

(G) � n=�(G) in general: n =

P

v

P

j

�

j

[v 2S

j

℄ =

P

j

�

j

jS

j

j � �(G)

P

j

�

j

.

(d) For the hint, let S = fv

1

; : : : ; v

l

g where verties are sorted by their olors.

Sine vertex v

j

belongs to C

i

with jC

i

j � jfv

j

; : : : ; v

l

gj, we have t

v

j

� 1=(l + 1� j).

So �(G) � k =

P

v

t

v

=

P

v

t

v

P

j

�

j

[v 2S

j

℄ =

P

j

�

j

P

v

t

v

[v 2S

j

℄ �

P

j

�

j

H

�(G)

.

[See David S. Johnson, J. Computer and System Si. 9 (1974), 264{269; L. Lov�asz,

Disrete Math. 13 (1975), 383{390. The onept of frational overing is due to A. J. W.

Hilton, R. Rado, and S. H. Sott, Bull. London Math. So. 5 (1973), 302{306.℄

35. (a) The double oloring below proves that �

�

(G) � 7=2; and it is optimum beause

NV and its neighbors indue the wheel W

6

. (Notie that �

�

(W

n

) = 1 + �

�

(C

n�1

).)

(b) By part () of the previous exerise, �

�

(G) � 25=4. Furthermore there is a

quadruple oloring with 25 olors:

AEUY ABUV BCVW CDWX DEXY

AEFJ ABFG BCGH CDHI DEIJ

FJKO FGKL GHLM HIMN IJNO

KOPT KLPQ LMQR MNRS NOST

PTUY PQUV QRVW RSWX STXY

45

46

35 47

26 16

67

26

25

17

36 23 5717

47 14

26

13

13

451223

15

56

12

23

17

27

35

47

12

45

57

36

23

45 47 13

26

46

23

15

24

36

67

12

25

46

57

[Is C

5

�C

5

the smallest graph for whih �

�

(G) < �(G)� 1?℄

36. A few more binary olor onstraints analogous to (16) yield the orresponding SAT

problem. We an also assume that the upper right orner is olored 0, beause that

region touhes n + 4 = 14 others; at least n + 6 olors are needed. The onstraints

elsewhere aren't very tight (see exerise 38(b)); thus we readily obtain an optimum

radio oloring with n + 6 olors for the MGregor graphs of all orders n > 4, suh as

the one below. An (n + 7)th olor is neessary and suÆient when n = 3 or 4.

f 3 8 4 9 d b 6

e

2

d

a e

1 f 5 8 4

6

5 b 3 1 f 7

1 7 0 8 d 9 0

d 3 f 4 2

8 1 6 0 f

9 d 7

0 4

a

8 2

d

1 9

3 5 0

7 b 8

e

2 4 d 3 9

5

e

6 f 5 1

9 7 0

a

2 d

a

4 b 3 5

e

4 6

e

0 8

e

1 9 0 f 2 5

9 5 2

a

4 b 3 d

a

0

7

2

1

8 2

5 9

4

3

8

6

6 8 25

3 4

7

3

5

609

5

0

8

7

2

1

7

1

0

3

0

6

6

9 9 9

0

2

9

4

0

8

7

1

1

3

4

37. The 10-oloring shown here is optimum, beause Missouri (MO) has degree 8.

38. By looking at solutions for n = 10, say, whih an be obtained quikly via Algo-

rithm W (WalkSAT), it's easy to disover patterns that work in general: (a) Let (x; y)

have olor (2x + 4y) mod 7. (Seven olors are learly neessary when n � 3.) (b) Let

(x; y; z) have olor (2x+ 6y) mod 9. (Nine olors are learly neessary when n � 4.)

39. Let f(n) denote the fewest onseutive olors. SAT solvers readily verify that

f(n) = (1; 3; 5; 7; 8; 9) for n = (0; 1; 2; 3; 4; 5). Furthermore we an exploit symmetry to

show that f(6) > 10: One an assume that 000000 is olored 0, and that the olors of

000001, : : : , 100000 are inreasing; that leaves only three possibilities for eah of the

September 23, 2015

192 ANSWERS TO EXERCISES 7.2.2.2

Griggs

Yeh

Whittlesey

Georges

Mauro

arries

full adders

half adder

Tseytin enoding, half

Knuth

Symmetry was broken

fatorization

unit lause

SAT solvers

number theory

Simmons

Shoen�eld

latter. Finally, we an verify that f(6) = 11 by �nding a solution that uses only the

olors f0; 1; 3; 4; 6; 7; 9; 10g.

But f(7) is known only to be � 11 and � 15.

[L(2; 1) labelings were named by J. R. Griggs and R. K. Yeh, who initiated the

theory in SIAM J. Disrete Math. 5 (1992), 586{595. The best known upper bounds,

inluding the fat that f(2

k

� k � 1) � 2

k

, were obtained by M. A. Whittlesey, J. P.

Georges, and D. W. Mauro, who also solved exerise 38(a); see SIAM J. Disrete Math.

8 (1995), 499{506.℄

40. No; the satis�able ases are z = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 21. [The

statement would have been true if we'd also required (x

m

_ � � � _x

2

) ^ (y

n

_ � � � _y

2

).℄

41. First there are mn ANDs to form x

i

y

j

. A bin that ontains t bits initially will

generate bt=2 arries for the next bin, using (t� 1)=2 adders. (For example, t = 6 will

invoke 2 full adders and one half adder.) The respetive values of t for bin [2℄, bin [3℄,

: : : , bin [m+ n + 1℄ are (1, 2, 4, 6, : : : , 2m� 2, 2m� 1, : : : , 2m� 1, 2m� 2, 2m� 3,

: : : , 5, 3, 1), with n �m ourrenes of 2m� 1. That makes a total mn�m� n full

adders and m half adders; altogether we get mn + 2(mn �m � n) +m instanes of

AND, mn�m� n instanes of OR, and 2(mn�m� n) +m instanes of XOR.

42. Ternary XOR requires quaternary lauses, but ternary lauses suÆe for median:

(t _ u _ v _ �x)

(t _ �u _ �v _ �x)

(

�

t _ u _ �v _ �x)

(

�

t _ �u _ v _ �x)

(t _ u _ �v _ x)

(t _ �u _ v _ x)

(

�

t _ u _ v _ x)

(

�

t _ �u _ �v _ x)

(t _ u _ �y)

(t _ v _ �y)

(u _ v _ �y)

(

�

t _ �u _ y)

(

�

t _ �v _ y)

(�u _ �v _ y)

These lauses speify respetively that x � t�u�v, x � t�u�v, y � htuvi, y � htuvi.

43. x = y = 3 works when n = 2, but the ases 3 � n � 7 are unsatis�able. We an

use x = 3(2

n�2

+ 1), y = 7(2

n�3

+ 1) for all n � 8. (Suh solutions seem to be quite

rare. Another is x = 3227518467, y = 3758194695 when n = 32.)

44. First sout the territory quikly by looking at all

�

N+1

2

�

� 660 billion ases with at

most six zeros in x or y; here N =

�

32

26

�

+

�

32

27

�

+ � � �+

�

32

32

�

. This unovers the remarkable

pair x = 2

32

�2

26

�2

22

�2

11

�2

8

�2

4

�1, y = 2

32

�2

11

+2

8

�2

4

+1, whose produt is

2

64

� 2

58

� 2

54

� 2

44

� 2

33

� 2

8

� 1. Now a SAT solver �nishes the job by showing that

the lauses for 32�32 bit multipliation are unsatis�able in the presene of the further

onstraint �x

1

+ � � �+ �x

32

+ �y

1

+ � � �+ �y

32

+ �z

1

+ � � �+ �z

64

� 15. (The LIFO version of the

lauses worked muh faster than FIFO in the author's experiments with Algorithm L.

Symmetry was broken by separate runs with x

k

: : : x

1

= 01

k�1

, y

k

: : : y

1

= 1

k

.)

45. Use the lauses for xy = z in the fatorization problem, withm = bt=2, n = dt=2e,

and x

j

= y

j

for 1 � j � m; append the unit lause (�y

n

) if m < n.

46. The two largest, 285000288617375

2

and 301429589329949

2

, have 97 bits; the next

square binary palindrome, 1178448744881657

2

, has 101. [This problem is not easy for

SAT solvers; number theory does muh better. Indeed, there's a nie way to �nd all

n-bit examples by onsidering approximately 2

n=3

ases, beause the rightmost n=3

bits of an n=2-bit number x fore the other n=6 bits, if x

2

is palindromi. The �rst

eight square binary palindromes were found by G. J. Simmons, J. Rereational Math.

5 (1972), 11{19; all 31 solutions up to 2

95

were found by J. Shoen�eld in 2009.℄

47. Eah wire has a \top" and a \bottom." There are n + g + 2h tops of wires, and

m+2g+h bottoms of wires. Hene the total number of wires is n+g+2h = m+2g+h,

and we must have n+ h = m+ g.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 193

CNF

minimum overs

BDD

ardinality onstraints

tarnished wires

Knuth

arries

pi, as soure

e, as soure

magi

48. The wires ompute q

1

 q, q

2

 q, x p � q

1

, y q

2

� r, z x � y. Let p

denote \p stuk at 1" while �p denotes \p stuk at 0". The pattern pqr = 000 detets

p, q

1

, q

2

, r, x, y, z; 001 detets p, q

1

, q

2

, �r, x, �y, �z; 010 detets p, �q

1

, �q

2

, r, �x, �y, z; 011

detets p, �q

1

, �q

2

, �r, �x, y, �z; 100 detets �p, q

1

, q

2

, r, �x, y, �z; 101 detets �p, q

1

, q

2

, �r, �x,

�y, z; 110 detets �p, �q

1

, �q

2

, r, x, �y, �z; 111 detets �p, �q

1

, �q

2

, �r, x, y, z. Notie that the

stuk-at faults for q aren't detetable (beause z = (p� q) � (q � r) = p� r); but we

an detet faults on its lones q

1

, q

2

. (In Fig. 34 the opposite happens.)

Three patterns suh as f100; 010; 001g suÆe for all of the detetable faults.

49. One �nds, for example, that the faults b

2

3

, �

2

1

, �s

2

, and �q are deteted only by the

pattern y

3

y

2

y

1

x

2

x

1

= 01111; �a

2

2

, �a

2

3

,

�

b

2

3

, �p, �

2

2

, �z

5

are deteted only by 11011 or 11111.

All overing sets an be found by setting up a CNF with 99 positive lauses, one

for eah detetable fault; for example, the lause for �z

5

is x

27

_ x

31

, while the lause

for x

2

2

is x

4

_ x

5

_ x

12

_ x

13

_ x

20

_ x

21

_ x

28

_ x

29

. We an �nd minimum overs from

a BDD for these lauses, or by using a SAT solver with additional lauses suh as (20)

and (21) to limit the number of positive literals. Exatly fourteen sets of �ve patterns

suÆe, the most memorable being f01111; 10111; 11011; 11101; 11110g. (Indeed, every

minimum set inludes at least three of these �ve patterns.)

50. Primed variables for tarnished wires are x

0

2

, b

0

2

, b

0

3

, s

0

, p

0

, q

0

, z

0

3

,

0

2

, z

0

4

, z

0

5

. Those

wires also have sharped variables x

℄

2

, b

℄

2

, : : : , z

℄

5

; and we need sharped variables x

1℄

2

, x

3℄

2

,

x

4℄

2

, b

1℄

2

, b

2℄

2

, b

1℄

3

, b

2℄

3

, s

1℄

, s

2℄

,

1℄

2

,

2℄

2

for fanout wires. The primed variables are de�ned

by lauses suh as (�p

0

_a

3

)^ (�p

0

_ b

0

2

)^ (p

0

_ �a

3

_

�

b

0

2

), whih orresponds to p

0

 a

3

^ b

0

2

.

Those lauses are appended to the 49 lauses listed after (23) in the text. Then there

are two lauses (25) for nine of the ten primed-and-sharped variables; however, in the

ase of x

2

we use the unit lauses (x

0

2

) ^ (�x

2

) instead, beause the variable x

℄

2

doesn't

exist. There are �ve fanout lauses (26), namely (�x

1℄

2

_x

3℄

2

_x

4℄

2

)^ (

�

b

℄

2

_ b

1℄

2

_ b

2℄

2

)^� � �^

(�

℄

2

_

1℄

2

_

2℄

2

). There are eleven lauses (�x

3℄

2

_b

℄

2

)^(�x

4℄

2

_b

℄

3

)^(

�

b

1℄

2

_s

℄

)^� � �^(

�

b

2℄

3

_z

℄

5

)^

(�

2℄

2

_ z

℄

5

) for tarnished inputs to gates. And �nally there's (x

1℄

2

) ^ (z

℄

3

_ z

℄

4

_ z

5

).

51. (The omplete set of 196 patterns found by the author in 2013 inluded the inputs

(x; y) = (2

32

� 1; 2

31

+ 1) and (d2

63=2

e; d2

63=2

e) as well as the two number-theoreti

patterns mentioned in the text. Long runs of arries are needed in the produts.)

52. (z

1;2

_z

2;2

_ � � � _z

M;2

) ^ (�z

i;2

_ �q

i;1

) ^ (�z

i;2

_ �p

i;2

) ^ (�z

i;2

_ �q

i;3

) ^ (�z

i;2

_ �p

i;4

) ^ � � � ^

(�z

i;2

_ �q

i;20

), for 1 � i �M . The seond subsript of z is k in the kth ase, 1 � k � P .

53. On the left is the binary expansion of �, and on the right is the binary expansion

of e, 20 bits at a time (see Appendix A).

One way to de�ne f(x) for all 20-bit x is to write �=4 =

P

1

k=1

u

k

=2

20k

and

e=4 =

P

1

l=1

v

l

=2

20l

, where eah u

k

and v

l

is a 20-bit number. Let k and l be smallest

suh that x = u

k

and x = v

l

. Then f(x) = [k� l℄.

Equation (27) has atually been ontrived to sustain an illusion of magi: Many

simple Boolean funtions are onsistent with the data in Table 2, even if we require four-

term DNFs of three literals eah. But only two of them, like (27), have the additional

property that they atually agree with the de�nition of f(x) in the previous paragraph

for ten more ases, using u

k

up to k = 22 and v

l

up to l = 20! One might almost begin

to suspet that a SAT solver has disovered a deep new onnetion between � and e.

54. (a) The funtion �x

1

x

9

x

11

�x

18

_ �x

6

�x

10

�x

12

_ �x

4

x

10

�x

12

mathes all 16 rows of Table 2;

but adding the 17th row makes a 3-term DNF impossible.

(b) 21 rows are impossible, but (27) satis�es 20 rows.

September 23, 2015

194 ANSWERS TO EXERCISES 7.2.2.2

ardinality onstr

overing problem

BDD

generating funtion

don't-ares

evaluation of Boolean funtions

truth tables

() �x

1

�x

5

�x

12

x

17

_ �x

4

x

8

�x

13

�x

15

_ �x

6

�x

9

�x

12

x

16

_ �x

6

�x

13

�x

16

x

20

_x

13

x

14

�x

16

does 28, whih

is max. (Inidentally, this problem makes no sense for suÆiently large M , beause the

equation f(x) = 1 probably does not have exatly 2

19

solutions.)

55. Using (28){(31) with p

i;j

= 0 for all i and j, and also introduing lauses like (20)

and (21) to ensure that q

i;1

+ � � �+ q

i;20

� 3, leads to solutions suh as

f(x

1

; : : : ; x

20

) = �x

1

�x

7

�x

8

_ �x

2

�x

3

�x

4

_ �x

4

�x

13

�x

14

_ �x

6

�x

10

�x

12

:

(There are no monotone inreasing solutions with � 4 terms of any length.)

56. We an de�ne f onsistently from only a subset of the variables if and only if no

entry on the left agrees with any entry on the right, when restrited to those oordinate

positions. For example, the �rst 10 oordinates do not suÆe, beause the top entry on

the left begins with the same 10 bits as the 14th entry on the right. The �rst 11 oordi-

nates do suÆe (although two entries on the right atually agree in their �rst 12 bits).

Let the vetors on the left be u

k

and v

l

as in answer 53, and form the 256 � 20

matrix whose rows are u

k

� v

l

for 1 � k; l � 16. We an solve the stated problem if

and only if we an �nd �ve olumns for whih that matrix isn't 00000 in any row. This

is the lassial overing problem (but with rows and olumns interhanged): We want

to �nd �ve olumns that over every row.

In general, suh an m � n overing problem orresponds to an instane of SAT

with m lauses and n variables x

j

, where x

j

means \selet olumn j." The lause for

a partiular row is the OR of the x

j

for eah olumn j in whih that row ontains 1.

For example, in Table 2 we have u

1

� v

1

= 01100100111101111000, so the �rst lause

is x

2

_ x

3

_ x

6

_ � � � _ x

17

. To over with at most �ve olumns, we add suitable lauses

aording to (20) and (21); this gives 396 lauses of total length 2894, in 75 variables.

(Of ourse

�

20

5

�

is only 15504; we don't need a SAT solver for this simple task!

Yet Algorithm D needs only 578 kilomems, and Algorithm C �nds an answer in 353 K�.)

There are 12 solutions: We an restrit to oordinates x

j

for j in f1; 4; 15; 17; 20g,

f1; 10; 15; 17; 20g, f1; 15; 17; 18; 20g, f4; 6; 7; 10; 12g, f4; 6; 9; 10; 12g, f4; 6; 10; 12; 19g,

f4; 10; 12; 15; 19g, f5; 7; 11; 12; 15g, f6; 7; 8; 10; 12g, f6; 8; 9; 10; 12g, f7; 10; 12; 15; 20g, or

f8; 15; 17; 18; 20g. (Inidentally, BDD methods show that the number of solutions to the

overing problem has the generating funtion 12z

5

+994z

6

+13503z

7

+ � � �+20z

19

+z

20

,

ounting by the size of the overing set.)

57. Table 2 spei�es a partially de�ned funtion of 20 Boolean variables, having 2

20

�32

\don't-ares." Exerise 56 shows how to embed it in a partially de�ned funtion of only

5 Boolean variables, in twelve di�erent ways. So we have twelve di�erent truth tables:

11110110 0�1�010� 10000111 10�0�1�0

011�011� 1�110100 10�001�1 1000��10

011�1�11 010�100� 10�0�000 �101�011

10101110 0�100�1� 1�001�00 1��00���

10101110 0�1�0�10 1�0�1�00 0��01���

1�01110� 00��110� 11��0�00 10�����0

00100101 11110�0� 1011���� ��0��00�

100�1��0 11�00010 1100��0� �0��0101

��1�1000 1�101100 1�100�10 0�����1�

1�1�1�10 10001100 0�101�1� ��1�0�10

1�01�00� 1101�0�0 0011�11� 1�100�0�

001�1001 �1��1�1� 11�0�010 01011001

And the tenth of these yields f(x) = ((x

8

� (x

9

_ x

10

)) _ ((x

6

_ x

12

)� �x

10

))� x

12

.

58. These lauses are satis�able whenever the other lauses are satis�able (exept in

the trivial ase when f(x) = 0 for all x), beause we don't need to inlude both x

j

and

�x

j

in the same term. Furthermore they redue the spae of possibilities by a fator of

(3=4)

N

. So they seem worthwhile. (On the other hand, their e�et on the running time

appears to be negligible, at least with respet to Algorithm C in small-sale trials.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 195

DNF

Tseytin enoding

author

Tseytin enoding

sideways sum

59. f(x)�

^

f(x) = x

2

�x

3

�x

6

�x

10

�x

12

(�x

8

_x

8

(x

13

_x

15

)) is a funtion of eight variables that

has 7 solutions. Thus the probability is 7=256 = :02734375.

60. A typial example with 32 given values of f(x), hosen randomly, yielded

^

f(x

1

; : : : ; x

20

) = x

4

�x

7

�x

12

_ �x

6

x

8

�x

11

x

14

x

20

_ �x

9

�x

12

x

18

�x

19

_ �x

13

�x

16

�x

17

x

19

;

whih of ourse is way o�; it di�ers from f(x) with probability 102752=2

18

� :39. With

64 training values, however,

^

f(x

1

; : : : ; x

20

) = x

2

�x

13

�x

15

x

19

_ �x

3

�x

9

�x

19

�x

20

_ �x

6

�x

10

�x

12

_ �x

8

x

10

�x

12

omes loser, disagreeing only with probability 404=2

11

� :197.

61. We an add 24 lauses (p

a;1

_ q

a;1

_ p

a;2

_ �q

a;2

_ p

a;3

_ �q

a;3

_ � � � _ p

b;1

_ q

b;1

_ � � � _

p

;1

_q

;1

_� � �_p

d;1

_q

d;1

� � � �p

d;10

_q

d;10

_� � �_p

d;20

_q

d;20

), one for eah permutation

abd of f1; 2; 3; 4g; the resulting lauses are satis�able only by other funtions f(x).

But the situation is more ompliated in larger examples, beause a funtion an

have many equivalent representations as a short DNF. A general sheme, to deide

whether the funtion desribed by a partiular setting p

0

i;j

and q

0

i;j

of the ps and qs is

unique, would be to add more ompliated lauses, whih state that p

i;j

and q

i;j

give

a di�erent solution. Those lauses an be generated by the Tseytin enoding of

M

_

i=1

N

^

j=1

((�p

i;j

^�x

j

) _ (�q

i;j

^x

j

)) �

M

_

i=1

N

^

j=1

((�p

0

i;j

^�x

j

) _ (�q

0

i;j

^x

j

)):

62. Preliminary experiments by the author, with N = 20 and p = 1=8, seem to

indiate that more data points are needed to get onvergene by this method, but the

SAT solver tends to run about 10 times faster. Thus, loally biased data points appear

to be preferable unless the ost of observing the hidden funtion is relatively large.

Inidentally, the hane that x

(k)

= x

(k�1)

was relatively high in these experiments

((7=8)

20

� :069); so ases with y

(k)

= 0 were bypassed.

63. With Tseytin enoding (24), it's easy to onstrut 6r+2n�1 lauses in 2r+2n�1

variables that are satis�able if and only if � fails to sort the binary sequene x

1

: : : x

n

.

For example, the lauses when � = [1:2℄[3 :4℄[1 :3℄[2 :4℄[2 :3℄ are (x

1

_

�

l

1

) ^ (x

2

_

�

l

1

) ^

(�x

1

_�x

2

_l

1

)^ (�x

1

_h

1

)^ (�x

2

_h

1

)^ (x

1

_x

2

_

�

h

1

)^ � � �^ (l

4

_

�

l

5

)^ (h

3

_

�

l

5

)^ (

�

l

4

_

�

h

3

_l

5

)^

(

�

l

4

_h

5

)^ (

�

h

3

_h

5

)^ (l

4

_h

3

_

�

h

5

)^ (g

1

_g

2

_g

3

)^ (�g

1

_l

3

)^ (�g

1

_

�

l

5

)^ (�g

2

_l

5

)^ (�g

2

_

�

h

5

)^

(�g

3

_h

5

) ^ (�g

3

_

�

h

4

). They're unsatis�able, so � always sorts properly.

64. Here we reverse the poliy of the previous answer, and onstrut lauses that are

satis�able when they desribe a sorting network: Let the variable C

t

i;j

stand for the

existene of omparator [i :j℄ at time t, for 1 � i < j � n and 1 � t � T . Also, adapting

(20) and (21), let variables B

t

j;k

be de�ned for 1 � j � n�2 and 1 � k � n, with lauses

(B

t

2j;k

_B

t

2j+1;k

) ^ (B

t

2j;k

_B

t

j;k

) ^ (B

t

2j+1;k

_B

t

j;k

) ^ (B

t

2j;k

_B

t

2j+1;k

_B

t

j;k

); (�)

in this formula we substitute fC

t

1;k

; : : : ; C

t

k�1;k

; C

t

k;k+1

; : : : ; C

t

k;n

g for the n � 1 \leaf

nodes" fB

t

n�1;k

; : : : ; B

t

2n�3;k

g. These lauses prohibit omparators from lashing at

time t, and they make B

t

1;k

false if and only if line k remains unused.

If x = x

1

: : : x

n

is any binary vetor, let y

1

: : : y

n

be the result of sorting x (so that

(y

1

: : : y

n

)

2

= 2

�x

�1). The following lauses F (x) enode the fat that omparators C

t

i;j

transform x 7! y: (C

t

i;j

_V

t

x;i

_V

t�1

x;i

) ^ (C

t

i;j

_V

t

x;i

_V

t�1

x;j

) ^ (C

t

i;j

_V

t

x;i

_V

t�1

x;i

_V

t�1

x;j

) ^

(C

t

i;j

_V

t

x;j

_V

t�1

x;i

_V

t�1

x;j

)^(C

t

i;j

_V

t

x;j

_V

t�1

x;i

)^(C

t

i;j

_V

t

x;j

_V

t�1

x;j

)^(B

t

1;i

_V

t

x;i

_V

t�1

x;i

)^

September 23, 2015

196 ANSWERS TO EXERCISES 7.2.2.2

Bundala

Z�avodn�y

Ehlers

M�uller

CNF

ardinality onstraints

elegant

(B

t

1;i

_V

t

x;i

_V

t�1

x;i

), for 1 � i < j � n and 1 � t � T ; here we substitute x

j

for V

0

x;j

and

also substitute y

j

for V

T

x;j

, thereby simplifying the boundary onditions.

Furthermore, we an remove all variables V

t

x;i

when x has i leading 0s and V

t

x;j

when x has j trailing 1s, replaing them by 0 and 1 respetively and simplifying further.

Finally, given any sequene � = [i

1

:j

1

℄ : : : [i

r

:j

r

℄ of initial omparators, T further

parallel stages will yield a sorting network if and only if the lauses (�), together with

V

x

F (x) over all x produible by �, are simultaneously satis�able.

Setting n = 9, � = [1:6℄[2 :7℄[3 :8℄[4 :9℄, and T = 5, we obtain 85768 lauses

in 5175 variables, if we leave out the ten vetors x that are already sorted. Al-

gorithm C �nds them unsatis�able after spending

roughly 200 megamems; therefore

^

T (9) > 6. (Algo-

rithm L fails spetaularly on these lauses, how-

ever.) Setting T 6 quikly yields

^

T (9) � 7.

D. Bundala and J. Z�avodn�y [LNCS 8370 (2014),

236{247℄ used this approah to prove in fat that

^

T (11) = 8 and

^

T (13) = 9. Then T. Ehlers and

M. M�uller extended it [arXiv:1410.2736 [s.DS℄

(2014), 10 pages℄, to prove that

^

T (17) = 10, with

the surprising optimum network shown here.

65. (a) The goal is to express the transition equation in CNF. There are

�

8

4

�

lauses like

(�x

0

_ �x

a

_ �x

b

_ �x

_ �x

d

), one for eah hoie of four neighbors fa; b; ; dg � fNW;N; :::; SEg.

Also

�

8

7

�

lauses like (�x

0

_ x

a

_ � � � _ x

g

), one for eah hoie of seven. Also

�

8

6

�

like

(�x

0

_x_x

a

_� � �_x

f

), for eah hoie of six. Also

�

8

3

�

like (x

0

_�x

a

_�x

b

_�x

_x

d

_� � �_x

h

),

omplementing just three. And �nally

�

8

2

�

like (x

0

_ �x _ �x

a

_ �x

b

_ x

_ � � � _ x

g

),

omplementing just two and omitting any one of the others. Altogether 70 + 8 + 28 +

56+28 = 190 lauses of average length (70 � 5+8 � 8+28 � 8+56 � 9+28 � 9)=190 � 7:34.

(b) Here we let x = x

ij

, x

NW

= x

(i�1)(j�1)

, : : : , x

SE

= x

(i+1)(j+1)

, x

0

= x

0

ij

. There

are seven lasses of auxiliary variables a

ij

k

, : : : , g

ij

k

, eah of whih has two hildren;

the meaning is that the sum of the desendants is � k. We have k 2 f2; 3; 4g for the

a variables, k 2 f1; 2; 3; 4g for the b and variables, and k 2 f1; 2g for d, e, f, g.

The hildren of a

ij

are b

(ij1)j

and

ij

. The hildren of b

ij

are d

i(j�(j&2))

and

e

i(j+(j&2))

. The hildren of

ij

are f

i

0

j

0

and g

ij

, where i

0

= i+2 and j

0

= (j�1) j 1 if i is

odd, otherwise i

0

= i and j

0

= j�(j&1). The hildren of d

ij

are x

(i�1)(j+1)

and x

i(j+1)

.

The hildren of e

ij

are x

(i�1)(j�1)

and x

i(j�1)

. The hildren of f

ij

are x

(i�1)j

and

x

(i�1)(j+1)

. Finally, the hildren of g

ij

are x

i

0

j

and x

i

00

j

00

, where i

0

= i+1�((i&1)�1);

and (i

00

; j

00

) = (i+1; j � 1) if i is odd, otherwise (i

00

; j

00

) = (i� 1; j � 1+ ((j&1)� 1)).

(OK|this isn't elegant. But hey, it works!)

If the hildren of p are q and r, the lauses that de�ne p

k

are (p

k

_ �q

k

0

_ �r

k

00

) for

k

0

+ k

00

= k and (�p

k

_ q

k

0

_ r

k

00

) for k

0

+ k

00

= k + 1. In these lauses we omit �q

0

or �r

0

;

we also omit q

m

or r

m

when q or r has fewer than m desendants.

For example, these rules de�ne d

35

1

and d

35

2

by the following six lauses:

(d

35

1

_ �x

26

); (d

35

1

_ �x

36

); (d

35

2

_ �x

26

_ �x

36

); (

�

d

35

1

_ x

26

_ x

36

); (

�

d

35

2

_ x

26

); (

�

d

35

2

_x

36

):

The variables b

ij

k

are de�ned only when i is odd; d

ij

k

and e

ij

k

only when i is odd and

j mod 4 < 2; f

ij

k

only when i+ j is even. Thus the total number of auxiliary variables

per ell (i; j), ignoring small orretions at boundary points, is 3+4=2+4+2=4+2=4+

2=2+2 = 13 of types a through g, not 19, beause of the sharing; and the total number

of lauses per ell to de�ne them is 21 + 16=2 + 16 + 6=4 + 6=4 + 6=2 + 6 = 57, not 77.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 197

BDD

author

stable

Shroeppel

Bukingham

Wainwright

automorphisms

Finally we de�ne x

0

ij

from a

ij

2

, a

ij

3

, a

ij

4

, by means of six lauses

(�x

0

ij

_�a

ij

4

); (�x

0

ij

_a

ij

2

); (�x

0

ij

_x

ij

_a

ij

3

); (x

0

ij

_a

ij

4

_�a

ij

3

); (x

0

ij

_�x

ij

_�y

ij

); (y

ij

_a

ij

4

_�a

ij

2

);

where y

ij

is another auxiliary variable (introdued only to avoid lauses of size 4).

66. All solutions to (a) an be haraterized by a BDD of 8852 nodes, from whih we

an obtain the generating funtion 38z

28

+550z

29

+ � � �+150z

41

that enumerates them

(with a total omputation time of only 150 megamems or so). Part (b), however, is

best suited to SAT, and X

0

must have at least 38 live ells. Typial answers are

! :

67. Either or at lower left will produe the X

0

of (37) at time 1. But length 22

is impossible: With r = 4 we an verify that all the live ells in X

4

lie in some 3 � 3

subarray. Then with r = 22 we need to rule out only (

�

9

3

�

+

�

9

4

�

+

�

9

5

�

) � 6 = 2016

possibilities, one for eah viable X

4

within eah essentially di�erent 3� 3 subarray.

68. The author believes that r = 12 is impossible, but his SAT solvers have not yet

been able to verify this onjeture. Certainly r = 11 is ahievable, beause we an

ontinue with the text's �fth example after prepending

! ! ! :

69. Sine only 8548 essentially di�erent 4� 4 bitmaps are possible (see Setion 7.2.3),

an exhaustive enumeration is no sweat. The small stable patterns arise frequently, so

they've all been named:

(a) blok tub boat ship snake

bee-

hive arrier barge loaf eater

long

boat

long

ship pond

(b) blinker lok toad beaon

$ $ $ $

(A glider is also onsidered to be stable, although it's not an osillator.)

70. (a) A ell with three live neighbors in the stator will stay alive.

(b) A 4� n board doesn't work; Fig. A{6 shows the 5� 8 examples.

() Again, the smallest-weight solutions with smallest retangles are shown in

Fig. A{6. Osillators with these rotors are plentiful on larger boards; the �rst examples

of eah kind were found respetively by Rihard Shroeppel (1970), David Bukingham

(1972), Robert Wainwright (1985).

71. Let the variables X

t

= x

ijt

haraterize the on�guration at time t, and suppose

we require X

r

= X

0

. There are q = 8r automorphisms � that take X

t

7! X

(t+p) mod r

� ,

where 0 � p < r and � is one of the eight symmetries of a square grid.

Any global permutation of the N = n

2

r variables leads via Theorem E to a

anonial form, where we require the solution to be lexiographially less than or equal

to the q � 1 solutions that are equivalent to it under automorphisms.

Suh lexiographi tests an be enfored by introduing (q�1)(3N�2) new lauses

of length � 3, as in (169)|and often greatly simpli�ed using Corollary E.

These additional lauses an signi�antly speed up a proof of unsatis�ability. On

the other hand they an also slow down the searh, if a problem has abundant solutions.

September 23, 2015

198 ANSWERS TO EXERCISES 7.2.2.2

Wainwright

Flammenkamp

eightfold symmetry

enoding

Gosper

phoenix

quilt patterns

In pratie it's usually better to insist only on solutions that are partially anonial,

by using only some of the automorphisms and by requiring lexiographi order only on

some of the variables.

72. (a) The two 7� 7s, shown in Fig. A{6, were found by R. Wainwright (trie tongs,

1972) and A. Flammenkamp (jam, 1988).

Omega

Van de

Graa� J3 genie opter

trie

tongs jam spinners in�nity

Fig. A{6. Noteworthy minimal osillators of periods 2 and 3.

(b) Here the smallest examples are 9�13 and 10�15; the former has four L-rotors

surrounding long stable lines. Readers will also enjoy disovering 10 � 10 and 13 � 13

instanes that have full eightfold symmetry. (When enoding suh symmetrial prob-

lems by using exerise 65(b), we need only ompute the transitions between variables

x

tij

for 1 � i � dm=2e and 1 � j � dn=2e; every other variable is idential to one of

these. However, the auxiliary variables a

ij

, : : : , g

ij

shouldn't be oalesed in this way.)

(,d) Champion heavyweights have small rotors. What a ool four-way snake dane!

120=225 � :53 130=240 � :54 132=256 � :52 120=225 � :53 136=256 � :53

73. (a) They don't have three A neighbors; and they don't have three B neighbors.

(b) Two examples appear in Fig. A{7, where they are paked as snugly as possible

into a 12 � 15 box. This pattern, found by R. W. Gosper about 1971, is alled the

phoenix, sine its living ells repeatedly die and rise again. It is the smallest mobile

ipop; the same idea yields the next smallest (also seen in Fig. A{7), whih is 10�12.

() The nonblank one omes from a 1� 4 torus; the hekerboard from an 8� 8.

Here are some amazing m� n ways to satisfy the onstraints for small m and n:

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

A BA B

BA BA

AB AB

B AB A

A BA B

BA BA

AB AB

B AB A

A BA B

BA BA

AB AB

B AB A

BAB BAB

A AA A

B BB B

A AA A

BA BA

BAB BAB

A AA A

B BB B

A AA A

BA BA

AA AA

B BB B

A A A A

B B B B

AA AA

B B B B

AA AA

B BB B

A A A A

B B B B

AA AA

B B B B

AA AA

BB BB

AA AA

BB BB

AA AA

B BB B

AA AA

BB BB

AA AA

BB BB

AA AA

B BB B

ABA ABA

BAB BAB

A A

BB BB

AA AA

B B

ABA ABA

BAB BAB

A A

BB BB

AA AA

B B

B A B A

A AB BA AB B

B A B A

A B A B

B BA AB BA A

A B A B

B A B A

A AB BA AB B

B A B A

A B A B

B BA AB BA A

A B A B

BA AB BA AB

A B AA B A

B A BB A B

AB BA AB BA

B A BB A B

A B AA B A

BA AB BA AB

BA AB BA AB

A B AA B A

B A BB A B

AB BA AB BA

B A BB A B

A B AA B A

BA AB BA AB

A A B B A A B B

B B A A B B A A

B A A B B A A B

A B B A A B B A

B B A A B B A A

A A B B A A B B

A B B A A B B A

B A A B B A A B

A A B B A A B B

B B A A B B A A

B A A B B A A B

A B B A A B B A

B B A A B B A A

A A B B A A B B

A B B A A B B A

B A A B B A A B

B BABAB B BABAB

A BA A BA

B B

A A A A

AB B BABAB B BAB

A AB A AB

B B

A A A A

B BABAB B BABAB

A BA A BA

B B

A A A A

AB B BABAB B BAB

A AB A AB

B B

A A A A

AA A AA A

B B B B

A A A A A A

B B B B B B B B

A A A A A A

B B B B

A AA A AA

BB BB BB BB

AA A AA A

B B B B

A A A A A A

B B B B B B B B

A A A A A A

B B B B

A AA A AA

BB BB BB BB

BABA BABA

A B A B

BABA BABA

A B A B

BABA BABA

B A B A

BA BABA BA

B A B A

BABA BABA

A B A B

BABA BABA

A B A B

BABA BABA

B A B A

BA BABA BA

B A B A

AA BB

B B A A

AA BB

B B A A

AA BB

A B B A

B AA B

A B B A

BB AA

A A B B

BB AA

A A B B

BB AA

B A A B

A BB A

B A A B

AA AA

BB BB

AA AA

BB BB

A AA A

BB BB

A AA A

BB BB

AA AA

BB BB

AA AA

B BB B

AA AA

B BB B

B A B

ABAB BABA

BA AB

AB BA

BABA ABAB

A B A

B A B

ABAB BABA

BA AB

AB BA

BABA ABAB

A B A

Notie that in�nite one-dimensional examples are implied by several of these motifs;

the hekerboard, in fat, an be fabriated by plaing

A A

B B

A A

B B

diagonals together.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 199

AB

BA BA BABA

ABAB ABAB A B

BAB A B A BB AA

ABA BB AA BB AA BB

B AA AB BA BB AA AB AB BA A

AB AA B BABA ABAB A B BABA BAB BAB BAB

AB BABA BB ABA A B B A BABA A BABA AA A ABA

BABA ABA B A BAB BB AA AA BB AB BB AB BB BB B

ABA B BAB AA BABA AA BB BB AA AA A AA AA

BAB AA BB AB B A A B BA AB B BAB BA BB

A B B A ABABAB BABA ABAB BABA ABA AB BAB A

BB AA BAB AB B AB A AB AB B AA B BAB AA A B

AA B B ABA BABA A A B B BABA AA BB AA ABA BA BB BB AA

B AA BAB A B B B A A A B BB A BB BAB ABAB A AA BB

A B B ABA BA BB A A AB B B AA BA ABAB A AB AB B A

BB AA B ABAB AA BB B A AA BB ABA AB A AB BABABA A B

AA B B AA B ABA B AA A B BB A B BB B B BAB A B BB AA

B AA BB AA BAB ABA B B BA A A BAB AA AA A A A A BA BA AA BB

AB B A BB B A BABA A A B B BABA BB B B B B BB ABAB AB B A

BA A BA A AA BB B B A A A A A A AA AA B ABAB A A B

ABA BB AB B BB AA A BA B BAB B B BB B AA BA BB BB AA

BAB A ABAB AA A B BABABA BA A BA ABA BB A AA AA A BB

A B BA BB ABA A B A BABA AB A BB B B B BB A

BB AA A BAB BB AA BB A BB B AA A A A AA B

AA BB BABA AA BB AA BB AA AA B BB BB B AA

B A AB B A B AA B BB AB AA AA BB

ABAB ABAB ABAB BABA A BABA B B A

BA BA BA AB BABA BABA ABAB

AB AB BA

Fig. A{7. Mobile ipops: An ideal way to tile the oor of a workspae for hakers.

74. Call a ell tainted if it is A with more than one A neighbor or B with more than

one B neighbor. Consider the topmost row with a tainted ell, and the leftmost tainted

ell in that row. We an assume that this ell is an A, and that its neighbors are S, T,

U, V, W, X, Y, Z in the pattern

STU

VAW

XYZ

. Three of those eight neighbors are type B, and

at least four are type A; several ases need to be onsidered.

Case 1: W = X = Y = Z = A. Then we must have S = U = V = B and T = 0

(blank), beause S, T, U, V aren't tainted. The three left neighbors of V an't be

type A, sine V already has three A neighbors; nor an they be type B, sine V isn't

tainted. Hene the tainted X, whih must have two B neighbors in the three ells below

it, annot also have two or more A neighbors there.

Case 2: T = A or V = A. If, say, T = A then X = Y = Z = A, and neither V

nor W an be type B.

Case 3: S 6= A, U = A. Then W an't be type B, and S must be tainted.

Case 4: S = A, U 6= A. At least one of W, X, Y, Z is B; at least three are A; so

exatly three are A. The B an't be Y, whih has four A neighbors. Nor an it be W

or Z: That would fore V to be blank, hene T = U = B; onsequently W = A, Z = B.

Sine W is tainted, at least two of its right neighbors must be A, ontraditing Z = B.

Thus X = B in Case 4. Either T or V is also B, while the other is blank; say

T is blank. The three left neighbors of V annot be A. So they must either all be B

(tainting the ell left of S) or all blank. In the latter ase the upper neighbors of T must

be BBA in that order, sine T is blank. But that taints the B above T. A symmetri

argument applies if V is blank.

Case 5: S = U = A. Then W 6= A, and at least two of fX;Y;Zg are A. Now

Y = Z = A fores T = V = X = B and W blank, tarnishing V.

Similarly, X = Y = A fores T = W = Z = B and V blank; this ase is more

diÆult. The three lower neighbors of Y must be AAB, in that order, lest a B be

surrounded by four A's. But then the left neighbors of X are BBB; hene so are the

left neighbors of V, tarnishing the middle one.

Finally, therefore, Case 5 implies that X = Z = A. Either T, V, W, or Y is blank;

the other three are B. The blank an't be T, sine T's upper three neighbors an't

be A. It an't be W or Y, sine V and T aren't tainted. So T = W = Y = B and V is

blank. The left neighbors of S annot be A, beause S isn't tainted. So the ell left of X

must be A. Therefore X must have at least four A neighbors; but that's impossible,

beause Y already has three.

September 23, 2015

200 ANSWERS TO EXERCISES 7.2.2.2

Summers

torus

Rokiki

still life

symeater

bloks

arriers

Bukingham

Silver

pixels

glider's symmetry

Diagonally adjaent A's are rare. (In fat, they annot our in retangular grids

of size less than 16 � 18.) But diligent readers will be able to spot them in Fig. A{7,

whih exhibits an astonishing variety of di�erent motifs that are possible in large grids.

75. Let the ells alive at times p� 2, p� 1, p be of types X, Y, Z, and onsider the

topmost row in whih a live ell ever appears. Without loss of generality, the leftmost

ell in that row is type Z. The ell below that Z an't be of type Y, beause that Y

would have three X neighbors and four Y neighbors besides Z and the blank to its left.

Thus the piture must look like

ZYX

YXYX

, where the three predeessors of Z and the

topmost Y are �lled in. But there's no room for the three predeessors of the topmost X.

76. The smallest known example, a 28�33 pattern found

by Jason Summers in 2012, is illustrated here using the

letters fF;A;Bg, fB;C;Dg, fD;E;Fg for ells that are

alive when tmod 3 = 0, 1, 2. His ingenious onstrution

leads in partiular to an in�nite solution based on a 7�24

torus. An amazing in�nite 7 � 7 toroidal pattern also

exists, but little else is yet known.

A ACDDC

CDDCA A

CA ACDD

ACDDCA

DCA ACD

ACDDCA

DDCA AC

F F F F

DBD FE EF DBD DBD FE EF DBD

CB CDDDF FDDDC BC CB CDDDF FDDDC BC

DB FA AF BD DB FA AF BD DB FA AF BD DB FA AF BD

FDDDC BC CB CDDDF FDDDC BC CB CDDDF

EF DBD DBD FE EF DBD DBD FE

F F F F

F A F F A F

BDDEF DBD DBD FEDDB

FEDDC BC CB CDDEF

FA AF BD DB FA AF

C CDDDF FDDDC C

CF FE EF FC

FDF FDF

D D

DBE DBE

BB BB

DBE DBE

FC F FC F

B C BEDC B C BEDC

DFFAB AFEFAB DFFAB AFEFAB

BAFEFA BAFFD BAFEFA BAFFD

CDEB C B CDEB C B

F CF F CF

EBD EBD

BB BB

EBD EBD

D D

FDF FDF

CF FE EF FC

C CDDDF FDDDC C

FA AF BD DB FA AF

FEDDC BC CB CDDEF

BDDEF DBD DBD FEDDB

F A F F A F

77. If the �rst four ells in row 4 of X

0

(and of X

5

) ontain a, b, , d, we need a+b 6= 1,

a+ b+ 6= 1, b+ +d 6= 2. In lause form this beomes �a_ b, a_

�

b, b_ �, �_d,

�

b_ _

�

d.

Similarly, let the last four elements of olumn 5 be (f; g; h; i); then we want f +

g+h 6= 2, g+h+ i 6= 2, h+ i 6= 2. These onditions simplify to

�

f _ �g,

�

f _

�

h, �g_�{,

�

h_�{.

78. The \9

2

phage" in Fig. A{8 is a minimal example.

79. (Solution by T. G. Rokiki.) A tremendous battle ares up, raging wildly on all

fronts. When the dust �nally settles at time 1900, 11 gliders are esaping the sene

(1 going in the original NE diretion, 3 going NW, 5 going SW, and 2 going SE), leaving

behind 16 bloks, 1 tub, 2 loaves, 3 boats, 4 ships, 8 beehives, 1 pond, 15 blinkers, and

1 toad. (One should really wath this with a suitable applet.)

80. Paydirt is hit on 10 � 10 and 11 � 11 boards, with X

8

= X

9

; see Fig. A{8. The

minimal example, \symeater19," has a lose relative, \symeater20," whih onsists

simply of two bloks and two arriers, strategially plaed. (The �rst of these, also

alled \eater 2," was disovered by D. Bukingham in the early 1970s; the other by

S. Silver in 1998.) They both have the additional ability to eat the glider if it is moved

one or two ells to the right of the position shown, or one ell to the left.

It is important to realize that the diagonal trak of a glider does not pass through

the orners of pixels, biseting them; the axis of a glider's symmetry atually passes

through the midpoints of pixel edges, thereby utting o� small triangles whose area is

1/8 of a full pixel. Consequently, any eater that is symmetri about a diagonal will

eat gliders in two adjaent traks. The two in Fig. A{8 are exeptional beause they're

quadruply e�etive. Furthermore symeater20 will eat from the opposite diretion; and

either of its arriers an be swapped to another position next to the bloks.

81. Two eaters make \ssymeater14" (Fig. A{8); and \ssymeater22" is narrower.

82. (a) If X ! X

0

, then x

0

ij

= 1 only if we have

P

i+1

i

0

=i�1

P

j+1

j

0

=j�1

x

i

0

j

0

� 3.

(b) Use the same inequality, and indution on j.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 201

Conway

glider

spaeship

Coe

symmetrial

M�

K�

Gray ode

9

2

-phage

sym-

eater19

sym-

eater20

ssym-

eater14

ssym-

eater22

Fig. A{8. Various examples of minimal still lifes that eat gliders and spaeships.

() (Proof of the hint by John Conway, 1970.) In the transitions

X =

?

? ?

? ? ?

!

?

? ?

? ? ?

? ? ? ?

!

?

? ?

? ?

? ? ? ?

? ? ? ? ?

= X

00

;

we must have in the enter of X

0

; hene we must have

?

at the lower left of X.

But then the enter of X

0

is .

83. Work with (2r + 1 � 2t) � (2r + 1 � 2t) grids x

tij

entered at ell (i

0

; j

0

), for

0 � t � r = f(i

0

; j

0

); and assume that x

tij

= 0 whenever f(i; j) > t. For example,

if (i

0

; j

0

) = (1; 2), only 14 of the x

3ij

an be alive, namely when (i; j) = (�2 : :�1; 2),

(�2 : : 0; 1), (�2 : : 1; 0), (�2 : : 2;�1). The ase (i

0

; j

0

) = (1; 2) leads to 5031 readily

satis�able lauses on 1316 variables, inluding the unit lause x

612

, when the state

transitions are enoded as in answer 65; all but 106 of those variables are auxiliary.

84. (a) Use a glider, positioned properly with its tip at (0; 0).

(b) Similarly, a spaeship reahes these ells in the minimum possible time.

() Consider patterns A

n

= and B

n

= of width 2n + 1, illustrated

here for n = 3. Then B

j

works when j mod 4 2 f1; 2g; A

j

and B

j�1

work when

j mod 4 2 f2; 3g; A

j�1

works when j mod 4 2 f0; 3g.

(d) The pattern assembles a suitable glider at time 3.

(e) A SAT solver found the pattern shown here, whih launhes an appro-

priate spaeship (plus some onstrution debris that vanishes at t = 5).

[It appears likely that f

�

(i; j) = f(i; j) for all i and j. But the best general

result at present, based on spae-�lling onstrutions suh as Tim Coe's \Max," is that

f

�

(i; j) = f(i; j) + O(1). There's no known way to prove even the speial ases that,

say, f

�

(j; 2j) = 6j or that f

�

(�j; 2j) = 3j for all j � 0.℄

85. (a) Let X be a 12 � 12 bitmap. We must show that the lauses T (X;X

0

) of

exerise 65, together with 92 unary lauses x

0

23

, �x

0

24

, x

0

25

, : : : from the given pattern, are

unsatis�able. (The pattern is symmetrial; but Life's rules often produe symmetrial

states from unsymmetrial ones.) Thus 2

144�8

di�erent oneivable predeessor states

need to be ruled out. Fortunately Algorithm C needs fewer than 100 M� to do that.

(b) Most states have thousands of predeessors (see the following exerise); so

Algorithm C an almost always �nd one in, say, 500 K�. Therefore one an prove, for

example, that no 6�6 Gardens of Eden exist, by rapidly �nding a predeessor for eah

of the 2

36

patterns. (Only about 2

36

=8 patterns atually need to be tried, by symmetry.)

Furthermore, if we run through those patterns in Gray ode order, hanging the polarity

of just one assumed unary lause �x

0

ij

at eah step, the mehanism of Algorithm C

goes even faster, beause it tends to �nd nearby solutions to nearby problems. Thus

thousands of patterns an be satis�ed per seond, and the task is feasible.

September 23, 2015

202 ANSWERS TO EXERCISES 7.2.2.2

90

Æ

-rotational symmetry

Hartman

Heule

Kwekkeboom

Noels

ellular automata

nononstrutively

Moore

BDD

transition lauses

initial state

Knuth

Dijkstra

enode

Suh an approah is out of the question for 10� 10 bitmaps, beause 2

100

� 2

36

.

But we an �nd all 10�10 Gardens of Eden for whih there is 90

Æ

-rotational symmetry,

by trying only about 2

25

=2 patterns, again using Gray ode. Aha: Eight suh patterns

have no predeessor, and four of them orrespond to the given orphan.

[See C. Hartman, M. J. H. Heule, K. Kwekkeboom, and A. Noels, Eletroni J.

Combinatoris 20, 3 (August 2013), #P16. The existene of Gardens of Eden with

respet to many kinds of ellular automata was �rst proved nononstrutively by E. F.

Moore, Pro. Symp. Applied Math. 14 (1962), 17{33.℄

86. The 80 ells outside the inner 8� 8 an be hosen in N = 11,984,516,506,952,898

ways. (A BDD of size 53464 proves this.) So the answer is N=2

100�64

� 174;398.

87. Instead of using subsripts t and t + 1, we an write the transition lauses for

X ! X

0

in the form (� _ A0 _ A0

0

), et. Let Alie's states be f�

1

; : : : ; �

p

g and let

Bob's be f�

1

; : : : ; �

q

g. The lauses (� _ ��

i

_ �

0

i

) and (� _

�

�

i

_ �

0

i

) say that your state

doesn't hange unless you are bumped. If state � orresponds to the ommand `Maybe

go to s', the lause (�_ ��_�

0

_ s

0

) de�nes the next possible states after bumping. The

analogous lause for `Critial, go to s' or `Set v b, go to s' is simply (� _ �� _ s

0

);

and the latter also generates the lause (�_ ��_ v

0

) if b = 1, (�_ ��_ �v

0

) if b = 0. The

ommand `If v go to s

1

, else to s

0

' generates (� _ �� _ �v _ s

0

1

) ^ (� _ �� _ v _ s

0

0

). And

for eah variable v, if the states whose ommands set v are �

i

1

, : : : , �

i

h

, the lauses

(� _ v _ �

i

1

_ � � � _ �

i

h

_ �v

0

) ^ (� _ �v _ �

i

1

_ � � � _ �

i

h

_ v

0

)

enode the fat that v isn't hanged by other ommands.

Bob's program generates similar lauses|but they use �, not �, and �, not �.

Inidentally, when other protools are onsidered in plae of (40), the initial

state X

0

analogous to (41) is onstruted by putting Alie and Bob into their smallest

possible states, and by setting all shared variables to 0.

88. For example, let all variables be false exept A0

0

, B0

0

, �

0

, A1

1

, B0

1

, A1

2

, B1

2

,

A1

3

, B2

3

, �

3

, A2

4

, B2

4

, �

4

, A3

5

, B2

5

, l

5

, A3

6

, B3

6

, l

6

.

89. No; we an �nd a ounterexample to the orresponding lauses as in the previous

exerise: A0

0

, B0

0

, A0

1

, B1

1

, A0

2

, B2

2

, b

2

, �

2

, A1

3

, B2

3

, b

3

, A1

4

, B3

4

, b

4

, A1

5

, B4

5

,

b

5

, �

5

, A2

6

, B4

6

, a

6

, b

6

, �

6

, A5

7

, B4

7

, a

7

, b

7

, A5

8

, B2

8

, a

8

, b

8

, l

8

, A5

9

, B5

9

, a

9

, b

9

, l

9

.

(This protool was the author's original introdution to the fasinating problem of

mutual exlusion [see CACM 9 (1966), 321{322, 878℄, about whih Dijkstra had said

\Quite a olletion of trial solutions have been shown to be inorret.")

90. Alie starves in (43) with p = 1 and r = 3 in (47), if she moves to A1 and then

Bob remains in B0 whenever he is bumped. The A2 ^ B2 deadlok mentioned in the

text for (45) orresponds to (47) with p = 4 and r = 6. And in (46), suessive moves

to B1, (B2, A1, A2, B3, B1, A4, A5, A0)

1

will starve poor Bob.

91. A yle (47) with no maybe/ritial states for Alie an ertainly starve her.

Conversely, given (i), (ii), (iii), suppose Alie is in no maybe/ritial state when t � t

0

;

and let t

0

< t

1

< t

2

< � � � be times with �

t

i

= 1 but with �

t

= 0 for at least one t

between t

i

and t

i+1

. Then we must have X

t

i

= X

t

j

for some i < j, beause the number

of states is �nite. Hene there's a starvation yle with p = t

i

and r = t

j

.

92. For 0 � i < j � r we want lauses that enode the ondition X

i

6= X

j

. Introdue

new variables �

ij

for eah state � of Alie or Bob, and v

ij

for eah shared variable v.

Assert that at least one of these new variables is true. (For the protool (40) this lause

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 203

sorting networks

Kroening

Strihman

E�en

S�orensson

k-indution

indution

Sheeran

Singh

St�almark

longest simple path

would be (A0

ij

_� � �_A4

ij

_B0

ij

_� � �_B4

ij

_ l

ij

).) Also assert the binary lauses (��

ij

_

�

i

)^(��

ij

_��

j

) for eah �, and the ternary lauses (�v

ij

_v

i

_v

j

)^(�v

ij

_�v

i

_�v

j

) for eah v.

The transition lauses an also be streamlined, beause we needn't allow ases

where X

t+1

= X

t

. Thus, for example, we an omit B0

t+1

from the lause (�

t

_ B0

t

_

B0

t+1

_ B1

t+1

) of (42); and we an omit the lause (�

t

_ B1

t

_

�

l

t

_ B1

t+1

) entirely.

[If r is large, enodings with O(r(log r)

2

) lauses are possible via sorting networks,

as suggested by D. Kroening and O. Strihman, LNCS 2575 (2003), 298{309. The

most pratial sheme, however, seems to be to add the ij onstraints one by one

as needed; see N. E�en and N. S�orensson, Eletroni Notes in Theoretial Computer

Siene 89 (2003), 543{560.℄

93. For the � in (50), for example, we an use (x

1

_ x

2

_ � � � _ x

16

)^ (�x

1

_A0

0

)^ � � � ^

(�x

1

_A6

0

)^(�x

2

_B0

0

)^� � �^(�x

2

_B6

0

)^(�x

3

_A0

0

)^(�x

3

_a

0

)^� � �^(�x

16

_B6

0

)^(�x

16

_

�

b

0

).

94. (X ! X

0

! � � � ! X

(r)

) ^ �(X) ^ �(X

0

) ^ � � � ^ �(X

(r�1)

) ^ :�(X

(r)

). [This

important tehnique is alled \k-indution"; see Mary Sheeran, Satnam Singh, and

Gunnar St�almark, LNCS 1954 (2000), 108{125. One an, for example, add the lause

(A5 _ B5) to (50) and prove the resulting formula � by 3-indution.℄

95. The ritial steps have a = b = 1, by the invariants, so they have no predeessor.

96. The only predeessor of A5

2

^B5

2

^ a

2

^ b

2

^

�

l

2

is A5

1

^B4

1

^ a

1

^ b

1

^

�

l

1

; and the

only predeessor of that is A5

0

^ B3

0

^ a

0

^ b

0

^

�

l

0

. The ase l

2

is similar.

But without the invariants, we ould �nd arbitrarily long paths to A5

r

^ B5

r

. In

fat the longest suh simple path has r = 33: Starting with A2

0

^B2

0

^ �a

0

^

�

b

0

^ l

0

, we

ould suessively bump Alie and Bob into states A3, A5, A6, A0, A1, A2, A3, B3,

B4, A5, B3, A6, B4, A0, B3, A1, A2, A3, A5, A6, A0, A1, A2, B4, A3, A5, A6, A0,

B5, A1, A2, A3, A5, never repeating a previous state. (Of ourse all of these states are

unreahable from the real X

0

, beause none of them satisfy �.)

97. No. Removing eah person's �nal step in a path to A6^B6 gives a path to A5^B5.

98. (a) Suppose X

0

! � � � ! X

r

= X

0

is impure and X

i

= X

j

for some 0 � i < j < r.

We may assume that i = 0. If either of the two yles X

0

! � � � ! X

j

= X

0

or

X

j

! � � � ! X

r

= X

j

is impure, it is shorter.

(b) In those states she would have had to be previously in A0 or A5.

() Generate lauses (�g

0

), (�g

t

_ g

t�1

_ �

t�1

), (

�

h

0

), (

�

h

t

_ h

t�1

_ �

t�1

), (

�

f

t

_ g

t

),

(

�

f

t

_ h

t

), (

�

f

t

_ �

0

_ ��

t

), (

�

f

t

_ ��

0

_ �

t

), (

�

f

t

_ v

0

_ �v

t

), (

�

f

t

_ �v

0

_ v

t

), for 1 � t � r; and

(f

1

_ f

2

_ � � � _ f

r

). Here v runs through all shared variables, and � runs through all

states that an our in a starvation yle. (For example, Alie's states with respet

to protool (49) would be restrited to A3 and A4, but Bob's are unrestrited.)

(d) With exerise 92 we an determine that the longest simple path, using only

states that an our in a starvation yle for (49), is 15. And the lauses of () are

unsatis�able when r = 15 and invariant (50) is used. Thus the only possible starvation

yle is made from two simple pure yles; and those are easy to rule out.

99. Invariant assertions de�ne the values of a and b at eah state. Hene mutual

exlusion follows as in exerise 95. For starvation-freedom, we an exlude states A0,

A6, A7, A8 from any yle that starves Alie. But we need also to show that the state

A5

t

^ B0

t

^ l

t

is impossible; otherwise she ould starve while Bob is maybe-ing. For

that purpose we an add :((A6_A7_A8)^ (B6_B7_B8)) ^ :(A8^

�

l) ^ :(B8^ l) ^

:((A3 _ A4 _ A5) ^ B0 ^ l) ^ :(A0 ^ (B3 _ B4 _ B5) ^

�

l) to the invariant �(X). The

longest simple path through allowable states has length 42; and the lauses of exerise

September 23, 2015

204 ANSWERS TO EXERCISES 7.2.2.2

Dijkstra

Burns

Lamport

Peterson

SIAM

Berghammer

ardinality onstraints

baktraking

98() are unsatis�able when r = 42. Notie that Alie and Bob never ompete when

setting the ommon variable l, beause states A7 and B7 annot our together.

(See Dijkstra's Cooperating Sequential Proesses, ited in the text.)

100. Bob is starved by the moves B1, (A1, A2, A3, B2, A4, B3, A0, B4, B1)

1

. But

an argument similar to the previous answer shows that Alie annot be.

[The protool obviously provides mutual exlusion as in exerise 95. It was devised

independently in the late 1970s by J. E. Burns and L. Lamport, as a speial ase of an

N -player protool using only N shared bits; see JACM 33 (1986), 337{339.℄

101. The following solution is based on G. L. Peterson's elegant protool for N pro-

esses in ACM Transations on Programming Languages and Systems 5 (1983), 56{65:

A0. Maybe go to A1.

A1. Set a

1

 1, go to A2.

A2. If b

2

go to A2, else to A3.

A3. Set a

2

 1, go to A4.

A4. Set a

1

 0, go to A5.

A5. If b

1

go to A5, else to A6.

A6. Set a

1

 1, go to A7.

A7. If b

1

go to A8, else to A9.

A8. If b

2

go to A7, else to A9.

A9. Critial, go to A10.

A10. Set a

1

 0, go to A11.

A11. Set a

2

 0, go to A0.

(Alie and Bob might need an

app to help them deal with this.)

B0. Maybe go to B1.

B1. Set b

1

 1, go to B2.

B2. If a

1

go to B2, else to B3.

B3. Set b

2

 1, go to B4.

B4. Set b

1

 0, go to B5.

B5. If a

2

go to B5, else to B6.

B6. Set b

1

 1, go to B7.

B7. If a

1

go to B8, else to B12.

B8. If a

2

go to B9, else to B12.

B9. Set b

1

 0, go to B10.

B10. If a

1

go to B11, else to B6.

B11. If a

2

go to B10, else to B6.

B12. Critial, go to B13.

B13. Set b

1

 0, go to B14.

B14. Set b

2

 0, go to B0.

102. The lauses for, say, `B5. If a go to B6, else to B7.' should be (�_B5_ �a_�

1

_

� � � _ �

p

_ B6

0

) ^ (� _ B5 _ a _ �

1

_ � � � _ �

p

_ B7

0

) ^ (� _ B5 _ B6

0

_ B7

0

), where �

1

,

: : : , �

p

are the states in whih Alie sets a.

103. See, for example, any front over of SICOMP, or of SIAM Review sine 1970.

104. Assume that m � n. The ase m = n is learly impossible, beause all four

orners must be oupied. When m is odd and n = m+ k + 1, put m bishops in the

�rst and last olumns, then k in the middle olumns of the middle row. Whenm is even

and n = m+ 2k + 1, put m in the �rst and last olumns, and two in the middle rows

of olumns m=2 + 2j for 1 � j � k. There's no solution when m and n are both even,

beause the maximum number of independent bishops of eah olor is (m+ n � 2)=2.

[R. Berghammer, LNCS 6663 (2011), 103{106.℄

105. (a) We must have (x

ij

; x

0

ij

) = (1; 0) for t pairs ij, and (0; 1) for t other pairs;

otherwise x

ij

= x

0

ij

. Hene there are 2

mn�2t

solutions.

(b) Use 2mn variables y

ij

; y

0

ij

for 1 � i � m and 1 � j � n, with binary lauses

(�y

ij

_ �y

0

ij

), together with m+ n + 2(m+ n � 1) sets of ardinality onstraints suh as

(20) and (21) to enfore the balane ondition

P

fy

ij

+ �y

0

ij

j ij 2 Lg = jLj for eah row,

olumn, and diagonal line L.

() T (m;n) = 1 when min(m;n) < 4,

beause only the zero matrix quali�es in

suh ases. Other values an be enumerated

by baktraking, if they are small enough.

(The asymptoti behavior is unknown.)

n = 4 5 6 7 8

T (4; n) = 3 7 17 35 77

T (5; n) = 7 31 109 365 1367

T (6; n) = 17 109 877 6315 47607

T (7; n) = 35 365 6315 107637 1703883

T (8; n) = 77 1367 47607 1703883 66291089

(d) Supposem � n. Any solution with

nonzero top row, bottom row, left olumn, and right olumn has all entries zero exept

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 205

Gerdes

unit lauses

that y

1t

= �y

t1

= y

(m+1�t)1

= �y

mt

= y

m(n+1�t)

= �y

(m+1�t)n

= y

tn

= �y

1(n+1�t)

,

for some t with 1 < t � m=2. So the answer is 2

P

m

k=3

b(k�1)=2(m�k)(n�k), whih

simpli�es to q(q�1)(4q(n�q)�5n+2q+3+(mmod 2)(6n�8q�5))=3 when q = bm=2.

[The answer in the ase (m;n) = (25; 30) is 36080; hene a random 25�30 image

will have an average of 36080=256 � 140:9 tomographially equivalent \neighbors" that

di�er from it in exatly eight pixel positions. Figure 36 has �ve suh neighbors, one of

whih is shown in answer 111 below.℄

(e) We an make all entries nonzero exept on the main diagonals (see below).

This is optimum, beause the diagonal lines for a

1

, a

3

, : : : , a

4n�1

, b

1

, b

3

, : : : , b

4n�1

must eah ontain a di�erent 0. So the answer is 2n(n � 1). (But the maximum for

odd sized boards is unknown; for n = (5; 7; 9) it turns out to be (6; 18; 33).)

0

+++���

0

�

0

++��

0

+

��

0

+�

0

++

���

00

+++

+++

00

���

++

0

�+

0

��

+

0

��++

0

�

0

���+++

0

0

+++

0

���

0

����+++

0

+

0

�+�+��++

++�++

0

���

�+�+��

0

++

+

0

�

0

+

0

+��

��+��+++

0

++++�

0

���

0

�

0

��+++

0

0

++��

00

��++

000

0

+��

00

+

�

00

+

0

�+

+

0

�

0

+

0

�

+

0

+

0

�

0

�

0

��

0

++

0

0

++��

00

��++

000

0

+�

0

�

0

+

�

0

�+

00

+

+

000

+��

+

0

+�

00

�

0

��

0

++

0

(f) The smallest ounterexamples are 7� 7 (see above).

106. In an m � n problem we must have 0 � r

i

� n, 0 �

j

� m, and 0 � a

d

; b

d

�

minfd;m; n;m+n�dg. So the total number B of possibilities, assuming thatm � n, is

(n+1)

m

(m+1)

n

((m+1)! (m+1)

n�m

m!)

2

, whih is � 3 �10

197

when (m;n) = (25; 30).

Sine 2

750

=B � 2 � 10

28

, we onlude that a \random" 25 � 30 digital tomography

problem usually has more than 10

28

solutions. (Of ourse there are other onstraints

too; for example, the fat that

P

r

i

=

P

j

=

P

a

d

=

P

b

d

redues B by at least a

fator of (n + 1)(m+ 1)

2

.)

107. (a) (r

1

; : : : ; r

6

) = (11;11;11;9;9;10); (

1

; : : : ;

13

) = (6;5;6;2;4;4;6;5;4;2;6;5;6);

(a

1

; : : : ; a

6

) = (11;10;9;9;11;11); (b

1

; : : : ; b

12

) = (6;1;6;5;7;5;6;2;6;5;7;5).

(b) There are two others, namely the following one and its left-right reversal:

� � � � � �

[Referene: P. Gerdes, Sipatsi (Maputo: U. Pedag�ogia, 2009), page 62, pattern #122.℄

108. Here are four of the many possibilities:

109. F1. [Initialize.℄ Find one solution y

1

: : : y

n

, or terminate if the problem is unsat-

is�able. Then set y

n+1

 1 and d 0.

F2. [Advane d.℄ Set d to the smallest j > d suh that y

j

= 1.

F3. [Done?℄ If d > n, terminate with y

1

: : : y

n

as the answer.

F4. [Try for smaller.℄ Try to �nd a solution with additional unit lauses to fore

x

j

= y

j

for 1 � j < d and x

d

= 0. If suessful, set y

1

: : : y

n

 x

1

: : : x

n

.

Return to F2.

Even better is to inorporate a similar proedure into the solver itself; see exerise 275.

September 23, 2015

206 ANSWERS TO EXERCISES 7.2.2.2

benhmark tests

rook path

spiral

utting plane

Balas

Fishetti

Zanette

Brunetti

Del Lungo

Gritzmann

de Vries

110. Algorithm B atually gives these diretly:

001111111011101111100101111101111011111110111011011111111100101111101111011111100111011111110111

111111111011111111001100111111001111011111111010111111110111101111111001100111110110111101111111

111. This family of problems appears to provide an exellent (though sometimes formi-

dable) series of benhmark tests for SAT solvers. The suggested example has solutions

(a) olexiographially �rst; (b) minimally di�erent; () olexiographially last;

and several of the entries in (a) were by no means easy. An even more diÆult ase

arises if we base lexiographi order on a rook path that spirals out from the enter

(thus favoring solutions that are mostly 0 or mostly 1 in the middle):

(a) spiral rook path; (b) \spirographially" �rst; () \spirographially" last.

Here many of the entries have never yet been solved by a SAT solver, as of 2013, although

again IP solvers have no great diÆulty. In fat, the \lexiographi pure utting plane"

proedure of E. Balas, M. Fishetti, and A. Zanette [Math. Programming A130 (2011),

153{176; A135 (2012), 509{514℄ turns out to be partiularly e�etive on suh problems.

112. Reasonably tight upper and lower bounds would also be interesting.

113. Given an N �N �N ontingeny problem with binary onstraints C

JK

= X

�JK

,

R

IK

= X

I�K

, P

IJ

= X

IJ�

, we an onstrut an equivalent n � n digital tomography

problem with n = N

2

+N

3

+N

4

as follows: First onstrut a four-dimensional tensor

Y

IJKL

= X

(I�L)JK

, where I � L = 1 + (I + L � 1) modN , and notie that Y

�JKL

=

Y

IJK�

= X

�JK

, Y

I�KL

= X

(I�L)�K

, Y

IJ�L

= X

(I�L)J�

. Then de�ne x

ij

for 1 �

i; j � n by the rule x

ij

= Y

IJKL

when i = I �N

2

K +N

3

L, j = NJ +N

2

K + N

3

L,

otherwise x

ij

= 0. This rule makes sense; for if 1 � I; I

0

; J; J

0

; K;K

0

; L; L

0

� N and

I �N

2

K +N

3

L = I

0

�N

2

K

0

+N

3

L

0

and NJ +N

2

K +N

3

L = NJ

0

+N

2

K

0

+N

3

L

0

,

we have I � I

0

(modulo N); hene I = I

0

and K � K

0

; hene K = K

0

, L = L

0

, J = J

0

.

Under this orrespondene the marginal sums are r

i

= Y

I�KL

when i = I�N

2

K+

N

3

L,

j

= Y

�JKL

when j = NJ+N

2

K+N

3

L, a

d

= Y

IJ�L

when d+1 = I+NJ+2N

3

L,

b

d

= Y

IJK�

when d � n = I � NJ � 2N

2

K, otherwise zero. [See S. Brunetti, A. Del

Lungo, P. Gritzmann, and S. de Vries, Theoretial Comp. Si. 406 (2008), 63{71.℄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 207

symmetri funtion

polarities

smile

NP-omplete

oNP-omplete

Kaye

Sott

Stege

van Rooij

phoenix

114. (a) From x

7;23

+ x

7;24

= x

7;23

+ x

7;24

+ x

7;25

= x

7;24

+ x

7;25

= 1 we dedue

x

7;23

= x

7;25

= 0 and x

7;24

= 1, revealing n

7;23

= n

7;25

= 5. Now x

6;23

+ x

6;24

=

x

6;24

+ x

6;25

= x

4;24

+ x

5;24

+ x

6;24

+ x

6;25

= 1; hene x

4;24

= x

5;24

= 0, revealing

n

4;24

= n

5;24

= 2. So x

6;23

= x

6;25

= 0, and the rest is easy.

(b) Let y

i;j

mean \ell (i; j) has been probed safely, revealing n

i;j

." Consider

the lauses C obtained by appending �y

i;j

to eah lause of the symmetri funtion

[

P

i+1

i

0

=i�1

P

j+1

j

0

=j�1

x

i

0

;j

0

=n

i;j

℄, for all i; j with x

i;j

= 0. Also inlude (�x

i;j

_ �y

i;j

), as well

as lauses for the symmetri funtion S

N

(x) if we're told the total number N of mines.

Given any subset F of mine-free ells, the lauses C

F

= C ^

V

fy

i;j

j (i; j) 2 Fg

are satis�able preisely by the on�gurations of mines that are onsistent with the data

fn

i;j

j (i; j) 2 Fg. Therefore ell (i; j) is safe if and only if C

F

^ x

i;j

is unsatis�able.

A simple modi�ation of Algorithm C an be used to \grow" F until no further

safe ells an be added: Given a solution to C

F

for whih neither x

i;j

nor �x

i;j

was

obtained at root level (level 0), we an try to �nd a \ipped" solution by using the

omplemented value as the deision at level 1. Suh a solution will be found if and only

if the ipped value is onsistent; otherwise the unipped value will have been fored at

level 0. By hanging default polarities we an favor solutions that ip many variables

at one. Whenever a literal �x

i;j

is newly dedued at root level, we an fore y

i;j

to be

true, thus adding (i; j) to F . We reah an impasse when a set of solutions has been

obtained for C

F

that overs both settings of every unfored x

i;j

.

For problem (i) we start with F = f(1; 1)g, et. Case (iv) by itself unovers only

56 ells in the lower right orner. The other results, eah obtained in < 6 G�, are:

(i); (ii)

00012321000000000000013X200000

0002XXX310000000000012XX310000

0013X5XX3101233333212X44X20000

002X434XX433XXXXXXX35X32X31000

003X5X34XXXX3333333XXX424X2000

003X6X33X532100000125X5X5X3000

003X5X22X200000000003X5X5X3000

003X41111100000000002X424X3000

002X310000000000000012X23X3100

0012X2100000000000000112X4X200

00013X21232100000123210114X300

00003X42XXX2100012XXX21003X300

22113X4X6 5X20002X6 5X2002X310

XX34X34XX 6X30002XX 5X20013X20

23XXX43XXXXX312123XXX210003X30

245 XX2233323X4X21232100014X52

XXX 653100013X5X3000012333XXXX

XXXX10001X45X200001XXXX5

42222112XX21000135

211XX43443100001XX

2X334XXXXX433333444

X 4 XXXXXXXXX2

(iii)

00012321000000000000013X200000

0002XXX310000000000012XX310000

0013X5XX3101233333212X44X20000

002X434XX433XXXXXXX35X32X31000

003X5X34XXXX3333333XXX424X2000

003X6X33X532100000125X5X5X3000

003X5X22X200000000003X5X5X3000

003X41111100000000002X424X3000

002X310000000000000012X23X3100

0012X2100000000000000112X4X200

00013X21232100000123210114X300

00003X42XXX2100012XXX21003X300

22113X4X6 5X20002X6 5X2002X310

XX34X34XX 6X30002XX 5X20013X20

23XXX43XXXXX312123XXX210003X30

2456XX2233323X4X21232100014X52

XXXX653100013X5X3000012333XXXX

235XXXX10001X45X200001XXXX5

002X542222112XX21000135

0012X211XX43443100001XX

00012X334XXXXX433333444

000012XX445 XXXXXXXXX2

00000123XX3

0000000123

0000000001

(v)

00012321000000000000013X200000

0002XXX310000000000012XX310000

0013X5XX3101233333212X44X20000

002X434XX433XXXXXXX35X32X31000

003X5X34XXXX3333333XXX424X2000

003X6X33X532100000125X5X5X3000

003X5X22X200000000003X5X5X3000

003X41111100000000002X424X3000

002X310000000000000012X23X3100

0012X2100000000000000112X4X200

00013X21232100000123210114X300

00003X42XXX2100012XXX21003X300

22113X4X6 5X20002X6 5X2002X310

XX34X34XX 6X30002XX 5X20013X20

23XXX43XXXXX312123XXX210003X30

2456XX2233323X4X21232100014X52

XXXX653100013X5X3000012333XXXX

235XXXX10001X45X200001XXXX5X

002X542222112XX210001356656X

0012X211XX43443100001XXXXXXXXX

00012X334XXXXX433333444345X432

000012XX445 XXXXXXXXX223X2100

00000123XX3 5554XX21000

0000000123 5XXX3210000

0000000001 XXX421000000

Notie that the Cheshire at's famous smile de�es logi and requires muh guesswork!

[For aspets of Minesweeper that are NP-omplete and oNP-omplete, see Kaye,

Sott, Stege, and van Rooij, Math. Intelligener 22, 2 (2000), 9{15; 33, 4 (2011), 5{17.℄

115. Several thousand runs of the algorithm in the previous exerise, given that the

total number of mines is 10, indiate suess probabilities :490 � :007, :414 � :004,

:279� :003, when the �rst guess is respetively in a orner, in the enter of an edge, or

in the enter.

116. The smallest is the \lok" in answer 69(b). Other noteworthy possibilities are

$

$

$

as well as the \phoenix" in Fig. A{7.

September 23, 2015

208 ANSWERS TO EXERCISES 7.2.2.2

partial baktraking

links dane

Pure literals

117. (a) Set x

0

= x

n+1

= 0, and let (a; b;) be respetively the number of ourrenes

of (01; 10; 11) as a substring of x

0

x

1

: : : x

n+1

. Then a+ = b+ = �x and = �

(2)

x;

hene a = b = �x� �

(2)

x is the number of runs.

(b) In this ase the omplete binary tree will have only n�1 leaves, orresponding

to fx

1

x

2

; : : : ; x

n�1

x

n

g; therefore we want to replae n by n � 1 in (20) and (21).

The lauses of (20) remain unhanged unless t

k

� 3. When t

k

= 2 they beome

(�x

2k�n+1

_�x

2k�n+2

_b

k

1

)^(�x

2k�n+2

_�x

2k�n+3

_b

k

1

)^(�x

2k�n+1

_�x

2k�n+2

_�x

2k�n+3

_b

k

2

).

When t

k

= 3 we have 2k = n�1, and they beome (

�

b

2k

1

_b

k

1

)^(�x

1

_�x

2

_b

k

1

)^(

�

b

2k

2

_b

k

2

)^

(

�

b

2k

1

_ �x

1

_ �x

2

_ b

k

2

) ^ (

�

b

2k

2

_ �x

1

_ �x

2

_ b

k

3

).

The lauses of (21) remain unhanged exept in simple ases when n � 3.

() Now the leaves represent x

i

x

i+1

= �x

i

_ �x

i+1

. So we hange (20), when t

k

= 2,

to (x

2k�n+1

_ b

k

1

) ^ (x

2k�n+2

_ b

k

1

) ^ (x

2k�n+3

_ b

k

1

) ^ (x

2k�n+2

_ b

k

2

) ^ (x

2k�n+1

_

x

2k�n+3

_ b

k

2

). And there are eight lauses when t

k

= 3: (

�

b

2k

1

_ b

k

1

) ^ (x

1

_ b

k

1

) ^ (x

2

_

b

k

1

) ^ (

�

b

2k

2

_ b

k

2

) ^ (

�

b

2k

1

_ x

1

_ b

k

2

) ^ (

�

b

2k

1

_ x

2

_ b

k

2

) ^ (

�

b

2k

2

_ x

1

_ b

k

3

) ^ (

�

b

2k

2

_ x

2

_ b

k

3

).

118. Let p

i;j

= [the pixel in row i and olumn j should be overed℄, and introdue

variables h

i;j

when p

i;j

= p

i;j+1

= 1, v

i;j

when p

i;j

= p

i+1;j

= 1. The lauses are

(i) (h

i;j

_ h

i;j�1

_ v

i;j

_ v

i�1;j

), whenever p

i;j

= 1, omitting variables that don't exist;

(ii) (

�

h

i;j

_

�

h

i;j�1

), (

�

h

i;j

_�v

i;j

), (

�

h

i;j

_�v

i�1;j

), (

�

h

i;j�1

_�v

i;j

), (

�

h

i;j�1

_�v

i�1;j

), (�v

i;j

_�v

i�1;j

),

whenever p

i;j

= 1, omitting lauses whose variables don't both exist; and (iii) (h

i;j

_

h

i+1;j

_v

i;j

_v

i;j+1

), whenever p

i;j

+p

i;j+1

+p

i+1;j

+p

i+1;j+1

� 3, omitting variables that

don't exist. (The example has 10527 lauses in 2874 variables, but it's quikly solved.)

119. There's symmetry between l and

�

l, also between l and 10� l; so we need onsider

only l = (1; 2; 3; 4; 5), with respetively (4; 4; 6; 6; 8) ourrenes. The smallest result is

F j5 = f123, 234, 678, 789, 246, 468, 147, 369,

�

1

�

2

�

3,

�

2

�

3

�

4,

�

3

�

4,

�

4

�

6,

�

6

�

7,

�

6

�

7

�

8,

�

7

�

8

�

9,

�

1

�

3,

�

2

�

4

�

6,

�

3

�

7,

�

4

�

6

�

8,

�

7

�

9,

�

1

�

4

�

7,

�

2

�

8,

�

3

�

6

�

9,

�

1

�

9g.

120. True.

121. The main point of interest is that an empty lause is typially disovered in the

midst of step A3; partial baktraking must be done when taking bak the hanges

that were made before this interruption.

A3. [Remove

�

l.℄ Set p F(

�

l) (whih is F(l � 1), see (57)). While p � 2n + 2,

set j C(p), i SIZE(j), and if i > 1 set SIZE(j) i� 1, p F(p). But

if i = 1, interrupt that loop and set p B(p); then while p � 2n + 2, set

j C(p), i SIZE(j), SIZE(j) i+ 1, p B(p); and �nally go to A5.

A4. [Deativate l's lauses.℄ Set p F(l). While p � 2n + 2, set j C(p),

i START(j), p F(p), and for i � s < i + SIZE(j) � 1 set q F(s),

r B(s), B(q) r, F(r) q, and C(L(s)) C(L(s)) � 1. Then set

a a� C(l), d d+ 1, and return to A2.

A7. [Reativate l's lauses.℄ Set a a + C(l) and p B(l). While p � 2n + 2,

set j C(p), i START(j), p B(p), and for i � s < i + SIZE(j) � 1 set

q F(s), r B(s), B(q) F(r) s, and C(L(s)) C(L(s)) + 1. (The

links dane a little here.)

A8. [Unremove

�

l.℄ Set p F(

�

l). While p � 2n + 2, set j C(p), i SIZE(j),

SIZE(j) i+ 1, p F(p). Then go to A5.

122. Pure literals are problemati when we want all solutions, so we don't take advan-

tage of them here. Indeed, things get simpler; only the move odes 1 and 2 are needed.

A1

�

. [Initialize.℄ Set d 1.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 209

A2

�

. [Visit or hoose.℄ If d > n, visit the solution de�ned by m

1

: : :m

n

and go to

A6

�

. Otherwise set l 2d+ 1 and m

d

 1.

A3

�

. [Remove

�

l.℄ Delete

�

l from all ative lauses; but go to A5

�

if that would

make a lause empty.

A4

�

. [Deativate l's lauses.℄ Suppress all lauses that ontain l. Then set d

d+ 1 and return to A2

�

.

A5

�

. [Try again.℄ If m

d

= 1, set m

d

 2, l 2d, and go to A3

�

.

A6

�

. [Baktrak.℄ Terminate if d = 1. Otherwise set d d � 1 and l 2d +

(m

d

& 1).

A7

�

. [Reativate l's lauses.℄ Unsuppress all lauses that ontain l.

A8

�

. [Unremove

�

l.℄ Reinstate

�

l in all the ative lauses that ontain it. Then go

bak to A5

�

.

It's no longer neessary to update the values C(k) for k < 2n+2 in steps A4

�

and A7

�

.

123. For example, we might have

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L(p) = 3 9 7 8 7 5 6 5 3 4 3 8 2 8 6 9 6 4 7 4 2

and START(j) = 21 � 3j for 0 � j � 7; W

2

= 3, W

3

= 7, W

4

= 4, W

5

= 0, W

6

= 5,

W

7

= 1, W

8

= 6, W

9

= 2. Also LINK(j) = 0 for 1 � j � 7 in this ase.

124. Set j W

�

l

. While j 6= 0, a literal other than

�

l should be wathed in lause j, so

we do the following: Set i START(j), i

0

 START(j � 1), j

0

 LINK(j), k i + 1.

While k < i

0

, set l

0

 L(k); if l

0

isn't false (that is, if jl

0

j > d or l

0

+ m

jl

0

j

is even,

see (57)), set L(i) l

0

, L(k)

�

l, LINK(j) W

l

0

, W

l

0

 j, j j

0

, and exit the loop

on k; otherwise set k k + 1 and ontinue that loop. If k reahes i

0

, however, we

annot stop wathing

�

l; so we set W

�

l

 j, exit the loop on j, and go on to step B5.

125. Change steps B2 and B4 to be like A2

�

and A4

�

in answer 122.

126. Starting with ative ring (6 9 7 8), the unit lause 9 will be found (beause 9

appears before 8); the lause

�

9

�

3

�

6 will beome

�

6

�

3

�

9; the ative ring will beome (7 8 6).

127. Before: 11414545; after: 1142. (And then 11425, et.)

128. Ative ring x

1

x

2

x

3

x

4

Units Choie Changed lauses

(1 2 3 4) - - - -

�

1 413

(2 3 4) 0 - - -

�

2

�

124

(3 4) 0 0 - -

�

3

�

3

(4) 0 0 0 - 4;

�

4 Baktrak

(3 4) 0 - - - 2 3

�

2

�

1;

�

4

�

21

(3 4) 0 1 - -

�

4

�

4 314;

�

342

(3) 0 1 - 0 3;

�

3 Baktrak

(4 3) - - - - 1 2

�

14;

�

4

�

1

�

3

(2 4 3) 1 - - - 2

(4 3) 1 1 - - 3 3 4

�

3

�

2; 2

�

31

(4) 1 1 1 - 4;

�

4 Baktrak

(3 4) 1 - - -

�

2

�

321; 4

�

12

(3 4) 1 0 - - 4 4

�

3

�

1

�

4; 1

�

2

�

4; 3

�

42

(3) 1 0 - 1 3;

�

3 Baktrak

September 23, 2015

210 ANSWERS TO EXERCISES 7.2.2.2

empty list

Knuth

move odes

randomly

asymptotis

unit lause

Resizing

129. Set j W

l

, then do the following steps while j 6= 0: (i) Set p START(j) + 1;

(ii) if p = START(j � 1), return 1; (iii) if L(p) is false (that is, if x

jL(p)j

= L(p) & 1),

set p p+ 1 and repeat (ii); (iv) set j LINK(j). If j beomes zero, return 0.

130. Set l 2k + b, j W

l

, W

l

 0, and do the following steps while j 6= 0: (i) Set

j

0

 LINK(j), i START(j), p i + 1; (ii) while L(p) is false, set p p + 1 (see

answer 129; this loop will end before p = START(j � 1)); (iii) set l

0

 L(p), L(p) l,

L(i) l

0

; (iv) set p W

l

0

and q W

�

l

0

, and go to (vi) if p 6= 0 or q 6= 0 or x

jl

0

j

� 0;

(v) if t = 0, set t h jl

0

j and NEXT(t) h, otherwise set NEXT(jl

0

j) h, h jl

0

j,

NEXT(t) h (thus inserting jl

0

j = l

0

� 1 into the ring as its new head); (vi) set

LINK(j) p, W

l

0

 j (thus inserting j into the wath list of l

0

); (vii) set j j

0

.

[The triky part here is to remember that t an be zero in step (v).℄

131. For example, the author tried seleting a variable x

k

for whih s

2k

� s

2k+1

is

maximum, where s

l

is the length of l's wath list plus ", and the parameter " was 0.1.

This redued the runtime for waerden (3; 10; 97) to 139.8 gigamems, with 8.6 mega-

nodes. Less dramati e�ets ourred with langford (13): 56.2 gigamems, with 10.8

meganodes, versus 99.0 gigamems if the minimum s

2k

� s

2k+1

was hosen instead.

132. The unsatis�able lauses (�x

1

_x

2

), (x

1

_�x

2

), (�x

3

_x

4

), (x

3

_�x

4

), : : : , (�x

2n�1

_x

2n

),

(x

2n�1

_ �x

2n

), (�x

2n�1

_ �x

2n

), (x

2n�1

_ x

2n

) ause it to investigate all 2

n

settings of x

1

,

x

3

, : : : , x

2n�1

before enountering a ontradition and repeatedly baktraking.

(Inidentally, the suessive move odes make a pretty pattern. If the stated

lauses are ordered randomly, the algorithm runs signi�antly faster, but it still appar-

ently needs nonpolynomial time. What is the growth rate?)

133. (a) Optimum baktrak trees for n-variable SAT problems an be alulated with

�(n3

n

) time and �(3

n

) spae by onsidering all 3

n

partial assignments, \bottom up."

In this 9-variable problem we obtain a tree with 67 nodes (the minimum) if we branh

�rst on x

3

and x

5

, then on x

6

if x

3

6= x

5

; unit lauses arise at all other nodes.

(b) Similarly, the worst tree turns out to have 471 nodes. But if we require the

algorithm to branh on a unit lause whenever possible, the worst size is 187. (Branh

�rst on x

1

, then x

4

, then x

7

; avoid opportunities for unit lauses.)

134. Let eah BIMP list be aessed by ADDR, BSIZE, CAP, and K �elds, where ADDR is the

starting address in MEM of a blok that's able to store CAP items, and CAP = 2

K

; ADDR is

a multiple of CAP, and BSIZE is the number of items urrently in use. Initially CAP = 4,

K = 2, BSIZE = 0, and ADDR is a onvenient multiple of 4. The 2n BIMP tables therefore

oupy 8n slots initially. If MEM has room for 2

M

items, those tables an be alloated

so that the doubly linked lists AVAIL[k℄ initially ontain a

k

= (0 or 1) available bloks

of size 2

k

for eah k, where 2

M

� 8n = (a

M�1

: : : a

1

a

0

)

2

.

Resizing is neessary when BSIZE = CAP and we need to inrease BSIZE. Set

a ADDR, k K, CAP 2

k+1

, and let b a � 2

k

be the address of a's buddy. If b is

a free blok of size 2

k

, we're in luk: We remove b from AVAIL[k℄; then if a & 2

k

= 0,

nothing needs to be done, otherwise we opy BSIZE items from a to b and set ADDR b.

In the unluky ase when b is either reserved or free of size < 2

k

, we set p to the

address of the �rst blok in AVAIL[k

0

℄, where AVAIL[t℄ is empty for k < t < k

0

(or

we pani if MEM's apaity is exeeded). After removing p from AVAIL[k

0

℄, we split o�

new free bloks of sizes 2

k+1

, : : : , 2

k

0

�1

if k

0

> k + 1. Finally we opy BSIZE items

from blok a to blok p, set ADDR p, and put a into AVAIL[k℄. (We needn't try to

\ollapse" a with its buddy, sine the buddy isn't free.)

135. They're the omplements of the literals in BIMP(

�

l).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 211

swap

virtual unswapping

BSTAMP

BST(l)

stamping

136. Before, f(1; 2); (4; 2); (4; 5); (5; 1); (5; 7); (6; 9)g; after, f(1; 2); (4; 2); (6; 9)g.

137. If p in a TIMP list points to the pair (u; v), let's write u = U(p) and v = V(p).

(a) Set N n � G, x VAR[N℄, j INX[X℄, VAR[j℄ x, INX[x℄ j,

VAR[N℄ X, INX[X℄ N . Then do the following for l = 2X and l = 2X + 1,

and for all p in TIMP(l): u U(p), v V(p), p

0

 LINK(p), p

00

 LINK(p

0

);

s TSIZE(�u)�1, TSIZE(�u) s, t pair s of TIMP(�u); if p

0

6= t, swap pairs by setting

u

0

 U(t), v

0

 V(t), q LINK(t), q

0

 LINK(q), LINK(q

0

) p

0

, LINK(p) t,

U(p

0

) u

0

, V(p

0

) v

0

, LINK(p

0

) q, U(t) v, V(t)

�

l, LINK(t) p

00

. Then set

s TSIZE(�v)�1, TSIZE(�v) s, t pair s of TIMP(�v); if p

00

6= t, swap pairs by setting

u

0

 U(t), v

0

 V(t), q LINK(t), q

0

 LINK(q), LINK(q

0

) p

00

, LINK(p

0

) t,

U(p

00

) u

0

, V(p

00

) v

0

, LINK(p

00

) q, U(t)

�

l, V(t) u, LINK(t) p.

Notie that we do not make the urrent pairs of TIMP(l) inative. They won't be

aessed by the algorithm until it needs to undo the swaps just made.

(b) In VAR and in eah TIMP list, the ative entries appear �rst. The inative entries

follow, in the same order as they were swapped out, beause inative entries never

partiipate in swaps. Therefore we an reativate the most-reently-swapped-out entry

by simply inreasing the ount of ative entries. We must, however, be areful to do this

\virtual unswapping" in preisely the reverse order from whih we did the swapping.

Thus, for l = 2X + 1 and l = 2X, and for all p in TIMP(l), proeeding in the

reverse order from (a), we set u U(p), v V(p), TSIZE(�v) TSIZE(�v) + 1, and

TSIZE(�u) TSIZE(�u)+ 1.

(The number N of free variables inreases impliitly, beause N + E = n in

step L12. Thus nothing needs to be done to VAR or INX.)

138. Beause �v 2 BIMP(�u), (62) will be used to make u nearly true. That loop will

also make v nearly true, beause v 2 BIMP(u) is equivalent to �u 2 BIMP(�v).

139. Introdue a new variable BSTAMP analogous to ISTAMP, and a new �eld BST(l)

analogous to IST(l) in the data for eah literal l. At the beginning of step L9, set

BSTAMP BSTAMP + 1, then set BST(l) BSTAMP for l = �u and all l 2 BIMP(�u). Now,

if BST(�v) 6= BSTAMP and BST(v) 6= BSTAMP, do the following for all w 2 BIMP(v): If w

is �xed in ontext NT (it must be �xed true, sine �w implies �v), do nothing. Otherwise

if BST(�w) = BSTAMP, perform (62) with l u and exit the loop on w (beause �u

implies both w and �w). Otherwise, if BST(w) 6= BSTAMP, append w to BIMP(�u) and u

to BIMP(�w). (Of ourse (63) must be invoked when needed.)

Then inrease BSTAMP again, and do the same thing with u and v reversed.

140. Unfortunately, no: We might have
(n) hanges to BSIZE on eah of
(n) levels

of the searh tree. However, the ISTACK will never have more entries than the total

number of ells in all BIMP tables (namely 2

M

in answer 134).

141. Suppose ISTAMP (ISTAMP + 1) mod 2

e

in step L5. If ISTAMP = 0 after that

operation, we an safely set ISTAMP 1 and IST(l) 0 for 2 � l � 2n+1. (A similar

remark applies to BSTAMP and BST(l) in answer 139.)

142. (The following operations, performed after BRANCH[d℄ is set in step L2, will also

output `j' to mark levels of the searh where no deision was made.) Set BACKL[d℄ F ,

r k 0, and do the following while k < d: While r < BACKF[k℄, output `6+(R

r

&1)'

and set r r+1. If BRANCH[k℄ < 0, output `j'; otherwise output `2BRANCH[k℄+(R

r

&1)'

and set r r + 1. While r < BACKL[k + 1℄, output `4 + (R

r

& 1)' and set r r + 1.

Then set k k + 1.

September 23, 2015

212 ANSWERS TO EXERCISES 7.2.2.2

Knuth

undoing

143. The following solution treats KINX and KSIZE as the unmodi�ed algorithm treats

TIMP and TSIZE. It deals in a somewhat more subtle way with CINX and CSIZE: If

lause originally had size k, and if j of its literals have beome false while none have

yet beome true, CSIZE() will be k � j, but the nonfalse literals will not neessarily

appear at the beginning of list CINX(). As soon as j reahes k�2, or one of the literals

beomes true, lause beomes inative and it disappears from the KINX tables of all

free literals. The algorithm won't look at CINX() or CSIZE() again until it un�xes the

literal that deativated . Thus a big lause is inative if and only if it has been satis�ed

(ontains a true literal) or has beome binary (has at most two nonfalse literals).

We need to modify only the three steps that involve TIMP. The modi�ed step L1,

all it L1

0

, inputs the big lauses in a straightforward way.

Step L7

0

removes the formerly free variable X from the data strutures by �rst

deativating all of the ative big lauses that ontain L: For eah of the KSIZE(L)

numbers in KINX(L), and for eah of the CSIZE() free literals u in CINX(), we swap

 out of u's lause list as follows: Set s KSIZE(u)�1, KSIZE(u) s; �nd t � s with

KINX(u)[t℄ = ; if t 6= s set KINX(u)[t℄ KINX(u)[s℄ and KINX(u)[s℄ . [Heuristi:

If the number of free literals remaining in is small ompared to 's original size,

for example if say 15 or 20 original literals have beome false, the remaining nonfalse

literals an usefully be swapped into the �rst CSIZE() positions of CINX() when is

being deativated. The author's experimental implementation does this when CSIZE()

is at most � times the original size, where the parameter � is normally 25/64.℄

Then step L7

0

updates lauses for whih L has beome false: For eah of the

KSIZE(L) numbers in KINX(L), set s CSIZE() � 1 and CSIZE() s; if s = 2,

�nd the two free literals (u; v) in CINX(), swap them into the �rst positions of that list,

put them on a temporary stak, and swap out of the lause lists of u and v as above.

Finally, step L7

0

does step L8

0

= L8 for all (u; v) on the temporary stak. [The

maximum size of that stak will be the maximum of KSIZE(l) over all l, after step L1

0

;

so we alloate memory for that stak as part of step L1

0

.℄

In step L12

0

we set L R

E

, X jLj, and reativate the lauses that involve X

as follows: For eah of the KSIZE(L) numbers in KINX(L), proeeding in reverse order

from the order used in L7

0

, set s CSIZE(), CSIZE() s+ 1; if s = 2, swap bak

into the lause lists of v and u, where u = CINX()[0℄ and v = CINX()[1℄. For eah

of the KSIZE(L) numbers in KINX(L), and for eah of the CSIZE() free literals u

in CINX(), again proeeding in reverse order from the order used in L7

0

, swap bak

into the lause list of u. The latter operation simply inreases KSIZE(u) by 1.

144. False; h

0

(l) = 0:1 if and only if the omplement,

�

l, doesn't appear in any lause.

145. By symmetry we know that h(l) = h(

�

l) = h(10 � l) for 1 � l � 9 at depth 0,

and the BIMP tables are empty. The �rst �ve rounds of re�nement respetively give

(h(1); : : : ; h(5)) = (4:10; 4:10; 6:10; 6:10; 8:10), (5:01; 4:59; 6:84; 6:84; 7:98), (4:80; 4:58;

6:57; 6:57; 8:32), (4:88; 4:54; 6:72; 6:67; 8:06), and (4:85; 4:56; 6:63; 6:62; 8:23), slowly on-

verging to the limiting values

(4:85810213; 4:55160111; 6:66761920; 6:63699698; 8:16778057):

When d = 1, however, the suessively re�ned values of (h(1); h(

�

1); : : : ; h(4); h(

�

4)) are

errati and divergent: (2.10, 8.70, 3.10, 6.40, 3.10, 13.00, 3.10, 10.70), (5.53, 3.33, 9.05,

2.58, 5.40, 5.57, 8.24, 4.83), (1.43, 9.60, 2.32, 10.06, 1.30, 16.96, 1.97, 15.54), (8.04, 1.42,

12.31, 1.29, 7.45, 2.39, 11.91, 1.81), (0.32, 14.19, 0.42, 15.63, 0.30, 25.67, 0.43, 24.17).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 213

survey propagation

Mijnders

de Wilde

Heule

threshold parameter

partial orderings of dimension � 2

permutation posets

inversions

partially ordered sets

They eventually osillate between limits that favor either positive or negative literals:

(0:1012; 17:4178; 0:1019; 19:7351; 0:1015; 31:6345; 0:1021; 30:4902) and

(10:3331; 0:1538; 15:8485; 0:1272; 9:6098; 0:1809; 15:4207; 0:1542):

[Equations (64) and (65), whih were inspired by survey propagation, �rst appeared

in unpublished work of S. Mijnders, B. de Wilde, and M. J. H. Heule in 2010. The

alulations above indiate that we needn't take h(l) too seriously, although it does seem

to yield good results in pratie. The author's implementation also sets h

0

(l) � if

the right-hand side of (65) exeeds a threshold parameter �, whih is 20.0 by default.℄

146. Good results have been obtained with the simple formula h(l) = "+ KSIZE(

�

l)+

P

u2BIMP(l); u free

KSIZE(�u), whih estimates the potential number of big-lause redu-

tions that our when l beomes true. The parameter " is typially set to 0.001.

147. 1, 600, 60, 30, 30.

148. If a problem is easy, we don't are if we solve it in 2 seonds or in .000002 seonds.

On the other hand if a problem is so diÆult that it an be solved only by looking ahead

more than we an aomplish in a reasonable time, we might as well fae the fat that

we won't solve it anyway. There's no point in looking ahead at 60 variables when

d = 60, beause we won't be able to deal with more than 2

50

or so nodes in any

reasonable searh tree.

149. The idea is to maintain a binary string SIG(x) for eah variable x, representing the

highest node of the searh tree in whih x has partiipated. Let b

j

= [BRANCH[j℄=1℄,

and set � b

0

: : : b

d�1

at the beginning of step L2, � b

0

: : : b

d

at the beginning of

step L4. Then x will be a partiipant in step X3 if and only if SIG(x) is a pre�x of �.

We update SIG(x) when x = juj or x = jvj in step L9, by setting SIG(x) �

unless SIG(x) is a pre�x of �. The initial value of SIG(x) is hosen so that it is never

a pre�x of any possible �.

(Notie that SIG(x) needn't hange when baktraking. In pratie we an safely

maintain only the �rst 32 bits of � and of eah string SIG(x), together with their exat

lengths, beause lookahead omputations need not be preise. In answer 143, updates

our not in step L9 but in step L7

0

; they are done for all literals u 6= L that appear in

any big lause ontaining L that is being shortened for the �rst time.)

150. Asserting 7 at level 22 will also 22�x

�

1, beause of the lause 147. Then

�

1 will

22�x 3 and 9, whih will 22�x

�

2 and

�

6, then

�

8; and lause 258 beomes false. Therefore

�

7 beomes proto true; and (62) makes 3, 6, 9 all proto true, ontraditing 369.

151. For example, one suh arrangement is

l: 2

�

8 9 3

�

1 6

�

7

�

4 4 7

�

6 1

�

3

�

9 8

�

2

o(l): 4 2 10 14 6 16 8 12 22 26 18 28 20 24 32 30

:

[Digraphs that are obtainable in this way are alled \partial orderings of dimension

� 2," or permutation posets. We've atually seen them in exerise 5.1.1{11, where the

set of ars was represented as a set of inversions. Permutation posets have many nie

properties, whih we shall study in Setion 7.4.2. For example, if we reverse the order

of the list and omplement the o�sets, we reverse the diretions on the arrows. All but

two of the 238 onneted partially ordered sets on six elements are permutation posets.

Unfortunately, however, permutation posets don't work well with lookahead when they

aren't also forests. For example, after 10�xing `9' and its onsequenes, we would want

to remove those literals from the R stak when 14�xing `3'; see (71). But then we'd

want them bak when 6�xing `

�

1'.℄

September 23, 2015

214 ANSWERS TO EXERCISES 7.2.2.2

autarky test

autarky

heap

heuristis

Tarjan

SGB

height

sink

sink: a vertex with no suessor

double order

preorder

postorder

satisfying assignment

andidates

multiset

152. A single lause suh as `12' or `123' would be an example, exept that the autarky

test in step X9 would solve the problem before we ever get to step X3. The lauses

f12

�

3; 1

�

23;

�

12

�

3;

�

1

�

23; 245; 3

�

4

�

5g do, however, work: Level 0 branhes on x

1

, and level 1

disovers an autarky with b and both true but returns l = 0. Then level 2 �nds all

lauses satis�ed, although both of the free variables x

4

and x

5

are newbies.

[Indeed, the absene of free partiipants means that the �xed-true literals form

an autarky. If TSIZE(l) is nonzero for any free literal l, some lause is unsatis�ed.

Otherwise all lauses are satis�ed unless some free l has an un�xed literal l

0

2 BIMP(l).℄

153. Make the CAND array into a heap, with an element x of least rating r(x) at the top

(see Setion 5.2.3). Then, while C > C

max

, delete the top of the heap (namely CAND[0℄).

154. The hild��!parent relations in the subforest will be d��!��!a, b��!a, ���!

�

d,

and either �a��!

�

b or �a��!�. Here's one suitable sequene, using the latter:

preorder

�

b a b d

�

d � �a

2�postorder 2 10 4 8 6 16 14 12

155. First onstrut the dependeny graph on the 2C andidate literals, by extrating

a subset of ars from the BIMP tables. (This omputation needn't be exat, beause

we're only alulating heuristis; an upper bound an be plaed on the number of ars

onsidered, so that we don't spend too muh time here. However, it is important to

have the ar u��!v if and only if �v��! �u is also present.)

Then apply Tarjan's algorithm [see Setion 7.4.1, or SGB pages 512{519℄. If a

strong omponent ontains both l and

�

l for some l, terminate with a ontradition.

Otherwise, if a strong omponent ontains more than one literal, hoose a representa-

tive l with maximum h(l); the other literals of that omponent regard l as their parent.

Be areful to ensure that l is a representative if and only if

�

l is also a representative.

The result will be a sequene of andidate literals l

1

l

2

: : : l

S

in topologial order,

with l

i

��! l

j

only if i > j. Compute the \height" of eah l

j

, namely the length of the

longest path from l

j

to a sink. Then every literal of height h > 0 has a predeessor

of height h� 1, and we let one suh predeessor be its parent in the subforest. Every

literal of height 0 (a sink) has a null parent. Traversal of this subforest in double order

(exerise 2.3.1{18) now makes it easy to build the LL table in preorder while �lling the

LO table in postorder.

156. If

�

l doesn't appear in any lause of F , then A = flg is learly an autarky.

157. Well, any satisfying assignment is an autarky. But more to the point is the

autarky f1; 2g for F = f1

�

23;

�

124;

�

3

�

4g.

158. BIMP(l) and TIMP(l) will be empty, so w will be zero when Algorithm X looks

ahead on l. Thus l will be fored true, at depth d = 0. (But pure literals that arise

in subproblems for d > 0 won't be deteted unless they're among the preseleted

andidates.)

159. (a) False (onsider A = f1g, F = f1; 2;

�

12g); but true if we assume that F jA is

omputed as a multiset (so that F jA would be f2; 2g 6� F in that example).

(b) True: Suppose A = A

0

[A

00

, A

0

\ A

00

= ;, and A

00

or A

00

touhes C 2 F jA

0

.

Then C \A

0

= ; and C [C

0

2 F , where C

0

� A

0

. Sine A or A touhes C [C

0

, some

a 2 C [C

0

is in A; hene a 2 A

00

.

160. (a) If the gray lauses are satis�able, let all blak literals be true. [Notie,

inidentally, that the suggested example oloring works like a harm in (7).℄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 215

Hirsh

onditional autarky

lookahead autarky lauses, see blak and blue

Tseytin

extended resolution

Jeanniot

Oxuso�

Rauzy

Kullmann

bloked lauses

tautologies

resolved

bloking digraph

pure literal

dependeny digraph

strong omponent

reurrene relations

Fibonai numbers

Monien

Spekenmeyer

autarky

Bulnes

(b) Given any set A of stritly distint literals, olor l blak if l 2 A, white if

�

l 2 A, otherwise gray. Then A is an autarky if and only if ondition (a) holds.

[E. A. Hirsh, Journal of Automated Reasoning 24 (2000), 397{420.℄

161. (a) If F

0

is satis�able, so is F . If F is satis�able with at least one blue literal false,

so is F

0

. If F is satis�able with all the blue literals true, make all the blak literals true

(but keep gray literals unhanged). Then F

0

is satis�ed, beause every lause of F

0

that

ontains a blak or blue literal is true, hene every lause that ontains a white literal

is true; the remaining lauses, whose literals are only orange and gray, eah ontain at

least one true gray literal. [The blak-and-blue ondition is equivalent to saying that

A is a onditional autarky, namely an autarky of F jL. Tseytin's notion of \extended

resolution" is a speial ase, beause the literals of A and L need not appear in F . See

S. Jeanniot, L. Oxuso�, and A. Rauzy, Revue d'intelligene arti�ielle 2 (1988), 41{60,

Setion 6; O. Kullmann, Theoretial Comp. Si. 223 (1999), 1{72, Setions 3, 4, and 14.℄

(b) Without a�eting satis�ability, we are allowed to add or delete any lause

C = (a _

�

l

1

_ � � � _

�

l

q

) for whih all lauses ontaining �a also ontain l

1

or � � � or l

q

.

(Suh a lause is said to be \bloked" with respet to a, beause C produes nothing

but tautologies when it is resolved with lauses that ontain �a.)

() Without a�eting satis�ability, we are allowed to add or delete any or all of

the lauses (

�

l_a

1

), : : : , (

�

l_a

p

), if A is an autarky of F j l; that is, we an do this if A is

almost an autarky, in the sense that every lause that touhes A but not A ontains l.

(d) Without a�eting satis�ability, we are allowed to add or delete the lause

(

�

l _ a) whenever every lause that ontains �a also ontains l.

162. Construt a \bloking digraph" with l

0

,! l when every lause that ontains

literal

�

l also ontains l

0

. (If l is a pure literal, we'll have l

0

,! l for all l

0

; this ase an

be handled separately. Otherwise all in-degrees will be less than k in a kSAT problem,

and the bloking digraph an be onstruted in O(k

2

m) steps if there are m lauses.)

(a) Then (l _ l

0

) is a bloked binary lause if and only if

�

l ,! l

0

or

�

l

0

,! l. (Hene

we're allowed in suh ases to add both

�

l��! l

0

and

�

l

0

��! l to the dependeny digraph.)

(b) Also A = fa; a

0

g is an autarky if and only if a ,! a

0

,! a. (Moreover, any

strong omponent fa

1

; : : : ; a

t

g with t > 1 is an autarky of size t.)

163. Consider the reurrene relations T

n

= 1 + max(T

n�1

; T

n�2

; 2U

n�1

), U

n

= 1 +

max(T

n�1

; T

n�2

; U

n�1

+V

n�1

), V

n

= 1+U

n�1

for n > 0, with T

�1

= T

0

= U

0

= V

0

= 0.

We an prove that T

n

, U

n

, V

n

are upper bounds on the step ounts, where U

n

refers to

ases where F is known to have a nonternary lause, and V

n

refers to ases when s = 1

and R2 was entered from R3: The terms T

n�1

and T

n�2

represent autarky redutions

in step R2; otherwise the reursive all in R3 osts U

n�1

, not T

n�1

, beause at least one

lause ontains

�

l

s

. We also have V

n

= 1 + U

n�1

, not 1 + T

n�1

, beause the preeding

step R3 either had a lause ontaining l

2

not l

1

or a lause ontaining

�

l

1

not

�

l

2

.

Fibonai numbers provide the solution: T

n

= 2F

n+2

�3+[n=0℄, U

n

= F

n+3

�2,

V

n

= F

n+2

�1. [Algorithm R is a simpli�ation of a proedure devised by B. Monien and

E. Spekenmeyer, Disrete Applied Mathematis 10 (1985), 287{295, who introdued

the term \autarky" in that paper. A Stanford student, Juan Bulnes, had disovered

a Fibonai-bounded algorithm for 3SAT already in 1976; his method was, however,

unattrative, beause it also required
(�

n

) spae.℄

164. If k < 3, T

n

= n is an upper bound; so we may assume that k � 3. Let

U

n

= 1 + max(T

n�1

; T

n�2

; U

n�1

+ V

n�1;1

; : : : ; U

n�1

+ V

n�1;k�2

), V

n;1

= 1 + U

n�1

,

and V

n;s

= 1 + max(U

n�1

; T

n�2

; U

n�1

+ V

n�1;s�1

) for s > 1, where V

n;s

refers to an

entry at R2 from R3. The use of U

n�1

in the formula for V

n;s

is justi�ed, beause the

September 23, 2015

216 ANSWERS TO EXERCISES 7.2.2.2

Tribonai numbers

Horn lauses

ore

Kullmann

Marek

Truszzy�nski

blak and blue priniple

author

truth degree

VAL

invariant relation

marh

onvex

Newton's method

previous R3 either had a lause ontaining l

s+1

not l

s

or one ontaining

�

l

s

not

�

l

s+1

. One

an show by indution that V

n;s

= s+U

n�1

+ � � �+U

n�s

, U

n

= V

n;k�1

; and T

n

= U

n

+

U

n�k

+1 = 2U

n�1

+1 if n � k. For example, the running time when k = 4 is bounded by

Tribonai numbers, whose growth rate 1:83929

n

omes from the root of x

3

= x

2

+x+1.

165. Clause

�

1

�

3

�

4 in the example tells us that 1; 3; 4 =2 A. Then 13

�

6 implies 6 =2 A. But

A = f2; 5g works, so it is maximum. There always is a maximum (not just maximal)

positive autarky, beause the union of positive autarkies is a positive autarky.

Eah lause (v

1

_ � � � _ v

s

_ �v

s+1

_ � � � _ �v

s+t

) of F , where the v's are positive, tells

us that v

1

=2 A and � � � and v

s

=2 A implies v

s+j

=2 A, for 1 � j � t. Thus it essentially

generates t Horn lauses, whose ore is the set of all positive literals not in any positive

autarky. A simple variant of Algorithm 7.1.1C will �nd this ore in linear time; namely,

we an modify steps C1 and C5 in order to get t Horn lauses from a single lause of F .

[By omplementing a subset of variables, and prohibiting another subset, we an

�nd the largest autarky A ontained in any given set of stritly distint literals. This ex-

erise is due to unpublished work of O. Kullmann, V. W. Marek, and M. Truszzy�nski.℄

166. Assume �rst that PARENT(l

0

) = �, so that H(l

0

) = 0 at the beginning of X9

(see X6). Sine l

0

= LL[j℄ is not �xed in ontext T , we have R

F

= l

0

by (62).

And A = fR

F

; R

F+1

; : : : ; R

E�1

g is an autarky, beause no lause touhed by A or A

is entirely false or ontains two un�xed literals. Thus we're allowed to fore l

0

true

(whih is what \do step X12 with l l

0

" means).

On the other hand if w = 0 and PARENT(l

0

) = p, so that H(l

0

) = H(p) > 0 in X6,

the set A = fR

F

; : : : ; R

E�1

g is an autarky with respet to the lauses of F jp. Hene

the additional lause (l

0

_ �p) doesn't make the lauses any less satis�able, by the blak

and blue priniple. (Notie that (

�

l

0

_ p) is already a known lause; so in this ase l

0

is

essentially being made equal to its parent.)

[The author's implementation therefore goes further and inludes the step

VAL[jl

0

j℄ VAL[jpj℄ � ((l

0

� p) & 1); (�)

whih promotes the truth degree of l

0

to that of p. This step violates the invariant

relation (71), but Algorithm X doesn't rely on (71).℄

167. If a literal l is �xed in ontext T during the lookahead, it is implied by l

0

. In

step X11 we have a ase where l is also implied by

�

l

0

; hene we're allowed to fore its

truth, if l isn't already proto true. In step X6,

�

l

0

is implied by l

0

, so l

0

must be false.

168. The following method works well in marh: Terminate happily if F = n. (At

this point in Algorithm L, F is the number of �xed variables, all of whih are really

true or really false.) Otherwise �nd l 2 fLL[0℄; : : : ; LL[S � 1℄g with lmod 2 = 0

and maximum (H(l) + :1)(H(l+1) + :1). If l is �xed, set l 0. (In that ase,

Algorithm X found at least one fored literal, although U is now zero; we want to do

another lookahead before branhing again.) Otherwise, if H(l) > H(l+1), set l l+1.

(A subproblem that is less redued will tend to be more satis�able.)

169. When a and b are positive, the funtion f(x) = e

�ax

+ e

�bx

� 1 is onvex and

dereasing, and it has the unique root ln � (a; b). Newton's method for solving this

equation re�nes an approximation x by omputing x

0

= x + f(x)=(ae

�ax

+ be

�bx

).

Notie that x is less than the root if and only if f(x) > 0; furthermore f(x) > 0 implies

f(x

0

) > 0, beause f(x

0

) > f(x)+(x

0

�x)f

0

(x) when f is onvex. In partiular we have

f(1=(a + b)) > 0, beause f(0) = 1 and 0

0

= 1=(a + b), and we an proeed as follows:

K1. [Initialize.℄ Set j k 1, x 1=(a

1

+ b

1

).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 217

oating point

Tarjan

autarkies

invariant

windfall

undone

K2. [Done?℄ (At this point (a

j

; b

j

) is the best of (a

1

; b

1

), : : : , (a

k

; b

k

), and e

�a

j

x

+

e

�b

j

x

� 1.) Terminate if k = s. Otherwise set k k + 1, x

0

 1=(a

k

+ b

k

).

K3. [Find �, �.℄ If x

0

< x, swap j $ k and x $ x

0

. Then set � e

�a

j

x

0

and

� e

�b

j

x

0

. Go to K2 if �+ � � 1.

K4. [Newtonize.℄ Set x x

0

+(�+��1)=(a

j

�+b

j

�), �

0

 e

�a

k

x

0

, �

0

 e

�b

k

x

0

,

x

0

 x

0

+ (�

0

+ �

0

� 1)=(a

k

�

0

+ b

k

�

0

), and return to K3.

(The oating point alulations should satisfy e

u

� e

v

and u+w � v+w when u < v.)

170. If the problem is unsatis�able, Tarjan's algorithm disovers l and

�

l in the same

strong omponent. If it's satis�able, Algorithm X �nds autarkies (beause w is always

zero), thus foring the value of all literals at depth 0.

171. It prevents double-looking on the same literal twie at the same searh tree node.

172. When Algorithm Y onludes normally, we'll have T = BASE+LO[j℄, even though

BASE has hanged. This relation is assumed to be invariant in Algorithm X.

173. The run reported in the text, using nonoptimized parameters (see exerise 513),

did 29,194,670 double-looks (that is, exeutions of step Y2), and exited 23,245,231

times to X13 in step Y8 (thus suessfully foring l

0

false in about 80% of those ases).

Disabling Algorithm Y (i) inreased the running time from 0.68 teramems to 1.13

teramems, with 24.3 million nodes. Disabling wraparound (ii) inreased the time to 0.85

teramems, with 13.3 million nodes. Setting Y = 1, whih disabled wraparound only in

Algorithm Y, yielded 0.72 teramems, 11.3 meganodes. (Inidentally, the loops of Algo-

rithm X wrapped around 40% of the time in the regular run, with a mean of 0.62 and

maximum of 12; those of Algorithm Y had 20% wraparound, with a mean of 0.25; the

maximum Y = 8 was reahed only 28 times.) Disabling the lookahead forest (iii) gave

surprisingly good results: 0.70 teramems, 8.5 meganodes; there were fewer nodes [hene

a more disriminating lookahead℄, but more time spent per node beause of dupliated

e�ort, although strong omponents were not omputed. (Strutured problems that

have numerous binary lauses tend to generate more helpful forests than random 3SAT

problems do.) Disabling ompensation resolvents (iv) made very little di�erene: 0.70

teramems, 9.9 meganodes. But disabling windfalls (v) raised the ost to 0.89 teramems

and 13.5 meganodes. And branhing on a random l 2 LL (vi) made the running

time soar to 40.20 teramems, with 594.7 meganodes. Finally, disabling Algorithm X

altogether (vii) was a disaster, leading to an estimated run time of well over 10

20

mems.

The weaker heuristis of exerise 175 yield 3.09 teramems and 35.9 meganodes.

174. Setting Y to a huge value suh as PT will never get to step Y2. (But for (ii), (iii),

: : : , (vii) one must hange the programs, not the parameters as they stand.)

175. Preompute the weights, by setting K

2

= 1 and K

s

 K

s�1

+ :01, for s between

3 and the maximum lause size. (The extra .01 keeps this from being zero.) The third

line of (72) must hange to \take aount of for all in KINX(L)," where that means

\set s CSIZE() � 1; if s � 2, set CSIZE() s and w w +K

s

; otherwise if all

literals of are �xed false, set a ag; otherwise if some literal u of isn't �xed (there

will be just one), put it on a temporary stak." Before performing the last line of (72),

go to CONFLICT if the ag is set; otherwise, for eah un�xed u on the temporary stak,

setW

i

 u and i i+1 and perform (62) with l u; go to CONFLICT if some u on the

temporary stak is �xed false. (A \windfall" in this more general setting is a lause for

whih all but one literal has been �xed false as a onsequene of l

0

being �xed true.)

Of ourse those hanges to CSIZE need to be undone; a simulated false literal that

has been \virtually" removed from a lause must be virtually put bak. Fortunately,

September 23, 2015

218 ANSWERS TO EXERCISES 7.2.2.2

Kullmann

odd permutation

Isaas

Grinberg

transition matrix

trae of a matrix: The sum of its diagonal elements

kernels

kernels

omparison of SAT solvers

the invariant relation (71) makes this task fairly easy: We set G F in step X5, and

insert the following restoration loop at the very beginning of (72): \While G > F , set

u R

G�1

; stop if u is �xed in ontext T ; otherwise set G G � 1, and inrease

CSIZE() by 1 for all 2 KINX(�u)." The restoration loop should also be performed,

with T NT, just before terminating Algorithm X in steps X7 or X13.

[The additional step (�) in answer 166 an't be used, beause (71) is now ruial.℄

Algorithm Y should hange in essentially the same way as Algorithm X.

[See O. Kullmann, Report CSR 23-2002 (Swansea: Univ. of Wales, 2002), x4.2.℄

176. (a) a

j

��� a

j+1

, a

j

��� b

j

, a

j

��� b

j+1

, b

j

���

j

, b

j

��� d

j

,

j

��� d

j

,

j

��� e

j

,

d

j

���f

j

, e

j

���d

j+1

, e

j

���f

j+1

, f

j

���

j+1

, f

j

���e

j+1

.

(b) Let (t

j

; u

j

; v

j

; w

j

; a

j

; b

j

;

j

; d

j

; e

j

; f

j

) have olors (1; 2; 1; 1; 1; 2; 1; 3; 3; 2) when

j is even, (2; 1; 2; 2; 3; 2; 3; 1; 1; 2) when j is odd. The lower bounds are obvious.

() Verties a

j

, e

j

, f

j

an't all have the same olor, beause b

j

,

j

, d

j

have distint

olors. Let �

j

denote the olors of a

j

e

j

f

j

. Then �

j

= 112 implies �

j+1

= 332 or 233;

�

j

= 121 implies �

j+1

= 233 or 323; �

j

= 211 implies �

j+1

= 323 or 332; �

j

= 123

implies �

j+1

= 213 or 321. Sine �

1

= �

q+1

, the olors of �

1

must be distint, and we

an assume that �

1

= 123. But then �

j

will be an odd permutation whenever j is even.

[See Rufus Isaas, AMM 82 (1975), 233{234. Unpublished notes of E. Grinberg

show that he had independently investigated the graph J

5

in 1972.℄

177. There are 20 independent subsets of V

j

= fa

j

; b

j

;

j

; d

j

; e

j

; f

j

g when q > 1; eight

of them ontain none of fb

j

;

j

; d

j

g while four ontain b

j

. Let A be a 20� 20 transition

matrix, whih indiates when R[C is independent for eah independent subset R � V

j

and C � V

j+1

. Then I

q

is trae(A

q

); and the �rst eight values are 8, 126, 1052,

11170, 112828, 1159416, 11869768, 121668290. The harateristi polynomial of A,

x

12

(x

2

� 2x� 1)(x

2

+ 2x� 1)(x

4

� 8x

3

� 25x

2

+ 20x+ 1), has nonzero roots �1�

p

2

and � �2:91, �0:05, +0:71, +10:25; hene I

q

= �(r

q

), where r � 10:24811166 is the

dominant root. Note: The number of kernels of L(J

q

) is respetively 2, 32, 140, 536,

2957, 14336, 70093, 348872, for 1 � q � 8, and its growth rate is � 4:93

q

.

178. With the �rst ordering, the top 18k levels of the searh tree essentially represent

all of the ways to 3-olor the subgraph fa

j

; b

j

;

j

; d

j

; e

j

; f

j

j 1 � j � kg; and there are

�(2

k

) ways to do that, by answer 176. But with the seond ordering, the top 6kq levels

essentially represent all of the independent sets of the graph; and there are
(10:2

k

) of

those, by answer 177.

Empirially, Algorithm B needs respetively 1.54 megamems, 1.57 gigamems, and

1.61 teramems to prove unsatis�ability when q = 9, 19, and 29, using the �rst ordering;

but it needs 158 gigamems already for q = 5 with the seond! Additional lauses, whih

require olor lasses to be kernels (see answer 14), redue that time to 492 megamems.

Algorithm D does badly on this sequene of problems: When q = 19, it onsumes

37.6 gigamems, even with the \good" ordering. And when q = 29, its yli method

of working somehow transforms the good ordering into a bad ordering on many of the

variables at depths 200 or more. It shows no sign of being anywhere near ompletion

even after spending a petamem on that problem!

Algorithm L, whih is insensitive to the ordering, needs 2.42 megamems, 2.01

gigamems, and 1.73 teramems when q = 9, 19, and 29. Thus it appears to take �(2

q

)

steps, and to be slightly slower than Algorithm B as q grows, although exerise 232

shows that a lairvoyant lookahead proedure ould theoretially do muh better.

Algorithm C triumphs here, as shown in Fig. 49.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 219

exat over

sifting

baktraking

generating funtion

BDD base

symmetri Boolean funtions

mux

if-then-else, see mux

uniquely

Aldous

179. This is a straightforward exat over problem. If we lassify the solutions aord-

ing to how many asterisks our in eah oordinate, it turns out that exatly (10, 240,

180, 360, 720, 480, 1440, 270, 200, 480) of them are respetively of type (00088, 00268,

00448, 00466, 02248, 02266, 02446, 04444, 22228, 22246).

By omplementation, we see that 4380 hoies of 8 lauses are unsatis�able; hene

q

8

= 1� 4380=

�

80

8

�

= 1� 4380=28987537150 � 0:9999998.

180. With N variables y

j

, one for eah possible lause C

j

, the funtion f(y

1

; : : : ; y

N

) =

[

V

fC

j

j y

j

= 1g is satis�able℄ is

W

x

f

x

(y), where f

x

(y) = [x satis�es

V

fC

j

j y

j

= 1g℄

is simply

V

f�y

j

j x makes C

j

falseg. For instane if k = 2 and n = 3, and if C

1

, C

7

, C

11

are the lauses (x

1

_ x

2

), (x

1

_ �x

3

), (x

2

_ �x

3

), then f

001

(y

1

; : : : ; y

12

) = �y

1

^ �y

7

^ �y

11

.

Eah funtion f

x

has a very simple BDD, but of ourse the OR of 2

n

of them will

not be simple. This problem is an exellent example where no natural ordering of the

lause variables is evident, but the method of sifting is able to redue the BDD size

substantially. In fat, the lauses for k = 3 and n = 4 an be ordered leverly so that

the orresponding 32-variable BDD for satis�ability has only 1362 nodes! The author's

best result for k = 3 and n = 5, however, was a BDD of size 2,155,458. The oeÆients

of its generating funtion (exerise 7.1.4{25) are the desired numbers Q

m

.

The largest suh ount, Q

35

= 3,449,494,339,791,376,514,416, is so enormous that

we ould not hope to enumerate the relevant sets of 35 lauses by baktraking.

181. The previous exerise essentially omputed the generating funtion

P

m

Q

m

z

m

;

now we want the double generating funtion

P

l;m

T

l;m

w

l

z

m

, where T

l;m

is the number

of ways to hoose m di�erent k-lauses in suh a way that these lauses are satis�ed by

exatly l vetors x

1

: : : x

n

. To do this, instead of taking the OR of the simple funtions

f

x

, we ompute the BDD base that ontains all of the symmetri Boolean funtions

S

l

(f

0:::0

; : : : ; f

1:::1

) for 0 � l � 2

n

, as follows (see exerise 7.1.4{49): Consider the

subsript x to be a binary integer, so that the funtions are f

x

for 0 � x < 2

n

. Start

with S

l

= 0 for �1 � l � 2

n

, exept that S

0

= 1. Then do the following for x = 0, : : : ,

2

n

� 1 (in that order): Set S

l

= f

x

?S

l�1

:S

l

for l = x+ 1, : : : , 0 (in that order).

After this omputation, the generating funtion for S

l

will be

P

m

T

l;m

z

m

. In

the author's experiments, the sifting algorithm found an ordering of the 80 lauses for

k = 3 and n = 5 so that only about 6 million nodes were needed when x had reahed

24; afterwards, however, sifting took too long, so it was turned o�. The �nal BDD base

had approximately 87 million nodes, with many nodes shared between the individual

funtions S

l

. The total running time was about 22 gigamems.

182. T

0

= 32 and T

1

= 28 and T

m

= 0 for 71 � m � 80. Otherwise minT

m

< maxT

m

.

183. Let t

m

= Pr(T

m

= 1), and suppose that we obtain lauses one by one until

reahing an unsatis�able set. The fat that t

m

gets reasonably large suggests that we

probably have aumulated a uniquely satis�able set just before stopping. (That proba-

bility is 2

�k

N

P

m

t

m

=(N�m), whih turns out to be � 0:8853 when k = 3 and n = 5.)

However, exept for the fat that both Figs. 42 and 43 are bell-shaped urves with

roughly the same tendeny to be relatively large or small at partiular values of m,

there is apparently no strong mathematial onnetion. The probabilities in Fig. 43

sum to 1; but the sum of probabilities in Fig. 42 has no obvious signi�ane.

When n is large, uniquely satis�able sets are enountered only rarely. The �nal

set before stopping a.s. has at most f(n) solutions, for ertain funtions f ; but how

fast does the smallest suh f grow? [See D. J. Aldous, J. Theoretial Probability 4

(1991), 197{211, for related ideas.℄

September 23, 2015

220 ANSWERS TO EXERCISES 7.2.2.2

set partitions

Stirling subset numbers

oupon olletor's test

autosifting

sifting

symmetri Boolean funtions

symmetri threshold funtions

truth table

Boolean funtions in kCNF

BDD

Bollob�as

184. The probability q̂

m

is

b

Q

m

=N

m

, where

b

Q

m

ounts the hoies (C

1

; : : : ; C

m

) for

whih C

1

^ � � � ^ C

m

is satis�able. The number of suh hoies that involve t distint

lauses is t!

�

m

t

	

times Q

t

, beause

�

m

t

	

enumerates set partitions; see Eq. 3.3.2{(5).

185. q̂

m

=

P

N

t=0

�

m

t

	

t! q

t

�

N

t

�

=N

m

� q

m

P

N

t=0

�

m

t

	

t!

�

N

t

�

=N

m

= q

m

.

186.

P

m

P

t

�

m

t

	

t! q

t

�

N

t

�

N

�m

an be summed onm, sine

P

m

�

m

t

	

N

�m

= 1=(N�1)

t

by Eq. 1.2.9{(28). Similarly, the derivative of 1.2.9{(28) shows that

P

m

m

�

m

t

	

N

�m

=

(N=(N � 1) + � � �+N=(N � t))=(N � 1)

t

.

187. In this speial ase, q

m

= [0�m<N ℄ and p

m

= [m=N ℄; hene S

n;n

= N = 2

n

(and the variane is zero). By (78), we also have

b

S

n;n

= NH

N

; indeed, the oupon

olletor's test (exerise 3.3.2{8) is an equivalent way to view this situation.

188. Now q

m

= 2

m

n

m

=(2n)

m

. It follows by (78) that

b

S

1;n

=

P

n

m=0

2

m

n

m

=(2n� 1)

m

,

beause N = 2n. The identity 2

m

n

m

=(2n�1)

m

= 2q

m

�q

m+1

yields the surprising fat

that

b

S

1;n

= (2q

0

�q

1

)+(2q

1

�q

2

)+� � � = 1+S

1;n

; and we also have

b

S

1;n

�1 =

2n

2n�1

S

1;n�1

.

Hene, by indution, we obtain the (even more surprising) losed forms

S

1;n

= 4

n

. �

2n

n

�

;

b

S

1;n

= 4

n

. �

2n

n

�

+ 1:

So random 1SAT problems beome unsatis�able after

p

�n+O(1) lauses, on average.

189. With the autosifting method in the author's experimental BDD implementation,

the number of BDD nodes, given a sequene of m distint lauses when k = 3 and

n = 50, inreased past 1000 when m inreased from 1 to about 30, and it tended to

peak at about 500,000 when m was slightly more than 100. Then the typial BDD size

fell to about 50,000 when m = 150, and to only about 500 when m = 200.

BDD methods break down when n is too large, but when they apply we an ount

the total number of solutions remaining after m steps. In the author's tests with k = 3,

n = 50, and m = 200, this number varied from about 25 to about 2000.

190. For example, S

1

(x

1

; : : : ; x

n

) an't be expressed in (n � 1)CNF: All lauses of

length n� 1 that are implied by S

1

(x

1

; : : : ; x

n

) are also implied by S

�1

(x

1

; : : : ; x

n

).

191. Let f(x

0

; : : : ; x

2

n

�1

) = 1 if and only if x

0

: : : x

2

n

�1

is the truth table of a Boolean

funtion of n variables that is expressible in kCNF. This funtion f is the onjuntion

of 2

n

onstraints (t), for 0 � t = (t

0

: : : t

2

n

�1

)

2

< 2

n

, where (t) is the following

ondition: If x

t

= 0, then

W

fx

y

j 0 � y < 2

n

; (y � t) &m = 0g is 0 for some n-bit

pattern m that has �m = k. By ombining these onstraints we an ompute the BDD

for f when n = 4 and k = 3; it has 880 nodes, and 43,146 solutions.

Similarly we have the following results, analogous to those in Setion 7.1.1:

n=0 n=1 n=2 n=3 n=4 n=5 n=6

1CNF 2 4 10 28 82 244 730

2CNF 2 4 16 166 4,170 224,716 24,445,368

3CNF 2 4 16 256 43,146 120,510,132 4,977,694,100,656

And if we onsider equivalene under omplementation and permutation, the ounts are:

1CNF 2 3 4 5 6 7 8

2CNF 2 3 6 14 45 196 1,360

3CNF 2 3 6 22 253 37,098 109,873,815

192. (a) S(p) =

P

N

m=0

p

m

(1� p)

N�m

Q

m

. (b) We have

R

N

0

(t=N)

m

(1� t=N)

N�m

dt =

NB(m + 1; N � m + 1) =

N

N+1

/

�

N

m

�

, by exerises 1.2.6{40 and 41; hene S

k;n

=

N

N+1

P

N

m=0

q

m

=

N

N+1

S

k;n

. [See B. Bollob�as, Random Graphs (1985), Theorem II.4.℄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 221

Ahlioptas

Peres

seond moment priniple

overing assignments

Coja-Oghlan

Panagiotou

inlusion and exlusion

Chebyshev's inequality

Stirling's approximation

balls and urns

urns and balls

Wilson

threshold phenomena

194. A similar question, about proofs of unsatis�ability when � > lim sup

n!1

S

3;n

=n,

is also wide open.

195. EX = 2

n

Pr(0 : : : 0 satis�es all) = 2

n

(1� 2

�k

)

m

= exp(n ln 2 +m ln(1� 2

�k

)) <

2 exp(�2

�k�1

n ln 2). Thus S

k

(b(2

k

ln 2)n; n) = Pr(X > 0) � exp(�
(n)). [Disrete

Applied Math. 5 (1983), 77{87. Conversely, in J. Amer. Math. So. 17 (2004), 947{973,

D. Ahlioptas and Y. Peres use the seond moment priniple to show that (2

k

ln 2 �

O(k))n random kSAT lauses are almost always satis�able by vetors x with �x � n=2.

Careful study of \overing assignments" (see exerise 364) leads to the sharp bounds

2

k

ln 2�

1+ ln 2

2

�O(2

�

k

3

) � lim inf

n!1

�

k

(n) � lim sup

n!1

�

k

(n) � 2

k

ln 2�

1+ ln 2

2

+O(2

�

k

3

);

see A. Coja-Oghlan and K. Panagiotou, arXiv:1310.2728 [math.CO℄ (2013), 48 pages.℄

196. The probability is ((n � t)

k

=n

k

)

�n+O(1)

= e

�kt�

(1 + O(1=n)) that �n + O(1)

random kSAT lauses omit t given letters. Let p = 1� (1� e

�k�

)

k

. By inlusion and

exlusion, the �rst lause will be easy with probability p(1+O(1=n)), and the �rst two

will both be easy with probability p

2

(1+O(1=n)). Thus if X =

P

m

j=1

[lause j is easy℄,

we have EX = pm+O(1) and EX

2

= p

2

m

2

+O(m). Hene, by Chebyshev's inequality,

Pr(jX � pmj � r

p

m) = O(1=r

2

).

197. By Stirling's approximation, ln q(a; b; A;B; n) = nf(a; b; A;B) + g(a; b; A;B) �

1

2

ln 2�n � (Æ

an

� Æ

(a+b)n

) � (Æ

bn

� Æ

(b+B)n

) � (Æ

An

� Æ

(a+A)n

) � (Æ

Bn

� Æ

(A+B)n

) �

Æ

(a+b+A+B)n

, where Æ

n

is positive and dereasing. And we must have f(a; b; A;B) � 0,

sine q(a; b; A;B; n) � 1. The O estimate is uniform when 0 < Æ � a; b; A;B �M .

198. Consider one of the N

M

possible sequenes of M 3SAT lauses, where N = 8

�

n

3

�

and M = 5n. By exerise 196 it ontains g = 5(1 � (1 � e

�15

)

3

)n + O(n

3=4

) easy

lauses, exept with probability O(n

�1=2

). Those lauses, though rare, don't a�et the

satis�ability; and all

�

M

g

�

of the ways to insert them among the r = M � g others are

equally likely, so they tend to dampen the transition.

Let l � r be maximum so that the �rst l noneasy lauses are satis�able, and let

p(l; r; g;m) be the probability that, when drawing m balls from an urn that ontains g

green balls and r red balls, at most l balls are red. Then S

3

(m;n) =

P

p(l; r; g;m)=N

M

and S

3

(m

0

; n) =

P

p(l; r; g;m

0

)=N

M

, summed over all N

M

sequenes.

To omplete the proof we shall show that

p(l; r; g;m+ 1) = p(l; r; g;m)�O(n

�1=2

) when 3:5n < m < 4:5n;

hene S

3

(m+1; n) = S

3

(m;n)�O(n

�1=2

), S

3

(m;n)�S

3

(m

0

; n) = O((m

0

�m)n

�1=2

).

Notie that p(l; r; g;m) = p(l; r; g;m+1) when m < l or m > l+g ; thus we may assume

that l lies between 3:4n and 4:6n. Furthermore the di�erene

d

m

= p(l; r; g;m)� p(l; r; g;m+ 1) =

�

m

l

��

r+g�m�1

r�l�1

�

�

r+g

r

�

=

�

m

l

��

r+g�m

r�l

�

�

r+g

r

�

r � l

r + g �m

has a dereasing ratio d

m

=d

m�1

= (m=(m� l))((l+ g + 1�m)=(r + g �m)) when m

inreases from l to l+ g. So maxd

m

ours at m � l(r+ g)=r, where this ratio is � 1.

Now exerise 197 applies with a = l=n, b = �g=n, A = (r�l)=n, B = (1��)g=n, � = l=r.

[D. B. Wilson, in Random Strutures & Algorithms 21 (2002), 182{195, showed

that similar methods apply to many other threshold phenomena.℄

September 23, 2015

222 ANSWERS TO EXERCISES 7.2.2.2

inlusion and exlusion

seond moment priniple

199. (a) Given the required letters fa

1

; : : : ; a

t

g, there are m ways to plae the left-

most a

1

, then m� 1 ways to plae the leftmost a

2

, and so on; then there are at most

N ways to �ll in eah of the remaining m� t slots.

(b) By inlusion and exlusion: There are (N�k)

m

words that omit k of the letters.

() N

�m

P

k

�

t

k

�

(�1)

k

P

j

�

m

j

�

N

m�j

(�k)

j

=

P

j

�

m

j

�

(�1)

j+t

N

�j

A

j

, where A

j

=

P

k

�

t

k

�

(�1)

t�k

k

j

=

�

j

t

	

t! by Eq. 1.2.6{(53).

200. (a) The unsatis�able digraph must ontain a strong omponent with a path

�

l

t

��! l

1

��! � � � ��! l

t

��! l

t+1

��! � � � ��! l

l

=

�

l

t

;

where l

1

, : : : , l

t

are stritly distint. This path yields an s-snare (C; t; u) if we set s to

the smallest index suh that jl

s+1

j = jl

u

j for some u with 1 � u < s.

(b) No: (x_y)^ (�y_x)^ (�x_y) and (x_y)^ (�y_x)^ (�x_ �y) are both satis�able.

() Apply exerise 199(a) with t = s+1, N = 2n(n�1); note that m

s+1

� m

s+1

.

201. (a) Set (l

i

; l

i+1

) (x

1

; x

2

) or (�x

2

; �x

1

), where 0 � i < 2t (thus 4t ways).

(b) Set (l

i

; l

i+1

; l

i+2

) (x

1

; x

2

; x

3

) or (�x

3

; �x

2

; �x

1

), where 0 � i < 2t; also

(

�

l

1

; l

t

; l

t+1

) or (l

t�1

; l

t

;

�

l

2t�1

) (x

1

; x

2

; x

3

) or (�x

3

; �x

2

; �x

1

) (total 4t+ 4 ways, if t>2).

() (l

1

; l

t�1

; l

t

) or (

�

l

2t�1

;

�

l

t+1

;

�

l

t

) (x

1

; x

t�1

; x

t

) or (�x

t�1

; �x

1

; x

t

) (4 ways).

(d) l

i

or

�

l

2t�i

 x

i

or �x

t�i

, for 1� i� t (4 ways, if you understand this notation).

(e) By part (a), it is 2t� 4t = 8t

2

.

(f) Parts (b) and () ombine to give N(3; 2) = (2t + 2) � (4t + 4) + 2 � 4 =

8(t

2

+ 2t + 2) when t > 2. From part (d), N(t; t) = 8. Also N(2t � 1; 2t) = 8; this is

the number of snakes that speify the same 2t lauses. (Inidentally, when t = 5 the

generating funtion

P

q;r

N(q; r)w

q

z

r

is 1+200w

2

z

1

+(296w

3

+7688w

4

)z

2

+(440w

4

+

12800w

5

+55488w

6

)z

3

+(640w

5

+12592w

6

+66560w

7

+31104w

8

)z

4

+(8w

5

+736w

6

+

8960w

7

+ 32064w

8

+ 6528w

9

)z

5

+ (32w

6

+ 704w

7

+ 4904w

8

+ 4512w

9

)z

6

+ (48w

7

+

704w

8

+ 1232w

9

)z

7

+ (64w

8

+ 376w

9

)z

8

+ 80w

9

z

9

+ 8w

9

z

10

.)

(g) The other l's an be set in at most 2

2t�1�q

(n� q)

2t�1�q

= R=(2

q

n

q

) ways.

(h) We may assume that r < 2t. The r hosen lauses divide into onneted

omponents, whih are either paths or a \entral" omponent that ontains either

(�x

0

_ x

1

) and (�x

t�1

_ x

t

) or (�x

t

_ x

t+1

) and (�x

2t�1

_ x

0

). Thus q equals r plus the

number of omponents, minus 1 if the entral omponent inludes a yle. If the

entral omponent is present, we must set l

t

 x

t

or �x

t

, and there are at most 8 ways

to omplete the mapping of that omponent. And N(r; r) = 16(r+1�t) for t < r < 2t.

Cases with k > 0 paths an be hosen in at most

�

2t+2

2k

�

ways, beause we hoose

the starting and ending points, and they an be mapped in at most 2

k

k!

�

2t+2

2k

�

ways;

so they ontribute

P

k>0

O(t

4k

k=(k!

3

n

k

)) = O(t

4

=n) to (2n)

r

p

r

. The nonyli entral

omponents, whih an be hosen in �(t

4

) ways, also ontribute O(t

4

=n).

202. (a)m(m�1) : : : (m�r+1)=m

r

� (1�

�

r

2

�

=m); (2n(n�1)�r)

m�r

=(2n(n�1))

m�r

�

1� (m� r)r=(2n(n � 1)) when r � m < 2n(n � 1); and both fators are � 1.

(b) The term of (95) for r = 0 is 1 plus a negligible error. The ontribution of

O(t

4

=n) for r > 0 is O(n

4=5+1=6�1

), beause

P

r�0

(1 + n

�1=6

)

�r

= n

1=6

+ 1. And

the ontributions of (96) to (95) for r � t are exponentially small, beause in that

range we have (1+n

�1=6

)

�t

= exp(�t ln(1+n

�1=6

)) = exp(�
(n

1=30

)). Finally, then,

by the seond moment priniple MPR{(22), S

2

(bn + n

5=6

; n) � 1 � Pr(X > 0) �

1� (EX)

2

=(EX

2

) = 1� 1=((EX

2

)=(EX)

2

) = 1� 1=(1 +O(n

�1=30

)) = O(n

�1=30

).

203. (a) EX = d

n

EX(1; : : : ; 1), by symmetry; and EX(1; : : : ; 1) = (1� p)

m

, beause

eah set of q lauses is falsi�ed with probability p. So EX = exp((r ln(1�p)+1)n ln d)

is exponentially small when r ln(1� p) + 1 < 0; and we know that Pr(X > 0) � EX.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 223

Tovey(b) Let �

s

=

�

s

2

�

/

�

n

2

�

=

s(s�1)

n(n�1)

, and onsider a random onstraint set, given

that X(1; : : : ; 1) = 1. With probability �

s

, both u and v have olor 1 and the

onstraint is known to be satis�ed. But with probability 1��

s

, it holds with probability

�

d

2

�2

q

�

/

�

d

2

�1

q

�

. Thus p

s

= (�

s

+ (1� �

s

)(d

2

� pd

2

� 1)=(d

2

� 1))

m

.

() We have Pr(X > 0) � d

n

(1�p)

m

=E(X jX(1; : : : ; 1) = 1), from the inequality

and symmetry; and the denominator is

P

n

s=0

�

n

s

�

(d � 1)

n�s

p

s

. We an replae p

s

by

the simpler value p

0

s

= (1 � p + ps

2

=n

2

)

m

, beause p

s

< (�

s

+ (1 � �

s

)(1 � p))

m

=

(1� p+ �

s

p)

m

< p

0

s

. And we an divide the simpli�ed sum by d

n

(1� p)

m

.

(d) We have

P

3n=d

s=0

t

s

= e

O(m=d

2

)

P

3n=d

s=0

�

n

s

�

(

1

d

)

s

(1 �

1

d

)

n�s

, beause s

2

=n

2

=

O(1=d

2

) when s � 3n=d. This sum is � 1 � (e

2

=27)

n=d

by exerise 1.2.10{22; and the

ruial assumption that � >

1

2

makes m=d

2

! 0.

(e) Transition between inrease and derease ours when x

s

� 1; and we have

x

s

=

n� s

s+ 1

1

d� 1

�

1 +

(2s+ 1)p

(1� p)n

2

+ ps

2

�

m

� exp

�

ln

1� �

�

+

�

2pr�

1� p+ p�

2

� 1

�

ln d

�

when s = �n. Let f(�) = 2pr�=(1 � p + p�

2

) � 1, and notie that f

0

(�) > 0 for

0 � � < 1 beause p �

1

2

. Furthermore our hoie of r makes f(

1

2

) < 0 < f(1).

Setting g(�) = f(�)= ln

�

1��

, we seek values of � with g(�) = 1= ln d. There are three

suh roots, beause g(1=N) � �f(0)= lnN � 1= lnN ; g(

1

2

� 1=N) � �f(

1

2

)N=4; and

g(1� 1=N) � f(1)= lnN .

(f) At the seond peak, where s = n� n=d

f(1)

, we have (see exerise 1.2.6{67)

t

s

<

�

ned

n� s

�

n�s

�

1

d

�

n

�

1 +

p

1� p

�

m

= exp((��+O(1=d

f(1)

))n ln d);

whih is exponentially small. And when s = 3n=d, t

s

< (

ne

sd

)

s

e

O(m=d

2

)

= O((e=3)

3n=d

)

is also exponentially small. Consequently

P

n

s=3n=d

t

s

is exponentially small.

[This derivation holds also when the random onstraints are k-ary instead of

binary, with q = pd

k

and � > 1=k. See J. Arti�ial Intelligene Res. 12 (2000), 93{103.℄

204. (a) If the original literals �x

j

that involve variable x

j

orrespond to �

1

X

i(1)

, : : : ,

�

p

X

i(p)

, with signs �

h

, add the lauses (��

h

X

i(h)

_�

h

+

X

i(h

+

)

) for 1 � h � p to enfore

onsisteny, where h

+

= 1+(hmod p). (This transformation, due to C. A. Tovey, works

even in degenerate ases. For example, if m = 1 and if the given lause is (x

1

_x

1

_ �x

2

),

the transformed lauses are (X

1

_X

2

_X

3

), (

�

X

1

_X

2

), (

�

X

2

_X

1

), (X

3

_

�

X

3

).)

(b) After F

0

= f�g, F

1

= F

0

t F

0

, F

2

= F

0

t F

1

, F

3

= F

0

t F

2

, F

4

= F

3

t F

0

3

,

F

5

= F

4

t F

00

4

, always putting the new variable into the four shortest possible lauses,

we get F

5

= f345, 2

�

34, 1

�

2

�

3,

�

1

�

2

�

3, 3

0

�

45, 2

0

�

3

0

�

4, 1

0

�

2

0

�

3

0

,

�

1

0

�

2

0

�

3

0

, 3

00

4

00

�

5, 2

00

�

3

00

4

00

, 1

00

�

2

00

�

3

00

,

�

1

00

�

2

00

�

3

00

, 3

000

�

4

00

�

5, 2

000

�

3

000

�

4

00

, 1

000

�

2

000

�

3

000

,

�

1

000

�

2

000

�

3

000

g.

() If we delete

�

1

�

2

�

3 from F

5

there are 288 solutions, namely 1^ 2^ 3^

�

4 ^

�

5^

0

^

(4

00

?

00

^

�

3

000

:

000

^

�

3

00

), where =

�

2 _

�

3.

(d) Add dm=2e disjoint lones of the 15 lauses of () to the 4m lauses of (a),

giving m + 15dm=2e 3-lauses and 3m 2-lauses that are satis�able only if all literals

loned from

�

1,

�

2, or

�

3 are false. Eah lone provides six suh false literals f

�

1;

�

1;

�

1;

�

2;

�

2;

�

3g

without using any variable �ve times. So we an stik those literals into the 2-lauses,

obtaining � 11:5m 3-lauses in N � 10:5m variables. (The new lauses have 288

dm=2e

times as many solutions as the original ones. Can the ratio N=m � 10:5 be lowered?)

205. Let F

0

= f�g, F

1

= F

0

t F

0

, F

2

= F

0

t F

1

, F

3

= F

0

t F

2

, F

4

= F

0

t F

3

,

F

5

= F

1

t F

4

, F

6

= F

0

t F

5

, F

7

= F

0

t F

6

, F

8

= F

4

t F

0

7

, F

9

= F

0

t F

8

, F

10

= F

7

t F

0

9

,

September 23, 2015

224 ANSWERS TO EXERCISES 7.2.2.2

St�r��brn�a

Hoory

Szeider

5SAT

resolution

Iwama

Takaki

marriage theorem

Berman

Karpinski

Sott

lopsidependeny graph

Gebauer

Szab�o

Tardos

F

11

= F

7

t F

0

10

, F

12

= F

0

t F

11

, F

13

= F

9

t F

00

12

, F

14

= F

10

t F

(3)

12

, F

15

= F

12

t F

(4)

14

,

F

16

= F

13

t F

(6)

14

, F

17

= F

14

t F

(7)

15

, F

18

= F

16

t F

(13)

17

. (Here `x

(3)

' stands for `x

000

',

et.) Then F

18

onsists of 257 unsatis�able 4-lauses in 234 variables.

(Is there a shorter solution? This problem was �rst solved by J. St�r��brn�a in her

M.S. thesis (Prague: Charles University, 1994), with 449 lauses. The t method was

introdued by S. Hoory and S. Szeider, Theoretial Computer Siene 337 (2005), 347{

359, who presented an unsatis�able 5SAT problem that uses eah variable at most 7

times. It's not known whether 7 an be dereased to 6 when every lause has size 5.)

206. Suppose F and F

0

are minimally unsatis�able, and delete a lause of F tF

0

that

arose from F

0

; then we an satisfy F t F

0

with x true.

Conversely, if FtF

0

is minimally unsatis�able, F and F

0

an't both be satis�able.

Suppose F is unsatis�able but F

0

is satis�ed by L

0

. Removing a lause of F t F

0

that arose from F

0

is satis�able only with x true; but then we an use L

0

to satisfy

F t F

0

. Hene F and F

0

are both unsatis�able. Finally, if F n C is unsatis�able, so is

(F t F

0

) n (C j �x), beause any solution would satisfy either F n C or F

0

.

207. The �ve lauses of C(x; y; z; a; b;) = fx�ab; y

�

b; z�a; ab; �a

�

b�g resolve to the single

lause xyz. Thus C(x; y; y; 1; 2; 3)[C(x; �y; �y; 4; 5; 6)[C(�x; z; z; 7; 8; 9)[C(�x; �z; �z; a; b;)

is a solution. [K. Iwama and K. Takaki, DIMACS 35 (1997), 315{333, noted that the

16 lauses f�x�y�zg [C(x; x; x; 1; 2; 3) [C(y; y; y; 4; 5; 6) [C(z; z; z; 7; 8; 9) involve eah

variable exatly four times, and proved that no set of twelve lauses does so.℄

208. Makem lones of all but one of the 20 lauses in answer 207, and put the other 3m

loned literals into the 3m binary lauses of answer 204(a). This gives 23m 3-lauses

in whih every literal ours twie, exept that the 3m literals

�

X

i

our only one.

To omplete the solution, we \pad" them with additional lauses that are always

satis�able. For example, we ould introdue 3m more variables u

i

, with new lauses

�

X

i

u

i

�u

i+1

for 1 � i � 3m and fu

0

3j

u

0

3j+1

u

0

3j+2

; �u

0

3j

�u

0

3j+1

�u

0

3j+2

g for 1 � j � m (treating

subsripts mod 3m), where u

0

i

denotes (i even? u

i

: �u

i

).

209. Sine the multiset of kt literals in any t lauses ontains at least t di�erent vari-

ables, the \marriage theorem" (Theorem 7.5.1M) implies that we an hoose a di�erent

variable in eah lause, easily satisfying it. [Disr. Applied Math. 8 (1984), 85{89.℄

210. [P. Berman, M. Karpinski, A. D. Sott, Eletroni Colloquium on Computational

Complexity (2003), TR22.℄ This answer uses the magi number " = Æ

7

� 1=58, where

Æ is the smallest root of Æ((1� Æ

7

)

6

+ (1� Æ

7

)

7

) = 1. We will assign random values to

eah variable so that Pr[all lauses are satis�ed℄ > 0.

Let �

j

= (1 � ")

j

=((1 � ")

j

+ (1 � ")

13�j

), and observe that �

j

� Æ(1 � ")

j

for

0 � j � 13. If variable x ours d

+

times and �x ours d

�

times, let x be true with

probability �

d

�

, false with probability 1� �

d

�

= �

13�d

�

� Æ(1� ")

13�d

�

� Æ(1� ")

d

+

.

Let bad(C) = [lause C is falsi�ed by the random assignment℄, and onstrut

the lopsidependeny graph for these events as in exerise 351. Then, if the literals

of C = (l

1

_ � � � _ l

7

) have ontrary appearanes in d

1

, : : : , d

7

other lauses, we have

Pr(bad(C)) � (Æ(1�")

d

1

) : : : (Æ(1�")

d

7

) = "(1�")

d

1

+���+d

7

� "(1�")

degree(C)

;

beause C has at most d

1

+ � � �+ d

7

neighbors. Theorem L, with parameter �

i

= " for

eah event bad(C), now tells us that Pr[all m lauses are satis�ed℄ � (1� ")

m

.

[See H. Gebauer, T. Szab�o, and G. Tardos, SODA 22 (2011), 664{674, for

asymptoti results that apply to kSAT as k!1.℄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 225

4-yles

exat over

3D mathing

sudoku

headers

Poisson probability

Frano

Jaquet

Knessl

Szpankowski

Goldberg

211. If m lauses in n variables are given, so that 3m = 4n, let N = 8n. Consider N

\olors" named jk or jk, where 1 � j � n and k is one of the four lauses that ontains

�x

j

. Let � be a permutation on the olors, onsisting of 4-yles that involve the same

variable, with the properties that (i) (jk)� = jk

0

for some k

0

and (ii) (jk)� = (jk)�.

There are 4n verties of K

N

named jk, having the respetive olor lists

L(jk; 1) = fjk; jkg; L(jk; 2) = fjk; (jk)�g; L(jk; 3) = fjk; (jk)�g:

The other 3m verties of K

N

are named a

k

, b

k

,

k

for eah lause k. If that lause is,

say, x

2

_ �x

5

_ x

6

, the olor lists are

L(a

k

; 1) = f2k; 5k; 6kg; L(b

k

; 1) = L(

k

; 1) = f2k; 2k; 5k; 5k; 6k; 6kg;

L(a

k

; 2) = f(2k)�g; L(b

k

; 2) = f(5k)�g; L(

k

; 2) = f(6k)�g;

L(a

k

; 3) = f(2k)�

2

; (2k)�g; L(b

k

; 3) = f(5k)�

2

; (5k)�g; L(

k

; 3) = f(6k)�

2

; (6k)�g:

Then K

N

K

3

is list-olorable if and only if the lauses are satis�able. (For example,

(jk; 1) is olored jk () ((jk)�; 1) is olored (jk)� () (a

k

; 1) is not olored jk.)

212. (a) Let x

ijk

= 1 if and only if X

ij

= k. [Note: Another equivalent problem is to

�nd an exat over of the rows f fPij;Rik;Cjkg j p

ij

= r

ik

=

jk

= 1g. This is a speial

ase of 3D mathing; see the disussion of sudoku in Setion 7.2.2.1. Inidentally, the

3D mathing problem an be formulated as the problem of �nding a binary tensor (x

ijk

)

suh that x

ijk

� y

ijk

and x

i��

= x

�j�

= x

��k

= 1, given (y

ijk

).℄

(b)

31

=

32

= r

13

= r

14

=0 fores x

13�

=0 6= p

13

when r= =

�

1100

0110

0011

1001

�

, p=

�

1010

1100

0101

0011

�

.

() Make L(I; J) = f1; : : : ; Ng for M < I � N , 1 � J � N . It is well known

(Theorem 7.5.1L) that a latin retangle an always be extended to a latin square.

(d) Index everything by the set f1; : : : ; Ng [

S

I;J

f(I; J;K) j K 2 L(I; J)g. The

elements (I; J;K) where K = minL(I; J) are alled headers. Set p

ij

= 1 if and only

if (i) i = j = (I; J;K) is not a header; or (ii) i = (I; J;K) is a header, and j = J or

j = (I; J; K

0

) is not a header; or (iii) j = (I; J;K) is a header, and i = I or i = (I; J;K

0

)

is not a header. Set r

ik

=

ik

= 1 if and only if (i) 1 � i; k � N ; or (ii) i = (I; J;K)

and k = (I; J;K

0

), and if i is not a header then (K

0

= K or K

0

is the largest element

< K in L(I; J)). [Referene: SICOMP 23 (1994), 170{184.℄

213. The hinted probability is (1� (1� p)

n

0

(1� q)

n�n

0

)

m

, where n

0

= b

1

+ � � � + b

n

.

Thus if p � q, every x has probability at least (1 � (1 � p)

n

)

m

of satisfying every

lause. This is huge, unless n is small or m is large: If m is less than �

n

, where

� is any onstant less than 1=(1 � p), then when n > �1= lg(1 � p) the probability

(1� (1� p)

n

)

m

> exp(�

n

ln(1� (1� p)

n

)) > exp(�2(�(1� p))

n

) > 1� 2(�(1� p))

n

is

exponentially lose to 1. Nobody needs a SAT solver for suh an easy problem.

Even if, say, p = q = k=(2n), so that the average lause size is k, a lause is

empty|hene unsatis�able|with probability e

�k

+O(n

�1

); and indeed a lause has

exatly r elements with the Poisson probability e

�k

k

r

=r! +O(n

�1

) for �xed r. So the

model isn't very relevant. [See J. Frano, Information Pro. Letters 23 (1986), 103{106.℄

214. (a) T (z) = ze

z

+ 2T (pz)(e

(1�p)z

� 1).

(b) If f(z) =

Q

1

m=1

(1 � e

(p�1)z=p

m

) and � (z) = f(z)T (z)e

�z

, we have � (z) =

zf(z) + 2� (pz) = zf(z) + 2pzf(pz) + 4p

2

zf(p

2

z) + � � � .

() See P. Jaquet, C. Knessl, and W. Szpankowski, Combinatoris, Probability,

and Computing 23 (2014), 829{841. [The sequene hT

n

i was �rst studied by A. T.

Goldberg, Courant Computer Siene Report 16 (1979), 48{49.℄

September 23, 2015

226 ANSWERS TO EXERCISES 7.2.2.2

Brown

Purdom

Bugrara

Stirling subset numbers

asymptoti

saddle point method

M�ejean

Morel

Reynaud

tautologial

generalization of resolution

215. Sine any given x

1

: : : x

l

is a partial solution in (8

�

n

3

�

�

�

l

3

�

)

m

of the (8

�

n

3

�

)

m

possible ases, level l ontains P

l

= 2

l

(1�

1

8

l

3

=n

3

)

m

nodes on the average. When m =

4n and n = 50, the largest levels are (P

31

; P

32

; : : : ; P

36

) � (6:4; 6:9; 7:2; 7:2; 6:8; 6:2) �

10

6

, and the mean total tree size P

0

+ � � �+ P

50

is about 85.6 million.

If l = 2tn andm = �n we have P

l

= 2

f(t)n

, where f(t) = 2t+� lg(1�t

3

)+O(1=n)

for 0 � t � 1=2. The maximum f(t) ours when ln 4 = 3�t

2

=(1 � t

3

), at whih point

t = t

�

= ��

1

2

�

4

+

5

8

�

7

+O(�

10

), where � =

p

ln 4=(3�); for example, t

4

� 0:334. Now

P

L+k

= 2

E

; E = (2t

�

+� lg(1�t

3

�

))n+1�2t

�

�

k

2

n

+O

�

1

n

�

+O

�

k

3

n

2

�

; =

�+t

�

ln 2

2�t

�

;

when L = 2t

�

n; hene the expeted total tree size is

p

�n=P

L

(1 +O(1=

p

n)).

[This question was �rst studied by C. A. Brown and P. W. Purdom, Jr., SICOMP

10 (1981), 583{593; K. M. Bugrara and C. A. Brown, Inf. Sienes 40 (1986), 21{37.℄

216. If the searh tree has q two-way branhes, it has fewer than 2nq nodes; we shall

�nd an upper bound on E q. Consider suh branhes after values have been assigned

to the �rst l variables x

1

, : : : , x

l

, and also to s additional variables y

1

, : : : , y

s

beause

of unit-lause foring; the branh therefore ours on level t = l+ s. The values an be

assigned in 2

t

ways, and the y's an be hosen in

�

n�1�l

s

�

ways. For 1 � i � s the m

given lauses must ontain j

i

� 1 lauses hosen (with replaement) from the F =

�

t�1

2

�

that fore the value of y

i

from other known values. The other m� j

1

� � � � � j

s

must

be hosen from the R = 8

�

n

3

�

� sF �

�

t

3

�

� 2

�

t

2

�

(n � t) remaining lauses that aren't

entirely false and don't fore anything further. Thus the expeted number of two-way

branhes is at most

P

lt

= 2

t

�

n�l�1

s

�

X

j

1

;:::;j

s

�1

�

m

j

1

; : : : ; j

s

;m�j

�

F

j

R

m�j

N

m

; j = j

1

+ � � � + j

s

; N = 8

�

n

3

�

;

summed over 0 � l � t < n. Let b = F=N and = R=N ; the sum on j

1

, : : : , j

s

is

m! [z

m

℄ (e

bz

� 1)

s

e

z

=

X

r

�

s

r

�

(�1)

s�r

(+ rb)

m

= s!

m

X

q

�

m

q

�n

q

s

o�

b

�

q

:

These values P

lt

are almost all quite small when m = 200 and n = 50, rising above 100

only when l � 45 and t = 49;

P

P

lt

� 4404:7.

If l = xn and t = yn, we have b �

3

8

y

2

=n and � 1�

1

8

(3(y�x)y

2

+y

3

+6y

2

(1�y)).

The asymptoti value of [z

�n

℄ (e

�z=n

�1)

Æn

e

z

an be found by the saddle point method:

Let � satisfy �Æe

�

=(e

�

� 1) + = ��=�, and let �

2

= �=�

2

� Æe

�

=(e

�

� 1)

2

. Then the

answer is approximately (e

�

� 1)

Æn

e

�n=�

p

n=(

p

2���(�n=�)

�n+1

).

[For exat formulas and lower bounds, see SICOMP 12 (1983), 717{733. The total

time to �nd all solutions grows approximately as (2(

7

8

)

�

)

n

when � < 4:5, aording to

H.-M. M�ejean, H. Morel, and G. Reynaud, SICOMP 24 (1995), 621{649.℄

217. True, unless both l and

�

l belong to A or to B (making A or B tautologial). For

if L is a set of stritly distint literals that overs both A and B, we know that neither

A nor B nor L ontains both l and

�

l; hene Lnfl;

�

lg overs (Anfl;

�

lg)[(B nfl;

�

lg) = C.

(This generalization of resolution is, however, useless if C � A or C � B, beause

a large lause is easier to over than any of its subsets. Thus we generally assume that

l 2 A and

�

l 2 B, and that C isn't tautologial, as in the text.)

218. x? B: A. [Hene (x _A) ^ (�x _B) always implies A _ B.℄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 227

tautologial

ommutative

assoiative

MColl

refutation hain

pure literal

unneessary branh

Knuth

Robinson

awkward

219. If C

0

or C

00

is tautologial (}), we de�ne }�C = C �} = C. Otherwise, if there's

a unique literal l suh that C

0

has the form l_A

0

and C

00

has the form

�

l_A

00

, we de�ne

C

0

�C

00

= A

0

_A

00

as in the text. If there are two or more suh literals, stritly distint,

we de�ne C

0

� C

00

= }. And if there are no suh literals, we de�ne C

0

�C

00

= C

0

_C

00

.

[This operation is obviously ommutative but not assoiative. For example, we

have (�x � �y) � (x _ y) = } while �x � (�y � (x _ y)) = �.℄

220. (a) True: If C � C

0

and C

0

� C

00

and C

00

6= } then C

0

6= }; hene every literal

of C appears in C

0

and in C

00

. [The notion of subsumption goes bak to a paper by

Hugh MColl, Pro. London Math. So. 10 (1878), 16{28.℄

(b) True: Otherwise we'd neessarily have (C �C

0

) _ � _ �

0

6= } and C 6= } and

C

0

6= } and C � C

0

6= C _ C

0

; hene there's a literal l with C = l _A, C

0

=

�

l _A

0

,

and the literals of A _ A

0

_ � _ �

0

are stritly distint. So the result is easily heked,

whether or not � or �

0

ontains l or

�

l. (Notie that we always have C � C

0

� C _ C

0

.)

() False: �xy � } but x� �xy = y 6� x = x�}. Also � � �x but x� � = x 6� � = x� �x.

(d) Suh examples are possible if C 6= �: We have x; �x ` y (and also x; �x ` }),

although the only lauses obtainable from x and �x by resolution are x, �x, and �. (On

the other hand we do have F ` � if and only if there's a refutation hain (104) for F .)

(e) Given a resolution hain C

0

1

, : : : , C

0

m+r

, we an onstrut another hain

C

1

, : : : , C

m+r

in whih C

i

� C

0

i

for 1 � i � m+ r. Indeed, if i > m and C

0

i

= C

0

j

�C

0

k

,

it's easy to see that either C

j

� C

j

or C

k

� C

k

or C

j

�C

k

will subsume C

0

i

.

(f) It suÆes by (e) to prove this when �

1

= � � � = �

m

= �; and by indution

we may assume that � = l is a single literal. Given a resolution hain C

1

, : : : , C

m+r

we an onstrut another one C

0

1

, : : : , C

0

m+r

suh that C

0

i

= C

i

_ l for 1 � i � m and

C

0

i

� C

i

_l for m+1 � i � m+r, with C

0

i

= C

0

j

or C

0

k

or C

0

j

�C

0

k

whenever C

i

= C

j

�C

k

.

221. Algorithm A reognizes `1' as a pure literal, but then �nds a

ontradition beause the other two lauses are unsatis�able. The

resolution refutation uses only the other two lauses. (This is an

example of an unneessary branh. Indeed, a pure literal never appears

in a refutation tree, beause it an't be aneled; see the next exerise.)

1

2

2

�

2

1

0 1

222. If A is an autarky that satis�es C, it also satis�es every lause on the path to �

from a soure vertex labeled C, beause all of the satis�ed literals annot simultaneously

vanish. For the onverse, see Disrete Appl. Math. 107 (2000), 99{137, Theorem 3.16.

223. (The author has onvined himself of this statement, but he has not been able to

onstrut a formal proof.)

224. At every leaf labeled by an axiom A of F j �x that is not an axiom of F , hange

the label to A [x; also inlude x in the labels of all this leaf's anestors. We obtain a

resolution tree in whih the leaves are labeled by axioms of F . The root is labeled x,

if any labels have hanged; otherwise it is still labeled �.

[See J. A. Robinson, Mahine Intelligene 3 (1968), 77{94.℄

225. Let's say that a regular resolution tree for lause A is awkward if at least one of

its nodes resolves on one of the variables in A. An awkward tree T for A an always be

transformed into a regular non-awkward tree T

0

for some lause A

0

� A, where T

0

is

smaller than T . Proof: Suppose T is awkward, but none of its subtrees are. Without

loss of generality we an �nd a sequene of subtrees T

0

, : : : , T

p

, T

0

1

, : : : , T

0

p

, where

T

0

= T and T

j�1

for 1 � j � p is obtained from T

j

and T

0

j

by resolving on the variable

x

j

; furthermore x

p

2 A. We an assume that the labels of T

j

and T

0

j

are A

j

and A

0

j

,

where A

j

= x

j

[R

j

and A

0

j

= �x

j

[R

0

j

; hene A

j�1

= R

j

[R

0

j

. Let B

p

= A

p

; and for

September 23, 2015

228 ANSWERS TO EXERCISES 7.2.2.2

Kullmann

tautologial

transitive law

hyperresolution

j = p� 1, p� 2, : : : , 1, let B

j

= B

j+1

if x

j

=2 B

j+1

, otherwise obtain B

j

by resolving

B

j+1

with A

0

j

. It follows by indution that B

j

� x

p

[A

j�1

. Thus B

1

� x

p

[A

0

= A,

and we've derived B

1

with a non-awkward tree smaller than T .

Now we an prove more than was asked: If T is any resolution tree that derives

lause A, and if A [B is any lause that ontains A, there's a non-awkward regular

resolution tree T

r

no larger than T that derives some lause C � A [B. The proof

is by indution on the size of T : Suppose A = A

0

[A

00

is obtained at the root of T

by resolving the lauses x [A

0

with �x [A

00

that label the subtrees T

0

and T

00

. Find

non-awkward regular trees T

0

r

and T

00

r

that derive C

0

and C

00

, where C

0

� x[A

0

[B and

C

00

� �x [A

00

[B. If x 2 C

0

and �x 2 C

00

, we obtain the desired T

r

by resolving T

0

r

and

T

00

r

on x. Otherwise we an either let C = C

0

and T

r

= T

0

r

, or C = C

00

and T

r

= T

00

r

.

[It's interesting to apply this onstrution to the highly irregular resolutions in (105).℄

226. Initially � is the root, C(�) = �, k�k = N , and s = 0. If � isn't a leaf, we

have C(�) = C(�

0

) � C(�

00

) where x 2 C(�

0

) and �x 2 C(�

00

) for some variable x. The

Prover names x, and hanges � �

0

or � �

00

if the Delayer sets x 0 or x 1,

respetively. Otherwise min(k�

0

k; k�

00

k) � k�k=2, and the Prover an keep going.

227. The proof is by indution on the number of variables, n: If F ontains the empty

lause, the game is over, the Delayer has sored 0, and the root is labeled 0. Otherwise

the Prover names x, and the Delayer onsiders the smallest possible labels (m;m

0

) on

the roots of refutations for F j x and F j �x. If m > m

0

, the reply x 0 guarantees

m points; and the reply x � is no better, beause m

0

+ 1 � m. If m < m

0

, the

reply x 1 guarantees m

0

; and if m = m

0

, the reply x � guarantees m+ 1. Thus

an optimum Delayer an always sore at least as many points as the root label of any

branh of a refutation tree onstruted by the Prover. Conversely, if the Prover always

names an optimal x, the Delayer an't do better.

(This exerise was suggested by O. Kullmann. One an ompute the optimum

sore \bottom up" by onsidering all 3

n

possible partial assignments as in answer 133.)

228. We need only assume the transitivity lauses T

ijk

of (100) when i < j and k < j.

[Notie further that T

ijk

is tautologial when i = j or k = j, thus useless for resolution.℄

229. Using the binary-relation interpretation, these lauses say that j 6� j, that the

transitive law \i � j and j � k implies i � k" holds whenever i � k and j < k, and

that every j has a suessor suh that j � k. The latter axiom ombines with the

�niteness of m to imply that there must be a yle j

0

� j

1

� � � � � j

p�1

� j

p

= j

0

.

Consider the shortest suh yle, and renumber the subsripts so that j

p

=

maxfj

0

; : : : ; j

p

g. We annot have p � 2, beause (100

0

) implies j

p�2

� j

p

, yielding

a shorter yle. Hene p = 1; but that ontradits (99).

230. Call the axioms I

j

, T

ijk

, andM

jm

as in the text. If I

j

0

is omitted, let x

ij

= [j = j

0

℄

for all i and j. If T

i

0

j

0

k

0

is omitted, let x

ij

= [j 2A℄ for all i =2 A = fi

0

; j

0

; k

0

g; also

let x

i

0

j

= [j = j

0

℄, x

j

0

j

= [j = k

0

℄, and (if i

0

6= k

0

) x

k

0

j

= [j = i

0

℄. Finally, if M

j

0

m

is omitted, let x

ij

= [p

i

<p

j

℄, where p

1

: : : p

m

= 1 : : : (j

0

�1)(j

0

+1) : : : mj

0

. (The same

onstrution shows that the lauses of answer 228 are minimally unsatis�able.)

231. Sine G

11

=M

1m

, we an assume that j > 1. Then G

(j�1)j

= G

(j�1)(j�1)

� I

j�1

.

And if 1 � i < j� 1 we have G

ij

= (� � � ((G

(j�1)j

�A

ijj

) �A

ij(j+1)

) � � � �) �A

ijm

, where

A

ijk

= G

i(j�1)

� T

i(j�1)k

= G

ij

_ �x

(j�1)k

. These lauses make it possible to derive

B

ij

= (� � � ((G

ij

�T

jij

) �T

ji(j+1)

) � � � �) �T

jim

= G

jj

_ �x

ji

for 1 � i < j, from whih we

obtain G

jj

= (� � � ((M

jm

�B

1j

) �B

2j

) � � � �) �B

(j�1)j

. Finally G

mm

� I

mm

= �.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 229

Cook

Cook

232. It suÆes to exhibit a baktrak tree of depth 6 lg q +O(1). By branhing on at

most 6 variables we an �nd the olor-triplet �

1

in answer 176().

Suppose we know that �

j

= � and �

j+p

= �

0

, where �

0

annot be obtained

from � in p steps; this is initially true with j = 1, � = �

0

= �

1

, and p = q. If

p = 1, a few more branhes will �nd a ontradition. Otherwise at most 6 branhes

will determine �

l

, where l = j + bp=2; and either �

l

will be unreahable from � in

bp=2 steps, or �

0

will be unreahable from �

l

in dp=2e steps, or both. Reurse.

233. C

9

= C

4

� C

8

, C

10

= C

1

� C

9

, C

11

= C

5

� C

10

, C

12

= C

6

� C

10

, C

13

= C

7

� C

11

,

C

14

= C

3

� C

12

, C

15

= C

13

� C

14

, C

16

= C

2

� C

15

, C

17

= C

4

� C

15

, C

18

= C

8

� C

15

,

C

19

= C

12

� C

17

, C

20

= C

11

�C

18

, C

21

= C

16

�C

19

, C

22

= C

20

� C

21

.

234. Reply x

jk

 � to any query that doesn't allow the Prover to violate (107). Then

the Prover an violate (106) only after every hole has been queried.

235. Let C(k;A) = (

W

k

j=0

W

a2A

x

ja

), so that C(0; f1; : : : ;mg) = (x

01

_ � � � _x

0m

) and

C(m; ;) = �. The hain onsists of k stages for k = 1, : : : , m, where stage k begins by

deriving the lauses �x

ka

_ C(k � 1; A) from the lauses of stage k � 1, for all (m� k)-

element subsets A of f1; : : : ;mgna; every suh lause requires k resolutions with (107).

Stage k onludes by deriving C(k;A) for all (m� k)-element subsets A of f1; : : : ;mg,

eah using one resolution from (106) and k � 1 resolutions from the beginning of the

stage. (See (103).) Thus stage k involves a total of

�

m

m�k

�

(k

2

+ k) resolutions.

For example, the resolutions when m = 3 suessively yield 11 02 03, 12 01 03,

13 01 02; 01 02 11 12, 01 03 11 13, 02 03 12 13 (stage 1); 21 02 11 12, 21 02 12, 21 03 11 13,

21 03 13, 22 01 12 11, 22 01 11, 22 03 12 13, 22 03 13, 23 01 13 11, 23 01 11, 23 02 13 12,

23 02 12; 01 11 21 22, 01 11 21, 02 12 22 23, 02 12 22, 03 13 23 22, 03 13 23 (stage 2); and

31 11 21, 31 21, 31, 32 12 22, 32 22, 32, 33 13 23, 33 23, 33; 32 33, 33, � (stage 3).

[Stephen A. Cook onstruted suh hains in 1972 (unpublished).℄

236. The symmetry of the axioms should allow exhaustive veri�ation by omputer

for m = 2, possibly also for m = 3. The onstrution ertainly seems hard to beat.

Cook onjetured in 1972 that any minimum-length resolution proof would inlude, for

every subset S of f1; : : : ;mg, at least one lause C suh that

S

�x

jk

2C

fkg = S.

237. The idea is to de�ne y

jk

= x

jk

_ (x

jm

^x

mk

) for 0 � j < m and 1 � k < m, thus

reduing from m pigeons to m� 1. First we append 6(m� 1)(m� 2) new lauses

(x

jm

_z

jk

) ^ (x

mk

_z

jk

) ^ (�x

jm

_�x

mk

_�z

jk

) ^ (�x

jk

_y

jk

) ^ (y

jk

_z

jk

) ^ (x

jk

_�y

jk

_�z

jk

);

involving 2(m� 1)(m� 2) new variables y

jk

and z

jk

. Call these lauses A

jk

, : : : , F

jk

.

Now if P

j

stands for (106) and H

ijk

for (107), we want to use resolution to derive

P

0

j

= (y

j1

_ � � � _ y

j(m�1)

) and H

0

ijk

= (�y

ik

_ �y

jk

). First, P

j

an be resolved with D

j1

,

: : : , D

j(m�1)

to get P

0

j

_ x

jm

. Next, P

m

�H

jmm

= x

m1

_ � � � _ x

m(m�1)

_ �x

jm

an be

resolved with G

jk

= C

jk

�E

jk

= �x

jm

_ �x

mk

_ y

jk

for 1 � k < m to get P

0

j

_ �x

jm

. One

more step yields P

0

j

. (The intuitive \meaning" guides these maneuvers.)

From B

jk

� F

jk

= x

jk

_ x

mk

_ �y

jk

, we obtain Q

ijk

= �x

ik

_ �y

jk

after resolving

with H

ijk

and H

imk

. Then (Q

ijk

� F

ik

) � A

ik

= x

im

_ �y

ik

_ �y

jk

= R

ijk

, say. Finally,

(R

jik

�H

ijm

) �R

ijk

= H

0

ijk

as desired. (When forming R

jik

we need Q

jik

with j > i.)

We've done 5m

3

� 6m

2

+ 3m resolutions to redue m to m� 1. Repeating until

m = 0, with fresh y and z variables eah time, yields � after about

5

4

m

4

steps.

[See Stephen A. Cook, SIGACT News 8, 4 (Otober 1976), 28{32.℄

238. The funtion (1 � x)

�x

= exp(x

2

+

2

x

3

=2 + � � �) is inreasing and > e

x

2

.

Setting =

1

2n

, W =

p

2n ln r, and b = dW e makes f � r < �

�b

. Also W � w(�

0

)

September 23, 2015

230 ANSWERS TO EXERCISES 7.2.2.2

asymptoti methods

generating funtions

tree funtion

omplete binary tree

mathing

boundary

when n � w(�

0

)

2

and r � 2; hene w(�

0

` �) �W + b �

p

8n ln r + 1 as desired. The

`�2' in the lemma handles the trivial ases that arise when r < 2.

(It is important to realize that we don't hange n or W in the indution proof.

Inidentally, the exat minimum of W + b, subjet to r = (1�W=(2n))

�b

, ours when

W = 2n(1� e

�2T (z)

) = 4nz +

2nz

3

3

+ � � � ; b =

ln r

2T (z)

= (ln r)

�

1

2z

�

1

2

�

z

4

� � � �

�

;

where z

2

= (ln r)=(8n) and T (z) is the tree funtion. Thus it appears likely that the

proof of Lemma B supports the stronger result w(�

0

` �) <

p

8n ln r �

1

2

ln r + 1.)

239. Let �

0

onsist of all 2

n

nontautologial lauses of length n. The shortest refutation

is the omplete binary tree with these leaves, beause every nontautologial lause must

appear. Algorithm A shows that 2

n

� 1 resolutions suÆe to refute any lauses in n

variables; hene k�

0

` �k = 2

n

� 1, and this is the worst ase.

240. If A

0

has t elements and �A

0

has fewer than t, the sequene of 5t integers f

ij

for its neighbors must inlude at least 2t repeats of values seen earlier. (In fat there

are at least 2t+ 1 repeats, beause 2t would leave at least t in the boundary; but the

alulations are simpler with 2t, and we need only a rather rude bound.)

The probability p

t

that some suh A

0

exists is therefore less than

�

m+1

t

��

5t

2t

�

(

3t

m

)

2t

,

beause there are

�

m+1

t

�

ways to selet A

0

,

�

5t

2t

�

to selet the repeating slots, and at most

(3t)

2t

out ofm

2t

ways to �ll those slots. Also

�

m+1

t

�

=

�

m

t

�

+

�

m

t�1

�

< 2

�

m

t

�

when t �

1

2

m.

By exerise 1.2.6{67 we have p

t

� 2(

me

t

)

t

(

5te

2t

)

2t

(

3t

m

)

2t

= 2(t=m)

t

, where =

225e

3

=4 � 1130. Also p

0

= p

1

= 0. Thus the sum of p

t

for t � m=3000 is less than

2

P

1

t=2

(=3000)

t

� :455; and the probability of strong expansion exeeds .544.

241. If 0 < jA

0

j � m=3000, we an put one of its elements into a hole b

k

2 �A

0

. Then

we an plae the other elements in the same way, sine b

k

isn't their neighbor.

242. The proof of Theorem B remains valid when these new axioms are added.

243. (a) The probability that F

0

has t elements and V (F

0

) has fewer than t is at most

�

�n

t

��

n

t

�

(

t

n

)

3t

� (

�e

2

t

n

)

t

. The sum of this quantity for 1 � t � lg n is O(n

�1

), and so is

the sum for lg n � t � n=(2�e

2

).

(b) If the ondition in (a) holds, there's a mathing from F

0

into V (F

0

), by

Theorem 7.5.1M; hene we an satisfy F

0

by assigning to its variables, one by one. If

F is unsatis�able we'll therefore need to invoke more than n=(2�e

2

) of its axioms.

() The probability p

t

that F

0

has t elements and 2jV (F

0

)j � 3jF

0

j <

1

2

jF

0

j is at

most

�

�n

t

��

n

�t

�

(

�t

n

)

3t

� (�e

1+�

�

3��

(t=n)

1=4

)

t

, where � =

7

4

. We have (e

1+�

�

3��

)

4

<10

6

;

so p

t

<

t

when t � n

0

, where < 1, and

P

n

0

t=n

0

=2

p

t

is exponentially small.

(d) Sine n

0

< n=(2�e

2

), every refutation a.s. ontains a lause C with n

0

=2 �

�(C) < n

0

. The minimal axioms F

0

on whih C depends have jF

0

j = �(C). Let k

be the number of \boundary" variables that our in just one axiom of F

0

. If v is

suh a variable, we an falsify C and the axiom ontaining v, while the other axioms

of F

0

are true; hene V must ontain v or �v. We have jV (F

0

)j = k + jnonboundaryj �

k +

1

2

(3jF

0

j � k), beause eah nonboundary variable ours at least twie. Therefore

k � 2jV (F

0

)j � 3jF

0

j � n

0

=4, q.s. (Notie the similarities to the proof of Theorem B.)

244. We have [A [B ℄

0

= [A℄

0

[B ℄

0

[[A℄

1

[B ℄

1

and [A [B ℄

1

= [A℄

0

[B ℄

1

[[A℄

1

[B ℄

0

,

where onatenation of sets has the obvious meaning. These relations hold also when

A = ; or B = ;, beause [;℄

0

= f�g and [;℄

1

= ;.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 231

3SAT

ubi

Tseytin

regular resolution

Urquhart

Ben-Sasson

Wigderson

linear equations

baktraking

Stanford GraphBase

raman

multigraphs

expander graphs

merge

245. (a) When onditioning on e

uv

, simply delete the edge u ��� v from G. When

onditioning on �e

uv

, also omplement l(u) and l(v). The graph might beome dison-

neted; in that ase, there will be exatly two omponents, one even and one odd, with

respet to the sums of their labels. The axioms for the even omponent are satis�able

and may be disarded.

For example, �(G) j f

�

b; eg orresponds to while �(G) j f

�

b; �eg orresponds

to . We toss out the left omponent in the �rst ase, the right one in the other.

(b) If C 2 �(v) we may take V

0

= fvg. And we have �(�) = jV j, beause the

axioms

S

v2V nu

�(v) are satis�able for all u 2 V .

() If u 2 V

0

and v =2 V

0

, there's an assignment that falsi�es C and some axiom

of �(u) while satisfying all �(w) for w 2 V

0

n u, beause jV

0

j is minimum. Setting

e

uv

 �e

uv

will satisfy �(u) without a�eting the axioms �(w) (whih don't ontain e

uv

).

(d) By (b), every refutation of �(G) must ontain a lause C with

1

3

m � �(C) <

2

3

m. The orresponding V

0

has jV

0

j=(jV

0

j + j�V

0

j) < (

2

3

+ 8)=9, hene j�V

0

j >

1

26

jV

0

j.

[Property (i) is interesting but irrelevant for this proof. Notie that �(G) has

exatly

8

3

n � 2:67n 3SAT lauses in n = 3m=2 variables when G is ubi; every

literal ours four times. G. Tseytin proved lower bounds for refutations of �(G) by

regular resolution in 1966, before graphs with property (iii) were known; A. Urquhart

obtained them for general resolution in JACM 34 (1987), 209{219, and the simpli�ed

argument given here is due to Ben-Sasson and Wigderson. The fat that �(G) requires

exponentially long refutation hains, although the same axioms an be refuted easily

by working with linear equations mod 2, amounts to a proof that baktraking is a poor

way to deal with linear equations! Suitable Ramanujan graphs raman (2; q; 3; 0) are part

of the Stanford GraphBase for in�nitely many prime numbers q. We an also obtain

the same lower bounds with the multigraphs raman (2; q; 1; 0) and raman (2; q; 2; 0).

Setion 7.4.3 will explore expander graphs in detail.℄

246. Let's write [a

1

: : : a

k

℄

`

for what exerise 244 alls [fa

1

; : : : ; a

k

g℄

`

. With new

variables x, y, z we an introdue fxa; x

�

b; �x�ab; y�a; yb; �ya

�

b; zx; zy; �z�x�yg and resolve those

lauses to [zab℄

1

, whih means z = a � b. So we an assume that `z a � b' is a

legal primitive operation of \extended resolution hardware," when z is a new variable.

Furthermore we an ompute a

1

� � � � � a

k

in O(k) steps, using z

0

 0 (whih is the

lause [z

0

℄

1

, namely �z

0

) and z

k

 z

k�1

� a

k

when k � 1.

Let the edge variables E(v) be a

1

, : : : , a

d

, where d is the degree of v. We ompute

s

v

 a

1

� � � � � a

d

by setting s

v;0

 0, s

v;k

 s

v;k�1

� a

k

, and s

v

 s

v;d

. We an

resolve s

v

with the axioms �(v) in O(2

d

) steps, to get the singleton lause [s

v

℄

`(v)�1

,

meaning s

v

= `(v). Summing over v, these operations therefore take O(N) steps.

On the other hand, we an also ompute z

n

L

v

s

v

and get zero (namely `�z

n

').

Doing this leverly, by omnisiently knowing G, we an in fat ompute it in O(mn)

steps: Start with any vertex v and set z

1

 s

v

(more preisely, set z

1;k

 s

v;k

for

0 � v � d). Given z

j

for 1 � j < n, with all its subvariables z

j;k

, we then ompute

z

j+1

 z

j

�s

u

, where u is the unused vertex with s

u;1

= z

j;1

. We an arrange the edges

into an order so that if z

j

has p edge variables in ommon with s

u

, then z

j;k

= s

u;k

for

1 � k � p. Suppose the other variables of z

j

and s

u

are respetively a

1

, : : : , a

q

and

b

1

, : : : , b

r

; we want to merge them into the sequene

1

, : : : ,

q+r

that will be needed

later when z

j+1

is used. So we set z

j+1;0

 0, z

j+1;k

 z

j+1;k�1

�

k

, z

j+1

 z

j+1;q+r

.

From the lauses onstruted in the previous paragraph, resolution an dedue

[z

j;k

s

u;k

℄

1

for 1 � k � p, and hene [z

j+1;0

z

j;p

s

u;p

℄

1

(namely that z

j+1;0

= z

j;p

� s

u;p

).

Furthermore, if

k

= a

i

, and if we know that z

j+1;k�1

= z

j;s

� s

u;t

where s = p+ i� 1

September 23, 2015

232 ANSWERS TO EXERCISES 7.2.2.2

St�almark

redundant

and t = p+ k � i, resolution an dedue that z

j+1;k

= z

j;s+1

� s

u;t

; a similar formula

applies when

k

= b

i

. Thus resolution yields z

j+1

 z

j

� s

u

as desired. Ultimately we

dedue both z

n

and �z

n

from the singleton lauses s

v

= `(v).

247. Eliminating x

2

from f12;

�

12;

�

1

�

2g gives f

�

1g; eliminating x

1

then gives ;. So those

�ve lauses are satis�able.

248. We have F (x

1

; : : : ; x

n

) = (x

n

_A

0

1

)^� � �^ (x

n

_A

0

p

)^ (�x

n

_A

00

1

)^� � �^ (�x

n

_A

00

q

)^

A

000

1

^� � �^A

000

r

= (x

n

_G

0

)^(�x

n

_G

00

)^G

000

, where G

0

= A

0

1

^� � �^A

0

p

, G

00

= A

00

1

^� � �^A

00

q

,

and G

000

= A

000

1

^ � � � ^A

000

r

depend only on fx

1

; : : : ; x

n�1

g. Hene F

0

= (G

0

_G

00

)^G

000

;

and the lauses of G

0

_G

00

=

V

p

i=1

V

q

j=1

(A

0

i

_A

00

j

) are the resolvents eliminating x

n

.

249. After learning C

7

=

�

2

�

3 as in the text, we set d 2, l

2

�

2, C

j

= 2

�

3, learn

C

8

=

�

3, and set d 1, l

1

�

3. Then l

2

�

4 (say); and l

3

�

1, l

4

�

2. Now C

i

= 1234

has been falsi�ed; after l

4

 2 and C

j

= 1

�

2 we learn C

9

= 134, set l

3

 1, and learn

C

10

= 134 �

�

13 = 34. Finally l

2

 4, we learn C

11

= 3; l

1

 3, and we learn C

12

= �.

250. l

1

 1, l

2

 3, l

3

�

2, l

4

 4; learn

�

12

�

3; l

3

 2, l

4

 4; learn

�

1

�

2

�

3 and

�

1

�

3;

l

2

�

3, l

3

�

2, l

4

 4; learn

�

123; l

3

 2, l

4

 4; learn

�

1

�

23,

�

13,

�

1; l

1

�

1, l

2

 3,

l

3

�

4, l

4

 2; learn 1

�

34; l

3

 4, l

4

�

2, l

4

 2.

251. Algorithm I has the property that

�

l

i

1

, : : : ,

�

l

i

k�1

, l

i

k

are on the stak whenever

the new lause l

i

1

_ � � � _ l

i

k

has been learned, if i

1

< � � � < i

k

= d and step I4 returns

to I2. These literals limit our ability to exploit the new lause; so it appears to be

impossible to solve this problem without doing more resolutions than St�almark did.

However, we an proeed as follows. LetM

00

imk

be the lause x

m1

_� � �_x

m(k�1)

_

x

ik

_ � � � _ x

i(m�1)

_ �x

im

, for 1 � i; k < m. Using ij to stand for x

ij

, the proess for

m = 3 begins by putting 11, 12, 13, 21, 22, 23, 31, 32, 33 on the stak. Then step I3

has C

i

= I

3

, step I4 has C

j

= M

33

; so step I5 learns I

3

�M

33

= M

32

. Step I4 now

hanges 32 to 32 and hooses C

j

= T

232

; so I5 learns M

32

� T

232

= M

00

232

. Step I4

hanges 31 to 31 and hooses C

j

= T

231

; now we learn M

00

232

� T

231

= M

00

231

. Next, we

learn M

00

231

�M

23

=M

22

; and after hanging 22 to 22 we also learn M

21

.

The stak now ontains 11, 12, 13, 21. We add 31, 32, and proeed to learn

M

32

� T

132

= M

00

132

, M

00

132

� T

131

= M

00

131

, M

00

131

�M

13

= M

12

. The stak now ontains

11, 12, and we've essentially redued m from 3 to 2.

In a similar way, O(m

2

) resolutions will learn M

i(m�1)

for i = m� 1, : : : , 1; and

they'll leave �x

11

, : : : , �x

1(m�2)

, x

1(m�1)

on the stak so that the proess an ontinue.

252. No; large numbers of lauses suh as �x

12

_ �x

23

_ � � � _ �x

89

_ x

19

are generated by

the elimination proess. Although these lauses are valid, they're not really helpful.

Exerise 373 proves, however, that the proof is ompleted in polynomial time if

we restrit onsideration to the transitivity lauses of exerise 228(!).

253. A onit arises when we follow a hain of fored moves:

t L

t

level reason

0

�

6 1 �

1 4 1 46

2 5 2 �

3

�

3 2

�

3

�

4

�

5

4 9 2 369

t L

t

level reason

5

�

7 2

�

5

�

7

�

9

6

�

1 2

�

1

�

5

�

9

7 8 2 678

8 2 2 123

9

�

2 2

�

2

�

5

�

8

Now

�

2

�

5

�

8!

�

2

�

5

�

8 � 123 = 13

�

5

�

8! 13

�

567! 3

�

567

�

9! 3

�

56

�

9! 3

�

56!

�

4

�

56; so we learn

�

4

�

56

(whih an be simpli�ed to

�

56, beause

�

4 is \redundant" as explained in exerise 257).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 233

level 0

reasons

unique impliation point

UIP

bakjumping

memo ahe

memoization tehnique

lev

reursive proedure

Van Gelder

wathed literals

random permutation

Setting L

2

�

5, with reason

�

4

�

56 or

�

56, now fores 7,

�

1, 3, 9,

�

2,

�

8, 8, all at level 1;

this onit soon allows us to learn the unit lause 6. (Next we'll inaugurate level 0,

setting L

0

 6. No \reasons" need to be given at level 0.)

254. Deduing 3, 2, 4,

�

4 at level 1, it will �nd

�

2

�

4 � 4

�

3 =

�

2

�

3 and

�

2

�

3 � 2

�

3 =

�

3, learning

�

3.

(Or it might learn

�

3 after deduing

�

2.) Then it will dedue

�

3,

�

1, 2,

�

4 at level 0.

255. For example, f

�

1

�

2

�

4;

�

2

�

3

�

5; 456; 45

�

6g. [Sine the lause

0

that is learned by the

proedure desribed in the text ontains just one literal l from the onit level d,

the trail position for

�

l has been alled a \unique impliation point" (UIP). If l isn't

the deision literal for its level, we ould resolve

0

with l's reason and �nd another

UIP; but eah new resolution potentially inreases the b array and limits the amount

of bakjumping. Therefore we stop at the �rst UIP.℄

256. If it is false, literals 50, 26, : : : , 30 are true; hene also 25, 23, and 29, a onit.

Consequently we an obtain `��' by starting with 23 26 : : : 50 and resolving with 23 25 27,

25 27 29, and 25 30 : : : 70. [Similarly, and more simply, one an learn (122) by resolving

11 16 : : : 56 with 31 61 91, 41 66 91, and 56 61 66.℄

257. (a) Suppose

�

l

0

on level d

0

> 0 is redundant. Then some l

00

in the reason for l

0

is

also on level d

0

; and l

00

is either in or redundant. Use indution on trail position.

(b) We an assume that the stamp value s used when resolving onits is a

multiple of 3, and that all stamps are � s. Then we an stamp literal l with S(jlj)

s+ 1 if

�

l is known to be redundant, or s+ 2 if

�

l is known to be nonredundant and not

in . (These stamps serve as a \memo ahe" to avoid repeated work.) While building

 we an also stamp levels as well as literals, setting LS[d

0

℄ s if level d

0

has exatly

one of the b

i

, or s+ 1 if it has more than one.

Then for 1 � j � r,

�

b

j

is redundant if and only if LS[lev (b

j

)℄ = s + 1 and

red (

�

b

j

) is true, where lev (l) = VAL(jlj)� 1 and where red (l) is the following reursive

proedure: \If l is a deision literal, return false. Otherwise let (l_ �a

1

_ � � � _ �a

k

) be l's

reason. For 1 � i � k with lev (a

i

) > 0, if S(ja

i

j) = s + 2 return false; if S(ja

i

j) < s

and either LS[lev (a

i

)℄ < s or red (�a

i

) is false, set S(ja

i

j) s+2 and return false. But

if none of these onditions hold, set S(jlj) s+ 1 and return true."

[See Allen Van Gelder, LNCS 5584 (2009), 141{146.℄

258. That statement is true in Table 3, but false in general. Indeed, onsider the

sequel to Table 3: The deision L

44

= 57 auses the wath list of 57 to be examined,

thus foring 15, 78, and 87 (among other literals) in some order beause of the lauses

15 57 36, 78 57 36, 87 57 27. Then 96 will be fored by the lause 96 87 : : : 15; and the

seond literal of that lause at the time of foring will be 15, regardless of trail order,

if the wathed literals of that lause were 96 and 15 (making it invisible to 78 and 87).

259. 1 + �

6

+ �

7

< �+ �

2

when :7245 < � < :7548. (There an in fat be any number

of rossover points: Consider the polynomial (1� �� �

2

)(1� �

3

� �

6

)(1� �

9

� �

18

).)

260. First, to get a random permutation in the heap we an use a variant of Algo-

rithm 3.4.2P: For k 1, 2, : : : , n, let j be a random integer in [0 : : k � 1℄ and set

HEAP[k � 1℄ HEAP[j℄, HEAP[j℄ k. Then set HLOC(HEAP[j℄) j for 0 � j < n.

Next, set F 0 and W

l

 0 for 2 � l � 2n + 1 and 3. Do the following

for eah input lause l

0

l

1

: : : l

k�1

: Terminate unsuessfully if k = 0, or if k = 1 and

0 � VAL(jl

0

j) 6= l

0

&1. If k = 1 and VAL(jl

0

j) < 0, set VAL(jl

0

j) l

0

&1, TLOC(jl

0

j)

F , F F + 1. If k > 1, set MEM[+ j℄ l

j

for 0 � j < k; also MEM[� 1℄ k,

MEM[� 2℄ W

l

0

, W

l

0

 , MEM[� 3℄ W

l

1

, W

l

1

 , + k + 3.

September 23, 2015

234 ANSWERS TO EXERCISES 7.2.2.2

wathed literals

lazy data strutures

heap deletion

deletion from heap

siftup

heap insertion

insertion into a heap

blit

redundanies

wath a literal

ushed

restarted

Finally, set MINL MAXL +2 (allowing two ells for extra data in the preamble

of the �rst learned lause). Of ourse we must also ensure that MEM is large enough.

261. (Throughout this answer, l

j

is an abbreviation for MEM[+ j℄.) Set q 0 and

 W

�

l

. While 6= 0, do the following: Set l

0

 l

0

. If l

0

6=

�

l (hene l

1

=

�

l), set

0

 l

�3

; otherwise set l

0

 l

1

, l

0

 l

0

, l

1

�

l,

0

 l

�2

, l

�2

 l

�3

, and l

�3

0

. If

VAL(jl

0

j) � 0 and VAL(jl

0

j)+ l

0

is even (that is, if l

0

is true), perform the steps

if q 6= 0, set MEM[q � 3℄ , else set W

�

l

 ; then set q . (�)

Otherwise set j 2; while j < l

�1

and VAL(jl

j

j) � 0 and VAL(jl

j

j) + l

j

is odd, set

j j+1. If now j < l

�1

, set l

1

 l

j

, l

j

�

l, l

�3

 W

l

1

,W

l

1

 . But if j = l

�1

, do (�)

above; jump to C7 if VAL(jl

0

j) � 0; otherwise set L

F

 l

0

, et. (see step C4) and

0

.

Finally, when = 0, do (�) above to terminate

�

l's new wath list.

262. To delete k = HEAP[0℄ in C6: Set h h� 1 and HLOC(k) �1. Stop if h = 0.

Otherwise set i HEAP[h℄, � ACT(i), j 0, j

0

 1, and do the following while

j

0

< h: Set �

0

 ACT(HEAP[j

0

℄); if j

0

+ 1 < h and ACT(HEAP[j

0

+ 1℄) > �

0

, set j

0

j

0

+1 and �

0

 ACT(HEAP[j

0

℄); if � � �

0

, set j

0

 h, otherwise set HEAP[j℄ HEAP[j

0

℄,

HLOC(HEAP[j

0

℄) j, j j

0

, and j

0

 2j+1. Then set HEAP[j℄ i and HLOC(i) j.

In C7, set k jlj, � ACT(k), ACT(k) � + DEL, j HLOC(k), and if

j > 0 perform the \siftup" operation: \Looping repeatedly, set j

0

 (j � 1)� 1 and

i HEAP[j

0

℄, exit if ACT(i) � �, else set HEAP[j℄ i, HLOC(i) j, j j

0

, and exit

if j = 0. Then set HEAP[j℄ k and HLOC(k) j."

To insert k in C8, set � ACT(k), j h, h h+ 1; if j = 0 set HEAP[0℄ k

and HLOC(k) 0; otherwise perform the siftup operation.

263. (This answer also sets the level stamps LS[d℄ needed in answer 257, assuming

that the LS array is initially zero.) Let \bump l" mean \inrease ACT(jlj) by DEL" as

in answer 262. Also let blit (l) be the following subroutine: \If S(jlj) = s, do nothing.

Otherwise set S(jlj) s, p lev (l). If p > 0, bump l; then if p = d, set q q+1; else

set r r + 1, b

r

�

l, d

0

 max(d

0

; p), and if LS[p℄ � s set LS[p℄ s+ [LS[p℄= s℄."

When step C7 is entered from C4, assuming that d > 0, set d

0

 q r 0,

s s + 3, S(jl

0

j) s, bump l

0

, and do blit (l

j

) for 1 � j < k. Also set t

max(TLOC(jl

1

j); : : : ; TLOC(jl

k�1

j)). Then, while q > 0, set l L

t

, t t � 1; if

S(jlj) = s then set q q� 1, and if R

l

6= � let lause R

l

be l

0

l

1

: : : l

k�1

and do blit (l

j

)

for 1 � j < k. Finally set l

0

 L

t

, and while S(jl

0

j) 6= s set t t� 1 and l

0

 L

t

.

The new lause an now be heked for redundanies as in answer 257. To install

it during step C9, there's a subtle point: We must wath a literal that was de�ned

on level d

0

. Thus we set MAXL, MEM[℄

�

l

0

, k 0, j

0

 1; and for 1 �

j � r if S(jb

j

j) = s set k k + 1 and do this: If j

0

= 0 or lev (jb

j

j) < d

0

, set

MEM[+ k + j

0

℄

�

b

j

, otherwise set MEM[+ 1℄

�

b

j

, j

0

 0, MEM[� 2℄ W

�

l

0

,

W

�

l

0

 , MEM[�3℄ W

�

b

j

, W

�

b

j

 . Finally set MEM[�1℄ k+1, MAXL +k+6.

264. We an maintain a \history ode" array, setting H

F

to 0, 2, 4, or 6 when L

F

is set, and then using H

t

+ (L

t

& 1) as the move ode that represents trail loation t

for 0 � t < F . History odes 6, 4, and 0 are appropriate in steps C1, C4, and C6,

respetively; in C9, use ode 2 if l

0

was a deision literal, otherwise use ode 6.

[These move odes do not inrease lexiographially when the trail is ushed and

restarted; hene they don't reveal progress as niely as they do in the other algorithms.℄

265. (1) A literal L

t

on the trail with G � t < F has beome true, but the wath list

of L

t

has not yet been examined. (2) If l

0

is true, so that is satis�ed, step C4 doesn't

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 235

full run

BIMP(l)

Knuth

buddy-system

breadth-�rst

ag

purging

wathed literals

remove from the wath list of l

1

when l

1

beomes false. (This behavior is justi�ed,

beause won't be examined again until l

1

has beome free during the baktraking

step C8.) (3) A lause that beomes a reason for l

0

remains on the wath list of its

false l

1

. (4) During a full run, a lause that triggers a onit is allowed to keep both

of its wathed literals false.

In general, a false wathed literal must be de�ned at the highest trail level of all

literals in its lause.

266. If U < p, where U is a uniform deviate between 0 and 1, do this: Set j to a

random integer with 0 � j < h, and k HEAP[j℄. If j = 0, or if VAL(k) � 0, use the

normal C6. Otherwise branh on k (and don't bother to remove k from the heap).

267. As in Algorithm L, let there be a sequential table BIMP(l) for eah literal l,

ontaining all literals l

0

suh that

�

l _ l

0

is a binary lause. Furthermore, when the

propagation algorithm sets L

F

 l

0

beause l

0

2 BIMP(l), we may set R

l

0

 �l,

instead of using a positive lause number as the \reason." (Notie that a binary lause

therefore need not be represented expliitly in MEM, if it is represented impliitly in

the BIMP tables. The author's implementation of Algorithm C uses BIMP tables only

to expedite binary lauses that appear in the original input. This has the advantage

of simpliity, sine the exat amount of neessary spae an be alloated permanently

for eah table. Learned binary lauses are omparatively rare in pratie; thus they

an usually be handled satisfatorily with wathed literals, instead of by providing the

elaborate buddy-system sheme that was important in Algorithm L.)

Here, more preisely, is how the inner loop goes faster with BIMPs. We want to

arry out binary propagations as soon as possible, beause of their speed; hene we

introdue a breadth-�rst exploration proess analogous to (62):

Set H F ; take aount of l

0

for all l

0

2 BIMP(l

0

);

while H < F , set l

0

 R

H

, H H + 1, and

take aount of l

0

for all l

0

2 BIMP(l

0

).

(��)

Now \take aount of l

0

" means \if l

0

is true, do nothing; if l

0

is false, go to C7

with onit lause

�

l _ l

0

; otherwise set L

F

 l

0

, TLOC(jl

0

j) F , VAL(jl

0

j) 2d +

(l

0

& 1), R

l

0

 �l, F F + 1." We do (��) just before setting

0

in answer 261.

Furthermore, we set E F just after G 0 in step C1 and just after F F + 1 in

steps C6 and C9; and if G � E after G G+ 1 in step C4, we do (��) with l

0

�

l.

Answer 263 is modi�ed in straightforward ways so that \lause R

l

" is treated as

if it were the binary lause (l _

�

l

0

) when R

l

has the negative value �l

0

.

268. If MEM[� 1℄ = k � 3 is the size of lause , and if 1 < j < k, we an delete

the literal l in MEM[+ j℄ by setting k k � 1, MEM[� 1℄ k, l

0

 MEM[+ k℄,

MEM[+ j℄ l

0

, and MEM[+ k℄ l + f , where f is a ag (typially 2

31

) that

distinguishes a deleted literal from a normal one. (This operation does not need to

be done when the urrent level d is zero; hene we an assume that k � 3 and j > 1

before deletion. The ag is neessary so that global operations on the entire set of

lauses, suh as the purging algorithm, an pass safely over deleted literals. The �nal

lause in MEM should be followed by 0, an element that's known to be unagged.)

269. (a) If the urrent lause ontains a literal l =

�

L

t

that is not in the trivial lause,

where t is maximum, resolve the urrent lause with R

�

l

and repeat.

(b) (�u

1

_ b

j

) ^ (l

j

_

�

l

j�1

_

�

b

j

) for 1 � j � 9, (l

0

_ �u

2

_ �u

3

) ^ (

�

l

9

_

�

l

8

_

�

b

10

); l

0

= l

0

.

() If r � d

0

+ � , where � is a positive parameter, learn the trivial lause instead

of (

�

l

0

_

�

b

1

_ � � � _

�

b

r

). (The wathed literals should be

�

l

0

and �u

d

0

.)

September 23, 2015

236 ANSWERS TO EXERCISES 7.2.2.2

baktrak

bakjumping

blit

wathed literal

Han

Somenzi

Hamadi

Jabbour

Sa��s

trivial

stamp

trail

unit propagation

author

bakjump

langford (n)

automorphism

Notie that this proedure will learn more than simple baktrak �a la Algorithm D

does, even when the trivial lause is always substituted (that is, even when � = �1),

beause it provides for bakjumping when d

0

< d+ 1.

270. (a) Consider the lauses 3

�

2, 4

�

3

�

2, 5

�

4

�

3

�

1, 6

�

5

�

4

�

1,

�

6

�

5

�

4, with initial deisions L

1

 1,

L

2

 2. Then L

3

 3 with reason R

3

 3

�

2; similarly L

4

 4, L

5

 5. If L

6

 6, the

onit lause

�

6

�

5

�

4 allows us to strengthen R

6

to

�

5

�

4

�

1; but if L

6

�

6, with R

�

6

�

6

�

5

�

4, we

don't notie that 6

�

5

�

4

�

1 an be strengthened. In either ase we an, however, strengthen

R

5

to

�

4

�

3

�

1, before learning the lause

�

2

�

1.

(b) After doing blit (l

j

) to the literals of R

l

, we know that R

l

n l is ontained

in f

�

b

1

; : : : ;

�

b

r

g together with q + 1 unresolved false literals that have been stamped at

level d. (Exerise 268 ensures that p 6= 0 within eah blit .) Thus we an subsume

lause R

l

on the y if q + r + 1 < k and q > 0.

In suh ases the proedure of answer 268 an be used to delete l from = R

l

. But

there's a ompliation, beause l = l

0

is a wathed literal (j = 0 in that answer), and all

other literals are false. After l is deleted, it will be essential to wath a false literal l

0

that

is de�ned at trail level d. So we �nd the largest j

0

� k suh that VAL(MEM[+ j

0

℄) � 2d,

and we set l

0

 MEM[+ j

0

℄. If j

0

6= k, we also set MEM[+ j

0

℄ MEM[+ k℄; we an

assume that j

0

> 1. Finally, after setting MEM[℄ l

0

and MEM[+ k℄ l + f as in

answer 268, we also delete from the wath list W

l

, and insert it into W

l

0

.

[This enhanement typially saves 1%{10% of the running time, but sometimes

it saves a lot more. It was disovered in 2009, independently by two di�erent groups

of researhers: See H. Han and F. Somenzi, LNCS 5584 (2009), 209{222; Y. Hamadi,

S. Jabbour, and L. Sa��s, Int. Conf. Tools with Artif. Int. (ICTAI) 21 (2009), 328{335.℄

271. We shall hek for disards only if the urrent lause C

i

is not trivial (see exerise

269), and if the �rst literal of C

i�1

does not appear in the trail. (Indeed, experiene

shows that almost every permissible disard falls into this ategory.) Thus, let C

i�1

be

l

0

l

1

: : : l

k�1

where VAL(jl

0

j) < 0; we want to deide if f

�

l

0

;

�

b

1

; : : : ;

�

b

r

g � fl

1

; : : : ; l

k�1

g.

The seret is to use the stamp �elds that have already been set up. Set j k�1,

q r+1, and do the following while q > 0 and j � q: If l

j

=

�

l

0

, or if VAL(jl

j

j) � 2d

0

+1

and S(jl

j

j) = s, set q q � 1; in any ase set j j � 1. Then disard if q = 0.

272. Reetion isn't as easy to implement as it may seem, unless C is a unit lause,

beause C

R

must be plaed arefully in MEM and it must be onsistent with the trail.

Furthermore, experiene shows that it's best not to learn the reetion of every learned

lause, beause exess lauses make unit propagation slower. The author has obtained

enouraging results, however, by doing the following operations just before returning

to C3 in step C9, whenever the length of C doesn't exeed a given parameter R:

Assign ranks to the literals of C

R

by letting rank(l) = 1 if l is on the trail,

rank(l) = d

00

if

�

l is on the trail at level d

00

< d

0

, rank(l) = d otherwise. Let u and v

be two of the highest ranking literals, with rank(u) � rank(v). Put them into the �rst

two positions of C

R

, so that they will be wathed. Do nothing further if rank(v) > d

0

.

Otherwise, if rank(v) < d

0

, bakjump to level rank(v) and set d

0

 rank(v). Then if

rank(u) = rank(v) = d

0

, treat C

R

as a onit lause by going to step C7 with C

R

.

(That is a rare event, but it an happen.) Otherwise, if u doesn't appear in the urrent

trail, set L

F

 u, TLOC(juj) F , R

u

 C

R

, F F + 1. (Possibly F = E + 2 now.)

(For example, this method with R 6 roughly halved the running time of

waerden (3; 10; 97) and waerden (3; 13; 160) with parameters (193) exept for � :995.)

A similar idea works with the lauses langford (n), and in general whenever the

input lauses have an automorphism of order 2.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 237

OVAL

polarities

author

Knuth

Van Gelder

dependeny digraph

Cook

273. (a) We an onvert Algorithm C into a \lause learning mahine" by keeping the

proess going after F reahes n in step C5: Instead of terminating, start over again by

essentially going bak to step C1, exept that the urrent olletion of lauses should

be retained, and the OVAL polarities should be reset to random bits. Learned lauses of

size K or less, where K is a parameter, should be written to a �le. Stop when you've

found a given number of short lauses, or when you've exeeded a given time limit.

For example, here's what happened when the author �rst tried to �nd W (3; 13):

Applying this algorithm to waerden (3; 13; 158) with K = 3, and with a timeout limit of

30 G� (gigamems), yielded the �ve lauses 65 68 70, 68 78 81, 78 81 90, 78 79 81, 79 81 82.

So �fteen lauses 65 68 70, 66 69 71, : : : , 81 83 84 ould be added to waerden (3; 13; 160),

as well as their �fteen reetions 96 93 91, 95 92 90, : : : , 80 78 77. Then the algorithm

\C

R

"of exerise 272 proved this augmented set unsatis�able after an additional 107 G�.

In a seond experiment, using K = 2 with waerden (3; 13; 159) led to three binary

lauses 76 84, 81 86, and 84 88. Shifting and reeting gave twelve binary lauses, whih

in ompany with waerden (3; 13; 160) were refuted by C

R

in another 80 G�. (For om-

parison, Algorithm C

R

refuted waerden (3; 13; 160) unaided in about 120 G�, ompared

to about 270 G� for both Algorithm C and Algorithm L.) Optimum strategies for learn-

ing useful lauses from satis�able subproblems are far from lear, espeially beause

running times are highly variable. But this method does show promise, espeially on

more diÆult problems|when more time an be devoted to the preliminary learning.

(b) Short lauses that an be learned from satis�able instanes of, say, X

0

!

X

1

! � � � ! X

r�1

, when X

0

is not required to be an initial state, an be shifted and

used to help refute X

0

! X

1

! � � � ! X

r

.

274. With are, irular reasoning an (and must) be avoided. But the author's

elaborate experiments with suh ideas (and with the related notion of \better on-

its") were disappointing; they didn't beat the running time of the simpler algorithm.

However, an intriguing idea by Allen Van Gelder [Journal on Satis�ability, Boolean

Modeling and Computation 8 (2012), 117{122℄ shows promise.

275. When a solution has been found, let k be minimum suh that x

k

= 1 and the

value of x

k

has not been assigned at level 0. If no suh k exists, we stop. Otherwise

we are entitled to fore variables x

1

through x

k�1

all to have their urrent values, at

level 0, beause we know that this doesn't produe an unsatis�able problem. So we �x

those values, and we restart the solution proess at level 1 with the tentative deision

`x

k

= 0'. If a onit ours, we'll know that x

k

= 1 at level 0; if not, we'll have a

solution with x

k

= 0. In either ase we an inrease k. (This method is onsiderably

better than that of answer 109, beause every learned lause remains valid.)

276. True. Unit propagation essentially transforms F ^ L into F jL.

277. Otherwise F ^ C

1

^ � � � ^ C

t�1

`

1

� fails (unit propagation wouldn't start).

278. For example, (46;

�

56;

�

54; 6; 4; �). (Six steps are neessary.)

279. True, beause the dependeny digraph ontains a literal l with l��!

�

�

l��!

�

l.

280. (a) They're satis�ed if and only if x

1

: : : x

n

has at least j 0s and at least k 1s.

[The problem ook (k; k) was introdued by Stephen A. Cook (unpublished) in 1971.℄

(b) Take all positive (j � t)-lauses on f1; : : : ; n� 1� tg for t = 1, 2, : : : , j.

() Suppose the very �rst deision is L

0

 x

n

. The algorithm will proeed to at

as if the input were ook (j; k) j x

n

= ook (j; k � 1). Furthermore, with these lauses,

every lause that it learns initially will inlude �x

n

. Therefore, by indution, the unit

lause (�x

n

) will be learned lause number

�

n�2

j�1

�

. All previously learned lauses are

September 23, 2015

238 ANSWERS TO EXERCISES 7.2.2.2

St�almark

exlusion lauses

at-most-one

symmetry-breaking

unit lause

data strutures

subsumed by this one, hene they're no longer relevant. The remaining problem is

ook (j; k) j �x

n

= ook (j � 1; k); so the algorithm will �nish after learning

�

n�2

j�2

�

more.

Similarly, if the �rst deision is L

0

 �x

n

, the

�

n�2

j�2

�

th learned lause will be (x

n

).

281. St�almark's refutation orresponds to the sequene (M

0

jk1

, M

0

jk2

, : : : , M

0

jk(k�1)

,

M

j(k�1)

) for j = 1, : : : , k � 1, for k = m, m� 1, : : : , 1. (M

0

jk(k�1)

an be omitted.)

282. First learn the exlusion lauses (17). In the next lauses we shall write a

j

, b

j

, : : : ,

as shorthand for a

j;p

, b

j;p

, : : : , where p is a partiular olor, 1 � p � 3. Notie that

the 12q edges appear in 4q triangles, namely fb

j

;

j

; d

j

g, fa

j

; a

j

0

; b

j

0

g, ff

j

; e

j

0

;

j

0

g,

fe

j

; f

j

0

; d

j

0

g, for 1 � j � q, where j

0

is j + 1 (modulo q). For every suh triangle

fu; v; wg, learn (�u

p

0

_ v

p

_ w

p

) and then (u

p

_ v

p

_ w

p

), where p

0

is p+ 1 (modulo 3).

Now for j = 1, 2, : : : , q, learn (a

j

_f

j

_a

j

0

_e

j

0

), (a

j

_e

j

_a

j

0

_f

j

0

), (e

j

_f

j

_e

j

0

_f

j

0

),

(�a

j

_ �e

j

_ �e

j

0

), (�a

j

_

�

f

j

_

�

f

j

0

), (�e

j

_

�

f

j

_ �a

j

0

), as well as eighteen more:

(�u

1

_ �v

1

_ u

0

j

_ v

0

j

); (�u

2

_ �v

2

_ u

0

j

0

_ v

0

j

0

); if j � 3 is odd;

(�u

1

_ �v

1

_ �u

0

j

); (�u

2

_ �v

2

_ �u

0

j

0

); if j � 3 is even;

here u; v 2 fa; e; fg and u

0

; v

0

2 fa; e; fg yield 3� 3 hoies of (u; v; u

0

; v

0

). Then we're

ready to learn (�a

j

_ �e

j

), (�a

j

_

�

f

j

), (�e

j

_

�

f

j

) for j 2 f1; 2g and (a

j

_ e

j

_ f

j

_ a

j

0

),

(a

j

_ e

j

_ f

j

) for j 2 f1; qg. All of these lauses are to be learned for 1 � p � 3.

Next, for j = q, q � 1, : : : , 2, learn (�a

j

_ �e

j

), (�a

j

_

�

f

j

), (�e

j

_

�

f

j

) for 1 � p � 3

and then (a

j�1

_ e

j�1

_ f

j�1

_ a

j

), (a

j�1

_ e

j�1

_ f

j�1

) for 1 � p � 3. We have now

established all lauses in the hint.

The endgame onsists of the following for 1 � p � 3: For all hoies of p

0

and p

00

with fp; p

0

; p

00

g = f1; 2; 3g (thus two hoies), and for j = 2, 3, : : : , q, learn three lauses

(�a

1;p

_ �e

1;p

0

_ �a

j;p

_ e

j;p

00

); (�a

1;p

_ �e

1;p

0

_ �a

j;p

0

_ e

j;p

); (�a

1;p

_ �e

1;p

0

_ �a

j;p

00

_ e

j;p

0

); j even;

(�a

1;p

_ �e

1;p

0

_ �a

j;p

_ e

j;p

0

); (�a

1;p

_ �e

1;p

0

_ �a

j;p

0

_ e

j;p

00

); (�a

1;p

_ �e

1;p

0

_ �a

j;p

00

_ e

j;p

); j odd;

then learn (�a

1;p

_ �e

1;p

0

). Finally learn �a

1;p

.

[Not all of these lauses are atually neessary. For example, the exlusion lauses

for b's, 's, and d's aren't used. This erti�ate doesn't assume that the symmetry-

breaking unit lauses b

1;1

^

1;2

^ d

1;3

of fsnark (q) are present; indeed, those lauses

don't help it muh. The atual lauses learned by Algorithm C are onsiderably longer

and somewhat haoti (indeed mysterious); it's hard to see just where an \aha" ours!℄

283. A related question is to ask whether the expeted length of learned lauses is

O(1) as q !1.

284. It's onvenient to represent eah unit lause (l) in F [C

1

[� � �[C

t

as if it were the

binary lause (l_ �x

0

), where x

0

is a new variable that is always true. We borrow some

of the data strutures of Algorithm C, namely the trail array L, the reason array R,

and the �elds TLOC, S, VAL assoiated with eah variable. We set VAL(k) = 0, 1, or �1

when x

k

has been fored true, fored false, or not fored, respetively.

To verify the lause C

i

= (a

1

_� � �_a

k

), we begin with VAL(j) 0 for 0 � j � n,

L

0

 0, L

1

 �a

1

, : : : , L

k

 �a

k

, E F k + 1, G 0, and VAL(jL

p

j) L

p

& 1 for

0 � p < F ; then we arry out unit propagation as in Algorithm C, expeting to reah

a onit before G = F . (Otherwise veri�ation fails.)

A onit arises when a lause = l

0

: : : l

k�1

fores l

0

at a time when

�

l

0

has already

been fored. Now we mimi step C7 (see exerise 263), but the operations are muh

simpler: Mark , stamp S(jl

j

j) i for 0 � j < k, and set p max(TLOC(jl

1

j); : : : ;

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 239

Wetzler

Heule

Hunt

worst ase

tie-breakers

lause ativity

trivial

bakjump

oating point

TLOC(jl

k�1

j)). Now, while p � E, we set l L

p

, p p� 1, and if S(jlj) = i we also

\resolve with the reason of l" as follows: Let lause R

l

be l

0

l

1

: : : l

k�1

, mark R

l

, and

set S(jl

j

j) i for 1 � j < k.

[Wetzler, Heule, and Hunt have suggested an interesting improvement, whih will

often mark signi�antly fewer lauses at the expense of a more ompliated algorithm:

Give preferene to already-marked lauses when doing the unit propagations, just as

Algorithm L prefers binary impliations to the impliations of longer lauses (see (62)).℄

285. (a) j = 77, s

77

= 12 + 2827, m

77

= 59, b

77

= 710.

(b) j = 72, s

72

= 12 + 2048, m

72

= 99 + 243 + 404 + 536 = 1282, b

72

=

3 + 40 + 57 + 86 = 186. (The RANGE statisti is rather oarse when � =

1

2

, beause

many di�erent signatures yield the same value.)

() j = 71, s

71

= 12 + 3087, m

71

= 243, b

71

= 40.

286. The maximum, 738, is ahieved uniquely by the RANGE-oriented solution with

� =

15

16

, exept that we an optionally inlude also the signatures (6; 0) and (7; 0) for

whih a

pq

= 0. [This solution optimizes the worst ase of lause seletion, beause the

stated problem impliitly assumes that the seondary heuristi is bad. If we assume,

however, that the hoie of tie-breakers based on lause ativity is at least as good as

a random hoie, then the expeted number 738 + 45 �

10

59

� 745:6 from � =

15

16

is not

as good as the expeted number 710 + 287 �

57

404

� 750:5 from � =

9

16

.℄

287. When a onit is deteted in step C7 (with d > 0), keep going as in step C3;

but remember the �rst lause C

d

that deteted a onit at eah level d.

Eventually step C5 will �nd F = n. That's when lauses get their RANGE sores,

if we're doing a full run beause we want to purge some of them. (Sometimes, however,

it's also useful to do a few full runs at the very beginning, or just after a restart, beause

some valuable lauses might be learned.)

New lauses an be learned in the usual way from the remembered lauses C

d

, in

dereasing order of d, exept that \trivial" lauses (exerise 269) are onsidered only at

the lowest suh level. We must keep trak of the minimum bakjump level d

0

, among all

of these onits. And if several new lauses have the same d

0

, we must remember all

of the literals that will be plaed at the end of the trail after we eventually jump bak.

288. Step C5 initiates a full run, then eventually �nds F = n. At this point we're

done, in the unlikely event that no onits have arisen. Otherwise we set LS[d℄ 0

for 0 � d < n and m

j

 0 for 1 � j < 256. The ativity ACT() of eah learned

lause has been maintained in MEM[� 5℄, as a 32-bit oating point number. The

following steps ompute RANGE(), whih will be stored in MEM[� 4℄ as an integer, for

all learned in inreasing order, assuming that 's literals are l

0

l

1

: : : l

s�1

:

If R

l

0

= , set RANGE() 0. Otherwise set p r 0, and do the following

for 0 � k < s: If v < 2 and v + l

k

is even, set RANGE() 256 and exit the loop on k

(beause is permanently satis�ed, hene useless). If v � 2 and LS[lev (l

k

)℄ < , set

LS[lev (l

k

)℄ and r r+1. Then if v � 2 and LS[lev (l

k

)℄ = and l

k

+v is even, set

LS[lev (l

k

)℄ + 1 and p p+ 1. After k reahes s, set r min(b16(p+�(r� p));

255), RANGE() r, and m

r

 m

r

+ 1.

Now resolve onits (see answer 287), giving ACT() 0 and RANGE() 0 to

all newly learned lauses , and jump bak to trail level 0. (A round of purging is a

major event, something like spring leaning. It is possible that d

0

= 0, in whih ase

one or more literals have been appended to trail level 0 and their onsequenes have not

yet been explored.) Find the median range j as de�ned in (124), where T is half the

total urrent number of learned lauses. If j < 256 and T > s

j

, �nd h = T � s

j

lauses

September 23, 2015

240 ANSWERS TO EXERCISES 7.2.2.2

heap

OVAL

overow

bug

author

standard deviation

Papadimitriou

variane

with RANGE() = j and ACT() as small as possible, and bump their range up to j + 1.

(This an be done by putting the �rst m

j

� h of them into a heap, then repeatedly

bumping the least ative as the remaining h are enountered; see exerise 6.1{22.)

Finally, go again through all the learned lauses , in order of inreasing , ignor-

ing if RANGE() > j, otherwise opying it into a new loation

0

� . (Permanently

false literals, whih are urrently de�ned at level 0, an also be removed at this time;

thus the lause's size in MEM[

0

� 1℄ might be less than MEM[� 1℄. It is possible, but

unlikely, that a learned lause beomes redued to a unit in this way, or even that it

beomes empty.) The ativity sore in MEM[� 5℄ should be opied into MEM[

0

� 5℄;

but RANGE() and the wath links in MEM[� 2℄ and MEM[� 3℄ needn't be opied.

When opying is omplete, all the wath lists should be reomputed from srath,

as in answer 260, inluding original lauses as well as the learned lauses that remain.

289. By indution, y

k

= (2� 2

1�k

)� + (2(k � 2) + 2

2�k

)Æ for all k � 0.

290. Set k HEAP[0℄; then if VAL(k) � 0, delete k from the heap as in answer 262,

and repeat this loop.

291. OVAL(49) will be the even number 36, beause of the propagations on level 18

that led to (115).

292. If AGILITY � 2

32

� 2

13

, then (127) either subtrats 2

19

� 1 or adds 1. Hene

there's a minusule hane that AGILITY will overow by passing from 2

32

� 1 to 2

32

(zero). (But overow won't be a alamity even if|unbelievably| it happens. So this

is one \bug" in the author's program that he will not try to �x.)

293. Maintain integers u

f

, v

f

, and �

f

, where �

f

has 64 bits. Initially u

f

= v

f

=M

f

= 1.

WhenM �M

f

is deteted in step C5, do this: If u

f

&�u

f

= v

f

, set u

f

 u

f

+1, v

f

 1,

�

f

 2

32

 ; otherwise set v

f

 2v

f

and �

f

 �

f

+ (�

f

� 4). Flush if AGILITY � �

f

.

294. We have, for example, g

1100

=

z

3

(g

0100

+g

1000

+g

1110

), and g

01�1

= 1. The solution

is g

00�1

= g

01�0

= g

11�1

= A=D, g

00�0

= g

10�1

= g

11�0

= B=D, g

10�0

= C=D, where

A = 3z� z

2

� z

3

, B = z

2

, C = z

3

, D = 9� 6z� 3z

2

+ z

3

. Hene the overall generating

funtion is g = (6A+ 6B + 2C + 2D)=(16D); and we �nd g

0

(1) = 33=4, g

00

(1) = 147.

Thus mean(g) = 8:25, var(g) = 87:1875, and the standard deviation is � 9:3.

295. Consider all 3

�

n

3

�

lauses �x

i

_ x

j

_ x

k

for distint fi; j; kg, plus two additional

lauses (�x

1

_ �x

2

_ �x

3

)^ (�x

4

_ �x

5

_ �x

6

) to make the solution 0 : : : 0 unique. Only the two

latter lauses ause the variables X

t

and Y

t

in the proof of Theorem U to deviate from

eah other. [C. Papadimitriou, Computational Complexity (1994), Problem 11.5.6.

These lauses spell trouble for a lot of other SAT algorithms too.℄

296. The hinted ratio 2(2p+q+1)(2p+q)=(9(p+1)(p+q+1)) is � 1 when p � q (more

preisely when p = q � 7 + O(1=q)). And f(q + 1; q + 1)=f(q; q) = 2(n � q)(3q + 3)

3

=

(27(q+1)

2

(2q+2)

2

) is � 1 when q � n=3. Finally, f(n=3; n=3) =

3

4�n

(3=4)

n

(1+O(1=n))

by Stirling's approximation, when n = 3q.

297. (a) G

q

(z) = (z=3)

q

C(2z

2

=9)

q

= G(z)

q

where G(z) = (3 �

p

9� 8z

2

)=(4z), by

Eqs. 7.2.1.6{(18) and (24). [See Algorithmia 32 (2002), 620{622.℄

(b) G

q

(1) = 2

�q

is the probability that Y

t

atually reahes 0, for some �nite t.

() If the Y proess does stop, G

q

(z)=G

q

(1) = (2G(z))

q

desribes the distribution

of stopping times. HeneG

0

q

(1)=G

q

(1) = 2qG

0

(1) = 3q is the mean length of the random

walk, given that it terminates. (The variane, inidentally, is 24q. A random Y -walker

who doesn't �nish quikly is probably doomed to wander forever.)

(d) The generating funtion for T , the stopping time of the Y proess, is T (z) =

P

q

�

n

q

�

2

�n

G

q

(z); and T is �nite with probability T (1) = (

3

4

)

n

by (b). If we restrit

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 241

Markov's inequality

Papadimitriou

random number generator

biased random bits

random bits, biased

onsideration to suh senarios, the mean T

0

(1)=T (1) is n; and Markov's inequality

tells us that Pr(T � N) � n=N .

(e) The algorithm sueeds with probability p > Pr(T < N) � (1� n=N)(3=4)

n

,

when it is given satis�able lauses. So it fails after K(4=3)

n

trials with probability less

than exp(K(4=3)

n

ln(1� p)) < exp(�K(4=3)

n

p) < exp(�K=2) when N = 2n.

298. Change 1/3 and 2/3 in (129) to 1=k and (k � 1)=k. The e�et is to hange G(z)

to (z=k)C((k � 1)z

2

=k

2

), with G(1) = 1=(k � 1) and G

0

(1) = k=((k � 1)(k � 2)). As

before, T (1) = 2

�n

(1 + G(1))

n

and T

0

(1)=T (1) = nG

0

(1)=(1 + G(1)). So the general-

ized Corollary W gives suess probability > 1 � e

�K=2

when we apply Algorithm P

K(2� 2=k)

n

times with N = b2n=(k � 2).

299. In this ase G(z) = (1�

p

1� z

2

)=z; thus G(1) = T (1) = 1. But G

0

(1) =1, so

we must use a di�erent method. The probability of failure if N = n

2

is

1

2

n

X

p;q

�

n

q

�

q

2p+ q

�

2p+ q

p

�

[2p+ q >n

2

℄

2

2p+q

=

X

t>n

2

2

�n�t

t

X

p

�

n

t� 2p

��

t

p

�

(t� 2p)

�

X

t>n

2

2

�n�t

t

�

t

bt=2

�

X

p

�

n

t� 2p

�

(t� 2p) =

n

4

X

t>n

2

2

�t

t

�

t

bt=2

�

<

n

4

X

t>n

2

r

2

�t

3

=

n

p

8�

Z

1

n

2

dx

dx

3=2

e

<

n

p

8�

Z

1

n

2

dx

x

3=2

=

1

p

2�

:

[See C. Papadimitriou, Computational Complexity (1994), Theorem 11.1.℄

300. In this algorithm, variables named with upperase letters (exept C and N) de-

note bit vetors of some �xed size (say 64); eah bit position represents a separate trial.

The notation U

r

stands for a vetor of random bits, eah of whih is 1 with probability

1=r, independently of all other bits and all previous U 's. The maximum number of

ips per bit position in this variant of Algorithm P is only approximately equal to N .

P1

0

. [Initialize.℄ Set X

i

 U

2

for 1 � i � n. Also set t 0.

P2

0

. [Begin pass.℄ Set Z 0 and j 0. (Flipped positions are remembered in Z.)

P3

0

. [Move to next lause.℄ If j = m, go to P5

0

. Otherwise set j j + 1.

P4

0

. [Flip.℄ Let C

j

be the lause (l

1

_ � � � _ l

k

). Set Y

�

L

1

& � � � &

�

L

k

, where

L

i

denotes X

h

if l

i

= x

h

and L

i

denotes

�

X

h

if l

i

= �x

h

. (Thus Y has 1s in

positions that violate lause C

j

.) Set Z Z j Y and t t+ (Y &1). Then

for r = k, k � 1, : : : , 2 set Y

0

 Y & U

r

, L

r

 L

r

� Y

0

, Y Y � Y

0

.

Finally set L

1

 L

1

� Y and return to P3

0

.

P5

0

. [Done?℄ If Z 6= �1, terminate suessfully: One solution is given by the

bits (X

1

& B) : : : (X

n

& B), where B =

�

Z & (Z + 1). Otherwise, if t > N ,

terminate unsuessfully. Otherwise return to P2

0

.

The shenanigans in step P4

0

have the e�et of ipping the o�ending bits of eah literal

with probability 1=k, thus distributing the 1s of Y in an unbiased fashion.

301. In pratie we an assume that all lauses have limited size, so that (say) k � 4

in step P4

0

. The lauses an also be sorted by size.

A traditional random number generator produes bits U

2

; and one an use U

2

&U

2

to get U

4

. The method of exerise 3.4.1{25 an be used for other ases; for example,

U

2

& (U

2

j (U

2

& (U

2

j (U

2

& (U

2

j (U

2

& (U

2

j (U

2

& U

2

))))))))

September 23, 2015

242 ANSWERS TO EXERCISES 7.2.2.2

branhless omputation

ZSEV

mone

swapping to the front

Knuth

is a suÆiently lose approximation to U

3

. The random numbers needed in step P1

0

must be of top quality; but those used in step P4

0

don't have to be espeially aurate,

beause most of their bits are irrelevant. We an preompute the latter, making tables

of 2

d

values for eah of U

2

, U

3

, U

4

, and running through them ylially by means of

table indies U2P, U3P, U4P as in the ode below, where UMASK = 2

d+3

�1. The values of

U2P, U3P, and U4P should be initialized to (truly) random bits whenever step P2

0

starts

a new pass over the lauses.

Here is sample ode for the inner loop, step P4

0

, for lauses with k = 3. The

otabyte in memory loation L+ 8(i�1) is the address in memory where X

h

is stored,

plus 1 if it should be omplemented; for example, if l

2

is �x

3

, the address X+3�8+1 will

be in loation L+ 8, where L is a global register. Register mone holds the onstant �1.

LDOU $1,L,0 addr(L

1

)

LDOU $4,$1,0 jL

1

j

LDOU $2,L,8 addr(L

2

)

LDOU $5,$2,0 jL

2

j

LDOU $3,L,16 addr(L

3

)

LDOU $6,$3,0 jL

3

j

ZSEV $0,$1,mone

XOR $7,$4,$0

�

L

1

ZSEV $0,$2,mone

XOR $8,$5,$0

�

L

2

ZSEV $0,$3,mone

XOR $9,$6,$0

�

L

3

AND $7,$7,$8

AND $7,$7,$9 Y

OR Z,Z,$7 Z j Y

AND $0,$7,1 Y & 1

ADD T,T,$0 new t

LDOU $0,U3,U3P

ADD U3P,U3P,8

AND U3P,U3P,UMASK

AND $0,$0,$7 U

3

& Y

XOR $6,$6,$0

STOU $6,$3,0 jL

3

j � Y

0

SUBU $7,$7,$0

LDOU $0,U2,U2P

ADD U2P,U2P,8

AND U2P,U2P,UMASK

AND $0,$0,$7 U

2

& Y

XOR $5,$5,$0

STOU $5,$2,0 jL

2

j � Y

0

SUBU $7,$7,$0

XOR $4,$4,$7

STOU $4,$1,0 jL

1

j � Y

302. Assume that literals are represented internally as in Algorithm A, and that all

lauses have stritly distint literals. An eÆient implementation atually requires more

arrays than are stated in the text: We need to know exatly whih lauses ontain any

given literal, just as we need to know the literals of any given lause. And we also need

a (small) array b

0

: : : b

k�1

to list the best andidate literals in step W4:

W4. [Choose l.℄ Set 1, j 0, and do the following while j < k: Set j j+

1, l l

j

; and if

jlj

< , set

jlj

, b

0

 l, s 1; or if

jlj

= , set b

s

 l,

s s + 1. Then if = 0, or if � 1 and U � p, set l b

bsU

; otherwise

set l l

bkU+1

. (Eah random fration U is independent of the others.)

W5. [Flip l.℄ Set s 0. For eah j suh that C

j

ontains l, make lause C

j

hap-

pier as follows: Set q k

j

, k

j

 q+1; and if q = 0, set s s+1 and delete

C

j

from the f array (see below); or if q = 1, derease the ost of C

j

's ritial

variable (see below). Then set

jlj

 s and x

jlj

 �x

jlj

. For eah j suh that

C

j

ontains

�

l, make lause C

j

sadder as follows: Set q k

j

�1, k

j

 q; and

if q = 0, insert C

j

into the f array (see below); or if q = 1, inrease the ost

of C

j

's ritial variable (see below). Set t t+ 1 and return to W2.

To insert C

j

into f , we set f

r

 j, w

j

 r, and r r + 1 (as in step W1). To

delete it, we set h w

j

, r r � 1, f

h

 f

r

, w

f

r

 h.

Whenever we want to update the ost of C

j

's ritial variable in step W5, we know

that C

j

has exatly one true literal. Thus, if the literals of C

j

appear sequentially

in a master array M, it's easy to loate the ritial variable x

jM

i

j

: We simply set

i START(j); then while M

i

is false (namely while x

jM

i

j

=M

i

& 1), set i i + 1.

A slight re�nement is advantageous when we will be inreasing

jM

i

j

: If i 6=

START(j), swap M

START(j)

$ M

i

. This hange signi�antly shortens the searh when

jM

i

j

is subsequently dereased. (In fat, it redued the total running time by more

than 5% in the author's experiments with random 3SAT problems.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 243

random walk303. In this ase D = 3 � z � z

2

= A=z, and we have g

0

(1) = 3, g

00

(1) = 73=4. Thus

mean(g) = 3 and var(g) = 12:25 = 3:5

2

.

304. If �x = x

1

+ � � �+ x

n

= a, there are a(n� a) unsatis�ed lauses; hene there are

two solutions, 0 : : : 0 and 1 : : : 1. If x

1

: : : x

n

isn't a solution, Algorithm P will hange

a to a � 1, eah with probability

1

2

. Thus the probability generating funtion g

a

for

future ips is 1 when a = 0 or a = n, otherwise it is z(g

a�1

+ g

a+1

)=2. And the overall

generating funtion is g =

P

a

�

n

a

�

g

a

=2

n

. Clearly g

a

= g

n�a

.

Exerise MPR{105 determines g

a

and proves that the mean number of ips, g

0

a

(1),

is a(n� a) for 0 � a � n. Thus g

0

(1) = 2

�n

P

n

a=0

�

n

a

�

g

0

a

(1) =

1

2

�

n

2

�

.

Turning now to Algorithm W, again with x

1

+ � � � + x

n

= a, the ost of x

i

is

a � 1 when x

i

= 1, n � a � 1 when x

i

= 0. Therefore g

1

= g

n�1

= z in this ase.

And for 2 � a � n � 2, we will move loser to a solution with probability q and

farther from a solution with probability p, where p + q = 1 and p = p

0

=2 � 1=2; here

p

0

is the greed-avoidane parameter of Algorithm W. Thus for 2 � a � n=2 we have

g

a

= g

n�a

= z(qg

a�1

+ pg

a+1

).

If p

0

= 0, so that the walk is 100% greedy, Algorithm W zooms in on the solution,

with g

a

= z

a

. Exerise 1.2.6{68 with p = 1=2 tells us that g

0

(1) = n=2 �m

�

n

m

�

=2

n

=

n=2 �

p

n=2� + O(1) in that ase. On the other hand if p

0

= 1, so that the walk is

greedy only when a = 1 or a = n� 1, we're almost in the situation of Algorithm P but

with n dereased by 2. Then g

0

(1) = 2

�n

P

n�1

a=1

�

n

a

�

(1 + (a � 1)(n � 2) � (a � 1)

2

) =

n(n � 5)=4 + 2 + (2n� 4)=2

n

; greed triumphs.

What happens as p

0

rises from 0 to 1? Let's derease n by 2 and use the rule g

a

=

z(qg

a�1

+ pg

a+1

) for 1 � a � n=2, so that the alulations are similar to those we did

for Algorithm P but with p now � 1=2 instead of p = 1=2. Funtions t

m

and u

m

an be

de�ned as above; but g

a

= (qz)

a

t

m�a

=t

m

, the new reurrene is t

m+1

= t

m

�pqz

2

t

m�1

,

and t

0

= 1=q, u

0

= 1=(qz). These funtions are polynomials in p, q, and z, whose oeÆ-

ients are binomial oeÆients: In the notation of exerise 1.2.9{15, for m > 0 we have

t

m

= G

m�1

(�pqz

2

)�pz

2

G

m�2

(�pqz

2

) and u

m

= G

m�1

(�pqz

2

)�pzG

m�2

(�pqz

2

), so

T (w) =

1� pw

q(1� w + pqz

2

w

2

)

; U(w) =

1� (1� qz)w

qz(1�w + pqz

2

w

2

)

:

Consequently t

0

m

(1)=t

m

(1) = 2pq(1�(p=q)

m

)=(q�p)

2

�2pm=(q�p) and u

0

m

(1)=u

m

(1) =

(2p�(p=q)

m

q)=(q�p)

2

�2p(m�

1

2

)=(q�p); g

0

a

(1) = a=(q�p)�2pq((q=p)

a

�1)=(q�p)

2

for 0 � a � n=2 when n is even, a=(q� p)� q((q=p)

a

� 1)=(q� p)

2

when n is odd. The

overall totals when n = 1000 and p

0

= (:001; :01; :1; :5; :9; :99; :999) are respetively

� (487:9; 492:3; 541:4; 973:7; 4853:4; 44688:2; 183063:4).

305. That little additional lause reverses the piture! Now there's only one solution,

and greediness fails badly when �x > n=2 beause it keeps trying to move x away

from the solution. To analyze the new situation in detail, we need 3(n� 1) generating

funtions g

ab

, where a = x

1

+ x

2

and b = x

3

+ � � �+ x

n

. The expeted number of ips

will be g

0

(1), where g = 2

�n

P

2

a=0

P

n�2

b=0

�

2

a

��

n�2

b

�

g

ab

.

The behavior of Algorithm P is ambiguous, beause the unsatis�ed lause found

in step P2 depends on the lause ordering. The most favorable ase arises when a = 2,

beause we an derease a to 1 by working on the speial lause �x

1

_�x

2

. Any other lause

is equally likely to inrease or derease a + b. So the best-ase generating funtions

maximize the hane of reahing a = 2: g

00

= 1, g

01

=

z

2

(g

00

+g

11

), g

02

=

z

2

(g

01

+g

12

),

g

10

=

z

2

(g

00

+g

20

), g

11

=

z

2

(g

10

+g

21

), g

12

=

z

2

(g

11

+g

22

), and g

2b

= zg

1b

. The solution

has g

1b

= (z=(2� z

2

))

b+1

; and we �nd mean(g) = 183=32 = 5:71875.

September 23, 2015

244 ANSWERS TO EXERCISES 7.2.2.2

in�nite loop

geometri distribution

memoryless

The worst ase arises whenever g

20

6= zg

10

and g

21

6= zg

11

; for example we an

take g

20

=

z

2

(g

10

+g

21

), g

21

=

z

2

(g

20

+g

22

), together with the other seven equations from

the best ase. Then g

01

= g

10

= z(4�3z

2

)=d, g

02

= g

11

= g

20

= z

2

(2�z

2

)=d, and g

12

=

g

21

= z

3

=d, where d = 8�8z

2

+z

4

. Overall, g = (1+z)

2

(2�z

2

)=(4d) and mean(g) = 11.

(This analysis an be extended to larger n: The worst ase turns out to have g

ab

=

g

a+b

= (z=2)

a+b

t

n�a�b

=t

n

, in the notation of the previous exerise, giving n(3n� 1)=4

ips on average. The best ase has g

1b

as before; hene g

0

0b

= 3b+2�2

1�b

, g

0

1b

= 3b+3,

and g

0

2b

= 3b+ 4 when z = 1. The best average number of ips therefore turns out to

be linear , with mean(g) =

3

2

n�

8

9

(3=4)

n

.)

The analysis beomes more exiting, but trikier, when we use Algorithm W. Let

p = p

0

=2 and q = 1 � p as in the previous answer. Clearly g

00

= 1, g

01

= g

10

= zg

00

,

g

02

=

z

2

(g

01

+g

12

), and g

22

= zg

12

; but the other four ases need some thought. We have

g

11

=

z

4

((

1

2

+ q)(g

01

+ g

10

) + g

12

+ 2pg

21

);

sine the osts for x

1

x

2

x

3

x

4

= 1010 are 1211 and the unsatis�ed lauses are (�x

1

_ x

4

),

(�x

3

_x

4

), (�x

1

_x

2

), (�x

3

_x

2

); in the former two lauses we ip eah literal equally often,

but in the latter two we ip x

2

with probability p and the other with probability q.

A similar but simpler analysis shows that g

21

=

z

4

(g

11

+3g

22

) and g

20

=

z

5

(3g

10

+2g

21

).

The most interesting ase is g

12

=

z

3

(pg

02

+ 2pg

11

+ 3qg

22

), where the osts are

2122 and the problemati lauses are (�x

1

_x

2

), (�x

3

_x

2

), (�x

4

_x

2

). If p = 0, AlgorithmW

will always deide to ip x

2

; but then we'll be bak in state 12 after the next ip.

Indeed, setting p = 0 yields g

00

= 1, g

01

= g

10

= z, g

02

=

1

2

z

2

, g

11

=

3

4

z

2

,

g

20

=

3

5

z

2

+

3

40

z

4

, g

21

=

3

16

z

3

, and g

12

= g

22

= 0. The weighted total therefore turns out

to be g = (40 + 160z + 164z

2

+ 15z

3

+ 3z

4

)=640. Notie that the greedy random walk

never sueeds after making more than 4 ips, in this ase; so we should set N = 4 and

restart after eah failure. The probability of suess is g(1) = 191=320. (This strategy

is atually quite good: It sueeds after making an average of 1577=382 � 4:13 ips

and hoosing random starting values x

1

x

2

x

3

x

4

about 320/191 times.)

If p is positive, no matter how tiny, the suess probability for N =1 is g(1) = 1.

But the denominator of g is 48 � 48z

2

+ 26pz

2

+ 6pz

4

� 17p

2

z

4

, and we �nd that

mean(g) = (1548+2399p�255p

2

)=(1280p�680p

2

) = (6192+4798p

0

�255p

0

2

)=(2560p

0

�

680p

0

2

). Taking p

0

= (:001; :01; :1; :5; :9; :99; :999) in this formula gives, respetively,

the approximate values (2421:3; 244:4; 26:8; 7:7; 5:9; 5:7; 5:7).

(Calulations for n = 12 show that g is a polynomial of degree 8 when p = 0,

with g(1) � :51 and g

0

(1) � 2:40. Thus, setting N = 8 yields suess after about

16.1 ips and 1.95 initializations. When p > 0 we have g

0

(1) � 1:635p

�5

+ O(p

�4

) as

p! 0, and the seven values of p

0

onsidered above yield respetively (5�10

16

; 5�10

11

;

5� 10

6

; 1034:3; 91:1; 83:89; 83:95) ips|surprisingly not monotone dereasing in p

0

.

These WalkSAT statistis an be ompared with 17.97 to 105 ips for Algorithm P.)

306. (a) Sine l(N) = E

N

+(1� q

N

)(N + l(N)), we have q

N

l(N) = E

N

+N �Nq

N

=

p

1

+ 2p

2

+ � � �+Np

N

+Np

N+1

+ � � �+Np

1

= N � (q

1

+ � � � + q

N�1

).

(b) If N = m+ k and k � 0 we have E

N

= m

2

=n, q

1

+ � � � + q

N�1

= km=n, and

q

N

= m=n; hene l(N) = n+ k(n�m)=m.

() If N�n, l(N) = (N�

�

N

2

�

=n)=(N=n) = n�

N�1

2

; otherwise l(N)= l(n)=

n+1

2

.

(d) From q

N

= p

1

(N � q

1

� � � � � q

N�1

) and q

N+1

= p

1

(N + 1 � q

1

� � � � � q

N

)

we dedue p

N+1

= p

1

(1� q

N

), hene 1� q

N+1

= (1� p

1

)(1� q

N

). So it's a geometri

distribution, with p

t

= p(1� p)

t�1

for t � 1. (The fat that l(1) = l(2) = � � � is alled

the \memoryless property" of the geometri distribution.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 245

(e) Choose p

1

, : : : , p

n

arbitrarily, with q

n

= p

1

+ � � � + p

n

� 1. Then, arguing as

in (d), p

n+1

, p

n+2

, : : : are de�ned by 1� q

N

= (1� 1=l(n))

N�n

(1� q

n

) for N � n.

(f) Sine l(n+1)� l(n) = (n�(q

1

+ � � �+q

n

))(1�1=q

n

) � 0, we must have q

n

= 1

and l(n) = l(n+ 1). (The ase l(n) < l(n+ 1) is impossible.)

(g) Let x = p

1

and y = p

2

. By part (f), the onditions are equivalent to

0 < x � x+y < 1 and x(3�2x�y) > 1. Hene 0 < (2x�1)(1�x)�xy � (2x�1)(1�x);

we get the general solution by �rst hoosing

1

2

< x < 1, then 0 � y < (2x�1)(1�x)=x.

(h) If N

�

=1 and l(n) <1, we an �nd n

0

with q

n

0

l(n

0

) = p

1

+2p

2

+� � �+n

0

p

n

0

+

n

0

p

n

0

+1

+ � � � + n

0

p

1

> l(n). Hene l(N) � q

N

l(N) � q

n

0

l(n

0

) > l(n) for all N � n

0

.

(i) We have q

n+k

= k=(k + 1) for k � 0; hene l(n + k) = (k + 1)(n + H

k

)=k.

The minimum ours when l(n + k) � l(n + k � 1), namely when n � k � H

k

; thus

k = n + lnn+O(1). For example, the optimum uto� value when n = 10 is N

�

= 23.

(Notie that E

1

=1, yet l = l(N

�

) � 14:194 in this ase.)

(j) Let p

t

= [t> 1℄=2

t�1

. Then l(N) = (3� 2

2�N

)=(1� 2

1�N

) dereases to 3.

(k) Clearly l � L. For N � L we have l(N) = (N � (q

1

+ � � � + q

N�1

))=q

N

�

(N�(1+ � � �+(N�1))=L)=(N=L) = L�(N�1)=2 � (L+1)=2. And for N = bL+k+1,

similarly, l(N) � N � (1+ � � �+bL+ kL)=L = bL+ 1(1� bL=(2L)) � (L+ 1)=2.

307. (a) EX = E

N

1

+ (1� q

N

1

)(N

1

+ EX

0

), where X

0

is the number of steps for the

sequene (N

2

; N

3

; : : :). For numerial results, start with j 0, s 0, � 1; then,

while � > �, set j j + 1, � (1� q

N

j

)�, and s s+E

N

j

+ �N

j

. (Here � is tiny.)

(b) Let P

j

= (1 � q

N

1

) : : : (1 � q

N

j�1

) = Pr(X > T

j

), and note that P

j

�

(1� p

n

)

j�1

where n = minft j p

t

> 0g. Sine q

N

l(N) = E

N

+ (1� q

N

)N , we have

EX = q

N

1

l(N

1

) + (1� q

N

1

)(q

N

2

l(N

2

) + (1� q

N

2

)(q

N

3

l(N

3

) + � � �))

=

1

X

j=1

P

j

q

N

j

l(N

j

) =

1

X

j=1

(P

j

� P

j+1

) l(N

j

):

() EX �

P

1

j=1

(P

j

� P

j+1

)l(N

�

) = l.

(d) We an assume that N

j

� n for all j; otherwise the strategy would do even

worse. For the hint, let fN

1

; : : : ; N

r

g ontain r

m

ourrenes of m, for 1 � m � n,

and suppose t

m

= r

m

+ � � � + r

n

. If t

m

< n=(2m), the probability of failure would

be (1 � m=n)

t

m

� 1 � t

m

m=n > 1=2. Hene we have t

m

� n=(2m) for all m, and

N

1

+ � � � +N

r

= t

1

+ � � �+ t

n

� nH

n

=2.

Now there's some m suh that the �rst r � 1 trials fail on p

(m)

with probability

>

1

2

. For this m we have EX >

1

2

(N

1

+ � � �+N

r�1

) �

1

2

(N

1

+ � � � +N

r

� n).

308. (a) 2

a+1

� 1; and we also have S

2

a

+b

= S

b+1

for 0 � b < 2

a

� 1 (by indution).

(b) The sequene (u

n

; v

n

) in (131) has 1 + �k entries with u

n

= k; and �1 +

� � � + �n = n � �n by Eq. 7.1.3{(61). From the double generating funtion g(w; z) =

P

n�0

w

�n

z

n

= (1+wz)(1+wz

2

)(1+wz

4

)(1+wz

8

) : : : we dedue that

P

k�0

z

2k+1��k

=

zg(z

�1

; z

2

).

() fn j S

n

= 2

a

g = f2

a+1

k + 2

a+1

� 1� �k j k � 0g; hene

P

n�0

z

n

[S

n

=2

a

℄ =

z

2

a+1

�1

g(z

�1

; z

2

a+1

) = z

2

a+1

�1

(1 + z

2

a+1

�1

)(1 + z

2

a+2

�1

)(1 + z

2

a+3

�1

) : : : .

(d) When 2

a

ours for the 2

b

th time, we've had 2

a+b�

� [>a℄ ourrenes

of 2

, for 0 � � a+ b. Consequently �(a; b; 1) = (a+ b� 1)2

a+b

+ 2

a+1

.

(e) The exat value is

P

a+b

=0

2

a+b�

2

+

P

�k

=1

2

a+b+

; and �k � �k = blg k.

(f) The stated formula is Emin

k

f�(a; b; k) j �(a; b; k) � Xg, if we penalize the

algorithm so that it never sueeds unless it is run with the partiular uto� N = 2

a

.

September 23, 2015

246 ANSWERS TO EXERCISES 7.2.2.2

ush

Fibonai ruler funtion

ruler of Fibonais

Cohen

(g) We have Q � (1� q

t

)

2

b

� (1� q

t

)

1=q

t

< e

�1

; hene EX < (a+ b� 1)2

a+b

+

2

a+1

+

P

1

k=1

(a+ b+2k�1)2

a+b

e

�k

= 2

a+b

((a+ b)e=(e�1)+e(3�e)=(e�1)

2

+2

1�b

).

Furthermore we have 2

a+b

< 8l � 4l[b=0℄, by exerise 306(k).

309. No|far from it. If Algorithm C were to satisfy the hypotheses of exerise 306, it

would have to do omplete restarts: It would not only have to ush every literal from

the trail, it would also have to forget all the lauses that it has learned, and reinitialize

the random heap. [But relutant doubling appears to work well also outside of Vegas.℄

310. A method analogous to (131) an be used: Let (u

0

1

; v

0

1

) = (1; 0); then de�ne

(u

0

n+1

; v

0

n+1

) = (u

0

n

& �u

0

n

= 1� v

0

n

? (su(u

0

n

); 0): (u

0

n

; v

0

n

+ 1)). Here `su' is the

Fibonai-ode suessor funtion that is de�ned by six bitwise operations in answer

7.1.3{158. Finally, let S

0

n

= F

v

0

n

+2

for n � 1. (This sequene hS

0

n

i, like hS

n

i, is \niely

balaned"; hene it is universal as in exerise 308. For example, when F

a

appears

for the �rst time, there have been exatly F

a+2�

ourrenes of F

, for 2 � � a.)

311. Beause hR

n

i does surprisingly well in these tests, it seems desirable to onsider

also its Fibonai analog: If f

n

= su(f

n�1

) is the binary Fibonai ode for n, we

an all h�

0

ni = h�f

n

i = (0; 1; 2; 0; 3; 0; 1; 4; 0; : : :) the \Fibonai ruler funtion," and

let hR

0

n

i = (1; 2; 3; 1; 5; 1; 2; 8; 1; : : :) be the \ruler of Fibonais," where R

0

n

= F

2+�

0

n

.

The results (E

S

; E

S

0

; E

R

; E

R

0

) form = 1 andm = 2 are respetively (315:1; 357:8;

405:8; 502:5) and (322:8; 284:1; 404:9; 390:0); thus S beats S

0

beats R beats R

0

when

m = 1, while S

0

beats S beats R

0

beats R when m = 2. The situation is, however,

reversed for larger values of m: R beats R

0

beats S beats S

0

when m = 90, while R

0

beats R beats S

0

beats S when m = 89.

In general, the relutant methods shine for small m, while the more \aggressive"

ruler methods forge ahead as m grows: When n = 100, S beats R if and only if m � 13,

and S

0

beats R

0

if and only ifm � 12. The doubling methods are best whenm is a power

of 2 or slightly less; the Fibonai methods are best when m is a Fibonai number or

slightly less. The worst ases our at m = 65 = 2

6

+ 1 for S and R (namely 1402.2

and 845.0); they our at m = 90 = F

11

+ 1 for S

0

and R

0

(namely 1884.8 and 805.9).

312. T (m;n) = m + b2

b

h

0

(�)=� + 2

b

g(�), where b = dlgme, � = 1 �m=n, h

a

(z) =

P

n

z

n

[S

n

=2

a

℄, and g(z) =

P

n�1

S

n

z

n

=

P

a�0

2

a

h

a

(z).

313. If l is ipped, the number of unsatis�ed lauses inreases by the ost of jlj and

dereases by the number of unsatis�ed lauses that ontain l; and the latter is at least 1.

Consider the following interesting lauses, whih have the unique solution 0000:

x

1

_ �x

2

; �x

1

_ x

2

; x

2

_ �x

3

; �x

2

_ x

3

; x

3

_ �x

4

; �x

3

_ x

4

; �x

1

_ �x

4

:

\Uphill" moves 1011 7! 1111 and 1101 7! 1111 are fored; also 0110 7! 1110 or 0111.

314. (Solution by Bram Cohen, 2012.) Consider the 10 lauses

�

1

�

234

�

567,

�

12

�

34

�

567,

123

�

45, 123

�

46, 123

�

47,

�

1

�

2

�

3

�

4,

�

1

�

2

�

3

�

5,

�

1

�

2

�

3

�

6,

�

1

�

2

�

4

�

5,

�

1

�

2

�

4

�

6, and 60 more obtained by the yli

permutation (1234567). All binary x = x

1

: : : x

7

with weight �x = 2 have ost-free ips

leading to weight 3, but no suh ips to weight 1. Sine the only solution has weight 0,

Algorithm W loops forever whenever �x > 1. (Is there a smaller example?)

315. Any value with 0 � p < 1=2 works, sine eah graph omponent is eitherK

1

orK

2

.

316. No; max �(1 � �)

d

for 0 � � < 1 is d

d

=(d + 1)

d+1

, when � = 1=(d + 1). [But

Theorem J for d > 2 is a onsequene of the improved Theorem L in exerise 356().℄

317. Number the verties so that the neighbors of vertex 1 are 2, : : : , d

0

, and let

G

j

= G n f1; : : : ; jg. Then �(G) = �(G

1

) � Pr(A

1

\ A

2

\ � � � \ A

m

), and the latter

probability is � Pr(A

1

\A

d

0

+1

\� � �\A

m

) = Pr(A

1

j A

d

0

+1

\� � �\A

m

)�(G

d

0

) � p�(G

d

0

).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 247

M�obius polynomial

Chebyshev polynomials

onvex hull

Let � = (d � 1)=d. By indution we have �(G

j

) > ��(G

j+1

) for 1 � j < d

0

,

beause vertex j + 1 has degree < d in G

j

. If d

0

= 1 then �(G) � �(G

1

) � p�(G

1

) >

��(G

1

) > 0. Otherwise if d

0

� d, �(G) � �(G

1

) � p�(G

d

0

) > �(G

1

) � p�

1�d

0

�(G

1

) �

�(G

1

)� p�

1�d

�(G

1

) = ��(G

1

) > 0. Otherwise we must have d

0

= d+ 1, with vertex 1

of degree d, and �(G) > �(G

1

)� p�

�d

�(G

1

) =

d�2

d�1

�(G

1

) � 0.

318. Let f

n

= M

G

(p) where G is the graph of a omplete t-ary tree with t

n

leaves;

thus G has t

k

verties at distane k from the root, for 0 � k � n. Then

f

0

= 1� p; f

1

= (1� p)

t

� p; and f

n+1

= f

t

n

� pf

t

2

n�1

for n > 1:

By Theorem S, it suÆes to show that f

n

� 0 for some n.

The key idea is to let g

0

= 1� p and g

n+1

= f

n+1

=f

t

n

= 1� p=g

t

n

. Assuming that

g

n

> 0 for all n, we have g

1

< g

0

and g

n

� g

n+1

= p=g

t

n

� p=g

t

n+1

> 0 when g

n+1

< g

n

.

Hene lim

n!1

g

n

= � exists, with 0 < � < 1. Furthermore � = 1 � p=�

t

, so that

p = �

t

(1� �). But then p � t

t

=(t+ 1)

t+1

(see answer 316 with � = 1� �).

[One must admit, however, that the limit is not often reahed until n is extremely

large. For example, even if t = 2 and p = :149, we don't have f

n

< 0 until n = 45.

Thus G must have at least 2

45

verties before this value of p is too large for Lemma L.℄

319. Let x = 1=(d � 1). Sine e

x

> 1 + x = d=(d� 1), we have e > (d=(d� 1))

d�1

.

320. (a) Let f

m

(p) be the M�obius polynomial when p

1

= � � � = p

m

= p. Then we have

f

m

(p) = f

m�1

(p) � pf

m�2

(p), and one an show by indution that f

m

(1=(4 os

2

�)) =

sin((m+ 2)�)=((2 os �)

m+1

sin �). The threshold dereases to 1=4 as m!1.

(b) 1=(4 os

2
�

2m

); the M�obius polynomial g

m

(p) = f

m�1

(p) � pf

m�3

(p) satis�es

the same reurrene as f

m

(p), and equals 2 osm�=(2 os �)

m

when p = 1=(4 os

2

�).

[In terms of the lassial Chebyshev polynomials, g

m

(p) = 2p

m=2

T

m

(1=(2

p

p))

and f

m

(p) = p

(m+1)=2

U

m+1

(1=(2

p

p)).℄

321. Let � = (2 �

p

2)=2, �

0

= �(1 � �) = (

p

2 � 1)=2, and = (p � �)=(1 � �).

The method of answer 345 gives (Pr(ABCD), Pr(ABCD), Pr(ABCD), Pr(ABCD),

Pr(ABCD), Pr(ABCD)) = (0, �

0

(1�)

3

, 2�

0

(1�)

2

, �

2

(1�)

2

+2�

0

(1�)

3

, �

2

(1�)+

3�

0

(1�)

2

, �

2

2

+4�

0

3

). Other ases are symmetri to these six. When p = 3=10 the

six probabilities are � (0; :20092; :00408; :08815; :00092; :00002).

322. (a) Let a

j

=

P

i

w

i

[ij 2A℄, b

j

=

P

k

y

k

[jk 2B ℄,

l

=

P

k

y

k

[kl2C ℄, and d

l

=

P

i

w

i

[li2D ℄. Then when X = j and Z = l, the best way to alloate the events is

AB AB

AB
AB

Y

W

z }| {

�a

j

z }| {

a

j

z

}

|

{

b

j

z

}

|

{

�

b

j

CD
CD

CDCD

Y

W

z }| {

l

z }| {

�

l

z

}

|

{

�

d

l

z

}

|

{

d

l

withinW and Y. Hene Pr(A\B\C\D) =

P

j;l

x

j

z

l

((�a

j

+

�

d

l

)

.

�1)((

�

b

j

+�

l

)

.

�1), whih

is zero if and only if we have a

j

+ d

l

� 1 or b

j

+

l

� 1 for all j and l with x

j

z

l

> 0.

(b) Sine

P

j

x

j

(a

j

; b

j

) = (p; p), the point (p; p) lies in the onvex hull of the

points (a

j

; b

j

). So there must be points (a; b) = (a

j

; b

j

) and (a

0

; b

0

) = (a

j

0

; b

j

0

) suh

that the line from (a; b) to (a

0

; b

0

) intersets the region f(x; y) j 0 � x; y � pg; in other

words �a+ (1� �)a

0

� p and �b+ (1� �)b

0

� p. Similarly we an �nd , d,

0

, d

0

, �.

September 23, 2015

248 ANSWERS TO EXERCISES 7.2.2.2

adjaent pairs of letters, avoiding

dependene graph

partial ordering

topologial sortings

empilement

linear extensions, see Topologial sorting

Gessel

anonial string

() Fat: If a �

2

3

and b

0

�

2

3

, then � =

1

2

; hene a = b

0

=

2

3

and a

0

= b = 0.

Notie also that there are 16 symmetries, generated by (i) a $ b, $ d; (ii) a $ a

0

,

b$ b

0

, �$ 1� �; (iii) $

0

, d$ d

0

, � $ 1� �; (iv) a$ d, b$, �$ �.

If �

0

and d � d

0

, or if �

1

3

and d �

1

3

, we an assume (by symmetry) that

the Fat applies; this gives a solution to all the onstraints, with = d =

0

= d

0

=

1

3

.

For the remaining solutions we may assume that a; b

0

>

1

3

> a

0

; b. Suppose the line

from (a; b) to (a

0

; b

0

) intersets the line from (0; 0) to (1; 1) at the point (�; �); dividing

a, b, a

0

, b

0

by 3� gives a solution in whih �a+(1��)a

0

= �b+(1��)b

0

=

1

3

. Similarly,

we an assume that d;

0

>

1

3

> d

0

; and that � + (1 � �)

0

= �d + (1 � �)d

0

=

1

3

.

Consequently a + d � 1 and b

0

+

0

� 1. Symmetry also allows us to assume that

a+d

0

� 1. In partiular, a >

2

3

; and, by the Fat, b

0

<

2

3

. So a

0

+d � 1, d >

2

3

,

0

<

2

3

.

Now extend the lines that onnet (a; b) to (a

0

; b

0

) and (; d) to (

0

; d

0

), by inreas-

ing a, b

0

,

0

, d while dereasing a

0

, b, , d

0

, until a

0

= 1 � d and a = 1 � d

0

, and until

either a = 1 or b = 0, and either d = 1 or = 0. The only solution of this kind with

b

0

+

0

� 1 ours when a = d = 1, a

0

= b = = d

0

= 0, b

0

=

0

= 1=2, � =

1

3

, � =

2

3

.

(d) For the �rst solution, we an let W , X, Y, Z be uniform on f0; 1; 2g, f0; 1g,

f0; 1; 2g, and f0g, respetively; and let A = f10; 20g, B = f11; 12g, C = f00g,

D = f00g. (For example, WXY Z = 1110 gives event B.) The seond solution turns

out to be the same, but with (X;Y; Z;W) in plae of (W;X; Y; Z). Notie that the

solution applies also to P

4

, where the threshold is

1

3

. [See STOC 43 (2011), 242.℄

323. b. In this simple ase, we just eliminate all strings in whih is followed by a.

324. For 1 � j � n, and for eah v suh that v = x

j

or v���x

j

, let i � j for eah i < j

suh that v = x

i

. (If several values of i qualify, it suÆes to onsider only the largest

one. Several authors have used the term \dependene graph" for this partial ordering.)

The traes equivalent to � orrespond to the topologial sortings with respet to �,

beause those arrangements of the letters are preisely the permutations that preserve

the empilement.

In (136), for example, with x

1

: : : x

n

= bebafd, we have 1 � 2, 1 � 4, 2 � 4,

4 � 5, 3 � 6, 2 � 7, 3 � 7, 2 � 8, 4 � 8, and 7 � 8. Algorithm 7.2.1.2V produes 105

solutions, 12345678 (bebafd) through 36127485 (efbdba).

325. Every suh trae � yields an ayli orientation, if we let u��!v when u appears

at a lower level in �'s empilement. Conversely, the topologial sortings of any ayli

orientation are all equivalent traes; so this orrespondene is one-to-one. [See Ira M.

Gessel, Disrete Mathematis 232 (2001), 119{130.℄

326. True: x ommutes with y if and only if y ommutes with x.

327. Eah trae � is represented by its height h = h(�) � 0, and by h linked lists

L

j

= L

j

(�) for 0 � j < h. The elements of L

j

are the letters on level j of �'s

empilement; these letters have disjoint territories, and we keep eah list in alphabeti

order so that the representation is unique. The anonial string representing � is

then L

0

L

1

: : : L

h�1

. (For example, in (136) we have L

0

= be, L

1

= f , L

2

= bd ,

L

3

= a, and the anonial representation is befbda.) We also maintain the sets

U

j

=

S

fT (a) j a 2 L

j

g as bit vetors; in (136), for example, they are U

0

=

#

36,

U

1

=

#

1b, U

2

=

#

3, U

3

=

#

78.

To multiply � by �, do the following for k = 0, 1, : : : , h(�) � 1 (in that order),

and for eah letter b 2 L

k

(�) (in any order): Set j h(�); then while j > 0 and

T (b) & U

j�1

(�) = 0, set j j � 1. If j = h(�), set L

j

(�) empty, U

j

(�) 0, and

h(�) h(�) + 1. Insert b into L

j

(�), and set U

j

(�) U

j

(�) + T (b).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 249

Viennot

star�sh

line graph

law

mathings

M�obius polynomial

mathing polynomial

real roots of polynomials

oomparability graph

Anisimov

Knuth

328. Do the following for k = h(�) � 1, : : : , 1, 0 (in that order), and for eah letter

b 2 L

k

(�) (in any order): Set j h(�) � 1; while j > 0 and T (b) & U

j

(�) = 0, set

j j � 1. Report failure if b isn't in L

j

(�). Otherwise remove b from that list and set

U

j

(�) U

j

(�)� T (b); if U

j

(�) is now zero, set h(�) h(�)� 1.

If there was no failure, the resulting � is the answer.

329. Do the following for k = 0, 1, : : : , h(�) � 1 (in that order), and for eah letter

a 2 L

k

(�) (in any order): Report failure if a isn't in L

0

(�). Otherwise remove a from

that list, set U

0

(�) U

0

(�)� T (a), and renormalize the representation of �.

Renormalization involves the following steps: Set j 1. While U

j�1

(�) 6= 0

and 6= 0, terminate if j = h(�); otherwise set 0, j j+1, and then, for eah letter

b in L

j�1

(�) suh that T (b) & U

j�2

(�) = 0, move b from L

j�1

(�) to L

j�2

(�) and set

U

j�2

(�) U

j�2

(�)+T (b), U

j�1

(�) U

j�1

(�)�T (b), 1. Finally, if U

j�1

(�) = 0,

set U

i�1

(�) U

i

(�) and L

i�1

(�) L

i

(�) for j � i < h(�), then set h(�) h(�)� 1.

If there was no failure, the resulting � is the answer.

330. Let the territorial universe be V [E, the verties plus edges of G, and let T (a) =

fag [ffa; bg j a ��� bg. [G. X. Viennot, in 1985, alled this subgraph a star�sh.℄

Alternatively, we an get by with just two elements in eah set T (a) if and only if

G = L(H) is the line graph of some other multigraph H. Then eah vertex a of G

orresponds to an edge u���v in H, and we an let T (a) = fu; vg.

[Notes: The smallest graph G that isn't a line graph is the \law" K

1;3

. Sine

sets of independent verties in the line graph G are sets of disjoint edges in H, also

alled mathings of H, the M�obius polynomial of G is also known as the \mathing

polynomial" ofH. Suh polynomials are important in theoretial hemistry and physis.

When all territories have jT (a)j � 2, all roots of the polynomial M

�

G

(z) in (149) are

real and positive, by exerise 341. ButM

law

(z; z; z; z) = 1�4z+3z

2

�z

3

has omplex

roots � 0:317672 and 1:34116 � 1:16154i.℄

331. If � is a string with k > 0 ourrenes of the substring a, there are 2

k

ways

to deompose � into fators fa; b; ; ag, and the expansion inludes +� and �� eah

exatly 2

k�1

times. Thus we're left with the sum of all strings that don't ontain `a'.

332. No: If b ommutes with a and , but a 6= a, we're dealing with strings that

ontain no adjaent pairs ba or b; hene ab quali�es, but it's equivalent to the smaller

string ba. [Certain graphs do de�ne traes with the stated property, as we've seen in

(135) and (136). Using the next exerise we an onlude that the property holds if

and only if no three letters a < b < have a /��� b, b /��� , and a��� in the graph G

of lashes. Thus the letters an be arranged into a suitable linear order if and only if

G is a oomparability graph; see Setion 7.4.2.℄

333. To show that

P

�2A;�2B

(�1)

j�j

�� = 1, let = a

1

: : : a

n

be any nonempty string.

If annot be fatored so that a

1

: : : a

k

2 A and a

k+1

: : : a

n

2 B, then doesn't appear.

Otherwise has exatly two suh fatorizations, one in whih k has its smallest possible

value and the other in whih k is one greater; these fatorizations anel eah other in

the sum. [Manusripta Math. 19 (1976), 239{241.℄

334. Equivalently we want to generate all strings of length n on the alphabet f1; : : : ;mg

that satisfy the following riterion, whih strengthens the adjaent-letter test of exer-

ise 332: If 1 � i < j � n, x

i

/���x

j

, x

i+1

/���x

j

, : : : , x

j�1

/���x

j

, then x

i

� x

j

. [See

A. V. Anisimov and D. E. Knuth, Int. J. Comput. Inf. Si. 8 (1979), 255{260.℄

T1. [Initialize.℄ Set x

0

 0 and x

k

 1 for 1 � k � n.

T2. [Visit.℄ Visit the trae x

1

: : : x

n

.

September 23, 2015

250 ANSWERS TO EXERCISES 7.2.2.2

MaMahon's Master Theorem

lexiographially smallest traes

multiset permutations

oomparability graph

ograph

omplete bipartite

omplete k-partite graphs

onvolution priniple

binomial onvolution

Bender

Goldman

T3. [Find k.℄ Set k n. While x

k

= m set k k � 1. Terminate if k = 0.

T4. [Advane x

k

.℄ Set x

k

 x

k

+ 1 and j k � 1.

T5. [Is x

k

valid?℄ If x

j

> x

k

and x

j

/���x

k

, return to T4. If j > 0 and x

j

< x

k

and x

j

/���x

k

, set j j � 1 and repeat this step.

T6. [Reset x

k+1

: : : x

n

.℄ While k < n do the following: Set k k + 1, x

k

 1;

while x

k�1

> x

k

and x

k�1

/���x

k

, set x

k

 x

k

+ 1. Then go bak to T2.

335. Given suh an ordering, we have M

G

= det(I�A), where the entry in row u and

olumn v of A is v [u� v or u���v ℄. The determinant in the given example is

det

0

B

B

B

B

B

�

1 �b � 0 0 0

0 1�b 0 �d 0 0

0 �b 1� �d �e 0

0 �b � 1�d 0 �f

0 �b � �d 1�e �f

0 �b � �d �e 1�f

1

C

C

C

C

C

A

+ det

0

B

B

B

B

B

�

�a �b � 0 0 0

0 1 �d 0 0

0 0 1 �d �e 0

0 0 0 1�d 0 �f

0 0 0 �d 1�e �f

0 0 0 �d �e 1�f

1

C

C

C

C

C

A

;

after expanding the �rst olumn, then subtrating the �rst row from all other rows in

the right-hand determinant. Therefore this rule satis�es reurrene (142).

[The result also follows from MaMahon's Master Theorem, exerise 5.1.2{20,

using the haraterization of lexiographially smallest traes in answer 334. Aord-

ing to Theorem 5.1.2B, suh traes are in one-to-one orrespondene with multiset

permutations whose two-line representation does not ontain

v

u

when v > u and v /���u.

Is there a similar determinantal expression when G is not a oomparability graph?℄

336. (a) If � is a trae for G and � is a trae for H, we have �

G�H

(��) = �

G

(�)�

H

(�).

HeneM

G�H

=M

G

M

H

. (b) In this ase �

G���H

(��) = �

G

(�) if � = �, �

H

(�) if � = �;

otherwise it's zero. Therefore M

G���H

=M

G

+M

H

� 1.

[These rules determine M

G

reursively whenever G is a ograph (see exerise 7{

90). In partiular, omplete bipartite and k-partite graphs have simple M�obius series,

exempli�ed byM

G

= (1�a)(1�b)(1�)+(1�d)(1�e)+(1�f)�2 when G = K

3;2;1

.℄

337. Substituting a

1

+ � � �+ a

k

for a in M

G

gives M

G

0

. (Eah trae for G

0

is obtained

by putting subsripts on the a's of the traes for G.)

338. The proof of Theorem F needs only minor hanges: We limit � to traes that

ontain no elements of A, and we de�ne �

0

and �

0

by letting a be the smallest letter =2 A

in the bottom level of 's empilement. If has no suh letter, there's only one fator-

ization, with � = �. Otherwise we pair up anelling fatorizations. [Inidentally, the

sum of all traes whose sinks are in A must be written in the other order: M

�1

G

M

GnA

.℄

339. (a) \Push down" on piee x

j

and fator out what omes through the oor.

(b) Fator out the pyramid for the smallest label, and repeat on what's left.

() This is a general onvolution priniple for labeled objets [see E. A. Bender

and J. R. Goldman, Indiana Univ. Math. J. 20 (1971), 753{765℄. For example, when

l = 3 the number of ways to get a labeled trae of length n from three labeled pyramids

is

P

i;j;k

�

n

i;j;k

�

P

i

P

j

P

k

=3! = n!

P

i;j;k

(P

i

=i!)(P

j

=j!)(P

k

=k!)=3!, with i+j+k = n in both

of these sums. We divide by 3! so that the topmost pyramid labels will be inreasing.

(d) Sum the identity in () for l = 0, 1, 2, : : : .

(e) T (z) =

P

n�0

t

n

z

n

= 1=M

G

(z) by Theorem F, and P (z) =

P

n�1

p

n

z

n

=n.

Note: If we retain the letter names, writing for exampleM

G

(z) = 1�(a+b+)z+az

2

instead ofM

G

(z) = 1�3z+z

2

, the formal power series � lnM

G

(z) exhibits the pyramids

of length n in the oeÆient of z

n

, but only in the sense of ommutative algebra (not

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 251

permanent

Heilmann

Lieb

determinant

MaMahon's Master Theorem

Sott

Sokal

slak

trae algebra). For example, the oeÆient of z

3

obtained from

P

k�1

(1�M

G

(z))

k

=k

with trae algebra inludes the nonpyramidal term ba=6.

340. Let w((i

1

: : : i

k

)) = (�1)

k�1

a

i

1

i

2

a

i

2

i

3

: : : a

i

k

i

1

; thus w(�) = (�a

13

a

34

a

42

a

21

)

(�a

57

a

75

)(a

66

) in the given example. The permutation polynomial is then detA, by

de�nition of the determinant. (And we get the permanent, if we omit the (�1)

k�1

.)

341. The hint is true when n = 2, sine the �rst involution polynomials are w

11

x and

w

11

w

22

x

2

�w

12

. And there's a reurrene: W (S) = w

ii

xW (S n i)�

P

j 6=i

W (S nfi; jg).

So we an prove the existene of n+1 roots s

1

< r

1

< � � � < r

n

< s

n+1

by indu-

tion: LetW

n

(x) be the polynomial for f1; : : : ; ng. ThenW

n+1

(x) is w

(n+1)(n+1)

xW

n

(x)

minus n polynomials w

(n+1)j

W (f1; : : : ; ng n j), eah with roots q

(j)

k

that are niely

sandwihed between the roots of W

n

. Furthermore q

(j)

n�k

= �q

(j)

k

and r

n+1�k

= �r

k

,

for 1 � k � n=2. It follows that W

n+1

(r

n

) < 0, W

n+1

(r

n�1

) > 0, and so on, with

(�1)

k

W

n+1

(r

n+1�k

) > 0 for 1 � k � n=2. Moreover, W

n+1

(0) = 0 when n is even;

(�1)

k

W

n+1

(0) > 0 when n = 2k � 1; and W

n+1

(x) > 0 for all large x. Hene the

desired s

k

exist. [See Heilmann and Lieb, Physial Review Letters 24 (1970), 1412.℄

342. If we replae (i

1

: : : i

k

) by a

i

1

i

2

a

i

2

i

3

: : : a

i

k

i

1

(as in answer 340, but without the

(�1)

k�1

), thenM

G

n

beomes det(I�A). Replaing a

ij

by a

ij

x

j

gives the determinant

in MaMahon's Master Theorem. And if x

1

= � � � = x

n

= x, we get the polynomial

det(I�xA), whose roots are the reiproals of the roots of A's harateristi polynomial.

343. The formulas in answer 336 show that M

G

(p

1

; : : : ; p

m

) inreases whenever any

p

j

dereases, with respet to a ograph G. The only graph on � 4 verties that isn't

a ograph is P

4

(see exerise 7{90); then M

G

(p

1

; p

2

; p

3

; p

4

) = 1 � p

1

� p

2

� p

3

� p

4

+

p

1

p

3

+ p

1

p

4

+ p

2

p

4

= (1 � p

1

)(1 � p

3

� p

4

) � p

2

(1 � p

4

). In this ase also we an

onlude that M

G

(p

1

; : : : ; p

4

) > 0 implies (p

1

; : : : ; p

4

) 2 R(G). But when G = P

5

, we

�nd M

G

(1� �; 1� �; �; 1� �; 1� �) > 0 for 0 � � < �

�2

; yet (1� �; 1� �; �; 1� �; 1� �)

is never in R(G) beause M

G

(0; 0; �; 1� �; 1� �) = �(1� �)

2

.

344. (a) If some minterm, say B

1

B

2

B

3

B

4

, has negative \probability," then p

1

p

4

�

(1� �

2

� �

3

+ �

23

) < 0; hene M

G

(0; p

2

; p

3

; 0) < 0 violates the de�nition of R(G).

(b) In fat, more is true: �

I[J

= �

I

�

J

when i /���j for i 2 I, j 2 J, and I\J = ;.

() It's M

G

(p

1

[12 J ℄; : : : ; p

m

[m2 J ℄), by (140) and (141). This important fat,

already impliit in the solution to part (a), implies that �(G j J) > 0 for all J .

(d) Writing just `J ' for `GjJ ', we shall prove that �(i[J)=�(i[J) � �(J)=�(J)

for i =2 J , by indution on jJ j. Let J

0

= fj 2 J j i /���jg. Then we have

�(i [J) = �(J)� Pr

�

A

i

\

\

j2J

A

j

�

� �(J)� Pr

�

A

i

\

\

j2J

0

A

j

�

� �(J) � p

i

�(J

0

);

beause of (133). Also �(i[J) = �(J)�p

i

�(J

0

). Hene �(i[J)�(J)��(J)�(i[J) �

(�(J) � p

i

�(J

0

))�(J) � �(J)(�(J) � p

i

�(J

0

)) = p

i

(�(J)�(J

0

) � �(J

0

)�(J)), whih is

� 0 by indution sine J

0

� J .

[This argument proves that Lemma L holds whenever (p

1

; : : : ; p

m

) leads to a le-

gitimate probability distribution with �(G) > 0; hene suh probabilities are in R(G).℄

(e) By indution, we have �(i [J) = �(J) � �

i

�(J

0

)

Q

i���j

(1 � �

j

) � �(J) �

�

i

�(J

0

)

Q

j2JnJ

0

(1� �

j

) � (1� �

i

)�(J), beause �(J)=�(J

0

) �

Q

j2JnJ

0

(1� �

j

).

345. (Solution by A. D. Sott and A. D. Sokal.) Set p

0

j

= (1 + Æ)p

j

where Æ � 0 is

the slak of (p

1

; : : : ; p

m

). Then M

G

(p

0

1

; : : : ; p

0

m

) = 0, but it beomes positive if any

p

0

j

is dereased. De�ne events B

0

1

, : : : , B

0

m

by the onstrution in exerise 344. Let

C

1

, : : : , C

m

be independent binary random variables suh that Pr(C

j

= 1) = q

j

,

September 23, 2015

252 ANSWERS TO EXERCISES 7.2.2.2

traes

soures

top-down algs

bottom-up algs

Sott

Sokal

where (1 � p

0

j

)(1 � q

j

) = 1 � p

j

. Then the events B

j

= B

0

j

_ C

j

satisfy the desired

onditions: Pr(B

i

j B

j

1

\ � � � \ B

j

k

) = Pr(B

i

j B

0

j

1

\ � � � \ B

0

j

k

) = Pr(B

i

) = p

i

; and

Pr(B

1

_ � � � _B

m

) � Pr(B

0

1

_ � � � _B

0

m

) = 1.

346. (a) By (144), K

a;G

is the sum of all traes on the probabilities of G n a whose

soures are neighbors of a. Dereasing p

j

doesn't derease any trae.

(b) Suppose vertex a = 1 has neighbors 2, : : : , j. If we've reursively omputed

M

Gna

�

and M

Gna

, �nding that (p

j+1

; : : : ; p

m

) 2 R(Gna

�

) and (p

2

; : : : ; p

m

) 2 R(Gna),

then we know K

a;G

; and the monotoniity property in (a) implies that (p

1

; : : : ; p

m

) 2

R(G) if and only if aK

a;G

< 1.

The graph G =

a b

 d

e f

in exerise 335 an, for example, be proessed as follows:

M

abdef

=M

bdef

�

1�a

M

def

M

bdef

�

= (1�a

0

)(1�b

0

) : : : (1�f

0

); a

0

=

a

(1�b

0

)(1�

0

)

;

M

bdef

=M

def

�

1�b

M

ef

M

def

�

= (1�b

0

)(1�

0

) : : : (1�f

0

); b

0

=

b(1�

00

)

(1�

0

)(1�d

0

)

;

M

def

=M

def

�

1�

M

f

M

def

�

= (1�

0

)(1�d

0

)(1�e

0

)(1�f

0

);

0

=

(1�d

0

)(1�e

0

)

;

M

ef

=M

ef

�

1�

M

f

M

ef

�

= (1�

00

)(1�e

0

)(1�f

0

);

00

=

(1�e

0

)

;

M

def

=M

ef

�

1�d

M

e

M

ef

�

= (1�d

0

)(1�e

0

)(1�f

0

); d

0

=

d(1�e

00

)

(1�e

0

)(1�f

0

)

;

M

ef

=M

f

�

1�e

M

�

M

f

�

= (1�e

0

)(1�f

0

); e

0

=

e

(1�f

0

)

;

M

e

=M

�

�

1�e

M

�

M

�

�

= (1�e

00

); e

00

= e;

M

f

=M

�

�

1�f

M

�

M

�

�

= (1�f

0

); f

0

= f;

with M

�

= 1. (The equations on the left are derived top-down, then the equations on

the right are evaluated bottom-up. We have (a; b; : : : ; f) 2 R(G) if and only if f

0

< 1,

e

00

< 1, e

0

< 1, : : : , a

0

< 1.) Even better is to traverse this graph in another order,

using the rule M

G�H

=M

G

M

H

(exerise 336) when subgraphs aren't onneted:

M

dabef

=M

dabef

�

1�

M

b

M

f

M

dabef

�

= (1�

0

)(1�d

0

) : : : (1�f

0

);

0

=

(1�a

0

)(1�d

0

)(1�e

0

)

;

M

dabef

=M

ab

M

ef

�

1�d

M

a

M

e

M

ab

M

ef

�

= (1�d

0

)(1�a

0

)(1�b

0

)(1�e

0

)(1�f

0

); (see below)

M

ab

=M

b

�

1�a

M

�

M

b

�

= (1�a

0

)(1�b

0

); a

0

=

a

(1�b

0

)

;

M

a

=M

�

�

1�a

M

�

M

�

�

= (1�a

00

); a

00

= a;

M

b

=M

�

�

1�b

M

�

M

�

�

= (1�b

0

); b

0

= b;

where d

0

= dM

a

M

�

=(M

ab

M

ef

) = d(1�a

00

)(1�e

00

)=((1�a

0

)(1�b

0

)(1�e

0

)(1�f

0

)), and

M

ef

, M

e

, M

f

, M

�

are as before. In this way we an often solve the problem in linear

time. [See A. D. Sott and A. D. Sokal, J. Stat. Phys. 118 (2005), 1151{1261, x3.4.℄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 253

least ommon anestor

Pegden

347. (a) Suppose v

1

���v

2

���� � ����v

k

���v

1

is an indued yle. We an assume that

v

1

� v

2

. Then, by indution on j, we must have v

1

� � � � � v

j

for 1 < j � k; for if

v

j+1

� v

j

we would have v

j+1

���v

j�1

by (�). But now v

k

���v

1

implies that k = 3.

(b) Let the verties be f1; : : : ;mg, with territory sets T (a) � U for 1 � a � m;

and let U be a tree suh that eah U j T (a) is onneted. Let U

a

be the least ommon

anestor of T (a) in U . (Thus the nodes of T (a) appear at the top of the subtree rooted

at U

a

.) Sine U

a

2 T (a), we have a���b when U

a

= U

b

.

Writing s �

U

t for the anestor relation in U, we now de�ne a � b if U

a

�

U

U

b

or if U

a

= U

b

and a < b. Then (�) is satis�ed: If t 2 T (a)\ T (b), we have U

a

�

U

t and

U

b

�

U

t, hene U

a

�

U

U

b

or U

b

�

U

U

a

, hene a � b or b � a. And if a � b � and

t 2 T (a)\ T (), we have U

a

�

U

U

b

�

U

U

; onsequently U

b

2 T (a)\ T (b), beause U

b

lies on the unique path between t and U

a

in U and T (a) is onneted.

() Proessing the nodes in any order suh that a is eliminated before b whenever

U

a

is a proper anestor of U

b

will then lead only to subproblems in whih the algorithm

needs no \double-primed" variables.

For example, using (a; b; : : : ; g) instead of (1; 2; : : : ; 7) in order to math the

notation in exerise 346, suppose U is the tree rooted at p having the edges p��� q,

p ��� r, r ��� s, r ��� t, and let T (a) = fp; q; r; tg, T (b) = fp; r; sg, T () = fp; qg,

T (d) = fqg, T (e) = fr; sg, T (f) = fsg, T (g) = ftg. Then a � b � � d, � e � f ,

e � g. The algorithm omputes M

abdefg

= (1 � a

0

)M

bdefg

, M

bdefg

= (1 � b

0

)M

defg

,

et., where a

0

= aM

f

=M

bdefg

, b

0

= bM

dfg

=M

defg

= b(M

d

M

f

M

g

)=(M

d

M

ef

M

g

), et.

In general, the tree ordering guarantees that no \double-primed" variables are

needed. Thus the formulas redue to v

0

= v=

Q

u��v; v�u

(1� u

0

) for eah vertex v.

(d) For example, we have p

1

= a, : : : , p

7

= g, �

1

= a

0

, : : : , �

7

= g

0

in (). The

values of the �'s, whih depend on the ordering �, are uniquely de�ned by the given

equations; and we haveM

G

(p

1

; : : : ; p

m

) = (1��

1

) : : : (1��

m

) in any ase. [W. Pegden,

Random Strutures & Algorithms 41 (2012), 546{556.℄

348. There is at least one singularity at z = �e

i�

for some �. If 0 < r < �, the power

series f(z) =

P

1

n=0

f

(n)

(re

i�

)(z�re

i�

)

n

=n! has radius of onvergene ��r. If z = � isn't

a singularity, the radius of onvergene for � = 0 would exeed ��r. But jf

(n)

(re

i�

)j =

j

P

1

m=0

m

n

a

n

(re

i�

)

m�n

j � f

(n)

(r). [Mathematishe Annalen 44 (1894), 41{42.℄

349. Typial generating funtions are g

0000001

= 1; g

0110110

= z(g

0100110

+ g

0101110

+

g

0110110

+g

0111110

)=4 (in Case 1) or g

0110110

= z(g

0000110

+g

0010110

+g

0100110

+g

0110110

)=4

(in Case 2). These systems of 128 linear equations have solutions whose denominators

involve one or more of the polynomials 4�z, 2�z, 16�12z+z

2

, 4�3z, 64�80z+24z

2

�z

3

,

8�8z+z

2

in Case 1 (see exerise 320); the denominators in Case 2 are powers of 4�z.

Setting g(z) =

P

x

g

x

(z)=128 leads to g(z) = 1=((2 � z)(8� 8z + z

2

)) in Case 1,

with mean 7 and variane 42; g(z) = (1088�400z+42z

2

� z

3

)=(4� z)

6

in Case 2, with

mean 1139=729 � 1:56 and variane 1139726=729

2

� 2:14.

[The upper bound E

1

+ � � �+E

6

is ahieved by the distribution of Case 1, beause

it mathes the extreme distribution (148) of the path graph P

6

. Inidentally, if Case 1

is generalized from n = 7 to arbitrary n, the mean is n(n � 1)=6 and the variane is

(n+ 3)(n + 2)n(n � 1)=90.℄

350. (a) The generating funtion for N is

Q

n

k=1

(1 � �

k

)=(1 � �

k

z); so the mean and

variane, in general, are

P

n

k=1

�

k

=(1 � �

k

) and

P

n

k=1

�

k

=(1 � �

k

)

2

. In partiular, the

means are (i) n; (ii) n=(2n � 1); (iii) n=(2

n

� 1); (iv) H

2n

�H

n

+

1

2n

= ln 2 +O(1=n);

(v)

1

2

(

1

n+1

+

1

2n

�

1

2n+1

) =

1

2n

+ O(1=n

2

). The variane in ase (i) is 2; otherwise it's

asymptotially the same as the mean, times 1 +O(1=n).

September 23, 2015

254 ANSWERS TO EXERCISES 7.2.2.2

omplete bipartite graph

Moser

Tardos

Alon

Spener

traes

Fibonai numbers

onseutive ones

hain rule

(b) In this ase the mean and variane are �=(1 � �) and �=(1 � �)

2

, where

� = Pr(A

m

) = 1� (1� �

1

) : : : (1� �

n

). This value � is (i) 1� 2

�n

; (ii) 1� (1�

1

2n

)

n

=

1� e

�1=2

+ O(1=n); (iii) 1� (1� 2

�n

)

n

= n=2

n

+ O(n

2

=4

n

); (iv) 1/2; (v) 1=(2n + 2).

Hene the respetive means are (i) 2

n

�1; (ii) e

1=2

�1+O(1=n); (iii) n=2

n

+O(n

2

=4

n

);

(iv) 1; (v) 1=(2n + 1). And the varianes are (i) 4

n

� 2

n

; (ii) e � e

1=2

+ O(1=n);

(iii) n=2

n

+O(n

2

=4

n

); (iv) 2; (v) 1=(2n + 1) + 1=(2n + 1)

2

.

() Sine G is K

n;1

, exerises 336 and 343 imply that (�

1

; : : : ; �

n

; �) 2 R(G) if

and only if � <

1

2

. This ondition holds in ases (ii), (iii), and (v).

351. (Solution by Moser and Tardos.) We require i ��� j if there's a setting of the

variables suh that A

i

is false and A

j

is true, provided that some hange to the variables

of �

j

might make A

i

true. And vie versa with i$ j.

(The Loal Lemma an be proved also for direted lopsidependeny graphs; see

Noga Alon and Joel H. Spener, The Probabilisti Method (2008), x5.1. But the theory

of traes, whih we use to analyze Algorithm M, is based on undireted graphs, and no

algorithmi extension to the direted ase is presently known.)

352. Answer 344(e), withM

G

= �(i[J),M

Gni

= �(J), proves thatM

Gni

=M

G

� 1��

i

.

353. (a) There are n+1 sorted strings in Case 1, namely 0

k

1

n�k

for 0 � k � n. There

are F

n+2

solutions in Case 2 (see, for example, exerise 7.2.1.1{91).

(b) At least 2

n

M

G

(1=4), where G is the path P

n�1

. By exerise 320 we have

M

G

(1=4) = f

n�1

(1=4) = (n+ 1)=2

n

; so Case 1 mathes the lower bound.

() There are no lopsidependenies. Hene the relevant G is the empty graph on

m = n�1 verties;M

G

(1=4) = (3=4)

n�1

by exerise 336; and indeed, F

n+2

� 3

n�1

2

2�n

.

354. Di�erentiate (151) and set z 1.

355. If A = A

j

is an isolated vertex of G, then 1 � p

j

z is a fator of the polynomial

M

�

G

(z) in (149), hene 1 + Æ � 1=p

j

; and E

j

= p

j

=(1 � p

j

) � 1=Æ. Otherwise

M

G

(p

1

; : : : ; p

j�1

; p

j

(1 + Æ); p

j+1

; : : : ; p

m

) = M

�

G

(1) � Æp

j

M

�

GnA

�

(1) > M

�

G

(1 + Æ) = 0;

so E

j

= p

j

M

�

GnA

�

(1)=M

�

G

(1) > 1=Æ.

356. (a) We prove the hint by indution on jSj. It's obvious when S = ;; otherwise

let X = S \

S

i2U

j

U

j

and Y = S nX. We have

Pr(A

i

j A

S

) =

Pr(A

i

\A

X

\A

Y

)

Pr(A

X

\A

Y

)

�

Pr(A

i

\ A

Y

)

Pr(A

X

\A

Y

)

�

Pr(A

i

) Pr(A

Y

)

Pr(A

X

\A

Y

)

=

Pr(A

i

)

Pr(A

X

jA

Y

)

by (133). Suppose i belongs to the liques U

j

0

, : : : , U

j

r

where j = j

0

. Let X

0

= ;

and X

k

= (S \ U

j

k

) n X

k�1

, Y

k

= Y [X

1

[� � � [X

k�1

for 1 � k � r. We have

Pr(A

l

jA

Y

k

)��

lj

k

for all l 2 X

k

, sine jY

k

j < jSj when X

k

6= ;; hene Pr(A

X

k

j A

Y

k

) �

(1 + �

ij

k

� �

j

k

). Thus Pr(A

X

jA

Y

) = Pr(A

X

1

jA

Y

1

) Pr(A

X

2

jA

Y

2

) : : : Pr(A

X

r

jA

Y

r

) �

Q

k 6=j;i2U

k

(1 + �

ik

��

k

), by the hain rule (exerise MPR-14); the hint follows.

Finally let W

k

= U

1

[� � � [U

k

for 1 � k � t. The hint implies that

Pr(A

1

\ � � � \A

m

) = Pr(A

W

1

) Pr(A

W

2

j A

W

1

) : : : Pr(A

W

t

j A

W

t�1

)

� (1��

1

)(1��

2

) : : : (1��

t

) > 0:

(b) The extreme events B

1

, : : : , B

m

of Theorem S satisfy the hint of (a). Thus

Pr(B

i

j

T

k=2U

j

B

k

) � �

ij

for all i 2 U

j

; hene q

i

= Pr(B

i

j

T

k 6=i

B

k

) � �

ij

=(1+�

ij

��

j

).

Furthermore E

i

= q

i

=(1� q

i

) in (152), beause q

i

= p

i

M

Gni

�

=M

Gni

.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 255

Kolipaka

Szegedy

Xu

overing

invariant property

u�ink pattern

L

7

lower semimodular

modular

() Let U

1

, : : : , U

t

be the edges of G, with �

ik

= �

i

when U

k

= fi; jg. Then

�

k

= �

i

+�

j

< 1, and the suÆient ondition in (a) is that Pr(A

i

) � �

i

Q

j 6=k;i���j

(1��

j

)

whenever i���k. (But notie that Theorem M does not hold for suh larger p

i

.)

[K. Kolipaka, M. Szegedy, and Y. Xu, LNCS 7408 (2012), 603{614.℄

357. If r > 0, we have x = r=(1�p), y = r=(1�q). But r = 0 is possible only on the axes

of Fig. 51: Either (p; q) = (0; 1), x = 0, 0 < y � 1, or (p; q) = (1; 0), 0 < x � 1, y = 1.

358. Suppose x � y (hene p � q and x > 0). Then p � r if and only if 1� y � y.

359. Instead of omputing �

l

by formula (154), represent it as two numbers (�

+

l

; �

0

l

),

where �

+

l

is the produt of the nonzero fators and �

0

l

is the number of zero fators.

Then the quantity �

�

l

needed in (156) is �

+

�

l

[�

0

�

l

=0℄; and the quantity �

l

=(1� �

C!l

) is

�

+

l

[�

0

l

=1℄ if �

C!l

= 1, otherwise it's �

+

l

[�

0

l

=0℄=(1� �

C!l

). A similar method an be

used to separate out the zero fators of

Q

l2C

l!C

in (157).

360. We may assume that �

3

= 0. Sine �

l

= 1 implies that �

C!l

=

�

l!C

= 0, we

have �

C!1

= �

C!

�

2

= �

C!3

= �

C!

�

4

=

�

1!C

=

2!C

=

�

3!C

=

4!C

= 0 for

all C. Consequently, as in (159), all but three of the values �

C!l

are zero; let x, y, z

denote the others. Also let �

�

1

= a, �

2

= b, �

4

= , �

�

3

= d. Then �

�

1

= (1�a)(1�x),

�

2

= (1�b)(1�y), �

4

= (1�)(1�z), and �

�

3

= 1 � d. A �xed point is obtained if

x = d(b+ d(1�b) + ad

2

(1�b)(1�))=(1� d

3

(1�a)(1�b)(1�)), et. If d is 0 or 1 then

x = y = z = d. [Are there any other �xed points, say with �

1

6= 1?℄

361. The �'s and 's will also be either 0 or 1, and we exlude the ase �

l

= �

�

l

= 0; thus

eah variable v is either 1, 0, or �, depending on whether (�

v

; �

�v

) is (0; 1), (1; 0), or (1; 1).

Any assignment of 1, 0, or � to the variables is permissible, provided that every

lause has at least one literal that's true or two that are �. (Suh partial assignments

are alled \overing," and they're usually possible even with unsatis�able lauses; see

exerise 364.) All survey messages �

0

C!l

= �

C!l

are zero exept when lause C has l

as its only non-false literal. The reinforement message �

l

an be either 0 or 1, exept

that it must be 1 if l is true (�

l

= 0) and all messages �

C!l

are 0.

If we also want �

0

l

= �

l

, we take � = 1 in (158), and �

l

= 1� �

l

.

362. Create a linked list L, ontaining all literals that are to be fored true, inluding

all literals that are in 1-lauses of the original problem. Do the following steps while L

is nonempty: Remove a literal l from L; remove all lauses that ontain l; and remove

�

l from all the lauses that remain. If any of those lauses has thereby been redued

to a single literal, (l

0

), hek to see if l

0

or

�

l

0

is already present in L. If

�

l

0

is present,

a ontradition has arisen; we must either terminate unsuessfully or restart step S8

with inreased . But if

�

l

0

and l

0

are both absent, put l

0

into L.

363. (a) True; indeed, this is an important invariant property of Algorithm C.

(b) W (001) = 1, W (���) = p

1

p

2

p

3

, otherwise W (x) = 0.

() Statements (i) and (iii) are true, but not (ii); onsider x = 10�, x

0

= 00�, and

the lause 123.

(d) All eight subsets of f1;

�

2;

�

3g are stable exept f

�

2;

�

3g, beause x

1

is

onstrained in 100. The other seven are partially ordered as shown. (This

diagram illustrates L

7

, the smallest lattie that is lower semimodular but not modular.)

(e) x

2

x

3

= 00 01 0� 10 11 1� �0 �1 ��

x

1

= 0 0 q

1

q

2

0 q

1

q

3

q

1

q

2

q

3

q

1

q

2

p

3

0 q

1

p

2

q

3

q

1

p

2

p

3

x

1

= 1 q

2

q

3

q

1

q

2

q

3

q

1

q

2

p

3

q

1

q

2

q

3

q

1

q

2

q

3

q

1

q

2

p

3

q

1

p

2

q

3

q

1

p

2

q

3

q

1

p

2

p

3

x

1

= � 0 p

1

q

2

q

3

p

1

q

2

p

3

p

1

q

2

q

3

p

1

q

2

q

3

p

1

q

2

p

3

p

1

p

2

q

3

p

1

p

2

q

3

p

1

p

2

p

3

September 23, 2015

256 ANSWERS TO EXERCISES 7.2.2.2

inlusion and exlusion

Ardila

semimodular lattie

Maneva

Sinlair

symmetri Boolean funtions S

k

Braunstein

Zehina

Eliminating

resolution

pure

(f) One solution is f

�

1

�

23

�

4

�

5;

�

14;

�

25;

�

34

�

5;

�

3

�

45g. (For these lauses the partial assign-

ment f3g is stable, but it is \unreahable" below f1; 2; 3; 4; 5g.)

(g) If L = L

0

n l and L

0

2 L but L =2 L, introdue the lause (x

l

_

W

k2L

0

�x

k

).

(h) True, beause L

0

= L n l

0

and L

00

= L n l

00

, where jl

0

j and jl

00

j are unon-

strained with respet to L. A variable that's unonstrained with respet to L is also

unonstrained with respet to any subset of L.

(i) Suppose L

0

= L

0(0)

� � � � � L

0(s)

= f1; : : : ; ng and L

00

= L

00(0)

� � � � � L

00(t)

=

f1; : : : ; ng. Then L

0(s�i)

\ L

00(t�j)

is stable for 0 � i � s and 0 � j � t, by indution

on i+ j using (h).

(j) It suÆes to onsider the ase L = f1; : : : ; ng. Suppose the unonstrained

variables are x

1

, x

2

, x

3

. Then, by indution, the sum is q

1

q

2

q

3

+ p

1

+ p

2

+ p

3

�

(p

1

p

2

+ p

1

p

3

+ p

2

p

3

) + p

1

p

2

p

3

= 1, using \inlusion and exlusion" to ompensate for

terms that are ounted more than one. A similar argument works with any number

of unonstrained variables.

Notes: See F. Ardila and E. Maneva, Disrete Mathematis 309 (2009), 3083{

3091. The sum in (j) is � 1 when eah p

k

+q

k

� 1 for 1 � k � n, beause it is monotone.

Beause of (i), the stable sets below L form a lower semimodular lattie, with

L

0

^ L

00

= L

0

\ L

00

and L

0

_ L

00

=

\

fL

000

j L

000

� L

0

[L

00

and L

000

v Lg:

E. Maneva and A. Sinlair noted in Theoretial Comp. Si. 407 (2008), 359{369 that a

random satis�ability problem is satis�able with probability � E

P

W (X), the expeted

total weight of partial assignments having the given distribution, beause of identity (j);

this led them to sharper bounds than had previously been known.

364. (a) True if and only if all lauses have length 2 or more.

(b) 001 and ��� are overing; these are the partial assignments of nonzero weight,

when q

1

= � � � = q

n

= 0 in the previous exerise. Only 001 is a ore.

() ��� is the only overing and the only ore; W (0101) =W (0111) = q

3

.

(d) In fat, every stable partial assignment L

0

has a unique overing assignment L

with L v L

0

, namely L =

T

fL

00

j L

00

v L

0

, obtained by suessively removing

unonstrained literals (in any order)g.

(e) If L

0

and L

00

are adjaent we have L

0

\ L

00

v L

0

and L

0

\ L

00

v L

00

.

(f) Not neessarily. For example, the lauses f

�

1

�

234,

�

12

�

34,

�

123

�

4, 1

�

2

�

34, 1

�

23

�

4, 12

�

3

�

4g

de�ne S

2

(x

1

; x

2

; x

3

; x

4

); there are two lusters but only an empty ore.

[A. Braunstein and R. Zehina introdued the notion of overing assignments in

J. Statistial Mehanis (June 2004), P06007:1{18.℄

365. If L is any of the six solutions in (8), and if q is odd, then qL�d is a overing assign-

ment for 0 � d < q and 8q�d � n < 9q�d. (For example, if L = f

�

1;

�

2; 3; 4;

�

5;

�

6; 7; 8g the

partial assignment 3L� 1 = f2; 5; 8; 11; 14; 17; 20; 23g works for n 2 [23 : : 25℄.) Thus all

n > 63 are \overed." [Do all nonempty overings of waerden (3; 3;n) have this form?℄

366. Eliminating variable 1 (x

1

) by resolution yields the erp rule �x

1

 (x

2

_ �x

3

) ^

(x

3

_ x

4

), and new lauses f2

�

34; 2

�

3

�

4; 234;

�

234g. Then eliminating 2 (x

2

) yields x

2

(x

3

_ x

4

) ^ (�x

3

_ x

4

) and new lauses f34;

�

34g. Now 4 (x

4

) is pure; so x

4

 1, and

F

0

= ; is satis�able. (Going bakwards in the erp rules will then make x

4

 1, x

2

 1,

x

1

 0, regardless of x

3

.)

367. (We an hoose whihever of the two assignments is most onvenient, for example

by piking the shortest, sine either one is a valid erp rule.) Any solution will either

satisfy all the lauses on the right side of �x or all the lauses on the right side of x, or

both. For if a solution falsi�es both C

i

n x and C

0

j

n �x, it falsi�es C

i

�C

0

j

.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 257

hyperresolution

substitution

DNF

Two-level iruit minimization

irredundant

self-subsumptions

self-subsumes

exat over

doubly linked

AVAIL

In either ase the value of x will satisfy all of the lauses C

1

, : : : , C

a

, C

0

1

, : : : , C

0

b

.

368. If (l) is a lause, subsumption removes all other lauses that ontain l. Then

resolution (with p = 1) will remove

�

l from all q of its lauses, and (l) itself.

369. Let C

i

= (l_�

i

) and C

0

j

= (

�

l_�

j

). Eah omitted lause C

i

�C

0

j

= (�

i

_�

j

), where

1 < i � p and r < j � q, is redundant, beause it is a onsequene of the non-omitted

lauses (�

i

_

�

l

1

), : : : , (�

i

_

�

l

r

), (l

1

_ � � � _ l

r

_ �

j

) via hyperresolution. [This tehnique

is alled \substitution," beause we essentially replae jlj by its de�nition.℄

370. (a _ b) ^ (a _

�

b _ �) ^ (�a _ b _) = (a _ �) ^ (b _). (See the disussion following

7.1.1{(27). In general, advaned preproessors use the theory of DNF minimization, in

its dual form, to �nd irredundant minimum forms for CNF. Suh tehniques are not

implemented, however, in the examples of preproessing onsidered in this setion.)

371. One senario starts by eliminating variable 1, replaing eight lauses by eight new

ones: 23

�

4

�

7,

�

2

�

347, 23

�

5

�

9,

�

2

�

359, 3

�

45

�

7,

�

34

�

57, 4

�

57

�

9,

�

45

�

79. Then 8 is eliminated, replaing

another eight by eight: 2

�

45

�

6,

�

24

�

56, 25

�

6

�

7,

�

2

�

567, 25

�

7

�

9,

�

2

�

579, 46

�

7

�

9,

�

4

�

679. Then ome

self-subsumptions: 23

�

4

�

7 7! 23

�

7 (via 234), 3

�

45

�

7 7! 35

�

7 (345), 357 7! 35 (35

�

7); and

35 subsumes 345, 35

�

7. Further self-subsumptions yield 23

�

5

�

9 7! 23

�

9,

�

2

�

359 7!

�

2

�

39,

�

2

�

579 7!

�

279,

�

24

�

56 7!

�

246, 246 7! 46; and 46 subsumes 456, 46

�

7

�

9,

�

246. Similarly,

�

2

�

567 7!

�

267,

�

45

�

79 7!

�

459,

�

2

�

347 7!

�

2

�

37,

�

34

�

57 7!

�

3

�

57,

�

3

�

5

�

7 7!

�

3

�

5; and

�

3

�

5 subsumes

�

3

�

4

�

5,

�

3

�

57. Then 2

�

45

�

6 7! 2

�

4

�

6,

�

2

�

4

�

6 7!

�

4

�

6; and

�

4

�

6 subsumes

�

4

�

5

�

6, 2

�

4

�

6,

�

4

�

679. Also 25

�

6

�

7 7! 2

�

6

�

7,

4

�

57

�

9 7! 4

�

5

�

9, 25

�

7

�

9 7! 2

�

7

�

9.

Round 2 of variable elimination �rst gets rid of 4, replaing six lauses by just

four using exerise 369: 23

�

6,

�

2

�

36, 569,

�

5

�

6

�

9. Then variable 3 goes away; ten lauses

beome eight, again via exerise 369: 2

�

5

�

6,

�

256, 2

�

5

�

7,

�

257, 2

�

5

�

9,

�

259, 5

�

6

�

9,

�

569. And the

ten lauses that now ontain 2 or

�

2 resolve into just four: 56

�

7

�

9, 5

�

6

�

79,

�

567

�

9,

�

5

�

679.

After eliminating 7 and 9, only four lauses remain, namely 56, 5

�

6,

�

56,

�

5

�

6; and

they quikly produe a ontradition.

372. (This problem is surprisingly diÆult.) Are the lauses f

�

1

�

5,

�

1

�

6,

�

2

�

5,

�

2

�

6,

�

3

�

7,

�

3

�

8,

�

4

�

7,

�

4

�

8, 123, 124, 134, 234, 567, 568, 578, 678g as \small" as possible?

373. Using the notation of (102), elimination of x

1m

, x

2m

, : : : , x

mm

produes new

lauses M

0

imk

for 1 � i; k < m as well as M

m(m�1)

. Then elimination of x

m(m�1)

gives (M

i(m�1)

_M

m(m�2)

) for 1 � i < m. This lause self-subsumes toM

i(m�1)

, using

M

0

im1

, : : : ,M

0

im(m�2)

. AndM

i(m�1)

subsumes eahM

0

imk

, so we've reduedm tom�1.

374. As in (57), variables are numbered 1 to n, and literals from 2 to 2n + 1. But we

will now number the lauses from 2n+ 2 to m+ 2n+ 1. The literals of lauses will be

stored in ells, somewhat as in Algorithm A, but with additional links as in the exat

over algorithms of Setion 7.2.2.1: Eah ell p ontains not only a literal L(p), a lause

number C(p), and forward/bakward pointers F(p) and B(p) to other ells with the

same literal, but also left/right pointers S(p) and D(p) to other ells in the same lause.

(Think \sinister" and \dexter.") Cells 0 and 1 are reserved for speial use; ell l, for

2 � l < 2n + 2, serves as the head of the doubly linked list of ells that ontain the

literal l; ell , for 2n+2 � < m+2n+2, serves as the head of the doubly linked list

of ells that ontain the elements of lause ; and ell p, for m+2n+2 � p < M , either

is available for future use or holds literal and lause data for a urrently ative lause.

Free ells are aessed via a global pointer AVAIL. To get a new p(AVAIL when

AVAIL 6= 0, we set p AVAIL, AVAIL S(AVAIL); but if AVAIL = 0, we set p M and

M M +1 (assuming that M never gets too large). To free one or more ells from p

0

to p

00

that are linked together via left links, we set S(p

0

) AVAIL and AVAIL p

00

.

September 23, 2015

258 ANSWERS TO EXERCISES 7.2.2.2

signature

bitwise OR

Bloom

list merge

tautology

Biere

False hits

STAMP(l)

time stamp

The number of ative lauses ontaining literal l, TALLY(l), an therefore be

omputed as follows: Set t 0, p F(l); while not lit (p), set t t+1 and p F(p);

set TALLY(l) t; here `lit (p)' stands for `p < 2n+2'. The number of literals in lause ,

SIZE(), an be omputed by a similar loop, using `ls (p)' to stand for `p < m+2n+2':

Set t 0, p S(); while not ls (p), set t t + 1 and p S(p); set SIZE() t.

After initialization, the TALLY and SIZE statistis an be updated dynamially as loal

hanges are made. (TALLY(l) and SIZE() an be maintained in L(l) and C().)

To failitate resolution, the literals of eah lause are required to inrease from

left to right; in other words, we must have L(p) < L(q) whenever p = S(q) and

q = D(p), unless ls (p) or ls (q). But the lauses within literal lists need not appear

in any partiular order. We might even have C(F(p)) > C(q) but C(F(p

0

)) < C(q

0

),

when C(p) = C(p

0

) and C(q) = C(q

0

).

To failitate subsumption, eah literal l is assigned a 64-bit signature SIG(l) =

(1�U

1

) j (1� U

2

), where U

1

and U

2

are independently random 6-bit numbers. Then

eah lause is assigned a signature that is the bitwise OR of the signatures of its

literals: Set t 0, p S(); while not ls (p), set t t j SIG(L(p)) and p S(p);

set SIG() t. (See the disussion of Bloom's superimposed oding in Setion 6.5.)

(a) To resolve with

0

, where ontains l and

0

ontains

�

l, we essentially want

to do a list merge. Set p 1, q S(), u L(q), q

0

 S(

0

), u

0

 L(q

0

), and

do the following while u + u

0

> 0: If u = u

0

, opy(u) and bump(q; q

0

); if u = �u

0

= l,

bump(q; q

0

); if u = �u

0

6= l, terminate unsuessfully; otherwise if u > u

0

, opy(u)

and bump(q); otherwise opy(u

0

) and bump(q

0

). Here `opy(u)' means `set p

0

 p,

p(AVAIL, S(p

0

) p, L(p) u'; `bump(q)' means `set q S(q); if ls (q) set u 0,

otherwise set u L(q)'; `bump(q

0

)' is similar, but it uses q

0

and u

0

; and `bump(q; q

0

)'

means `bump(q) and bump(q

0

)'. Unsuessful termination ours when lauses and

0

resolve to a tautology; we set p 0, after �rst returning ells p through S(1) to

free storage if p 6= 1. Suessful termination with u = u

0

= 0 means that the resolved

lause onsists of the literals in ells from p through S(1), linked only via S pointers.

(b) Find a literal l with minimum TALLY(l). Set p F(l), and do the following

while not lit (p): Set

0

 C(p); if

0

6= and �SIG(

0

)& SIG() = 0 and SIZE(

0

) �

SIZE(), do a detailed subsumption test; then set p F(p). The detailed test begins

with q S(), u L(q), q

0

 S(

0

), u

0

 L(q

0

), and does the following steps while

u

0

� u > 0: bump(q

0

) while u

0

> u; then bump(q; q

0

) if u

0

= u. When the loop

terminates, subsumes

0

if and only if u � u

0

.

() Use (b) but with (SIG() & �SIG(l)) in plae of SIG(). Also modify the

detailed test, by inserting `if u = l then u

�

l' just after eah ourrene of `u L(q)'.

[The algorithm in (b) was introdued by A. Biere, LNCS 3542 (2005), 59{70, x4.2.

\False hits," in whih the detailed test is performed but no atual (self-)subsumption

is deteted, tend to our less than 1% of the time in pratie.℄

375. Let eah literal l have another �eld STAMP(l), initially zero; and let s be a global

\time stamp" that is initially zero. To make the test, set s s + 1 and � 0; then

set STAMP(u) s and � � j SIG(u) for all u suh that (

�

l�u) is a lause. If � 6= 0,

set � � j SIG(l) and run through all lauses that ontain l, doing the following: If

SIG() & �� = 0, and if eah of 's literals u 6= l has STAMP(u) = s, exit with C

1

=

and r = SIZE() � 1. If C

1

has thereby been found, set s s + 1 and STAMP(�u) s

for all u 6= l in . Then a lause (

�

l _ �

j

) impliitly has j � r in the notation of exerise

369 if and only if �

j

is a single literal u with STAMP(u) = s.

Given a variable x, test the ondition �rst for l = x; if that fails, try l = �x.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 259

unit onditioning

pure literal elimination

to-do stak

erp rule

doubly linked lists

Subsumption

strengthening

exploitation stak

sentinel value

touhed

376. Highest priority is given to the ommon operations of unit onditioning and pure

literal elimination, whih are \low-hanging fruit." Give eah variable x two new �elds,

STATE(x) and LINK(x). A \to-do stak," ontaining all suh easy pikings, begins at

TODO and follows LINKs until reahing �. Variable x is on this stak only if STATE(x) is

nonzero; the nonzero states are alled FF (fored false), FT (fored true), EQ (eliminated

quietly), and ER (eliminated by resolution).

Whenever a unit lause (l) is deteted, with STATE(jlj) = 0, we set STATE(jlj)

(l & 1? FF: FT), LINK(jlj) TODO, and TODO jlj. But if STATE(jlj) = (l & 1? FT: FF),

we terminate, beause the lauses are unsatis�able.

Whenever a literal with TALLY(l) = 0 is deteted, we do the same thing if

STATE(jlj) = 0. But if STATE(jlj) = (l & 1? FT: FF), we simply set STATE(jlj) EQ

instead of terminating.

To lear the to-do stak, we do the following while TODO 6= �: Set x TODO and

TODO LINK(x); if STATE(x) = EQ, do nothing (no erp rule is needed to eliminate x);

otherwise set l (STATE(x) = FT?x: �x), output the erp rule l 1, and use the doubly

linked lists to delete all lauses ontaining l and to delete

�

l from all lauses. (Those

deletions update TALLY and SIZE �elds, so they often ontribute new entries to the to-

do stak. Notie that if lause loses a literal, we must reompute SIG(). If lause

disappears, we set SIZE() 0, and never use again.)

Subsumption and strengthening are next in line. We give eah lause a new �eld

LINK(), whih is nonzero if and only if appears on the \exploitation stak." That

stak begins at EXP and follows LINKs until reahing the nonzero sentinel value �

0

. All

lauses are initially plaed on the exploitation stak. Afterwards, whenever a literal

�

l is

deleted from a lause , either during unit onditioning or self-subsumption, we test if

LINK() = 0; if so, we put bak on the stak by setting LINK() EXP and EXP .

To lear the subsumption stak, we �rst lear the to-do stak. Then, while EXP 6=

�

0

, we set EXP, EXP LINK(), and do the following if SIZE() 6= 0: Remove

lauses subsumed by ; lear the to-do stak; and if SIZE() is still nonzero, strengthen

lauses that an improve, lear the to-do stak, and set TIME() T (see below).

All of this takes plae before we even think about the elimination of variables. But

rounds of variable elimination form the \outer level" of omputation. Eah variable x

has yet another �eld, STABLE(x), whih is nonzero if and only if we need not attempt to

eliminate x. This �eld is initially zero, but set nonzero when STATE(x) EQ or when

an erp rule for x or �x is output. It is reset to zero whenever a variable is later \touhed,"

namely when x or �x appears in a deleted or self-subsumed lause. (In partiular, every

variable that appears in a new lause produed by resolution will be touhed, beause

it will appear in at least one of the lauses that were replaed by new ones.)

If a round has failed to eliminate any variables, or if it has eliminated them all,

we're done. But otherwise there's still work to do, beause the new lauses an often

be subsumed or strengthened. (Indeed, some of them might atually be dupliates.)

Hene two more �elds are introdued: TIME(l) for eah literal and TIME() for eah

lause, initially zero. Let T be the number of the urrent elimination round. We

set TIME(l) T for all literals l in all lauses that are replaed by resolution, and

TIME() T is also set appropriately as mentioned above.

Introdue yet another �eld, EXTRA(), initially zero. It is reset to zero whenever

TIME() T , and set to 1 whenever is replaed by a new lause. For every literal

l suh that STATE(jlj) = 0 and TIME(l) = T at the end of round T , set EXTRA()

EXTRA() + 4 for all lauses that ontain l, and EXTRA() EXTRA() j 2 for all

lauses that ontain

�

l. Then run through all lauses for whih SIZE() > 0 and

September 23, 2015

260 ANSWERS TO EXERCISES 7.2.2.2

E�en

Biere

dependeny digraph

walk

oriented yle

yle detetion problem

Alon

Yuster

Zwik

matrix multipliation

J�arvisalo

Biere

exlusion lauses

oloring

fault testing

author

Kullmann

elimination of x

erti�able

bloked

Heule

J�arvisalo

Biere

asymmetri elimination

bloked

Heule

J�arvisalo

Biere

Heule

J�arvisalo

Biere

TIME() < T . If SIZE() = EXTRA()� 2, remove lauses subsumed by and lear the

exploitation stak. Also, if EXTRA() & 3 6= 0, we may be able to use to strengthen

other lauses|unless EXTRA() & 1 = 0 and EXTRA() � 2 < SIZE() � 1. Self-

subsumption using l need not be attempted when EXTRA()&1 = 0 unless TIME(

�

l) = T

and EXTRA()� 2 = SIZE() � [TIME(l)=T ℄. Finally, reset EXTRA() to zero (even if

TIME() = T). [See Niklas E�en and Armin Biere, LNCS 3569 (2005), 61{75.℄

377. Eah vertex v of G orresponds to variables v

1

, v

2

, v

3

in F ; eah edge u��� v

orresponds to lauses (�u

1

_ v

2

), (�u

2

_ v

3

), (�u

3

_ �v

1

), (u

2

_ �v

1

), (u

3

_ �v

2

), (�u

1

_ �v

3

). The

longest paths in the dependeny digraph for F have the form t

1

! u

2

! v

3

! �w

1

or

t

1

! �u

3

! �v

2

! �w

1

, where t���u���v���w is a walk in G.

[A similar method redues the question of �nding an oriented yle of length r in a

given digraph to the question of �nding a failed literal in some dependeny digraph. The

yle detetion problem has a long history; see N. Alon, R. Yuster, and U. Zwik, Algo-

rithmia 17 (1997), 209{223. So any surprisingly fast algorithm to deide whether or

not failed literals exist|that is, faster than n

2!=(!+1)

whenm = O(n) and matrix mul-

tipliation takes O(n

!

)|would lead to surprisingly fast algorithms for other problems.℄

378. The erp rule l l_ (

�

l

1

^ � � � ^

�

l

q

) will hange any solution of F nC into a solution

of F . [See M. J�arvisalo, A. Biere, and M. Heule, LNCS 6015 (2010), 129{144.℄

(In pratie it's sometimes possible to remove tens of thousands of bloked lauses.

For example, all of the exlusion lauses (17) in the oloring problem are bloked, as

are many of the lauses that arise in fault testing. Yet the author has yet to see

a single example where bloked lause elimination is atually helpful in ombination

with transformations 1{4, whih are already quite powerful by themselves.)

379. (Solution by O. Kullmann.) In general, any set F of lauses an be replaed by

another set F

0

, whenever there's a variable x suh that the elimination of x from F

yields exatly the same lauses as the elimination of x from F

0

. In this ase the elimi-

nation of a has this property. The erp rule a a_(

�

b^�^d) is neessary and suÆient.

380. (a) Reverse self-subsumption weakens it to (a_b__d), then to (a_b__d_e),

whih is subsumed by (a_d_e). [In general one an show that reverse self-subsumption

from C leads to a subsumed lause if and only if C is erti�able from the other lauses.℄

(b) Again we weaken to (a _ b _ _ d _ e); but now we �nd this bloked by .

() No erp rule is needed in (a), but we need _ (�a ^

�

b) in (b). [Heule,

J�arvisalo, and Biere, LNCS 6397 (2010), 357{371, all this \asymmetri elimination."℄

381. By symmetry, we'll remove the �nal lause. (Without it, the given lauses state

that x

1

� x

2

� � � � � x

n

; with it, they state that all variables are equal.) Assume more

generally that, for 1 � j < n, every lause other than (�x

j

_ x

j+1

) that ontains �x

j

also ontains either x

n

or �x

i

for some i < j. For 1 � j < n � 1 we an then weaken

(x

1

_ � � � _ x

j

_ �x

n

) to (x

1

_ � � � _ x

j+1

_ �x

n

). Finally, (x

1

_ � � � _ x

n�1

_ �x

n

) an be

eliminated beause it is bloked by x

n�1

.

Although we've eliminated only one lause, n � 1 erp rules are atually needed

to undo the proess: x

1

 x

1

_ x

n

; x

2

 x

2

_ (�x

1

^ x

n

); x

3

 x

3

_ (�x

1

^ �x

2

^ x

n

); : : : ;

x

n�1

 x

n�1

_(�x

1

^� � �^�x

n�2

^x

n

). (Those rules, applied in reverse order, an however

be simpli�ed to x

j

 x

j

_ x

n

for 1 � j < n, beause x

1

� � � � � x

n

in any solution.)

[See Heule, J�arvisalo, Biere, EasyChair Pro. in Computing 13 (2013), 41{46.℄

382. See M. J. H. Heule, M. J�arvisalo, and A. Biere, LNCS 6695 (2011), 201{215.

383. (a) In a learning step, let �

0

= � and 	

0

= 	[C. In a forgetting step, let �

0

= �

and 	 = 	

0

[C. In a hardening step, let �

0

= � [C and 	 = 	

0

[C. In a softening

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 261

invariant

J�arvisalo

Heule

Biere

unit onditioning

resolution erti�able

Bloked lauses

RAT, see resolution erti�able lauses

step, let � = �

0

[C and 	

0

= 	 [C. In all four ases it is easy to verify that (sat(�)

() sat(� [)) implies (sat(�) () sat(�

0

) () sat(�

0

[

0

)), where sat(G) means

\G is satis�able," beause sat(G[G

0

) =) sat(G). Thus the assertions are invariant.

(b) Eah erp rule allows us to go one step bakward, until reahing F .

() The �rst (softening) step is �ne, beause both � = (x) and � n (x) = 1 are

satis�able, and beause the erp rule unonditionally makes x true. But the seond

(learning) step is awed, beause sat(� [) does not imply sat(� [[C) when

�[= (x) and C = (�x). (This example explains why the riterion for learning is not

simply `sat(�) =) sat(� [C)' as it essentially is for softening.)

(d) Yes, beause C is also erti�able for � [.

(e) Yes, after softening it. No erp rule is needed, beause � n C ` C.

(f) A soft lause an be disarded whether or not it is subsumed. To disard a

hard lause that is subsumed by a soft lause, �rst harden the soft one. To disard a

hard C that is subsumed by a hard C

0

, weaken C and then disard it. (The weakening

step is learly permissible, and no erp rule is needed.)

(g) If C ontains �x and C

0

ontains x and C n �x � C

0

n x, we an learn the soft

lause C �C

0

= C

0

n x, then use it to subsume C

0

as in (f).

(h) Forget all soft lauses that ontain x or �x. Then let C

1

, : : : , C

p

be the hard

lauses ontaining x, and C

0

1

, : : : , C

0

q

those ontaining �x. Learn all the (soft) lauses

C

i

�C

0

j

, and harden them, noting that they don't involve x. Weaken eah C

i

, with erp

rule x x_C

i

, and forget it; also weaken and forget eah C

0

j

, with erp rule x x^C

0

j

.

(One an show that either of the erp rules in (161) would also suÆe.)

(i) Whenever �[is satis�able, so is �[[f(x_z); (y_z); (�x_ �y_ �z)g, beause

we an always set z �x _ �y.

[Referene: M. J�arvisalo, M. Heule, and A. Biere, LNCS 7364 (2012), 355{370.

Notie that, by exerise 368, parts (f) and (h) justify the use of unit onditioning.℄

384. Whenever we have a solution to � n C that falsi�es C, we will show that � is

satis�ed by making l true; hene softening C is permissible, with erp rule l l _ C.

To prove that laim, notie that a problem ould arise only in a hard lause C

0

that ontains

�

l. But if all other literals of C

0

are false in the given solution, then all

literals of C �C

0

are false, ontraditing the assumption that (� n C) ^ C �C

0

`

1

�.

(Suh lauses C are \resolution erti�able" with respet to �nC. Bloked lauses

are a very speial ase. Similarly, we an safely learn any lause that is resolution

erti�able with respet to � [.)

385. (a) True, beause C ^ l `

1

�.

(b)

�

1 is implied, not erti�able;

�

12 is erti�able, not absorbed;

�

123 is absorbed.

(; d) If C is any lause and l is any literal, then F ^ C `

1

l implies F

0

^ C `

1

l,

beause unit propagation in F arries over to unit propagation in F

0

.

386. (a) The trail ontained exatly sore(F;C; l) literals when deision

�

l was made at

level d. The lause learned from the ensuing onit auses at least one new literal to

be implied at level d

0

< d.

(b) The sore an't derease when F grows.

() Eah l 2 C needs at most n helpful rounds to make sore(F;C; l) =1.

(d) Suppose, for example, F = (a_

�

d)^ (a_ b_ e_ l)^ (�a_)^ (

�

b)^ (_ d_ �e_ l)

and C = (a _ b _ _ d _ l). The helpful sequenes of deisions are (�a; �;

�

l), (�;

�

d;

�

l),

(

�

d; �a; �;

�

l), (

�

d; �;

�

l), and they our with probabilities

1

10

1

6

1

4

,

1

10

1

6

1

4

,

1

10

1

8

1

6

1

4

,

1

10

1

8

1

4

.

September 23, 2015

262 ANSWERS TO EXERCISES 7.2.2.2

geometri distribution

Pipatsrisawat

Darwihe

Atserias

Fihte

Thurley

isolated verties

auxiliary variables

omplete graph

omplete k-partite graph

yle

graph embedding

distane d(u; v) in a graph

indued graph

shortest path

In general if a deision is to be made and j elements of C are not yet in the trail,

the probability that a suitable deision will be made at random is at least

f(n; j) = min

�

j�1

2n

f(n�1; j�1);

j�2

2(n�1)

f(n�2; j�2); : : : ;

1

2(n�j+2)

f(n�j+1; 1);

1

2(n�j+1)

�

=

(j�1)!

2

j

n

j

:

(e) The waiting time to absorb eah lause C

i

is a geometri distribution whose

mean is � 4n

jC

i

j

, repeated at most jC

i

jn times.

Referenes: K. Pipatsrisawat and A. Darwihe, Artif. Intell. 175 (2011), 512{525;

A. Atserias, J. K. Fihte, and M. Thurley, J. Artif. Intell. Researh 40 (2011), 353{373.

387. We may assume that G and G

0

have no isolated verties. Letting variable vv

0

mean that v orresponds to v

0

, we need the lauses (uv

0

_vv

0

) for u < v and (vu

0

_vv

0

)

for u

0

< v

0

. Also, for eah u < v with u��� v in G, we introdue auxiliary variables

uu

0

vv

0

for eah edge u

0

��� v

0

in G

0

, with lauses (uu

0

vv

0

_ uu

0

) ^ (uu

0

vv

0

_ vv

0

) ^

(

W

fuu

0

vv

0

j u

0

���v

0

in G

0

g). The variables vv

0

and uu

0

vv

0

an be restrited to ases

where degree(u) � degree(u

0

) and degree(v) � degree(v

0

).

388. (a) Can the omplete graph K

k

be embedded in G? (b) Can G be embedded in

the omplete k-partite graph K

n;:::;n

, where G has n verties? () Can the yle C

n

be

embedded in G?

389. This is a graph embedding problem, with G

0

the 4� 4 (king [knight) graph and

with G de�ned by edges T��� H, H��� E, : : : , N��� G. The adjaent Ms an be avoided

by hanging `PROGRAMMING' to either `PROGRAMXING' or `PROGRAXMING'.

Algorithm C needs less than 10 megamems to �nd the �rst solution below.

Furthermore, if the blank spae an also be moved, the algorithm will rather quikly

also �nd solutions with just �ve knight moves (the minimum), or 17 of them (the max):

U P C F

M M O

I T R A

N G E H

M M I N

A P O G

H R F

U T E C

H N U F

E M O I

G T P

A R M C

390. Let d(u; v) be the distane between verties u and v. Then d(v; v) = 0 and

d(u; v) � j + 1 () d(u; v) � j or d(u;w) � j for some w 2 N(v) = fw j w���vg. (�)

In parts (a), (d), we introdue variables v

j

for eah vertex v and 0 � j � k. In part ()

we do this for 0 � j < n. But parts (b), (e), (f) use just n variables, fv j v 2 V g.

(a) Clauses (s

0

) ^

W

v2V ns

(�v

0

) ^

W

v2V

(�v

j+1

_ v

j

_

W

w���v

w

j

) are satis�ed only if

v

j

� [d(s; v)� j ℄; hene the additional lause (t

k

) is also satis�ed only if d(s; t) � k.

Conversely, if d(s; t) � k, all lauses are satis�ed by setting v

j

 [d(s; v)� j ℄.

(b) There's a path from s to t if and only if there's a subset H � V suh that

s 2 H, t 2 H, and every other vertex of the indued graph G jH has degree 0 or 2.

[The verties on a shortest path from s to t yield one suh H. Conversely, given H, we

an �nd verties v

j

2 H suh that s = v

0

���v

1

���� � ����v

k

= t.℄

We an represent that riterion via lauses on the binary variables v = [v 2H ℄

by asserting (s) ^ (t), together with lauses to ensure that �(s) = �(t) = 1, and that

�(v) 2 f0; 2g for all v 2 H nfs; tg, where �(v) =

P

w2N(v)

w is the degree of v in G jH.

The number of suh lauses for eah v is at most 6jN(v)j, beause we an append �v

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 263

digraphs

strong onnetivity

Heule

renamed

Horn lauses

Van Gelder

Loyd

Dudeney

Grabarhuks'

odd-even transposition sort

to eah lause of (18) and (19) when r = 2, and jN(v)j additional lauses will rule out

�(v) < 2. Altogether there are O(m) lauses, beause

P

v2V

jN(v)j = 2m.

[Similar but simpler alternatives, suh as (i) to require �(v) 2 f0; 2g for all v 2

V nfs; tg, or (ii) to require �(v) � 2 for all v 2 Hnfs; tg, do not work: Counterexamples

are (i)

s

t

and (ii)

s

t

. Another solution, more umbersome, assoiates a Boolean

variable with eah edge of G.℄

() Let s be any vertex; use (a), plus (v

n�1

) for all v 2 V n s.

(d) Clauses (s

0

)^

W

k�1

j=0

W

v2V

W

w2N(v)

(�v

k

_w

k+1

) are satis�ed only if we have v

j

�

[d(s; v)� j ℄; hene the additional lause (

�

t

k

) annot also be satis�ed when d(s; t) � k.

Conversely, if d(s; t) > k we an set v

j

 [d(s; v)� j ℄.

(e) (s) ^ (

W

v2V

W

w2N(v)

(�v _ w)) ^ (

�

t).

(f) Letting s be any vertex, use (s) ^ (

W

v2V

W

w2N(v)

(�v _ w)) ^ (

W

v2V ns

�v).

[Similar onstrutions work with digraphs and strong onnetivity. Parts (d){(f)

of this exerise were suggested by Marijn Heule. Notie that parts (a) and (){(f)

onstrut renamed Horn lauses, whih work very eÆiently (see exerise 444).℄

391. (a) Let d � 1 = (q

l�1

: : : q

0

)

2

. To ensure that (x

l�1

: : : x

0

)

2

< d we need the

lauses (�x

i

_

W

f�x

j

j j > i; q

j

= 1g) whenever q

i

= 0. The same holds for y.

To enfore x 6= y, introdue the lause (a

l�1

_ � � � _ a

0

) in auxiliary variables

a

l�1

: : : a

0

, together with (�a

j

_ x

j

_ y

j

) ^ (�a

j

_ �x

j

_ �y

j

) for 0 � j < l (see (172)).

(b) Now x 6= y is enfored via lauses of length 2l, whih state that we don't have

x = y = k for 0 � k < d. For example, the appropriate lause when l = 3 and k = 5 is

(�x

2

_ �y

2

_ x

1

_ y

1

_ �x

0

_ �y

0

).

() Use the lauses of (b) for 0 � k < 2d � 2

l

, plus lauses of length 2l � 2

for d � k < 2

l

stating that we don't have (x

l�1

: : : x

1

)

2

= (y

l�1

: : : y

1

)

2

= k. (The

enodings in (b) and () are idential when d = 2

l

.)

[See A. Van Gelder, Disrete Applied Mathematis 156 (2008), 230{243.℄

392. (a) [Puzzle (ii) was introdued by Sam Loyd in the Boston Herald, 13 November

1904; page 27 of his Cylopedia (1914) states that he'd reated a puzzle like (i) at age 9!

Puzzle (iv) is by H. E. Dudeney, Strand 42 (1911), 108, slightly modi�ed. Puzzle (iii)

is from the Grabarhuks' Big, Big, Big Book of Brainteasers (2011), #196; puzzle (v)

was designed by Serhiy A. Grabarhuk in 2015.℄

A A A A

A

A

B

B B

B

A A A A A

C

C C

C

A

A

A A A A

A A A

A

D D D D

A

D

D D D

E

E D

A A A A A A E D

C C C C C A E D

C A A A

C

A E

D

C A

B

A A A E

B

C A B B B

E

E B

C

A A

A

B B B B

A

A A

B

B B B

B

A

C

A A A C

C

B

A C C C

A

C B B

A A

D C

C C B

E

F

A D D

D E

B E

F A A

A

D E B E

F

D

D D D E

B

E

F

F F F

F

E E

E

G G G G G

H

A A A A A A

A

C C C C C

G F F F G H A C C C C C C C E E E C

G F

B

F G H A

C

E E E E E E E

D

E

C

G F B F G H A A

E

A A A A A A D E

E

G F B F G H H A A A G H H H A D D D

G

F B F G G H H H H H H

G

H A A A D

F F B F F G G G G G G G G H H H A D

F

B B

J

F F F F F F F F F F

F

H A D

B B

J

J H H H H H H H H H H H A D

B

I

I I I

H

I I I I I

I A

A A A A D

B B

B

I I I

D

D D D D D D D D D D

E E E E E

A

A A A A A A A A A A A A

E D D D E E C C C C C C C C C C C A

E D

B

D

C

E C B B B B B B B B B C A

E D B D C E C B F F F F F F F B C A

E D B

D

C E C B F D D D D D F B C A

E D B B C

E

C B F D E E E D F B C A

E D

F

B C C C B F D E

A E D

F B C A

E D F B B B B B F D E A

C B F

B C A

E D F F F F F F F D E A C B B B C A

E D D D D D D D D D E A C C C C C A

E E E E E E E E E E E A A A A A A A

(i) (ii) (iii) (iv) (v)

(b) [Puzzle (vi) is an instane of the odd-even transposition sort, exerise 5.3.4{

37. Eight order-reversing onnetions would be impossible with only eight olumns,

instead of the nine in (vii), beause the permutation has too many inversions.℄

A

B B D D F F H

H

B

A D B F D H F

G

C

D A F B H D G

F

D

C F A H B G D

E

E

F C H A G B E

D

F

E H C G A E B

C

G

H E G C E A C

B

H

G G E E C C A

A

A

B B D D F

B

A D B F D F

G

C

D A F B D G

F

D

C F A B G D

E

E

F C A G B E

D

F

E C G A E B

C

G

E G C E A C

B

G E E C C A

A

A B

B

C

C D

D A

D

A C B D C A

B

D C A B D A C B

C D B A A D B

C

C

B D B D A D B

B C C D B A B D

B

A D C A B A

D

A D

A A

C B A

(vi) (vii) (viii)

September 23, 2015

264 ANSWERS TO EXERCISES 7.2.2.2

Steiner tree paking

Gr�otshel

Martin

Weismantel

langford

000

(n)

Prestwih

axiom lauses

Tamura

Taga

Kitagawa

Banbara

hanneling

author

diret enoding

triangle

() Let d

j

=

P

j

i=1

(jT

i

j � 1) and d = d

t

. We introdue variables v

i

for 1 � i � d,

and the following lauses for 1 � j � t and d

j�1

< i � d

j

: (�v

i

0

_ �v

i

) for 1 � i

0

� d

j�1

;

the lauses of answer 390(b) on variables v

i

, where s is the (i � d

j�1

)th element of T

j

and t is the last element. These lauses ensure that the sets V

j

= fv j v

d

j�1

+1

_� � �_v

d

j

g

are disjoint, and that V

j

ontains a onneted omponent S

j

� T

j

.

We also assert (�v

i

) for 1 � i � d, whenever T

j

is a singleton set fvg.

[For the more general \Steiner tree paking" problem, see M. Gr�otshel, A. Mar-

tin, and R. Weismantel, Math. Programming 78 (1997), 265{281.℄

393. A onstrution somewhat like that of answer 392() an be used with

�ve di�erent 8 � 8 graphs, one for the moves of eah white-blak pair S

j

.

But we need to keep trak of the edges used, not verties, in order to

prohibit edges that ross eah other. Additional lauses will rule that out.

bZ0Z0Z0Z

Z0Z0Z0a0

0Z0Z0Z0l

Z0m0Z0Z0

0Z0Z0Z0s

Z0L0ZNZ0

0Z0Z0Z0S

Z0Z0A0ZB

394. Call these lauses langford

000

(n). [Steven Prestwih desribed a similar method

in Trends in Constraint Programming (Wiley, 2007), 269{274.℄ Typial results are:

variables lauses Algorithm D Algorithm L Algorithm C

langford

000

(9) 206 1157 131M� 18M� 22M� (UNSAT)

langford

000

(13) 403 2935 1425G� 44G� 483G� (UNSAT)

langford

000

(16) 584 4859 713K� 42M� 343K� (SAT)

langford

000

(64) 7352 120035 (huge) (big) 71M� (SAT)

395. The olor of eah vertex v gets binary axiom lauses (�v

j+1

_v

j

) for 1 � j < d�1, as

in (164). And for eah edge u���v in the graph, we want d lauses (�u

j�1

_u

j

_�v

j�1

_v

j

)

for 1 � j � d, omitting �u

0

and �v

0

when j = 1, u

d

and v

d

when j = d.

[The surprising usefulness of order enoding in graph oloring was �rst notied by

N. Tamura, A. Taga, S. Kitagawa, and M. Banbara in Constraints 14 (2009), 254{272.℄

396. First we have (�x

j+1

_x

j

) and (x̂

j+1

_x̂

j

) for 1 � j < d. Then we have \hanneling"

lauses to ensure that j � x < j + 1 () j� � x� < j� + 1 for 0 � j < d:

(�x

j

_ x

j+1

_ x̂

j�

) ^ (�x

j

_ x

j+1

_ x̂

j�+1

) ^ (x̂

j�

_ x̂

j�+1

_ x

j

) ^ (x̂

j�

_ x̂

j�+1

_ �x

j+1

):

(These lauses should be either shortened or omitted in boundary ases, beause x

0

and

x̂

0

are always true, while x

d

and x̂

d

are always false. We obtain 6d�8 lauses for eah x.)

With suh lauses for every vertex of a graph, together with lauses based on

adjaent verties and liques, we obtain enodings for n-oloring the n�n queen graph

that involve 2(n

3

� n

2

) variables and

5

3

n

4

+ 4n

3

+O(n

2

) lauses, ompared to n

3

� n

2

variables and

5

3

n

4

� n

3

+ O(n

2

) lauses with single liques and (162) alone. Typial

running times with Algorithm C and single liques are 323K�, 13:1M�, 706G� for

n = 7, 8, 9; with double lique-ing they beome 252K�, 1:97M�, 39:8 G�, respetively.

The double lique hints turn out to be mysteriously ine�etive when � is the stan-

dard organ-pipe permutation (0�; 1�; : : : ; (d�1)�) = (0; 2; 4; : : : ; 5; 3; 1) instead of its

inverse. Random hoies of � when n = 8 yielded signi�ant improvement almost half

the time, in the author's experiments; but they had negligible e�et in 1/3 of the ases.

Notie that the example � for d = 4 yields x

1

= �x

0

, x

3

= x

3

, x̂

1

= �x

2

, x̂

3

= x

1

.

Hene the diret enoding is essentially present as part of this redundant representation,

and the hints (�u

3

_�v

3

)^(u

1

_v

1

)_(û

3

_ v̂

3

)^(û

1

_ v̂

1

) for 2-liques fu; vg are equivalent

to (16). But the hints (u

2

_ v

2

_w

2

) ^ (�u

2

_ �v

2

_ �w

2

) ^ (û

2

_ v̂

2

_ ŵ

2

) ^ (û

2

_ v̂

2

_ ŵ

2

)

that apply when fu; v; wg is a triangle give additional logial power.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 265

pigeons

permutations

inverse permutation

diret enoding

Gent

Nightingale

at-most-one onstraints

Golomb

Baumert

Gent

Kasif

WalkSAT

author

397. There are (p� 2)d binary lauses (�y

i+1

j

_ y

i

j

) for 1 � i < p� 1, together with the

(2p� 2)d lauses (�x

j

i

_ x

j+1

i

_ y

i

j

) ^ (�x

j

i�1

_ x

j+1

i�1

_ �y

i

j

) for 1 � i < p, all for 0 � j < d.

The hint lauses (x

p�1

0

_ � � � _ x

p�1

p�1

) ^ (�x

d�p+1

0

_ � � � _ �x

d�p+1

p�1

) are also valid.

(This setup orresponds to putting p pigeons into d holes, so we an usually

assume that p � d. If p � 4 it is better to use

�

p

2

�

d lauses as in exerise 395. Notie

that we obtain an interesting representation of permutations when p = d. In that ase

y is the inverse permutation; hene (2d�2)p additional lauses orresponding to y

j

= i

=) x

i

= j are also valid, as well as two hint lauses for y.)

A related idea, but with diret enoding of the x's, was presented by I. Gent

and P. Nightingale in Proeedings of the International Workshop on Modelling and

Reformulating Constraint Satisfation Problems 3 (2004), 95{110.

398. We ould onstrut (3p� 4)d binary lauses that involve y

i

j

, as in exerise 397.

But it's better just to have (3p�6)d lauses for the at-most-one onstraints x

0k

+x

1k

+

� � � + x

(p�1)k

� 1, 0 � k < d.

399. (a) d

2

�t prelusion lauses (binary); or 2d support lauses (total length 2(d+t)).

(b) If unit propagation derives �v

j

from (�u

i

_ �v

j

), we knew u

i

; hene (17) gives �u

i

0

for all i

0

6= i, and �v

j

follows from the support lause that ontains it.

() If unit propagation derives �v

j

from its support lause, we knew �u

i

for all i 6= j;

hene (15) gives u

j

, and �v

j

follows from (16). Or if unit propagation derives u

i

from that

support lause, we knew v

j

and �u

i

0

for all i

0

=2 fi; jg; hene �u

j

from (16), u

i

from (15).

(d) A trivial example has no legal pairs; then unit propagation never gets started

from binary prelusions, but the (unit) support lauses dedue all. A more realisti

example has d = 3 and all pairs legal exept (1; 1) and (1; 2), say; then we have

(15) ^ (17) ^ (�u

1

_ �v

1

) ^ (�u

1

_ �v

2

) ^ (�v

3

) 6`

1

�u

1

but (15) ^ (17) ^ (�u

1

_ v

3

) ^ (�v

3

) `

1

�u

1

.

[Prelusion was introdued by S. W. Golomb and L. D. Baumert, JACM 12

(1965), 521{523. The support enoding was introdued by I. P. Gent, European Conf.

on Arti�ial Intelligene 15 (2002), 121{125, based on work of S. Kasif, Arti�ial

Intelligene 45 (1990), 275{286.℄

400. This problem has n variables q

1

, : : : , q

n

with n values eah; thus there are n

2

Boolean values, with q

ij

= [q

i

= j ℄ = [there's a queen in row i and olumn j℄. The

onstraint between q

i

and q

j

is that q

i

=2 fq

j

; q

j

+ i� j; q

j

� i+ jg; so it turns out that

there are n at-least-one lauses, plus (n

3

�n

2

)=2 at-most-one lauses, plus either n

3

�n

2

support lauses or n

3

�n

2

+

�

n

3

�

prelusion lauses. In this problem eah support lause

has at least n � 2 literals, so the support enoding is muh larger.

Sine the problem is easily satis�able, it makes sense to try WalkSAT. When

n = 20, AlgorithmW typially �nds a solution from the prelusion lauses after making

fewer than 500 ips; its running time is about 500K�, inluding about 200K� just to

read the input. With the support lauses, however, it needs about 10 times as many

ips and onsumes about 20 times as many mems, before sueeding.

Algorithm L is signi�antly worse: It onsumes 50M� with prelusion lauses,

11G� with support lauses. Algorithm C is the winner, with about 400K� (prelusion)

versus 600K� (support).

Of ourse n = 20 is pretty tame; let's onsider n = 100 queens, when there are

10,000 variables and more than a million lauses. Algorithm L is out of the piture;

in the author's experiments, it showed no indiation of being even lose to a solution

after 20 T�! But Algorithm W solves that problem in 50M�, via prelusion, after

making only about 5000 ips. Algorithm C wins again, polishing it o� in 29M�. With

September 23, 2015

266 ANSWERS TO EXERCISES 7.2.2.2

at-most-one

author

all solutions

2SAT

midpoint

Bather

odd-even

merge network

Axiom lauses

omplemented

the support lauses, nearly 100 million literals need to be input, and Algorithm W is

hopelessly ineÆient; but Algorithm C is able to �nish after about 200M�.

The prelusion lauses atually allow us to omit the at-most-one lauses in this

problem, beause two queens in the same row will be ruled out anyway. This trik

improves the run time when n = 100 to 35M� for Algorithm W.

We an also append support lauses for the olumns as well as the rows. This idea

roughly halves the searh spae, but it gives no improvement beause twie as many

lauses must be handled. Bottom line: Support lauses don't support n queens well.

(However, if we seek all solutions to the n queens problem instead of stopping

with the �rst one, using a straightforward extension of Algorithm D (see exerise 122),

the support lauses proved to be de�nitely better in the author's experiments.)

401. (a) y

j

= x

2j�1

. (b) z

j

= x

3j�1

. In general w = b(x+ a)=b () w

j

= x

bj�a

.

402. (a)

V

bd=2

j=1

(�x

2j�1

_ x

2j

); (b)

V

dd=2e

j=1

(�x

2j�2

_ x

2j�1

); omit �x

0

and x

d

.

403. (a)

V

d�1

j=1

(�x

j

_�y

j

_z

j

); (b)

V

d�1

j=1

((�x

j

_z

j

)^(�y

j

_z

j

)); ()

V

d�1

j=1

((x

j

_�z

j

)^(y

j

_�z

j

));

(d)

V

d�1

j=1

(x

j

_ y

j

_ �z

j

).

404. (a)

V

d�1

j=0

(�x

j

_x

j+1

_�y

j+1�a

_y

j+a

). (As usual, omit literals with supersripts � 0

or � d. If a > 1 this enoding is unsymmetrial, with one lause for eah value of x.)

(b)

V

d�a

j=0

((p _ �x

j

_ y

j+a

) ^ (�p _ x

j+a

_ �y

j

)); p is the auxiliary variable.

405. (a) If a < 0 we an replae ax by (�a)�x and by + a � ad, where �x is given

by (165). A similar redution applies if b < 0. Cases with a, b, or = 0 are trivial.

(b) We have 13x + 8�y � 63 () not 13x + 8�y � 64 () not (P

0

or : : : or

P

d�1

) () not P

0

and : : : and not P

d�1

, where P

j

= `x � j and �y � d(64 � 13j)=8e'.

This approah yields

V

7

j=0

(�x

j

_ y

8�d(64�13j)=8e

), whih simpli�es to (�x

1

_ y

1

) ^ (�x

2

_

y

3

) ^ (�x

3

_ y

4

) ^ (�x

4

_ y

6

) ^ (�x

5

). (Notie that we ould have de�ned P

j

= `�y � j

and x � d(64 � 8j)=13e' instead, thereby obtaining the less eÆient enoding (�x

5

) ^

(y

7

_ �x

5

)^ (y

6

_ �x

4

)^ (y

5

_ �x

4

)^ (y

4

_ �x

3

)^ (y

3

_ �x

2

)^ (y

2

_ �x

2

)^ (y

1

_ �x

1

); it's better

to disriminate on the variable with the larger oeÆient.)

() Similarly, 13�x+8y � 90 gives (x

5

_ �y

7

)^ (x

4

_ �y

5

)^ (x

3

_ �y

4

)^ (x

2

_ �y

2

)^ (x

1

).

(The (x; y) pairs legal for both (b) and () are (1; 1), (2; 3), (3; 4), (4; 6).)

(d)

V

min(d�1;d(+1)=ae)

j=max(0;d(+1�b(d�1))=ae)

(�x

j

_ �y

d(+1�aj)=be

), when a � b > 0 and � 0.

406. (a) (

V

b

p

a+1

j=d(a+1)=(d�1)e

(�x

j

_ �y

d(a+1)=je

)) ^ (

V

d

p

a+1 e�1

j=d(a+1)=(d�1)e

(�x

d(a+1)=je

_ �y

j

)).

(b) (

V

b

p

a�1+1

j=l+1

(x

j

_ y

b(a�1)=(j�1)+1

)) ^ (

V

d

p

a�1 e

j=l+1

(x

b(a�1)=(j�1)+1

_ y

j

)) ^

(x

l

) ^ (y

l

), where l = b(a� 1)=(d � 1)+ 1. [Both formulas belong to 2SAT.℄

407. (a) We always have bx=2+dx=2e = x, bx=2+by=2 �

x+y

2

� bx=2+by=2+1,

and dx=2e+dy=2e�1 �

x+y

2

� dx=2e+dy=2e. (Similar reasoning proves the orretness

of Bather's odd-even merge network; see Eq. 5.3.4{(3).)

(b) Axiom lauses like (164) needn't be introdued for u and v, or even for z; so

they aren't ounted here, although they ould be added if desired. Let a

d

= d

2

� 1 be

the number of lauses in the original method; then the new method has fewer lauses

when a

dd=2e

+ a

bd=2+1

+ 3(d � 2) < a

d

, namely when d � 7. (The new method

for d = 7 involves 45 lauses, not 48; but it introdues 10 new auxiliary variables.)

Asymptotially, we an handle d = 2

t

+ 1 with 3t2

t

+ O(2

t

) = 3d lg d + O(d) lauses

and d lg d+O(d) auxiliary variables.

() x+ y � z () (d� 1�x)+ (d� 1� y) � (2d� 2� z); so we an use the same

method, but omplemented (namely with x

j

7! �x

d�j

, y

j

7! �y

d�j

, z

j

7! �z

2d�1�j

).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 267

Tamura

Taga

Kitagawa

Banbara

As��n

Nieuwenhuis

Oliveras

Rodr��guez-Carbonell

Shmoys

Stein

Wein

Tamura

Taga

Kitagawa

Banbara

symmetry breaking

Knuth

Gu�eret

Prins

[See N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, Constraints 14 (2009),

254{272; R. As��n, R. Nieuwenhuis, A. Oliveras, and E. Rodr��guez-Carbonell, Con-

straints 16 (2011), 195{221.℄

408. (a) No; makespan 11 is best, ahievable as follows (or via left-right reetion):

M1:

M2:

M3:

J1 J3

J2 J1J3

J3J2 J1

M1:

M2:

M3:

J1J3

J2 J1J3

J3 J2J1

(b) If j is the last job proessed by mahine i, that mahine must �nish at time

�

P

n

k=1

w

ik

+

P

m

k=1

w

kj

�w

ij

, beause j uses some other mahine whenever i is idle.

[See D. B. Shmoys, C. Stein, and J. Wein, SICOMP 23 (1994), 631.℄

() Clearly 0 � s

ij

� t� w

ij

. And if ij 6= i

0

j

0

but i = i

0

or j = j

0

, we must have

either s

ij

+ w

ij

� s

i

0

j

0

or s

i

0

j

0

+ w

i

0

j

0

� s

ij

whenever w

ij

w

i

0

j

0

6= 0.

(d) When w

ij

> 0, introdue Boolean variables s

k

ij

for 1 � k � t � w

ij

, with

the axiom lauses (�s

k+1

ij

_ s

k

ij

) for 1 � k < t� w

ij

. Then inlude the following lauses

for all relevant i, j, i

0

, and j

0

as in (): For 0 � k � t + 1 � w

ij

� w

i

0

j

0

, assert

(�p

iji

0

j

0

_ �s

k

ij

_ s

k+w

ij

i

0

j

0

) if ij < i

0

j

0

or (p

i

0

j

0

ij

_ �s

k

ij

_ s

k+w

ij

i

0

j

0

) if ij > i

0

j

0

, omitting �s

0

ij

in

the �rst of these ternary lauses and omitting s

t+1�w

i

0

j

0

i

0

j

0

in the last.

[This method, introdued by N. Tamura, A. Taga, S. Kitagawa, and M. Banbara

in Constraints 14 (2009), 254{272, was able to solve several open shop sheduling

problems in 2008 that had resisted attaks by all other approahes.℄

Sine the left-right reetion of any valid shedule is also valid, we an also save

a fator of two by arbitrarily hoosing one of the p variables and asserting (p

iji

0

j

0

).

(e) Any shedule for W and T yields a shedule for bW=k and dT=ke, if we

examine time slots 0, k, 2k, : : : . [With this observation we an narrow down the

searh for an optimum makespan by �rst working with simpler problems; the number

of variables and lauses for bW=k and T=k is about 1=k times the number for W

and T , and the running time also tends to obey this ratio. For example, the author

solved a nontrivial 8�8 problem by �rst working with bW=8 and getting the respetive

results (U;S;U) for t = (128; 130; 129), where `U' means \unsatis�able" and `S' means

\satis�able"; running times were about (75; 10; 1250) megamems. Then with bW=4 it

was (S;U;U) with t = (262; 260; 261) and runtimes (425; 275; 325); with bW=2 it was

(U; S;U) with t = (526; 528; 527) and runtimes (975; 200; 900). Finally with the full W

it was (U; S; S) with t = (1058; 1060; 1059) and runtimes (2050; 775; 300), establishing

1059 as the optimum makespan while doing most of the work on small subproblems.℄

Notes: Further savings are possible by noting that any lauses learned while

proving that t is satis�able are valid also when t is dereased. DiÆult random problems

an be generated by using the following method suggested by C. Gu�eret and C. Prins

in Annals of Operations Researh 92 (1999), 165{183: Start with work times w

ij

that

are as near equal as possible, having onstant row and olumn sums s. Then hoose

random rows i 6= i

0

and random olumns j 6= j

0

, and transfer Æ units of weight by

setting w

ij

 w

ij

�Æ, w

i

0

j

 w

i

0

j

+Æ, w

ij

0

 w

ij

0

+Æ, w

i

0

j

0

 w

i

0

j

0

�Æ, where Æ � w

ij

and Æ � w

i

0

j

0

; this operation learly preserves the row and olumn sums. Choose Æ at

random between p �minfw

ij

; w

i

0

j

0

g and minfw

ij

; w

i

0

j

0

g, where p is a parameter. The

�nal weights are obtained after making r suh transfers. Gu�eret and Prins suggested

hoosing r = n

3

, and p = :95 for n � 6; but other hoies give useful benhmarks too.

September 23, 2015

268 ANSWERS TO EXERCISES 7.2.2.2

subset sum problem

Karp

NP-omplete

Gonzalez

Sahni

half adders

full adders

Tseytin enoding, half

pure literals

order enoding

Warners

Mixed-radix

E�en

S�orensson

Tanjo

Tamura

Banbara

preproessor

409. (a) If S � f1; : : : ; rg, let �

S

=

P

j2S

a

j

. We an assume that job n runs on

mahines 1, 2, 3 in that order. So the minimum makespan is 2w

2n

+ x, where x is the

smallest �

S

that is � d(a

1

+ � � � + a

r

)=2e. (The problem of �nding suh an S is well

known to be NP-hard [R. M. Karp, Complexity of Computer Computations (New York:

Plenum, 1972), 97{100℄; hene the open shop sheduling problem is NP-omplete.)

(b) Makespan w

2n

+ w

4n

is ahievable if and only if �

S

= (a

1

+ � � � + a

r

)=2 for

some S. Otherwise we an ahieve makespan w

2n

+ w

4n

+ 1 by running jobs 1, : : : , n

in order on mahine 1 and letting s

3(n�1)

= 0, s

4n

= w

2n

; also s

2j

= w

2n

+ w

4n

, if

mahine 1 is running job j at time w

2n

. The other jobs are easily sheduled.

() b3n=2 � 2 time slots are learly neessary and suÆient. (If all row and

olumn sums of W are equal to s, an the minimum makespan be �

3

2

s?)

(d) The \tight" makespan s is always ahievable: By renumbering the jobs we

an assume that a

j

� b

j

for 1 � j � k, a

j

� b

j

for k < j � n, b

1

= maxfb

1

; : : : ; b

k

g,

a

n

= maxfa

k+1

; : : : ; a

n

g. Then if b

n

� a

1

, mahine 1 an run jobs (1; : : : ; n) in order

while mahine 2 runs (n; 1; : : : ; n� 1); otherwise (2; : : : ; n; 1) and (1; : : : n) suÆe.

If a

1

+ � � � + a

n

6= b

1

+ � � � + b

n

, we an inrease a

n

or b

n

to make them equal.

Then we an add a \dummy" job with a

n+1

= b

n+1

= maxfa

1

+ b

1

; : : : ; a

n

+ b

n

g

.

� s,

and obtain an optimum shedule in O(n) steps as explained above.

Results (a), (b), (d) are due to T. Gonzalez and S. Sahni, who introdued and

named the open shop sheduling problem in JACM 23 (1976), 665{679. Part () is a

subsequent observation and open problem due to Gonzalez (unpublished).

410. Using half adders and full adders as we did in (23) allows us to introdue interme-

diate variables w

j

suh that (x

2

x

1

x

0

)

2

+(x

2

x

1

x

0

00)

2

+(x

2

x

1

x

0

000)

2

+(�y

2

�y

1

�y

0

000)

2

�

(w

7

w

6

: : : w

0

)

2

, and then to require (�w

7

)^(�w

6

). In slow motion, we suessively ompute

(

0

z

0

)

2

� x

0

+ x

1

, (

1

z

1

)

2

� x

0

+ x

1

+ �y

0

, (

2

z

2

)

2

�

0

+ z

1

, (

3

z

3

)

2

� x

1

+ x

2

+ �y

1

,

(

4

z

4

)

2

�

1

+

2

+ z

3

, (

5

z

5

)

2

� x

2

+ �y

2

+

3

, (

6

z

6

)

2

�

4

+ z

5

, (

7

z

7

)

2

�

5

+

6

; then

w

7

w

6

: : : w

0

=

7

z

7

z

6

z

4

z

2

z

0

x

1

x

0

. In slower motion, eah step (

i

z

i

)

2

� u+ v expands

to z

i

� u� v,

i

� u^ v; eah step (

i

z

i

)

2

� t+u+ v expands to s

i

� t�u, p

i

� t^ u,

z

i

� v � s, q

i

� v ^ s,

i

� p

i

_ q

i

. And at the lause level, t � u ^ v () (t _ �u _ �v);

t � u_v () (t_ �u)^ (t_ �v); t � u�v () (t_ �u_v)^ (t_u_ �v). [Only about half of

(24) is needed when inequalities replae equalities. Exerise 42 o�ers improvements.℄

We end up with 44 binary and ternary lauses; 10 of them an be omitted, beause

z

0

, z

2

, z

4

, z

6

, and z

7

are pure literals, and the lause for

7

an be omitted if we simply

require

5

=

6

= 0. But the order enoding of exerise 405 is learly muh better. The

log enoding beomes attrative only with larger integers, as in the following exerise.

[See J. P. Warners, Information Proessing Letters 68 (1998), 63{69.℄

411. Use m+ n new variables to represent an auxiliary number w = (w

m+n

: : : w

1

)

2

.

Form lauses as in exerise 41 for the produt xy = w; but retain only about half of

the lauses, as in answer 410. The resulting 9mn � 5m � 10n lauses are satis�able

if w = xy; and we have w � xy whenever they are satis�able. Now add 3m + 3n � 2

further lauses as in (169) to ensure that z � w. The ase z � xy is similar.

412. Mixed-radix representations are also of interest in this onnetion. See, for

example, N. E�en and N. S�orensson, J. Satis�ability, Bool. Modeling and Comp. 2

(2006), 1{26; T. Tanjo, N. Tamura, and M. Banbara, LNCS 7317 (2012), 456{462.

413. Eliminating �rst a

n�1

, then a

n�2

, et., yields 2

n

�1 lauses. (The analogous result

for x

1

: : : x

n

< y

1

: : : y

n

is 2

n

+ 2

n�1

+1. A preproessor will probably eliminate a

n�1

.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 269

(pure) literal

Biere

Brummayer

bloked

subsumed lauses

bloked lause

pure literal

failed literal tests

414. Construt lauses for 1 � k � n that represent `a

k�1

implies x

k

< y

k

+ a

k

':

�

�a

k�1

_

d�1

_

j=1

(�x

j

k

_ y

j

k

)

�

^

�

�a

k�1

_ a

k

_

d�1

_

j=0

(�x

j

k

_ y

j+1

k

)

�

; omitting �x

0

k

and y

d

k

;

also omit �a

0

. For the relation x

1

: : : x

n

� y

1

: : : y

n

we an omit the d lauses that

ontain the (pure) literal a

n

. But for x

1

: : : x

n

< y

1

: : : y

n

, we want a

n

= 0; so we omit

a

n

and the d� 1 lauses (�a

n�1

_ �x

j

n

_ y

j

n

).

415. There's only one, namely

V

�

1

;:::;�

n

2f�1;1g

(�

1

x

1

_�

1

y

1

� � ��

n

x

n

_�

n

y

n

). Proof:

Some lause must ontain only positive literals, beause f(0; : : : ; 0) = 0. This lause

must be (x

1

_ y

1

_ � � � _ x

n

_ y

n

); otherwise it would be false in ases where f is true.

A similar argument shows that every lause (�

1

x

1

_ �

1

y

1

_ � � � _�

n

x

n

_ �

n

y

n

) must be

present. And no lause for f an ontain both x

j

and �y

j

, or both �x

j

and y

j

.

416. The other lauses are

V

m

i=1

((u

i

_ �v

i

_ �a

0

)^ (�u

i

_ v

i

_ �a

0

)) and (a

0

_ a

1

_ � � � _ a

n

).

[See A. Biere and R. Brummayer, Proeedings, International Conferene on Formal

Methods in Computer Aided Design 8 (IEEE, 2008), 4 pages [FMCAD 08℄.℄

417. The four lauses (�s_

�

t _ u) ^ (�s _ t _ v) ^ (s _

�

t _ �u) ^ (s _ t _ �v) ensure that s is

true if and only if t?u: v is true. But we need only the �rst two of these, as in (174),

when translating a branhing program, beause the other two are bloked in the initial

step. Removing them makes the other two bloked on the seond step, et.

418. A suitable branhing program for h

n

when n = 3, beginning at I

11

, is I

11

=

(

�

1? 21: 22), I

21

= (

�

2? 31: 32), I

22

= (

�

2? 32: 33), I

31

= (

�

3? 0: 42), I

32

= (

�

3? 42: 43), I

33

=

(

�

3? 43: 1), I

42

= (

�

1? 0: 1), I

43

= (

�

2? 0: 1). It leads via (174) to the following lauses for

row i, 1 � i � m: (r

i;1;1

); (�r

i;k;j

_ x

ik

_ r

i;k+1;j

) ^ (�r

i;k;j

_ �x

ik

_ r

i;k+1;j+1

), for 1 � j �

k � n; (�r

i;n+1;1

) ^ (r

i;n+1;n+1

) and (�r

i;n+1;j+1

_ x

ij

) for 1 � j < n. Also the following

lauses for olumn j, 1 � j � n: (

i;1;1

); (�

j;k;i

_x

kj

_

j;k+1;i

)^ (�

j;k;i

_ �x

kj

_

j;k+1;i+1

),

for 1 � i � k � m; (�

j;m+1;1

) ^ (

j;m+1;m+1

) and (�

j;m+1;i+1

_ x

ij

) for 1 � i < m.

419. (a) There are exatly n�2 solutions: x

ij

= [j =1℄[i 6=m�1℄+[j=2℄[i=m�1℄+

[j = k℄[i=m�1℄, for 2 < k � n.

(b) There are exatly m�2 solutions: �x

ij

= [j > 1℄[i=m�1℄+[j=1℄[i=m�2℄+

[j =1℄[i= k℄, for 1 � k < m�2 or k = m.

420. Start via (24) with (�x

1

_ x

2

_ s) ^ (x

1

_ �x

2

_ s) ^ (x

1

_ x

2

_ �s) ^ (�x

1

_ �x

2

_ �s);

(x

1

_ �) ^ (x

2

_ �) ^ (�x

1

_ �x

2

_); (�s _ x

3

_ t) ^ (s _ �x

3

_ t) ^ (s _ x

3

_

�

t) ^ (�s _ �x

3

_

�

t);

(s_ �

0

)^ (x

3

_ �

0

)^ (�s_ �x

3

_

0

); (�)^ (�

0

). Propagate (�) and (�

0

), obtaining (�x

1

_ �x

2

)^

(�s _ �x

3

); remove subsumed lauses (�x

1

_ �x

2

_ �s), (�s _ �x

3

_

�

t); remove bloked lause

(s _ x

3

_

�

t); remove lauses ontaining the pure literal t; rename s to a

1

.

421. Start via (173) with (�a

5

_ x

1

_ a

4

)^ (�a

5

_ �x

1

_ a

3

)^ (�a

4

_ �x

2

_ a

2

)^ (�a

3

_ x

2

_ a

2

)^

(�a

3

_ �x

2

) ^ (�a

2

_ �x

3

) ^ (a

5

). Propagate (a

5

).

422. (a) x

1

implies �x

2

, then a

1

, then �x

3

; x

2

implies �x

1

, then a

1

, then �x

3

.

(b) x

1

implies a

3

, then �x

2

, then a

2

, then �x

3

; x

2

implies �a

3

, then �x

1

, a

4

, a

2

, �x

3

.

423. No; onsider x

1

? (x

2

? x

3

: x

4

): (x

2

? x

4

: x

3

) with L = (�x

3

) ^ (�x

4

). [But a foring

enoding an always be onstruted, via the extra lauses de�ned in exerise 436.

Notie that, in the presene of failed literal tests, weak foring orresponds to foring.℄

424. The lause

�

1

�

3

�

4 is redundant (in the presene of

�

1

�

2

�

3 and 2

�

3

�

4); it annot be omitted,

beause f

�

2

�

3; 2

�

3; 12g 6`

1

�

3. The lause 2

�

3

�

4 is also redundant (in the presene of

�

1

�

3

�

4 and

12); it an be omitted, beause f

�

1

�

4; 34; 1g `

1

�

4, f

�

1

�

3; 34; 1g `

1

�

3, and f

�

1

�

2;

�

1; 12g `

1

2.

September 23, 2015

270 ANSWERS TO EXERCISES 7.2.2.2

unit propagation

honesty

symmetri Boolean funtions

prime lauses

Buss

Williams

Gwynne

Kullmann

425. If x is in the ore, F `

1

x, beause Algorithm 7.1.1C does unit propagation. Oth-

erwise F is satis�ed when all ore variables are true and all nonore variables are false.

426. (a) True. Suppose the lauses involving a

m

are (a

m

_ �

i

) for 1 � i � p and

(�a

m

_ �

j

) for 1 � j � q; then G ontains the pq lauses (�

i

_ �

j

) instead. If F jL `

1

l

we want to prove that G jL `

1

l. This is lear if unit propagation from F jL doesn't

involve a

m

. Otherwise, if F j L `

1

a

m

, unit propagation has falsi�ed some �

i

; every

subsequent propagation step from F j L that uses (�a

m

_ �

j

) an use (�

i

_ �

j

) in a

propagation step from G jL. A similar argument applies when F jL `

1

�a

m

.

(Inidentally, variable elimination also preserves \honesty.")

(b) False. Let F = (x

1

_ x

2

_ a

1

) ^ (x

1

_ x

2

_ �a

1

), L = �x

1

or �x

2

.

427. Suppose n = 3m, and let f be the symmetri funtion [�x<m or �x>2m℄. The

prime lauses of f are the N =

�

n

m;m;m

�

� 3

n+3=2

=(2�n) ORs of m positive literals

and m negative literals. There are N

0

=

�

n

m�1;m;m+1

�

=

m

m+1

N ways to speify that

x

i

1

= � � � = x

i

m

= 1 and x

i

m+1

= � � � = x

i

2m�1

= 0; and this partial assignment

implies that x

j

= 1 for j =2 fi

1

; : : : ; i

2m�1

g. Therefore at least one of the m+1 lauses

(�x

i

1

_ � � � _ �x

i

m

_ x

i

m+1

_ � � � _ x

i

2m�1

_ x

j

) must be present in any set of prime lauses

that fores f . By symmetry, any suh set must inlude at least N

0

=m prime lauses.

On the other hand, f is haraterized by O(n

2

) foring lauses (see answer 436).

428. (a) (y_ z

j1

_ � � � _ z

jd

) for 1 � j � n; (�x

ij

_ �z

ik

_ �z

jk

) for 1 � i < j � n, 1 � k � d.

(b) Imagine a iruit with 2N(N + 1) gates g

lt

, one for eah literal l of G

nd

and

for eah 0 � t � N , meaning that literal l is known to be true after t rounds of unit

propagation, if we start with given values of the x

ij

variables only. Thus we set g

l0

 1

if l = x

ij

and x

ij

is true, or if l = �x

ij

and x

ij

is false; otherwise g

l0

 0. And

g

l(t+1)

 g

lt

_

_

fg

�

l

1

t

^ � � � ^ g

�

l

k

t

j (l _ l

1

_ � � � _ l

k

) 2 G

nd

g; for 1 � t < N:

Given values of the x

ij

, the literal y is implied if and only if the graph has no d-oloring;

and at most N rounds make progress. Thus there's a monotone hain for g

yN

=

�

f

nd

.

[This exerise was suggested by S. Buss and R. Williams in 2014, based on a

similar onstrution by M. Gwynne and O. Kullmann.℄

429. Let �

k

be the sum of the assigned x's in leaves desended from node k. Unit

propagation will fore b

k

j

 1 for 1 � j � �

k

, moving from leaves toward the root.

Then it will fore b

k

j

 0 for j = �

k

+ 1, moving downwards from the root, beause

r = �

2

+�

3

and beause (21) starts this proess when k = 2 or 3.

430. Imagine boundary onditions as in answer 26, and assume that x

j

1

, : : : , x

j

r

have been assigned 1, where j

1

< � � � < j

r

. Unit propagation fores s

k

j

k

+1�k

 1 for

1 � k � r; then it fores s

k

j

k

�k

 0 for r � k � 1. So unassigned x's are fored to zero.

431. Equivalently x

1

+� � �+x

m

+�y

1

+� � �+�y

n

� n; so we an use (18){(19) or (20){(21).

432. The lauses of answer 404(b) an be shown to be foring. But not those of 404(a)

when a > 1; for example, if a = 2 and we assume �x

2

, unit propagation doesn't yield y

2

.

433. Yes. Imagine, for example, the partial assignment x = 1���10��1, y = 10�00�1��.

Then y

3

must be 1; otherwise we'd have 10010001 � x � y � 100001111. In this situ-

ation unit propagation from the lauses that orrespond to 1 � ha

1

01i, a

1

� ha

2

�x

2

0i,

a

2

� ha

3

�x

3

y

3

i, a

3

� ha

4

�x

4

0i, a

4

� ha

5

00i fores a

1

= 1, a

2

= 1, a

4

= 0, a

3

= 0, y

3

= 1.

In general if a given partial assignment is onsistent with x � y, we must have

x# � y", where x# and y" are obtained from x and y by hanging all unassigned

variables to 0 and 1, respetively. If that partial assignment fores some y

j

to a

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 271

n.f.: not falsi�ed

Bahus

partiular value, the value must be 1; and we must in fat have x# > y

0

", where

y

0

is like y but with y

j

= 0 instead of y

j

= �. If x

j

6= 1, unit propagation will fore

a

1

= � � � = a

j�1

= 1, a

k

= � � � = a

j

= 0, y

j

= 1, for some k � j.

Similar remarks apply when x

i

is fored, beause x � y () �y � �x.

434. (a) Clearly p

k

is equivalent to �x

1

^ � � � ^ �x

k

, q

k

is equivalent to �x

k

^ � � � ^ �x

n

, and

r

k

implies that a run of exatly l 1s begins at x

k

.

(b) When l = 1, if x

k

= 1 unit propagation will imply �p

j

for j � k and �q

j

for

j � k, hene �r

j

for j 6= k; then r

k

is fored, making x

j

= 0 for all j 6= k. Conversely,

x

j

= 0 fores �r

j

; if this holds for all j 6= k, then r

k

is fored, making x

k

= 1.

But when l = 2 and n = 3, the lauses fail to fore x

2

= 1 by unit propagation.

They also fail to fore x

1

= 0 when we have l = 2, n = 4, and x

3

= 1.

435. The following onstrution with O(nl) lauses is satisfatory when l is small:

Begin with the lauses for p

k

and q

k

(but not r

k

) in exerise 434(a); inlude also

(�x

k

_ p

k�l

) for l < k � n, and (�x

k

_ q

k+l

) for 1 � k � n� l. Append (�p

k�l

_ �q

k+l

_ x

k

)

for 1 � k � n, omitting �p

j

for j < 1 and omitting �q

j

for j > n. Finally, append

(x

k

_ �x

k+1

_ x

k+d

) for 0 � k < n and 1 < d < l; (�)

omitting x

j

when j < 1 or j > n.

To redue to O(n log l) lauses, suppose 2

e+1

< l � 2

e+2

, where e � 0. The

lauses (�) an be replaed by (�x

k

_ �y

(e)

k

_ �z

(e)

k

) for 1 � k � n, if �x

k�d

implies y

(e)

k

for 1 � d � bl=2 and �x

k+d

implies z

(e)

k

for 1 � d � dl=2e. And to ahieve the latter,

we introdue lauses (�y

(t)

k

_ y

(t+1)

k

), (�y

(t)

k�2

t

_ y

(t+1)

k

), (�z

(t)

k

_ z

(t+1)

k

), (�z

(t)

k+2

t

_ z

(t+1)

k

),

(x

k�1

_ y

(0)

k

), (x

k+2

e

�1�bl=2

_ y

(0)

k

), (x

k+1

_ z

(0)

k

), (x

k�2

e

+1+dl=2e

_ z

(0)

k

), for 1 � k � n

and 0 � t < e, always omitting x

j

or �y

j

or �z

j

when j < 1 or j > n.

436. Let the variables q

k

for 0 � k � n and q 2 Q represent the sequene of states, and

let t

kaq

represent a transition when 1 � k � n and when T ontains a triple of the form

(q

0

; a; q). The lauses, F , are the following, for 1 � k � n: (i) (

�

t

kaq

_ x

a

k

) ^ (

�

t

kaq

_ q

k

),

where x

0

k

denotes �x

k

and x

1

k

denotes x

k

; (ii) (�q

k�1

_

W

ft

kaq

0

j (q; a; q

0

) 2 Tg), for q 2 Q;

(iii) (�q

k

_

W

ft

kaq

j (q

0

; a; q) 2 Tg); (iv) (�x

a

k

_

W

ft

kaq

j (q

0

; a; q) 2 Tg); (v) (

�

t

kaq

0

_

W

fq

k�1

j (q; a; q

0

) 2 Tg); together with (vi) (�q

0

) for q 2 Q n I and (�q

n

) for q 2 Q nO.

It is lear that if F `

1

�x

a

k

, no string x

1

: : : x

n

2 L an have x

k

= a. Conversely,

assume that F 6`

1

�x

a

k

, and in partiular that F 6`

1

�. To prove the foring property, we

want to show that some string of L has x

k

= a. It will be onvenient to say that a

literal l is `n.f.' (not falsi�ed) if F 6`

1

�

l; thus x

a

k

is assumed to be n.f.

By (iv), there's a (q

0

; a; q) 2 T suh that t

kaq

is n.f. Hene q

k

is n.f., by (i). If

k = n we have q 2 O by (vi); otherwise some t

(k+1)bq

0

is n.f., by (ii), hene x

b

k+1

is n.f.

Moreover, (v) tells us that there's (q

00

; a; q) 2 T with q

00

k�1

n.f. If k = 1 we have q

00

2 I;

otherwise some t

(k�1)q

00

is n.f., by (iii), and x

k�1

is n.f. Continuing this line of reason-

ing yields x

1

: : : x

n

2 L with x

k

= a (and with x

k+1

= b if k < n, x

k�1

= if k > 1).

The same proof holds even if we add unit lauses to F that assign values to one

or more of the x's. Hene F is foring. [See F. Bahus, LNCS 4741 (2007), 133{147.℄

The language L

2

of exerise 434 yields 17n+4 lauses: F =

V

1�k�n

((

�

t

k00

_ �x

k

)^

(

�

t

k00

_ 0

k

)^ (

�

t

k11

_ x

k

)^ (

�

t

k11

_ 1

k

)^ (

�

t

k12

_ x

k

)^ (

�

t

k12

_ 2

k

)^ (

�

t

k02

_ �x

k

)^ (

�

t

k02

_ 2

k

)^

(

�

0

k�1

_ t

k00

_ t

k11

)^ (

�

1

k�1

_ t

k12

)^ (

�

2

k�1

_ t

k02

)^ (x

k

_ t

k00

_ t

k02

)^ (�x

k

_ t

k11

_ t

k12

)^

(

�

t

k00

_ 0

k�1

) ^ (

�

t

k11

_ 0

k�1

) ^ (

�

t

k12

_ 1

k�1

) ^ (

�

t

k02

_ 2

k�1

)) ^ (

�

1

0

) ^ (

�

2

0

) ^ (

�

0

n

) ^ (

�

1

n

).

(Unit propagation will immediately assign values to 10 of the 8n+3 variables, thereby

satisfying 22 of these lauses, when n � 3. For example,

�

t

112

,

�

t

n11

,

�

0

n�1

are fored.)

September 23, 2015

272 ANSWERS TO EXERCISES 7.2.2.2

preproessing

eliminate

automaton

unit propagation

Quimper

Walsh

Bailleux

Boufkhad

Roussel

The lauses produed by this general-purpose onstrution an often be signi�-

antly simpli�ed by preproessing to eliminate auxiliary variables. (See exerise 426.)

437. Eah variable x

k

now beomes a set of jAj variables x

ka

for a 2 A, with lauses

like (15) and (17) to ensure that exatly one value is assigned. The same onstrution is

then valid, with the same proof, if we simply replae `x

a

k

' by `x

ka

' throughout. (Notie

that unit propagation will often derive partial information suh as �x

ka

, meaning that

x

k

6= a, although the preise value of x

k

may not be known.)

438. Let l

�j

= l

1

+ � � � + l

j

. Exerise 436 does the job via the following automaton:

Q = f0; 1; : : : ; l

�t

+ t � 1g, I = f0g, O = fl

�t

+ t � 1g; T = f(l

�j

+ j; 0; l

�j

+ j) j

0 � j < tg [f(l

�j

+ j + k; 1; l

�j

+ j + k + 1) j 0 � j < t; 0 � k < l

j+1

g [

f(l

�j

+ j � 1; 0; l

�j

+ j � [j = t℄) j 1 � j � tg.

439. We obviously want the lauses (�x

j

_ �x

j+1

) for 1 � j < n; and we an use, say,

(18) and (19) with r = t, to fore 0s whenever the number of 1s reahes t. The diÆult

part is to fore 1s from partial patterns of 0s; for example, if n = 9 and t = 4, we an

onlude that x

4

= x

6

= 1 as soon as we know that x

3

= x

7

= 0.

An interesting modi�ation of (18) and (19) turns out to work beautifully, namely

with the lauses (

�

t

k

j

_ t

k

j+1

) for 1 � j < 2t � 1 and 1 � k � n � 2t + 1, together with

(x

2j+k�1

_

�

t

k

2j�1

_t

k+1

2j�1

) for 1 � j � t and 0 � k � n�2t+1, omitting

�

t

0

2j�1

and t

n�2t+2

2j�1

.

440. It's onvenient to introdue

�

n+1

2

�

jN j variables P

ik

for all P 2 N and for 1 � i �

k � n, as well as

�

n+1

3

�

jN j

2

variables QR

ijk

for Q;R 2 N and for 1 � i < j � k � n,

although almost all of them will be eliminated by unit propagation. The lauses are:

(i) (QR

ijk

_ Q

i(j�1)

) ^ (QR

ijk

_ R

jk

); (ii) (P

kk

_

W

fx

a

k

j P ! a 2 Ug); (iii) (P

ik

_

W

fQR

ijk

j i < j � k; P ! QR 2 Wg), if i < k; (iv) (�x

a

k

_

W

fP

kk

j P ! a 2 Ug);

(v) (P

ik

_

W

fPR

i(k+1)l

j k < l � n;R 2 Ng _

W

fQR

hik

j 1 � h < i; Q 2 Ng), if i > 1

or k < n; (vi) (QR

ijk

_

W

fP

ik

j P ! QR 2Wg); (vii) (P

1n

) for P 2 N n S.

The foring property is proved by extending the argument in answer 436: Assume

that x

a

k

is n.f.; then some P

kk

with P ! a is also n.f. Whenever P

ik

is n.f. with i > 1

or k < n, some PR

i(k+1)l

or QR

hik

is n.f.; hene some \larger" P

0

il

or P

0

hk

is also n.f.

And if P

1n

is n.f., we have P 2 S.

Furthermore we an go \downward": Whenever P

ik

is n.f. with i < k, there's

QR

ijk

suh that Q

i(j�1)

and R

jk

are n.f.; on the other hand if P

kk

is n.f., there's a 2 A

suh that x

a

k

is n.f. Our assumption that x

a

k

is n.f. has therefore shown the existene

of x

1

: : : x

n

2 L with x

k

= a.

[See C.-G. Quimper and T. Walsh, LNCS 4741 (2007), 590{604℄.

441. See O. Bailleux, Y. Boufkhad, and O. Roussel, LNCS 5584 (2009), 181{194.

442. (a) F jL

�

q

= F j l

1

j : : : j l

q�1

j

�

l

q

ontains � if and only if F j l

1

j : : : j l

q�1

ontains �

or the unit lause (l

q

).

(b) If F 6`

1

l and F j

�

l `

1

�, the failed literal elimination tehnique will redue F

to F j l and ontinue looking for further redutions. Thus we have F `

2

l if and only if

unit propagation plus failed literal elimination will dedue either � or l.

() Use indution on k; both statements are obvious when k = 0. Suppose we

have F `

k+1

�

l via l

1

, : : : , l

p

=

�

l, with F j L

�

q

`

k

� for 1 � q � p. If p > 1 we have

F j l jL

�

q

`

k

� for 1 � q < p; it follows that F j l `

k+1

l

p�1

and F j l `

k+1

�

l

p�1

. If p = 1

we have F j l `

k

�. Hene F j l `

k+1

� in both ases.

Now we want to prove that F j l `

k+1

� and F `

k+2

�, given F `

k+1

l

0

and

F `

k+1

�

l

0

. If F j L

�

q

`

k

� for 1 � q � p, with l

p

= l

0

, we know that F j L

�

q

`

k+1

�.

Furthermore we an assume that F 6`

k+1

�

l; hene l 6=

�

l

q

for 1 � q � p, and l 6= l

p

. If

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 273

Kullmann

prime lauses

Gwynne

Kullmann

propagation, kth order

UC

k

Gwynne

Kullmann

data strutures

Truemper

l = l

q

for some q < p, then F j l jL

�

r

`

k

� for 1 � r < q and F jL

�

r

`

k

� for q < r � p;

otherwise F j l j L

�

q

`

k

� for 1 � q � p. In both ases F j l `

k+1

l

0

and F `

k+2

l

0

.

Essentially the same proof shows that F j l `

k+1

�

l

0

and F `

k+2

�

l

0

.

(d) True, by the last relation in part ().

(e) If all lauses of F have more than k literals, L

k

(F) is empty; hene L

0

(R

0

) =

L

1

(R

0

) = L

2

(R

0

) = ;. But L

k

(R

0

) = f

�

1; 2; 4g for k � 3; for example, R

0

`

3

�

1 beause

R

0

j1 `

2

�, beause R

0

j1 `

2

3 and R

0

j1 `

2

�

3.

(f) Unit propagation an be done in O(N) steps if N is the total length of all

lauses; this handles the ase k = 1.

For k � 2, proedure P

k

(F) alls P

k�1

(F j x

1

), P

k�1

(F j �x

1

), P

k�1

(F j x

2

), et.,

until either �nding P

k�1

(F j

�

l) = f�g or trying both literals for eah variable of F . In

the latter ase, P

k

returns F . In the former ase, if P

k�1

(F j l) is also f�g, P

k

returns

f�g; otherwise it returns P

k

(F j l). The set L

k

ontains all literals for whih we've

redued F to F j l, unless P

k

(F) = f�g. (In the latter ase, every literal is in L

k

.)

To justify this proedure we must verify that the order of testing literals doesn't

matter. If F j

�

l `

k

� and F j

�

l

0

`

k

�, we have F j l j

�

l

0

`

k

� and F j l

0

j

�

l `

k

� by (); hene

P

k

(F j l) = P

k

(F j l j l

0

) = P

k

(F j l

0

j l) = P

k

(F j l

0

).

[See O. Kullmann, Annals of Math. and Arti�ial Intell. 40 (2004), 303{352.℄

443. (a) If F jL ` � then F jL ` l for all literals l; so if F 2 PC

k

we have F jL `

k

l

and F jL `

k

�

l and F jL `

k

�, proving that PC

k

� UC

k

.

Suppose F 2 UC

k

and F jL ` l. Then F jL j

�

l ` �, and we have F j L j

�

l `

k

�.

Consequently F jL `

k+1

l, proving that UC

k

� PC

k+1

.

The satis�able lause sets ;, f1g, f1;

�

12g, f12;

�

12g, f12;

�

12; 1

�

2;

�

1

�

23g, f123;

�

123;

1

�

23;

�

1

�

23g, f123;

�

123; 1

�

23;

�

1

�

23; 12

�

3;

�

12

�

3; 1

�

2

�

3;

�

1

�

2

�

34g, : : : , show that PC

k

6= UC

k

6= PC

k+1

.

(b) F 2 PC

0

if and only if F = ; or � 2 F . (This an be proved by indution on

the number of variables in F , beause � =2 F implies that F has no unit lauses.)

() If F has only one lause, it is in UC

0

. More interesting examples are f1

�

2;

�

12g;

f1234;

�

1

�

2

�

3

�

4g; f123

�

4; 12

�

34; 1

�

234;

�

1234g; f12;

�

1

�

2; 34

�

5;

�

3

�

45g; et. In general, F is in UC

0

if and only if it ontains all of its prime lauses.

(d) True, by indution on n: If F jL ` l then F jL j

�

l ` �, and F jL j

�

l has � n� 1

variables; so F jL j

�

l 2 PC

n�1

� UC

n�1

. Hene we have F jL j

�

l `

n�1

� and F jL `

n

l.

(e) False, by the examples in ().

(f) R

0

2 UC

2

n PC

2

. For example, we have R

0

j1 `

2

2 and R

0

j1 `

2

�

2.

[See M. Gwynne and O. Kullmann, arXiv:1406.7398 [s.CC℄ (2014), 67 pages.℄

444. (a) Complementing a variable doesn't a�et the algorithm's behavior, so we an

assume that F onsists of unrenamed Horn lauses. Then all lauses of F will be Horn

lauses of length � 2 whenever step E2 is reahed. Suh lauses are always satis�able,

by setting all remaining variables false; so step E3 annot �nd both F `

1

l and F `

1

�

l.

(b) For example, f12;

�

23; 1

�

2

�

3;

�

123g.

() Every unsatis�able F reognized by SLUR must be in UC

1

. Conversely, if

F 2 UC

1

, we an prove that F is satis�able and in UC

1

whenever step E2 is reahed.

[Essentially the same argument proves that a generalized algorithm, whih uses

`

k

instead of `

1

in steps E1 and E3, always lassi�es F if and only if F 2 UC

k

. See

M. Gwynne and O. Kullmann, Journal of Automated Reasoning 52 (2014), 31{65.℄

(d) If step E3 interleaves unit propagation on F j l with unit propagation on

F j

�

l, stopping when either branh is omplete and � was not deteted in the other,

the running time is proportional to the number of ells used to store F , using data

strutures like those of Algorithm L. (This is an unpublished idea of Klaus Truemper.)

September 23, 2015

274 ANSWERS TO EXERCISES 7.2.2.2

Shlipf

Annexstein

Frano

Swaminathan

foring

4-yle

quad

lexiographi row/olumn symmetry

Steiner triple system

Horsley

symmetri solutions

projetive plane

[SLUR is due to J. S. Shlipf, F. S. Annexstein, J. V. Frano, and R. P. Swami-

nathan, Information Proessing Letters 54 (1995), 133{137.℄

445. (a) Sine the lexiographi onstraints (169) are foring, a suint erti�ate is

(�x

1m

, �x

2m

, : : : , �x

(m�1)m

, �x

2(m�1)

, �x

3(m�1)

, : : : , �x

(m�1)(m�1)

, �x

3(m�2)

, �x

4(m�2)

, : : : ,

�x

(m�1)(m�2)

, : : : , �x

(m�1)2

, ;). The �rst m� 1 steps an be replaed by `x

0m

'.

(b) (�x

(m�1)1

, �x

(m�2)2

, : : : , �x

1(m�1)

, ;).

() (x

01

, x

12

, : : : , x

(m�2)(m�1)

, ;).

446. Z(m;n)� 1, beause a 4-yle orresponds to a quad.

447. For general m and n we an add the m

3

n

3

=3! onstraints (�x

ij

_

�x

i

0

j

_ �x

i

0

j

0

_ �x

i

00

j

0

_ �x

i

00

j

00

_ �x

ij

00

) to (184), for 1 � i < i

0

< i

00

� m

and distint fj; j

0

; j

00

g � f1; : : : ; ng. The 19-edge graph illustrated here works when

m = n = 8; and Algorithm C �nds girth � 8 unsatis�able with 20 edges, after only

400 megamems of alulation (using lexiographi row/olumn symmetry).

448. Eah pair of points an our together in at most one line. If the lines ontain

respetively l

1

, : : : , l

n

points, we therefore have

�

l

1

2

�

+ � � �+

�

l

n

2

�

�

�

m

2

�

= 3n. A Steiner

triple system ahieves equality, with l

1

= � � � = l

n

= 3. Sine

�

l�1

2

�

+

�

l

0

+1

2

�

<

�

l

2

�

+

�

l

0

2

�

when l � l

0

+ 2, we an't have l

1

+ � � �+ l

n

> 3n. Thus Z(m; n) = 3n + 1.

[If m is even and

�

m

2

�

= 3n, we an't over all the pairs with triples, beause no

point an be in more than (m�2)=2 triples. Daniel Horsley has shown that Z(m;n) =

3n + b1�m=14 in suh ases; see (a paper in preparation).℄

449. It's wise to try �rst for symmetri solutions with x

ij

= x

ji

, roughly halving the

number of variables; then the matries below are found quikly. Suh solutions are

impossible when n = 9, 12, 13 (and also when n = 15 and 16 if we insist on �ve

1s in the top row). The ase n = 13 orresponds to the projetive plane of order 3;

indeed, a projetive plane of order q is equivalent to a maximum quad-free matrix with

m = n = q

2

+ q + 1 and Z(n; n) = (q + 1)n+ 1.

11100000

10011000

10000110

01010100

01000011

00110001

00101010

00001101

111100000

100011100

100000011

010010010

010001001

001010001

001000110

000101010

000100101

1111000000

1000110000

1000001100

1000000011

0100101010

0100000101

0010100001

0010010110

0001100100

0001011001

11110000000

10001100000

10000011100

10000000011

01001010010

01000001001

00101001000

00100110001

00100000110

00011000101

00010101010

111100000000

100011100000

100000011000

100000000111

010010010100

010001001010

010000100001

001010001001

001000110010

000110000010

000101010001

000100101100

1111000000000

1000111000000

1000000111000

1000000000111

0100100100100

0100010010010

0100001001001

0010100010001

0010010001100

0010001100010

0001100001010

0001010100001

0001001010100

11110000000000

10001110000000

10000001110000

10000000001110

01000100001001

01001001000100

01000010100010

00100101000010

00100010011000

00100000100101

00011000101000

00010100010100

00010011000001

00001000010011

111100000000000

100011100000000

100000011100000

100000000011110

010010010010000

010001001001000

010000000100101

001010001000011

001001010000100

001000100110000

000110000101000

000101000010001

000100101000100

000100010000010

000000110001001

1111000000000000

1000111000000000

1000000111100000

1000000000011100

0100100100010000

0100010010001010

0100000001000101

0010100010000100

0010010100000001

0010001001001000

0010000000110010

0001100000101001

0001010001010000

0001001100000110

0000010000100100

0000001010010001

450. To prove the hint, add the unary lause (�x

15

) to the others; this problem is rapidly

found to be unsatis�able, hene no line has more than 4 points. On the other hand, a

line with fewer than 3 points is impossible beause Z(9; 10) = 32. The same arguments

show that every point belongs to either 3 or 4 lines. Thus exatly four lines ontain

four points, and exatly four points lie on suh lines.

If p 2 l and l is a 4-point line, every other line ontaining p must ontain 2 of

the remaining 6 points. And the four 4-point lines ontain at least 4 � 4 �

�

4

2

�

= 10

points altogether. Hene, pigeonwise, we see that eah of the four 4-point lines ontains

exatly one of the four 4-line points.

Now we may all the 4-line points fa; b; ; dg, and the 4-point lines fA;B;C;Dg.

The other points may be alled fab; a; ad; b; bd; dg, with A = fa; ab; a; adg, B =

fb; ab; b; bdg, C = f; a; b; dg, D = fd; ad; bd; dg. The other lines an be alled

fAB;AC;AD;BC;BD;CDg; and we have AB = fa; b; dg, AC = fa; ; adg, et.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 275

Knuth

Beresin

Levine

Winn

Lewis

Nowakowski

Steinbah

Postho�

rotational symmetry

blok deomposition

Mader

Mutzbauer

pure literal

Stanley

Robinson

Shensted

Knuth

tableau

451. One of the olors an be plaed uniquely, by the previous exerise. So we're left

with the simple problem of two-oloring the remaining 66 squares and avoiding both

0-quads and 1-quads. That problem is unsatis�able with

P

x

ij

odd. The author then

onstruted a 33 + 33 + 33 solution by hand, using the fat that eah olor lass must

be unable to use the deleted square. [See M. Beresin, E. Levine, and

J. Winn, The College Mathematis Journal 20 (1989), 106{114 and the

over; J. L. Lewis, J. Rereational Math. 28 (1997), 266{273.℄

452. Any suh solution must have exatly 81 ells of eah olor, beause

R. Nowakowski proved in 1978 that Z(18; 18) = 82. The solution exhibited

here was found by B. Steinbah and C. Postho� [Multiple-Valued Logi and

Soft Computing 21 (2013), 609{625℄, exploiting 90

Æ

rotational symmetry.

453. (a) If R�f1; : : : ;mg and C �f1; : : : ; ng, let V (R;C)= fu

i

j i2Rg[fv

j

j j 2Cg. If

X is deomposable, there's no path from a vertex in V (R;C) to a vertex not in V (R;C);

hene the graph isn't onneted. Conversely, if the graph isn't onneted, let V (R;C) be

one of its onneted omponents. Then 0 < jRj+jCj < m+n, and we've deomposedX.

(b) False in general, unless every row and olumn of X

0

ontains a positive

element. Otherwise, learly true by the de�nition of lexiographi order.

() True: A diret sum is ertainly deomposable. Conversely, let X be deom-

posable via R and C. We may assume that 1 2 R or 1 2 C; otherwise we ould replae

R by f1; : : : ;mg n R and C by f1; : : : ; ng n C. Let i � 1 and j � 1 be minimal suh

that i =2 R and j =2 C. Then x

i

0

j

= 0 for 1 � i

0

< i and x

ij

0

= 0 for 1 � j

0

< j.

The lexiographi onstraints now fore x

i

0

j

0

= 0 for 1 � i

0

< i, j

0

� j; also for i

0

� i,

1 � j

0

< j. Consequently X = X

0

� X

00

, where X

0

is (i � 1) � (j � 1) and X

00

is

(m + 1 � i) � (n + 1 � j). (Degenerate ases where i = 1 or j = 1 or i = m + 1 or

j = n+1 need to be onsidered, but they work �ne. This result allows us to \read o�"

the blok deomposition of a lexiographially ordered matrix.)

Referene: A. Mader and O. Mutzbauer, Ars Combinatoria 61 (2001), 81{95.

454. We have f(x) � f(x�) � f(x��) � � � � � f(x�

k

) � � � � ; eventually x�

k

= x.

455. (a) Yes, beause C only auses 1001 and 1101 to be nonsolutions. (b) No, beause

F might have been satis�ed only by 0011. () Yes as in (a), although (187) might no

longer be an endomorphism of F ^C as it was in that ase. (d) Yes; if 0110 is a solution,

so are 0101 and 1010. [Of ourse this exerise is highly arti�ial: We're unlikely to know

that a weird mapping suh as (187) is an endomorphism of F unless we know a lot

more about the set of solutions.℄

456. Only (1 + 2 � 7)(1 + 2)(1 + 8) = 405, out of 65536 possibilities (about 0.06%).

457. We have min

0�k�16

(k

k

16

16�k

) = 6

6

16

10

� 51:3 � 10

16

. For general n, the mini-

mum ours when k = 2

n

=e+O(1); and it is 2

2

n

(n�x)

where x = 1=(e ln 2)+O(2

�n

) < 1.

458. The operation of assigning values to eah variable of an autarky, so that all lauses

ontaining those variables are satis�ed, while leaving all other variables unhanged, is

an endomorphism. (For example, onsider the operation that makes a pure literal true.)

459. sweep(X

ij

) = 0 when i = 0 or j = 0. And for 1 � i � m and 1 � j � n we have

sweep(X

ij

) = max(x

ij

+ sweep(X

(i�1)(j�1)

); sweep(X

(i�1)j

); sweep(X

i(j�1)

)).

[Let the 1s in the matrix be x

i

1

j

1

, : : : , x

i

r

j

r

, with 1 � i

1

� � � � � i

r

� m and with

j

q+1

< j

q

when i

q+1

= i

q

. Rihard Stanley has observed (unpublished) that sweep(X)

is the number of rows that our when the Robinson{Shensted{Knuth algorithm is

used to insert the sequene n� j

1

, : : : , n � j

r

into an initially empty tableau.℄

September 23, 2015

276 ANSWERS TO EXERCISES 7.2.2.2

Durfee square

disjoint shortest paths

unit propagation

460. We introdue auxiliary variables s

t

ij

that will beome true if sweep(X

ij

) > t.

They are impliitly true when t < 0, false when t = k. The lauses are as follows, for

1 � i � m, 1 � j � n, and 0 � t � min(i � 1; j � 1; k): (�s

t

(i�1)j

_ s

t

ij

), if i > 1 and

t < k; (�s

t

i(j�1)

_ s

t

ij

), if j > 1 and t < k; and (�x

ij

_ �s

t�1

(i�1)(j�1)

_ s

t

ij

). Omit �s

t�1

0(j�1)

and

�s

t�1

(i�1)0

and �s

0

(i�1)(j�1)

and �s

k

ij

from that last lause, if present.

461.

W

m�1

i=1

W

n�1

j=1

(x

ij

_ �

(i�1)j

_

ij

) ^

W

m

i=1

W

n�1

j=1

(�

(i�1)j

_ �x

ij

_ x

i(j+1)

), omitting �

0j

.

These lauses take are of �

1

; interhange i$ j, m$ n for �

2

.

462. Let

e

X

ij

denote the last m+ 1� i rows and the last n+ 1� j olumns of X; and

let t

ij

= sweep(X

(i�1)(j�1)

)+sweep(

e

X

(i+1)(j+1)

). For �

1

we must prove 1+ t

i(j+1)

� k,

given that 1 + t

ij

� k. It's true beause sweep(X

(i�1)j

) = sweep(X

(i�1)(j�1)

) when

olumn j begins with i�1 zeros, and we have sweep(

e

X

(i+1)(j+2)

) � sweep(

e

X

(i+1)(j+1)

).

LetX

0

= X�

3

have the assoiated sweep sums t

0

ij

. We must prove that t

0

ij

� k and

1+t

0

(i+1)(j+1)

� k, if 1+t

ij

� k, 1+t

i(j+1)

� k, 1+t

(i+1)j

� k, and t

(i+1)(j+1)

� k. The

key point is that sweep(X

0

ij

) = max(sweep(X

(i�1)j

); sweep(X

i(j�1)

)), sine x

0

ij

= 0.

Also sweep(

e

X

0

(i+1)(j+1)

) = 1 + sweep(

e

X

(i+2)(j+1)

).

(Notie that �

1

and �

2

might atually derease the sweep, but �

3

preserves it.)

463. If row i + 1 is entirely zero but row i isn't, �

2

will apply. Therefore the all-zero

rows our at the top. And by �

1

, the �rst nonzero row has all its 1s at the right.

Suppose rows 1 through i have r

1

, : : : , r

i

1s, all at the right, with r

i

> 0.

Then r

1

� � � � � r

i

, by �

2

. If i < n we an inrease i to i + 1, sine we an't have

x

(i+1)j

> x

(i+1)(j+1)

when j � n�r

i

, by �

1

; and we an't have it when j > n�r

i

, by �

3

.

Thus all the 1s are lustered at the right and the bottom, like the diagram of a

partition but rotated 180

Æ

; and the sweep is the size of its \Durfee square" (see Fig. 48

in Setion 7.2.1.4). Hene the maximum number of 1s, given sweep k, is k(m+ n� k).

464. By answer 462, �

1

an be strengthened to �

0

1

, whih sets x

i(j+1)

 1 but leaves

x

ij

= 1. Similarly, �

2

an be strengthened to �

0

2

. These endomorphisms preserve the

sweep but inrease the weight, so they an't apply to a matrix of maximumweight. [One

an prove, in fat, that max-weight binary matries of sweep k are preisely equivalent

to k disjoint shortest paths from the leftmost ells in row m to the rightmost ells in

row 1. Hene every integer matrix of sweep k is the sum of k matries of sweep 1.℄

465. If not, there's a yle x

0

! x

1

! � � � ! x

p

= x

0

of length p > 1, where x

i

�

uv

i

7!

x

i+1

. Let uv be the largest of fuv

1

; : : : ; uv

p�1

g. Then none of the other � 's in the yle

an hange the status of edge uv. But that edge must hange status at least twie.

466. Notie �rst that v

11

must be true, if m � 2. Otherwise h

11

, v

21

, h

22

, v

32

, : : :

would suessively be fored by unit propagation, until reahing a ontradition at the

edge of the board. And v

31

must also be true, ifm � 4, by a similar argument. Thus the

entire �rst olumn must be �lled with vertials, exept the bottom row when m is odd.

Then we an show that the remainder of row 1 is �lled with horizontals, exept

for the rightmost olumn when n is even. And so on.

The unique solution when m and n are both even uses v

ij

if and only if i + j is

even and max(i;m � i) � j � n=2, or i + j is odd and v

i(n+1�j)

is used. When m is

odd, add a row of horizontals below the (m� 1)� n solution. When n is odd, remove

the rightmost olumn of vertials in the m� (n+ 1) solution.

467. The 8 � 7 overing is obtained by reetion of the 7 � 8 overing

(shown here) about its southwest-to-northeast diagonal. Both solutions

are unique.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 277

even-length yle

truth table

orbits

yle

468. (a) Typial running times with Algorithm C for sizes 6 � 6, 8 � 8, : : : , 16 � 16

are somewhat improved: 39K�, 368K�, 4:3M�, 48M�, 626M�, 8G�.

(b) Now they're even better, but still growing exponentially: 30K�, 289K�,

2:3M�, 22M�, 276M�, 1:7G�.

469. For instane (v

11

), (v

31

), (v

51

), (h

12

), (h

14

), (v

22

), (v

42

), (h

23

), (v

33

), �.

470. There an't be a yle x

0

! x

1

! � � � ! x

p

= x

0

of length p > 1, beause the

largest vertex whose mate is hanged always gets smaller and smaller mates.

471. We must pair 2n with 1, then 2n � 1 with 2, : : : , then n + 1 with n.

472. We an number the verties from 1 to mn in suh a way that every

4-yle swithes as desired. For example, we an make (i; j) < (i; j + 1)

() (i; j) < (i+ 1; j) () (i; j) mod 4 2 f(0; 0), (0; 1), (1; 1), (1; 2), (2; 2),

(2; 3), (3; 3), (3; 0)g. One suh numbering in the 4� 4 ase is shown here.

16 15

14 13

12 11

109 87

65

4 3

21

473. For every even-length yle v

0

���v

1

���� � ����v

2r�1

���v

0

with v

0

= maxv

i

and

v

1

> v

2r�1

, assert (v

0

v

1

_ v

1

v

2

_ v

2

v

3

_ � � � _ v

2r�1

v

0

).

474. (a) (2n) � (2n� 2) � : : : � 2 = 2

n

n!. (b) (17

�

3)(

�

1

�

73)(25

�

2

�

5)(4

�

4)(6)(

�

6).

() Using 0, 1, : : : , f for the 4-tuples 0000, 0001, : : : , 1111, we must have

f(0) = f(9) = f(5), f(2) = f(b) = f(7); f(4) = f(8) = f(d); and f(6) = f(a) = f(f);

in other words, the truth table of f must have the form abdeageagfehg , where

a; b; ; d; e; f; g; h 2 f0; 1g. So there are 2

8

f 's.

(d) Change `=' to 6̀=' in (). There are no suh truth tables, beause (191)

ontains odd yles; all yles of an antisymmetry must have even length.

(e) The 128 binary 7-tuples are partitioned into sixteen \orbits" fx; x�; x�

2

; : : : g,

with eight of size 12 and eight of size 4. For example, one of the 4s is f0011010; 0010110;

0111110; 0110010g; one of the 12s is f0000000; 0011101; : : : ; 1111000g. Hene there are

2

16

funtions with this symmetry, and 2

16

others with this antisymmetry.

475. (a) 2

n+1

n!. (There are 2

n+1

n!=a, if f has a automorphisms+antiautomorphisms.)

(b) (x�z)(�xz), beause (surprisingly) (x _ y) ^ (x� z) = (�z _ y) ^ (�z � �x).

() In general if � is any permutation having a yle of length l, and if p is a

prime divisor of l, some power of � will have a yle of length p. (Repeatedly raise �

to the qth power for all primes q 6= p, until all yle lengths are powers of p. Then, if

the longest remaining yle has length p

e

, ompute the p

e�1

st power.)

(d) Suppose f(x

1

; x

2

; x

3

) has the symmetry (x

1

�x

2

x

3

)(�x

1

x

2

�x

3

). Then f(0; 0; 0) =

f(1; 1; 0) = f(0; 1; 1), f(1; 1; 1) = f(0; 0; 1) = f(1; 0; 0), so (x

1

�x

2

)(�x

1

x

2

) is a symmetry.

(e) A similar argument shows that (ux)(vw)(�u�x)(�v �w) is a symmetry.

(f) If � is an antisymmetry of f , then �

2

is a symmetry. If f has a nontrivial

symmetry, it has a symmetry of prime order p, by (). And if p 6= 2, it has one of

order 2, by (d) and (e), unless n > 5.

(g) Let f(x

1

; : : : ; x

6

) = 1 only when x

1

: : : x

6

2 f001000; 001001; 001011; 010000;

010010; 010110; 100000; 100100; 100101g. (Another interesting example, for n = 7, has

f = 1 () x

1

: : : x

7

is a yli shift of 0000001, 0001101, or 0011101; 21 symmetries.)

476. We want lauses that speify r-step hains in n variables, having a single out-

put x

n+r

. For 0 < t < t

0

< 2

n

, introdue new variables �

tt

0

= x

(n+r)t

� x

(n+r)t

0

.

(See (24).) Then for eah signed involution �, not the identity, we want a lause that

says \� is not a symmetry of f ," namely (

W

f�

tt

0

j t < t

0

and t

0

= t�g). (Here t is

onsidered to be the same as its binary representation (t

1

: : : t

n

)

2

, as in exerise 477.)

Also, if � has no �xed points|this is true if and only if � takes x

i

7! �x

i

for at

least one i|we have further things to do: In ase (b), we want a lause that says \�

September 23, 2015

278 ANSWERS TO EXERCISES 7.2.2.2

normal hain

preproessor

olexiographi order

author

full-adder

is not an antisymmetry," namely (

W

f�

tt

0

j t < t

0

and t

0

= t�g). But in ase (a), we

need further variables a

j

for 1 � j � T , where T is the number of signed involutions

that are �xedpoint-free. We append the lause (a

1

_ � � � _ a

T

), and also (�a

j

_�

tt

0

) for

all t < t

0

suh that t

0

= t� when � orresponds to index j. Those lauses say, \there's

at least one signed involution that is an antisymmetry."

There are no solutions when n � 3. Answers for (a) are (((x

1

�x

2

)_x

3

)^x

4

)�x

1

and ((((�x

1

� x

2

) ^ x

3

) � x

4

) ^ x

5

) � x

1

; in both ases the signed involution (1

�

1)(2

�

2)

is obviously an antisymmetry. Answers for (b) are ((x

1

� x

2

) _ x

3

) ^ (x

4

_ x

1

) and

(((x

1

^ x

2

)� x

3

) ^ x

4

)� (x

5

_ x

1

). [Is there a simple formula that works for all n?℄

477. Use the following variables for 1 � h � m, n < i � n + r, and 0 < t < 2

n

: x

it

=

(tth bit of truth table for x

i

); g

hi

= [g

h

=x

i

℄; s

ijk

= [x

i

=x

j

Æ

i

x

k

℄, for 1 � j < k < i;

f

ipq

= Æ

i

(p; q) for 0 � p; q � 1, p+ q > 0. (We don't need f

i00

, beause every operation

in a normal hain takes (0; 0) 7! 0.) The main lauses for truth table omputations are

(�s

ijk

_ (x

it

�a)_ (x

jt

� b)_ (x

kt

�)_ (f

ib

��a)); for 0 � a; b; � 1 and 1 � j < k < i.

Simpli�ations arise in speial ases: For example, if b = = 0, the lause is omitted

if a = 0, and the term f

i00

is omitted if a = 1. Furthermore if t = (t

1

: : : t

n

)

2

, and if

j � n, the (nonexistent) variable x

jt

atually has the known value t

j

; again we omit

either the whole lause or the term (x

jt

� b), depending on b and t. For example, there

usually are eight main lauses that involve s

ijk

; but there's only one that involves s

i12

when t < 2

n�2

, namely (�s

i12

_ �x

i1

), beause the truth tables for x

1

and x

2

begin with

2

n�2

0s. (All suh simpli�ations would be done by a preproessor if we had de�ned

additional variables f

i00

and x

jt

, and �xed their values with unit lauses.)

There also are more mundane lauses, namely (�g

hi

_ �x

it

) or (�g

hi

_ x

it

) aording

as g

h

(t

1

; : : : ; t

n

) = 0 or 1, to �x the outputs; also (

W

n+r

i=n+1

g

hi

) and (

W

i�1

k=1

W

k�1

j=1

s

ijk

),

to ensure that eah output appears in the hain and that eah step has two operands.

Additional lauses are optional, but they greatly shrink the spae of possibilities:

(

W

m

k=1

g

ki

_

W

n+r

i

0

=i+1

W

i�1

j=1

s

i

0

ji

_

W

n+r

i

0

=i+1

W

i

0

�1

j=i+1

s

i

0

ij

) ensures that step i is used at least

one; (�s

ijk

_ �s

i

0

ji

) and (�s

ijk

_ �s

i

0

ki

) for i < i

0

� n + r avoid reapplying an operand.

Finally, we an rule out trivial binary operations with the lauses (f

i01

_f

i10

_f

i11

),

(f

i01

_

�

f

i10

_

�

f

i11

), (

�

f

i01

_f

i10

_

�

f

i11

). (But beware: These lauses, for n < i � n+r, will

make it impossible to ompute the trivial funtion g

1

= 0 in fewer than three steps!)

Further lauses suh as (�s

ijk

_ f

i01

_ �x

it

_x

jt

) are true, but unhelpful in pratie.

478. We an insist that the (j; k) pairs in steps n+1, : : : , n+r appear in olexiographi

order; for example, a hain step like x

8

= x

4

� x

5

need never follow x

7

= x

2

^ x

6

. The

lauses, for n < i < n+r, are (�s

ijk

_�s

(i+1)j

0

k

0

) if 1 � j

0

< j < k = k

0

< i or if 1 � j < k

and 1 � j

0

< k

0

< k < i. (If (j; k) = (j

0

; k

0

), we ould insist further that f

i01

f

i10

f

i11

is

lexiographially less than f

(i+1)01

f

(i+1)10

f

(i+1)11

. But the author didn't go that far.)

Furthermore, if p<q and if eah output funtion is unhanged when x

p

is swapped

with x

q

, we an insist that x

p

is used before x

q

as an operand. Those lauses are

(�s

ijq

_

W

n<i

0

<i

W

1�j

0

<k

0

<i

0

[j

0

= p or k

0

= p℄ s

i

0

j

0

k

0

) whenever j 6= p.

For example, when answer 477 is applied to the full-adder problem, it yields M

r

lauses in N

r

variables, where (M

4

;M

5

) = (942; 1662) and (N

4

; N

5

) = (82; 115). The

symmetry-breaking strategy above, with (p; q) = (1; 2) and (2; 3), raises the number of

lauses to M

0

r

, where (M

0

4

;M

0

5

) = (1025; 1860). Algorithm C reported `unsat' after

(1015; 291) kilomems using (M

4

;M

0

4

) lauses; `sat' after (250; 268) kilomems using

(M

5

;M

0

5

). With larger problems, suh symmetry breakers give signi�ant speedup

when proving unsatis�ability, but they're often a handiap in satis�able instanes.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 279

sideways sum

author

footprint heuristi

normal funtion

479. (a) Using the notation of the previous answer, we have (M

8

;M

0

8

; N

8

) = (14439;

17273; 384) and (M

9

;M

0

9

; N

9

) = (19719; 24233; 471). The running times for the `sat'

ases with M

9

and M

0

9

lauses were respetively (16; 645; 1259) and (66; 341; 1789)

megamems|these stats are the (min;median;max) of nine runs with di�erent random

seeds. The `unsat' ases withM

8

andM

0

8

were dramatially di�erent: (655631; 861577;

952218) and (8858; 10908; 13171). Thus s(4) = 9 in 7.1.2{(28) is optimum.

(b) But s(5) = 12 is not optimum, despite the beauty of 7.1.2{(29)! The M

11

=

76321 lauses in N

11

= 957 variables are `sat' in 680 G�, yielding an amazing hain:

x

6

= x

1

� x

2

;

x

7

= x

1

� x

3

;

x

8

= x

4

� x

5

;

x

9

= x

3

� x

6

;

x

10

= x

6

_ x

7

;

x

11

= x

4

� x

9

;

x

12

= x

9

� x

10

;

z

0

= x

13

= x

5

� x

11

;

x

14

= �x

8

^ x

11

;

z

1

= x

15

= x

10

� x

14

;

z

2

= x

16

= x

12

^ �x

15

:

And (M

0

10

; N

10

) = (68859; 815) turns out to be `unsat' in 1773 gigamems; this an be

redued to 309 gigamems by appending the unit lause (g

3(15)

), sine C(S

4;5

) = 10.

Hene we an evaluate x

1

+ � � �+x

7

in only 5+11+2+1 = 19 steps, by omputing

(u

1

u

0

)

2

= x

5

+x

6

+x

7

, (v

2

v

1

z

0

)

2

= x

1

+x

2

+x

3

+x

4

+u

0

, (w

2

z

1

)

2

= u

1

+v

1

, z

2

= v

2

�w

2

.

() The solver �nds an elegant 8-step solution for (M

8

; N

8

) = (6068; 276) in 6M�:

x

4

= x

1

_ x

2

;

x

5

= x

1

� x

2

;

x

6

= x

3

� x

4

;

S

0

= x

7

= x

3

_ x

4

;

x

8

= x

3

� x

5

;

S

3

= x

9

= �x

6

^ x

8

;

S

1

= x

10

= x

6

^ x

8

;

S

2

= x

11

= x

7

� x

8

:

The orresponding (M

0

7

; N

7

) = (5016; 217) problem is `unsat' in 97M�.

(d) The total ost of evaluating the S's independently is 3 + 7 + 6 + 7 + 3 = 26,

using the optimum omputations of Fig. 9 in Setion 7.1.2. Therefore the author was

surprised to disover a 9-step hain for S

1

, S

2

, and S

3

, using the footprint heuristi:

x

5

= x

1

� x

2

;

x

6

= x

1

� x

3

;

x

7

= x

3

� x

4

;

x

8

= x

5

� x

7

;

x

9

= x

6

_ x

7

;

x

10

= x

2

� x

9

;

S

3

= x

11

= �x

8

^ x

9

;

S

2

= x

12

= x

8

^ �x

10

;

S

1

= x

13

= x

8

^ x

10

:

This hain an solve problem (d) in 13 steps; but SAT tehnology does it in 12(!):

x

5

= x

1

� x

2

;

x

6

= x

1

� x

3

;

x

7

= x

3

� x

4

;

x

8

= x

5

� x

7

;

x

9

= x

6

_ x

7

;

x

10

= x

2

� x

9

;

x

11

= x

5

_ x

9

;

S

3

= x

12

= x

8

^ �x

10

;

S

1

= x

13

= x

8

^ x

10

;

S

4

= x

14

= x

1

^ �x

11

;

S

0

= x

15

= x

4

_ x

11

;

S

2

= x

16

= �x

8

^ x

11

:

The nonexistene of an 11-step solution an be proved via Algorithm C by a long

omputation (11034 gigamems), during whih 99,999,379 lauses are learned(!).

(e) This solution (found in 342 G�) mathes the lower bound in exerise 7.1.2{80:

x

7

= x

1

� x

2

;

x

8

= x

3

� x

4

;

x

9

= x

1

� x

5

;

x

10

= x

6

� x

8

;

x

11

= x

4

� x

10

;

x

12

= x

5

� x

10

;

x

13

= x

8

_ x

11

;

x

14

= x

7

� x

12

;

x

15

= �x

9

^ x

12

;

x

16

= x

13

� x

15

;

x

17

= x

14

^ x

16

:

(f) This solution (found in 7471 G�) also mathes that lower bound:

x

7

= x

1

^ x

2

;

x

8

= x

1

� x

2

;

x

9

= x

3

� x

4

;

x

10

= x

5

^ x

6

;

x

11

= x

5

� x

6

;

x

12

= x

4

� x

11

;

x

13

= x

9

� x

11

;

x

14

= x

9

_ x

12

;

x

15

= x

8

� x

13

;

x

16

= x

10

� x

14

;

x

17

= x

7

� x

16

;

x

18

= x

15

_ x

17

:

Here x

18

is the normal funtion S

0;4

= S

1;2;3;5;6

. We beat exerise 7.1.2{28 by one step.

(g) A solution in t(3) = 12 steps is found almost instantaneously (120 megamems);

but 11 steps are too few (`unsat' in 301 gigamems).

September 23, 2015

280 ANSWERS TO EXERCISES 7.2.2.2

don't-ares

Kojevnikov

Kulikov

Yaroslavtsev

Biere

modi�ed full adder

full adder, modi�ed

don't-ares

Demenkov

Kojevnikov

Kulikov

Yaroslavtsev

Sinz

480. (a) Let x

1

x

2

x

3

x

4

= x

l

x

r

y

l

y

r

. The truth tables for z

l

and z

r

are 0011010010001000

and 01��1�00�011�011, where the �s (\don't-ares") are handled by simply omitting

the orresponding lauses (�g

hi

_ �x

it

) in answer 477.

Less than 1 gigamem of omputation proves that a six-step iruit is `unsat'.

Here's a seven-stepper, found in just 30 M�: x

5

= x

2

� x

3

, x

6

= x

3

_x

4

, x

8

= x

1

� x

6

,

x

7

= x

1

_ x

5

, x

9

= x

6

� x

7

, z

l

= x

10

= x

7

^ x

8

, z

r

= x

11

= x

3

� x

9

. (See exerise

7.1.2{60 for a six-step solution that is based on a di�erent enoding.)

(b) Now we have the truth tables z

l

= 00110100010010000100100010000011,

z

r

= 01��1�001�00�0111�00�011�01101��, if x

4

x

5

= y

l

y

r

. One of many 9-step

solutions is found in 6.9 gigamems: x

6

= x

1

�x

2

, x

7

= x

2

�x

5

, x

8

= x

4

�x

6

, x

9

= �x

4

^x

7

,

x

10

= x

1

�x

9

, x

11

= x

8

_x

9

, x

12

= x

3

�x

10

, z

r

= x

13

= x

3

�x

11

, z

l

= x

14

= x

11

^ �x

12

.

The orresponding lauses for only 8 steps are proved `unsat' after 190 G� of

work. (Inidentally, the enoding of exerise 7.1.2{60 does not have a 9-step solution.)

() Let

n

be the minimum ost of omputing the representation z

l

z

r

of (x

1

+

� � �+x

n

) mod 3. Then (

1

;

2

;

3

;

4

) = (0; 2; 5; 7), and

n�3

�

n

+9. Hene

n

� 3n�4

for all n � 2. [This result is due to A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev,

whose paper in LNCS 5584 (2009), 32{44, also inspired exerises 477{480.℄

Conjeture: For n � 3 and 0 � a � 2, the minimum ost of evaluating the (single)

funtion [(x

1

+ � � �+ x

n

) mod 3= a℄ is 3n�5� [(n+ a) mod 3=0℄. (It's true for n � 5.

Here's a 12-step omputation when n = 6 and a = 0, found in 2014 by Armin Biere:

x

7

= x

1

� x

2

, x

8

= x

3

� x

4

, x

9

= x

1

� x

5

, x

10

= x

3

� x

5

, x

11

= x

2

� x

6

, x

12

= x

8

� x

9

,

x

13

= x

8

_ x

10

, x

14

= x

7

� x

13

, x

15

= �x

12

^ x

13

, x

16

= �x

11

^ x

14

, x

17

= x

11

� x

15

,

S

0;3;6

= x

18

= x

16

_ x

17

. The ase n = 6 and a 6= 0, whih lies tantalizingly lose to

the limits of today's solvers, is still unknown. What is C(S

1;4

(x

1

; : : : ; x

6

))?)

481. (a) Sine z�z

0

= hx

1

x

2

x

3

i and z

0

= x

1

�x

2

�x

3

, this iruit is alled a \modi�ed

full adder." It osts one less than a normal full adder, sine z

0

= (x

1

� x

2

) � x

3

and

z = (x

1

�x

2

)_ (x

1

�x

3

). (And it's the speial ase u = 0 of the more general situation

in exerise 7.1.2{28.) Part (b) desribes a \modi�ed double full adder."

(b) The funtion z

2

has 20 don't-ares, so there are many eight-step solutions

(although 7 are impossible); for example, x

6

= x

1

�x

5

, x

7

= x

2

�x

5

, z

3

= x

8

= x

3

�x

6

,

x

9

= x

4

� x

6

, x

10

= x

1

_ x

7

, x

11

= �x

3

^ x

9

, z

2

= x

12

= x

6

� x

11

, z

1

= x

13

= x

10

� x

11

.

() Letting y

2k�1

y

2k

= [[x

2k�1

x

2k

℄℄, it suÆes to show that the binary represen-

tation of �

n

= �[[y

1

y

2

℄℄ + � � � + �[[y

2n�1

y

2n

℄℄ + y

2n+1

an be omputed in at most 8n

steps. Four steps are enough when n = 1. Otherwise, letting

0

= y

2n+1

, we an

ompute z's bits with �[[y

4k�3

y

4k�2

℄℄ + �[[y

4k�1

y

4k

℄℄ +

k�1

= 2�[[z

2k�1

z

2k

℄℄ +

k

for

1 � k � bn=2. Then �

n

= 2(�[[z

1

z

2

℄℄ + � � � + �[[z

n�1

z

n

℄℄) +

n=2

if n is even, �

n

=

2(�[[z

1

z

2

℄℄+� � �+�[[z

n�2

z

n�1

℄℄+z

n

)+

0

if n is odd, where �[[y

2n�1

y

2n

℄℄+

bn=2

= 2z

n

+

0

,

at a ost of 4n in both ases. The remaining sum osts at most 8bn=2 by indution.

[See E. Demenkov, A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, Information

Proessing Letters 110 (2010), 264{267.℄

482. (a)

P

k

j=1

(2y

j

� 1) is odd when k is odd, and it's �1 when k = 1.

(b) Adapting Sinz's ardinality lauses as in exerises 29 and 30, we only need the

auxiliary variables a

j

= s

j�1

j

, b

j

= s

j

j

, and

j

= s

j+1

j

, beause s

j+2

j

= 0 and s

j

j+2

= 1.

The lauses are then (

�

b

j

_a

j+1

)^(�

j

_b

j+1

)^(b

j

_�

j

)^(a

j+1

_

�

b

j+1

), for 1 � j < t=2�1;

and (�y

2j�2

_ a

j

) ^ (�y

2j�1

_ �a

j

_ b

j

) ^ (�y

2j

_

�

b

j

_

j

) ^ (�y

2j+1

_ �

j

) ^ (y

2j�2

_ �

j�1

) ^

(y

2j�1

_

j�1

_

�

b

j

) ^ (y

2j

_ b

j

_ �a

j+1

) ^ (y

2j+1

_ a

j+1

) for 1 � j < t=2, omitting �a

1

,

0

,

and the two lauses that ontain y

0

.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 281

auxiliary variables

break symmetry

Konev

Lisitsa

Erd}os

diret enoding

order enoding

Ramani

Markov

Sakallah

Aloul

WalkSAT

omparison of running times

monotone Boolean funtion

adjaeny matrix

prime impliants

Endomorphisms

quenhing

() Use the onstrution in (b) with y

j

= x

jd

for 1 � d � n=3 and independent

auxiliary variables a

j;d

, b

j;d

,

j;d

. Also, assuming that n � 720, break symmetry by

asserting the unit lause (x

720

). (That's muh better than simply asserting (x

1

).)

This problem was shown to be satis�able if and only if n < 1161 by B. Konev

and A. Lisitsa [Arti�ial Intelligene 224 (2015), 103{118℄, thereby establishing the

ase C = 2 of a well-known onjeture by Paul Erd}os [Mihigan Math. J. 4 (1957),

291{300, Problem 9℄. Algorithm C an prove unsatis�ability for n = 1161 in less than

600 gigamems, using the parameters of exerise 512.

483. Using a diret enoding as in (15), with v

jk

meaning that v

j

has olor k, we an

generate the lauses (�v

jk

) for 1 � j < k � d and (�v

j(k+1)

_

W

j�1

i=k

v

ik

) for 2 � k < j � n.

A similar but slightly simpler sheme works with the order enoding, when v

jk

means

that v

j

has olor > k. [See Ramani, Markov, Sakallah, and Aloul, Journal of Arti�ial

Intelligene Researh 26 (2006), 289{322. The verties might be ordered in suh a way

that degree(v

1

) � � � � � degree(v

n

), for example.℄

Those book graphs an be olored optimally with (11, 11, 13, 11, 10) olors, re-

spetively. Suh olorings are found with less than a megamem of work by AlgorithmW

or Algorithm C, without any symmetry breaking; Algorithm L also �nds them, but after

more than an order of magnitude more e�ort. The symmetry breaking lauses atually

will retard this searh, espeially in the ase of homer. On the other hand when we ask

for only (10, 10, 12, 10, 9) olors those lauses are extremely helpful: The runtime for

anna and david dereases from about 350G� to only about 200K� with Algorithm C!

For huk and jean the redution is roughly 333G� ! 833M� and 14G� ! 4:3M�;

for homer, dozens or more of T� go down to about 11G�. (Algorithm L is hopelessly

slow on these unsatis�able oloring problems, even with symmetry broken.)

484. (a) A type (iii) move will work if and only if v

1

���v

4

, v

2

���v

4

, v

2

���v

3

.

(b) For 0 � t < n � 1 we have the lause (

W

n�t�1

k=1

q

t;k

_

W

n�t�3

l=1

s

t;l

), as well as

the following for 1 � i < j < n � t, 1 � k < n � t, 1 � l < n � t� 2: (�q

t;k

_ x

t;k;k+1

);

(�q

t;k

_�x

t+1;i;j

_x

t;i

0

;j

0

); (�s

t;l

_x

t;l;l+3

); (�s

t;k

_�x

t+1;i;j

_x

t;i

00

;j

00

); here i

0

= i+[i�k ℄, j

0

=

j+[j � k℄, and fi

00

; j

00

g are the min and max of fi+[i� l+ 3℄+3[i= l℄; j+[j � l+ 3℄+

3[j = l℄g. Finally there's a unit lause (�x

0;i;j

) for all 1 � i < j � n with v

i

/���v

j

.

(These lauses essentially ompute [G is quenhable℄, whih is a monotone Bool-

ean funtion of the

�

n

2

�

elements above the diagonal in the adjaeny matrix of G. The

prime impliants of this funtion orrespond to ertain spanning trees, of whih there

are respetively 1, 1, 2, 6, 28, 164, 1137, : : : when n = 1, 2, 3, 4, 5, 6, 7, : : : .)

485. Let t

0

= t + 1. Instanes of ommutativity are: (q

t;k

; q

t

0

;k

0

) $ (q

t;k

0

+1

; q

t

0

;k

) if

k < k

0

; (s

t;l

; s

t

0

;l

0

) $ (s

t;l

0

+1

; s

t

0

;l

) if l + 2 < l

0

; (q

t;k

; s

t

0

;l

0

) $ (s

t;l

0

+1

; q

t

0

;l

) if k < l

0

;

(s

t;l

; q

t

0

;k

0

) $ (q

t;k

0

+1

; s

t

0

;l

) if l + 2 < k

0

; (s

t;l

; s

t

0

;l

) $ (q

t;l+3

; s

t

0

;l

). These an be

broken by appending the lauses (�q

t;k

0

+1

_ �q

t

0

;k

), (�s

t;l

0

+1

_ �s

t

0

;l

), : : : , (�q

t;l+3

_ �s

t

0

;l

).

Endomorphisms are also present in the two ases (q

t;k

; q

t

0

;k

)$ (q

t;k+1

; q

t

0

;k

) and

(s

t;k+1

; q

t

0

;k

) $ (q

t;k+1

; s

t

0

;k

), provided that both pairs of transitions are legal. These

are exploited by the lauses (�q

t;k+1

_ �q

t

0

;k

_ �x

t;k;k+1

) and (�q

t;k+1

_ �s

t

0

;k

_ �x

t;k+1;k+4

).

486. This game is a speial ase of graph quenhing, so we an use the previous

two exerises. Algorithm C �nds a solution after about 1.2 gigamems, without the

symmetry-breaking lauses; this time goes down to roughly 85 megamems when those

lauses are added. Similarly, the orresponding 17-ard problem after A|�J| is found

to be unsatis�able, after 15 G� without and 400 M� with. (A|�� 10| fails too.)

Those SAT problems have respetively (1242, 20392, 60905), (1242, 22614, 65590),

(1057, 15994, 47740), (1057, 17804, 51571) ombinations of (variables, lauses, ells),

September 23, 2015

282 ANSWERS TO EXERCISES 7.2.2.2

Stanford

Ross

Knuth

poison ards

Tower of Babel

Tower of London

Aordion

Methuselah

Skip Two

Morehead

Mott-Smith

8 queens problem

revolving door

Gray ode

symmetry redution

Shwarzkopf

Lemaire

Vitushinskiy

lexiographially

and they are not handled easily by Algorithms A, B, D, or L. In one solution both

q

0;11

and s

0;7

are true, thus providing two ways to win(!), when followed by q

1;15

, s

2;13

,

q

3;12

, s

4;10

, s

5;7

, q

6;7

, s

7;5

, q

8;5

, s

9;4

, q

10;5

, s

11;3

, q

12;3

, s

13;1

, s

14;1

, q

15;1

, q

16;1

.

Notes: This mildly additive game is an interesting way to waste time in ase

you ever get lost with a pak of ards on a desert island. If you sueed in reduing the

original 18 piles to a single pile, you an ontinue by dealing 17 more ards and trying

to redue the new 18 piles. And if you sueed also at that, you have 17 more ards

for a third try, sine 52 = 18 + 17 + 17. Three onseutive wins is a Grand Slam.

In a study of ten thousand random deals, just 4432 turned out to be winnable.

Computer times (with symmetry breaking) varied wildly, from 1014 K� to 37 G� in

the satis�able ases (median 220 M�) and from 46 K� to 36 G� in the others (median

848 M�). The most diÆult winnable and unwinnable deals in this set were respetively

9� 7| 3| K} 7� 3~ 2} 8| 6~ J} 8� 2~ 6� 4} 5� 4~10} Q� and

A~ Q~ 2} 9} 7| 7} 8~ K| 3}10| 3| 3� Q� 8| 2| K� 6} 5| :

Students in Stanford's graduate problem seminar investigated this game in 1989

[see K. A. Ross and D. E. Knuth, Report STAN-CS-89-1269 (Stanford Univ., 1989),

Problem 1℄. Ross posed an interesting question, still unsolved: Is there a sequene of

(say) nine \poison ards," suh that all games starting with those ards are lost?

The lassi game Idle Year is also known by many other names, inluding Tower of

Babel, Tower of London, Aordion, Methuselah, and Skip Two. Albert H. Morehead

and Geo�rey Mott-Smith, in The Complete Book of Solitaire and Patiene Games

(1949), 61, suggested that moves shouldn't be too greedy.

487. Every queen in a set of eight must attak at least 14 vaant ells. Thus j�Sj gets

its minimum value 8� 14 = 112 when the queens oupy the top row. Solutions to the

8 queens problem, when queens are independent, all have j�Sj � 176. The maximum

j�Sj is 184, ahieved symmetrially for example in Fig. A{9(a). (This problem is

not at all suitable for SAT solvers, beause the graph has 728 edges. The best way

to proeed is to run through all

�

64

8

�

possibilities with the revolving door Gray ode

(Algorithm 7.2.1.3R), beause inremental hanges to j�Sj are easy to ompute when

a queen is deleted or inserted. The total time by that method is only 601 gigamems.)

The maximum of j�

out

Sj is obviously 64 � 8 = 56. The minimum, whih orre-

sponds to Turton's question, is 45; it an be ahieved symmetrially as in Fig. A{9(b),

leaving 64 � 8 � 45 = 11 ells unattaked (shown as blak queens). In this ase SAT

solvers win: The revolving door method needs 953 gigamems, but SAT methods show

the impossibility of 44 after only 2.2 G� of work. With symmetry redution as in the

following exerise, this goes down to 900 M� although there are 789 variables and 4234

lauses. [Bernd Shwarzkopf, in Die Shwalbe 76 (August 1982), 531, omputed all

solutions of minimum j�

out

Sj, given jSj, for n � n boards with n � 8. Extensions of

Turton's problem to larger n have been surveyed by B. Lemaire and P. Vitushinskiy

in two artiles, written in 2011 and aessible from www.ffjm.org. Optimum solutions

for n > 16 are onjetured but not yet known.℄

All sets S of eight queens trivially have j�

in

Sj = 8.

488. Let variables w

ij

and b

ij

represent the presene of white or blak queens on

ell (i; j), with lauses (�w

ij

_

�

b

i

0

j

0

) when (i; j) = (i

0

; j

0

) or (i; j)���(i

0

; j

0

). Also, if eah

army is to have at least r queens, add lauses based on (20) and (21) to ensure that

P

w

ij

� r and

P

b

ij

� r. Optionally, add lauses based on Theorem E to ensure that

k of the w variables for the top row are lexiographially greater than or equal to the

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 283

breaking the symmetries

Smith

Petrie

Gent

CSP: The onstraint satisfation problem

asymptoti

Gardner

Chung

Graham

lex-leaders

Sims tables

Q

Q

Q

Q

Q

Q

Q

Q

(a)

QQQ

Q Q

Q

Q Q

qq

qq

q qqq

q qq

(b)

QQQ

QQQ

Q

Q

QQ

qqq

qq

qq

qqq

()

Q Q Q Q

Q Q Q Q

Q Q Q Q

q

q q q q

q

q

q q q q

q

(d)

QQQ

QQQ

QQQ

QQQ

QQ

qqqq

qqq

qq

qqq

qq

(e)

QQQ

QQQQ

QQQQ

QQQ

QQQ

qqqq

qqq

qq

q q

qqq

qqqq

(f)

Fig. A{9. Optimum queen plaements of various kinds.

orresponding k variables in �fteen symmetrial variants. (For instane, if k = 3, we

might require w

11

w

12

w

13

� b

1n

b

2n

b

3n

, thus partially breaking the symmetries.)

The maximum army sizes for 1 � n � 11 are found to be 0, 0, 1, 2, 4, 5, 7, 9, 12,

14, and 17, respetively. A onstrution with 21 armies is known for n = 12, but 22 has

not yet been proved impossible. [B. M. Smith, K. E. Petrie, and I. P. Gent obtained

similar results using CSP methods in LNCS 3011 (2004), 271{286.℄ An extra blak

queen an atually be inluded in the ases n = 2, 3, 4, 6, 8, 10, and 11. Solutions

appear in Fig. A{9; the onstrution shown in Fig. A{9(d) generalizes to armies of

2q(q + 1) queens whenever n = 4q + 1, while those in parts (), (e), (f) belong to

another family of onstrutions that ahieve the higher asymptoti density

9

64

n

2

.

When n = 8 and r = 9, Algorithm C typially �nds a solution in about 10

megamems (k = 0), or about 30 megamems (k = 3); but with r = 10 it typially

proves unsatis�ability in about 1800 M� (k = 0) or 850 M� (k = 3) or 550 M�

(k = 4) or 600 M� (k = 5). Thus the symmetry breaking onstraints are helpful

for unsatis�ability in this ase, but not for the easier satis�ability problem. On the

other hand, the extra onstraints do turn out to be helpful for both the satis�able

and unsatis�able variants when n is larger. The \sweet spot" turns out to be k = 6

when n = 10 and n = 11; unsatis�ability was proved in those ases, with r = 15 and

r = 18, after about 185 G� and 3500 G�, respetively. [See Martin Gardner, Math

Horizons 7, 2 (November 1999), 2{16, for generalizations to oexisting armies of sizes

r and s. F. R. K. Chung and R. L. Graham onjeture that the maximum value of s,

if r = 3q

2

+ 3q + 1, is asymptotially n

2

� (6q + 3)n+O(1).℄

489. T

0

= 1, T

1

= 2, T

n

= 2T

n�1

+ (2n� 2)T

n�2

(see Eq. 5.1.4{(40)). The generating

funtion

P

n

T

n

z

n

=n! and the asymptoti value are given in exerise 5.1.4{31.

490. Yes. For example, using the signed permutation

�

413

�

2, we're allowed to assume

that some solution satis�es �x

4

x

1

x

3

�x

2

� �x

0

4

x

0

1

x

0

3

�x

0

2

for every endomorphism|beause

the solution with lexiographially smallest �x

4

x

1

x

3

�x

2

has this property. Notie that

the signed permutation

�

1

�

2 : : : �n onverts `�' to `�'.

491. Let � be the permutation (1 2 3 4

�

1

�

2

�

3

�

4). Then �

4

= (1

�

1)(2

�

2)(3

�

3)(4

�

4); and by

Theorem E we need only searh for solutions that satisfy x

1

x

2

x

3

x

4

� �x

1

�x

2

�x

3

�x

4

. We're

therefore allowed to append the lause (�x

1

) without a�eting satis�ability.

(We atually are allowed to assert that x

1

= x

2

= x

4

= 0, beause 0000 and 0010

are the lex-leaders of the two 8-yles when � is a written as a permutation of states.)

In general if an automorphism � is a permutation of literals having a yle that

ontains both v and �v, for some variable v, we an simplify the problem by assigning

a �xed value to v and then by restriting onsideration to automorphisms that don't

hange v. (See the disussion of Sims tables in Setion 7.2.1.2.)

492. Suppose x

1

: : : x

n

satis�es all lauses of F ; we want to prove that (x

1

: : : x

n

)� =

x

0

1

: : : x

0

n

also satis�es them all. And that's easy: If (l

1

_ � � � _ l

k

) is a lause, we have

September 23, 2015

284 ANSWERS TO EXERCISES 7.2.2.2

Szeider

Aloul

Ramani

Markov

Sakallah

Shlyakhter

fallay

generating funtion

P�olya's theorem

global ordering

quad-free

l

0

1

= l

1

� , : : : , l

0

n

= l

n

� ; and we know that (l

1

� _ � � � _ l

k

�) is true beause it's subsumed

by a lause of F . [See S. Szeider, Disrete Applied Math. 130 (2003), 351{365.℄

493. Using the global ordering p

1

: : : p

9

= 543219876 and Corollary E, we an add

lauses to assert that x

5

= 0 and x

4

x

3

x

2

x

1

� x

6

x

7

x

8

x

9

. A ontradition quikly fol-

lows, even if we stipulate only the weaker relation x

4

� x

6

, beause that fores x

6

= 1.

494. Exerise 504(b) shows that (uv)(�u�v) is a symmetry of the underlying Boolean

funtion, although not neessarily of the lauses F . [This observation is due to Aloul,

Ramani, Markov, and Sakallah in the ited paper.℄ The other symmetries allow us to

assert (i) (�x

i

_ x

j

) ^ (�x

j

_ �x

k

), (ii) (�x

i

_ �x

j

) ^ (�x

j

_ �x

k

), (iii) (�x

i

_ �x

j

) ^ (�x

j

_ x

k

).

495. Suppose, for example, that m = 3 and n = 4. The variables an then be alled

11, 12, 13, 14, 21, : : : , 34; and we an give them the global ordering 11, 12, 21, 13, 22,

31, 14, 23, 32, 24, 33, 34. To assert that 21 22 23 24 � 31 32 33 34, we use the involution

that swaps rows 2 and 3; this involution is (21 31)(22 32)(23 33)(24 34) when expressed

in form (192) with signs suppressed. Similarly we an assert that 12 22 13 � 13 23 33

beause of the involution (12 13)(22 23)(32 33) that swaps olumns 2 and 3. The same

argument works for any adjaent rows or olumns. And we an replae `�' by `�', by

omplementing all variables.

For generalm and n, onsider any global ordering for whih x

ij

preedes or equals

x

i

0

j

0

when 1 � i � i

0

� m and 1 � j � j

0

� n. The operation of swapping adjaent

rows makes the global lexiographi order inrease if and only if it makes the upper

row inrease lexiographially; and the same holds for olumns.

[See Ilya Shlyakhter, Disrete Applied Mathematis 155 (2007), 1539{1548.℄

496. No; that reasoning would \prove" that m pigeons annot �t into m holes. The

fallay is that his orderings on rows and olumns aren't simultaneously onsistent with

a single global ordering, as in the previous exerise.

497. A BDD with 71,719 nodes makes it easy to alulate the total, 818,230,288,201,

as well as the generating funtion 1 + z + 3z

2

+ 8z

3

+ 25z

4

+ � � � + 21472125415z

24

+

31108610146z

25

+ � � �+ 10268721131z

39

+ 6152836518z

40

+ � � �+ 24z

60

+ 8z

61

+ 3z

62

+

z

63

+z

64

. (The relatively small oeÆients of z

39

and z

40

help aount for the fat that

� was hosen in (185){(186); problems with sparse solutions tend to favor �.)

[P�olya's theorem in Setion 7.2.3 shows that exatly 14,685,630,688 inequivalent

matries exist; ompare this to 2

64

� 1:8447 � 10

19

without any symmetry redution.℄

498. Consider the global ordering x

01

, x

11

, : : : , x

m1

; x

12

, x

22

, : : : , x

m2

, x

02

; x

23

, x

33

,

: : : , x

m3

, x

03

, x

13

; : : : ; x

(m�1)m

, x

mm

, x

0m

, : : : , x

(m�2)m

. There's a olumn symmetry

that �xes all elements preeding x

(j�1)j

and takes x

(j�1)j

7! x

(j�1)k

.

499. No. The unusual global ordering in answer 498 is not onsistent with ordinary

lexiographi row or olumn ordering. [Nor an the analogous lauses (x

ii

_ �x

ij

) for

1 � i � m and i < j � n be appended to (185) and (186). No quad-free matrix for

m = n = 4 and r = 9 satis�es all those onstraints simultaneously.℄

500. If F

0

has a solution, then it has a solution for whih l is true. But (F

0

[F

1

) j l

might be unsolvable. (For example, let F

0

= (�x

1

_ x

2

) ^ (�x

2

_ x

1

), whih has the

symmetry

�

1

�

2; so we an take S = (�x

1

), l = �x

1

. Combine that with F

1

= (x

1

).)

501. Let x

ij

denote a queen in ell (i; j), for 1 � i � m and 1 � j � n. Also

let r

ij

= [x

i1

+ � � �+ x

ij

� 1℄ and r

0

ij

= [x

i1

+ � � � + x

i(j+1)

� 2℄, for 1 � i � m and

1 � j < n. Using (18) and (19) we an easily onstrut about 8mn lauses that

de�ne the r's in terms of the x's and also ensure that x

i1

+ � � � + x

in

� 2. Thus

r

0

i(n�1)

= [x

i1

+ � � �+ x

in

=2℄; all this ondition r

i

.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 285

Cooper

Pikhurko

Shmitt

Warrington

symmetry breaking

tomography problem

integer programming

magi sequenes

ardinality onstraints

Hamming distane

Karpovsky

Franes

Litman

Similar onditions

j

, a

d

, and b

d

are readily established for olumn j, and for the

diagonals with i+j = d+1 or i�j = d�n, for 1 � i � m, 1 � j � n, and 1 � d < m+n.

Then ondition (ii) orresponds to the mn lauses (x

ij

_ r

i

_

j

_ a

i+j�1

_ b

i�j+n

).

Finally we have lauses from (20) and (21) to ensure that

P

x

ij

� r.

When m = n, the lower bound r � n � [nmod 4=3℄ has been established by

A. S. Cooper, O. Pikhurko, J. R. Shmitt, and G. S. Warrington [AMM 121 (2014),

213{221℄, who also used baktraking to show that r � 12 on an 11 � 11 board. SAT

methods, with symmetry breaking, yield that result muh more quikly (after about 9

teramems of omputation); but this problem, like the tomography problem of Fig. 36,

is best solved by integer programming tehniques when m and n are large.

If we all the upper left orner white, solutions with m = n = r�1 and all queens

on white squares appear to exist for all n > 2, and they are found almost instantly.

However, no general pattern is apparent. In fat, when n is odd it appears possible to

insist that the queens all appear in odd-numbered rows and in odd-numbered olumns.

Here are examples of optimum plaements on smallish boards. The solutions for

8� 9, 8� 10, 8� 13, 10� 10, and 12� 12 also work for sizes 8� 8, 9� 10, 8� 12, 9� 9,

and 11 � 11, respetively.

Q

Q Q

Q Q

Q Q

Q Q

Q Q

QQ

Q Q

QQ

Q Q

Q Q

Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

QQ

Q Q

Q Q

QQ

Q Q

This plaement of ten queens on a 10 � 10 board an be desribed by the \magi

sequene" (a

1

; : : : ; a

5

) = (1, 3, 7, 5, 9), beause the queens appear in positions (a

i

; a

i+1

)

and (a

i+1

; a

i

) for 1 � i < n=2 as well as in (a

1

; a

1

) and (a

n=2

; a

n=2

). The magi

sequenes (1, 3, 9, 13, 15, 5, 11, 7, 17) and (9, 3, 1, 19, 5, 11, 15, 25, 7, 21, 23, 13, 17)

likewise desribe optimum plaements for n = 18 and 26. No other magi sequenes

are known; none exist when n = 34.

502. For eah j, onstrut independent ardinality onstraints for the relation x

(j)

1

+

� � � + x

(j)

n

� r

j

, using say (20) and (21), where x

(j)

k

= (s

jk

? �x

k

: x

k

).

503. The Hamming distane d(x; y) = �(x � y) between binary vetors of length n

satis�es d(x; y) + d(�x; y) = n. Thus there is no x with d(x; s

j

) � r

j

+ 1 for all j if and

only if there is no x with d(�x; s

j

) � n � 1 � r

j

for all j. [See M. Karpovsky, IEEE

Transations IT-27 (1981), 462{472.℄

504. (a) Assume that n � 4. For strings of length 2n we have d(z; w) + d(z; �w) = 2n;

hene d(z;w) � n and d(z; �w) � n if and only if d(z; w) = d(z; �w) = n. Every string

z with z

2k�1

6= z

2k

for 1 � k � n satis�es d(z;w

j

) = n for 1 � j � n. Conversely, if

d(z; w

j

) = d(z; w

k

) = n and 1 � j < k � n, then z

2j�1

+ z

2j

= z

2k�1

+ z

2k

. Thus if

z

2j�1

= z

2j

for some j we have z = 00 : : : 0 or 11 : : : 1, ontraditing d(z; w

1

) = n.

(b) For eah string x̂ = �x

1

x

1

�x

2

x

2

: : : �x

n

x

n

that satis�es part (a) we have d(x̂; y) =

2

�

l

1

+ 2

�

l

2

+ 2

�

l

3

+ n � 3, whih is � n+ 1 if and only if (l

1

_ l

2

_ l

3

) is satis�ed.

() Let s

j

= w

j

and r

j

= n for 1 � j � 2n; let s

2n+k

= y

k

and r

2n+k

= n + 1

for 1 � k � m, where y

k

is the string in (b) for the kth lause of F . This system

has a losest string x̂ = �x

1

x

1

�x

2

x

2

: : : �x

n

x

n

if and only if x

1

: : : x

n

satis�es every lause.

[A similar onstrution in whih all strings have length 2n + 1 and all r

j

are equal

to n + 1 is obtained if we append the bit [n< j� 2n℄ to eah s

j

. See M. Franes and

A. Litman, Theory of Computing Systems 30 (1997), 113{119.℄

September 23, 2015

286 ANSWERS TO EXERCISES 7.2.2.2

mutilated

Looking ahead

ParamILS

pi

double lookahead

author

(d) Boilerplate 11000000, 00110000, 00001100, 00000011, 00111111, 11001111,

11110011, 00000011, at distane � 4; for the lauses, 01011000, 00010110, 01000101,

10010001, 10100100, 00101001, 10001010, and possibly 01100010, at distane � 5.

505. (For k = 0, 1, : : : , n � 1 one an set j to a uniform integer in [0 : : k℄ and

INX[k + 1℄ j; also if j = k set VAR[k℄ k + 1, otherwise i VAR[j℄, VAR[k℄ i,

INX[i℄ k, VAR[j℄ k + 1.) With nine random seeds, typial runtimes for D3 are

(1241, 873, 206, 15, 748, 1641, 1079, 485, 3321)M�. They're muh less variable for the

unsatis�able K0, namely (1327, 1349, 1334, 1330, 1349, 1322, 1336, 1330, 1317)M�;

and even for the satis�able W2: (172, 192, 171, 174, 194, 172, 172, 170, 171)M�.

506. (a) Almost true: That sum is the total number of lauses of length � 2, beause

every suh lause of length k ontributes 1=

�

k

2

�

to the weights of

�

k

2

�

edges.

(b) Eah of the 12

2

� 2 = 142 ells of the mutilated 12 � 12 board ontributes

one positive lause (v

1

_ � � � _ v

k

) and

�

k

2

�

negative lauses (�v

i

_ �v

j

), when that ell an

be overed by k potential dominoes fv

1

; : : : ; v

k

g. So the weight between u and v is 2,

4/3, or 7/6 when dominoes u and v overlap in a ell that an be overed in 2, 3, or 4

ways. Exatly 6 ells an be overed in just 2 ways (and exatly 10

2

in 4 ways).

(The largest edge weights in all of Fig. 52 are 37/6, between 20 pairs of verties

in K6. At the other extreme, 95106 of the 213064 edges in X3 have the tiny weight

1/8646, and 200904 of them have weight at most twie that muh.)

507. Consider, for example, the lauses (u _

�

t), (v _

�

t), (�u _ �v _ t), (u _

�

t

0

), (v _

�

t

0

),

(�u_ �v_ t

0

) from (24). Looking ahead from t = 1 yields the windfall (

�

t_ t

0

), and looking

ahead from t

0

= 1 yields (

�

t

0

_ t). Heneforth Algorithm L knows that t equals t

0

.

508. Aording to (194), the purging parameters were �

p

= 1000 and Æ

p

= 500; thus

we have learned approximately 1000k + 500

�

k

2

�

lauses when doing the kth purging

phase. After 1000L lauses this works out to be � (

p

16L+ 9� 3)=2 phases, whih is

� 34:5 when L = 323. (And the atual number was indeed 34.)

509. One remedy for over�tting is to selet training examples at random. In this ase

suh randomness is already inherent, beause of the di�erent seeds used while training.

510. (a) From Fig. 53 or Fig. 54 or Table 7 we know that T1 < T2 < L6 in the median

rankings; thus T2 obsures L6 and T1.

(b) Similarly, L8 <M3 < Q2 < X6 < F2 < X4 < X5; X6 obsures L8 and X4.

() X7 obsures K0, K2, and (indiretly) A2, beause K2 obsures K0 and A2.

511. (a) Nine random runs �nished in only (4:9; 5:0; 5:1; 5:1; 5:2; 5:2; 5:3; 5:4; 5:5)M�(!).

(b) Nine random runs now eah were aborted after a teramem of trials. (No theo-

retial explanation for this disrepany, or for the wildness of P4 in Fig. 54, is known.)

() (0:2; : : : ; 0:5; : : : ; 3:2)M� without; (0:3; : : : ; 0:5; : : : ; 0:7)M� with.

512. A training run with ParamILS in 2015 suggested the parameters

� = 0:7; � = 0:998; % = 0:99995; �

p

= 100000; Æ

p

= 2000;

� = 10; w = 1; p = 0; P = 0:05; = 0:166667; (�)

whih produe the exellent results in Fig. A{10.

513. After training on rand (3; 1062; 250; 314159), ParamILS hoose the values � = 3:5

and � = 20:0 in (195), together with distintly di�erent values that favor double

lookahead, namely � = :9995, Y = 32. [The untuned values � = 3:3, � = :9985,

� = 25:0, and Y = 8 had been used by the author when preparing exerise 173.℄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 287

ParamILS

R

u

n

n

i

n

g

t

i

m

e

f

r

o

m

e

r

d

o

s

p

a

r

a

m

e

t

e

r

s

(

�

)

!

 Running time from default parameters (194) !

400

500

600

700

800

900

1000

1000

1100

1100

1160

1160

1161

5

T

�

1

T

�

:

1

T

�

1

0

G

�

1

G

�

:

1

G

�

1

0

M

�

1

M

�

1 T�

:1 T�

10 G�

1 G�

:1 G�

10 M�

1 M�

Fig. A{10. Running times for Algorithm C, with and without speial parameter tuning.

514. ParamILS suggests p = :85 and N = 5000n; that gives a median time � 690M�.

(But those parameters give horri�ally bad results on most other problems.)

515. Use variables S

ijk

meaning that ell (i; j) in the solution holds k, and Z

ij

meaning

that ell (i; j) is blank in the puzzle. The 729 S variables are onstrained by 4� 81 �

(1 +

�

9

2

�

) = 11;988 lauses like (13). From ondition (i), we need only 41 variables Z

ij

.

Condition (ii) alls for 15 lauses suh as (Z

11

_� � �_Z

19

), (Z

11

_� � �_Z

51

_Z

49

_� � �_Z

19

),

(Z

15

_ � � � _ Z

55

), (Z

44

_ Z

45

_ Z

46

_ Z

54

_ Z

55

), when equal Z's are identi�ed via (i).

Condition (iii), similarly, alls for 28 lauses suh as (

�

Z

11

_

�

Z

12

_

�

Z

13

), (

�

Z

11

_

�

Z

21

_

�

Z

31

),

(

�

Z

45

_

�

Z

55

). Condition (vi) is enfored by 34,992 lauses epitomized by (

�

S

111

_

�

Z

11

_

�

S

122

_

�

Z

12

_

�

S

412

_

�

Z

41

_

�

S

421

_

�

Z

42

).

For onditions (iv) and (v), we introdue auxiliary variables V

ijk

= S

ijk

^

�

Z

ij

,

meaning that k is visible in (i; j); R

ik

= V

i1k

_ � � � _ V

i9k

, meaning that k is visible

in row i; C

jk

= V

1jk

_ � � � _ V

9jk

, meaning that k is visible in olumn j. Also B

bk

=

W

hi;ji=b

V

ijk

, meaning that k is visible in box b; here hi; ji = 1+3b(i�1)=3+b(j�1)=3.

Then P

ijk

= Z

ij

^

�

R

ik

^

�

C

jk

^

�

B

hi;jik

means that k is a possible way to �ll ell (i; j)

without onit. These 1701 auxiliary variables are de�ned with 8262 lauses.

Condition (iv) is enfored by nine 9-ary lauses for eah i and j, stating that we

mustn't have exatly one of fP

ij1

; : : : ; P

ij9

g true. Condition (v) is similar, enfored by

three sets of 81 � 9 lauses of length 9; for example, one of those lauses is

(P

417

_ P

427

_ P

437

_ P

517

_

�

P

527

_ P

537

_ P

617

_ P

627

_ P

637

):

September 23, 2015

288 ANSWERS TO EXERCISES 7.2.2.2

symmetry breaking

Kroening

daning links

Impagliazzo

Paturi

exponential time hypothesis

Calabro

density of lauses

(\We aren't obviously fored to put 7 into box 4 by using ell (5; 2).")

Finally, some of the symmetry is usefully broken by asserting the unary lauses

S

1kk

^

�

Z

11

^Z

12

. The grand total is 58,212 lauses with 351,432 ells, on 2,471 variables.

(This problem was suggested by Daniel Kroening. There are zillions of solutions,

and about one in every �ve or six appears to be ompletable uniquely to the setting

of the S variables. Thus we an obtain as many \hard sudoku" puzzles as we like, by

adding additional unary lauses suh as S

553

^

�

Z

17

more or less at random, then weeding

out ambiguous ases via daning links. The lauses are readily handled by Algorithms

L or C, but they're often too diÆult for Algorithm D. That algorithm did, however,

�nd the uniquely ompletable solution (a) below after only 9.3 gigamems of work.)

If we beef up ondition (iii), insisting now that no box ontains a row or olumn

with more than one blank, ondition (vi) beomes superuous. We get solutions suh

as (b) below, remarkable for having no fored moves in spite of 58 visible lues, yet

uniquely ompletable. That puzzle is, however, quite easy; only 2, 4, 7 are unplaed.

1....6.8.

5.87214.6

.6.38.2.1

84...3..5

..5.6.8..

6..8...42

3.6.48.2.

4.76321.8

.8.5....4

(a)

1.3.56.89

59738.61.

68.1.93.5

956.318.7

.315.896.

2.896.153

8.96.5.31

.65.13298

31.89.5.6

(b)

1.3.5.7..

.5.79...1

7....125.

..1..5.76

..5.7.1..

47.1..5..

.185....7

5...87.1.

..7.1.8.5

()

1.3.56.89

68.3.91.5

.9518.63.

3.896..51

.195.836.

56..319.8

.56.9381.

8.16.5.93

93.81.5.6

(d)

We might also try to strengthen onditions (iv) and (v) by requiring at least three ways

to make eah hoie, not just two. Then we get solutions like () above. Unfortunately,

however, that one is ompletable in 1237 ways! Even if we also strengthen ondition (iii)

as in (b), we get solutions like (d), whih an be ompleted in 12 ways. No uniquely

ompletable sudoku puzzles are known to have suh ubiquitous threefold ambiguity.

516. This onjeture an be expressed in several equivalent forms. R. Impagliazzo and

R. Paturi [JCSS 62 (2001), 367{375℄ de�ned s

k

= inff lg � j there exists an algorithm

to solve kSAT in �

n

stepsg, and stated the exponential time hypothesis: s

3

> 0. They

also de�ned s

1

= lim

k!1

s

k

, and proved that s

k

� (1 � d=k)s

1

for some positive

onstant d. They onjetured that s

1

= 1; this is the strong exponential time

hypothesis. An alternative formulation [C. Calabro, R. Impagliazzo, and R. Paturi,

IEEE Conf. on Computational Complexity 21 (2006), 252{260℄ was found later: \If

� < 2, there is a onstant � suh that no randomized algorithm an solve every SAT

problem with � �n lauses in fewer than �

n

steps, where n is the number of variables."

517. (a) If there are n variables, introdue

�

2n

2

�

new variables ll

0

= l

0

l, one for eah

pair of literals fl; l

0

g, with the equations ll

0

+ l

�

l

0

+

�

l = 1. Similarly, introdue

�

2n

3

�

variables ll

0

l

00

, via ll

0

l

00

+ ll

0

�

l

00

+ l

�

l

0

+

�

l = 1. Then the ordinary ternary lause l_ l

0

_ l

00

is true if and only if we have ll

0

l

00

+ ll

0

�

l

00

+ l

�

l

0

l

00

+ l

�

l

0

�

l

00

+

�

ll

0

l

00

+

�

ll

0

�

l

00

+

�

l

�

l

0

l

00

= 1.

(b) Remove lauses of length > 3 by using the fat that l

1

+ � � � + l

k

= 1 if and

only if l

1

+ � � �+ l

j

+ t = 1 and l

j+1

+ � � �+ l

k

+

�

t = 1, where t is a new variable. Also,

if a, b, , and d are new variables with a+ b+ d = a+ +

�

d = 1, beef up short lauses

using l+ l

0

= 1 () l+ l

0

+ a = 1 and l = 1 ()

�

l+ b+ = 1.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 289

Shaefer

Ben-Dor

Halevi

Mallah

CPLEX

GUROBI

Xeon omputer

langford

per minute

Jabbour

Lonla

Sa��s

Salhi

exlusion lauses

at-most-one

[Thomas J. Shaefer proved the NP-ompleteness of 1-in-3 SAT as a speial ase

of onsiderably more general results, in STOC 10 (1978), 216{226.℄

518. (a) A = (

x y y

y x y

y y x

), where x =

�1

1

0

0

, y =

1

�1

1

1

.

(b) Twie in the n variable rows and n variable olumns; one in the 3m output

rows and 3m input olumns; never in the 3m input rows and 3m output olumns.

() By (a), eah way to hoose 2s in di�erent rows and olumns ontributes zero

to the permanent unless, in every lause, the subset of hosen inputs is nonempty and

mathes the hosen outputs. In the latter ase it ontributes 16

m

2

n

. [See A. Ben-Dor

and S. Halevi, Israel Symp. Theory of Computing Systems 2 (IEEE, 1993), 108{117.℄

519. The unsatis�able problem orresponding to D1 and D2 has median running time

2099M� (losing to both fator �fo and fator lifo). The satis�able one orresponding

to D3 and D4 is unstable (as in Fig. 54), with median 903M� (winning over both).

520. (Solution by Sven Mallah, 2015, using solvers X and Y, where X was CPLEX 12.6

and Y was GUROBI 6, both used with emphasis on mixed-integer-program feasibility,

onstant objetive funtion, and solution limit 1.) With a time uto� of 30 minutes on a

single-threaded Xeon omputer, neither X nor Y ould solve any of the 46 problems A1,

A2, C1, C2, C3, C4, C5, C6, C8, D1, D2, E1, E2, F1, F2, G1, G2, G5, G6, G7, G8, K7,

K8, M5, M7, M8, O1, O2, P0, P1, P2, Q7, S3, S4, T5, T6, T7, T8, W2, W4, X1, X3,

X5, X6, X7, X8. (In partiular, this list inludes P0, S4, and X1, whih are extremely

easy for Algorithm C.) On the other hand both X and Y solved the langford problems

L3 and L4|whih were the toughest for Algorithm C| in less than a seond.

Algorithm C performs about 20G� per minute on a omparable Xeon. In these

experiments it signi�antly outperformed the geometri methods exept on problems

K0, K1, K2, L3, L4, and P4 (and some easy ases suh as B2).

Of ourse we must keep in mind that the partiular lauses in Table 6 aren't

neessarily the best ways to solve the orresponding ombinatorial problems with an

IP solver, just as they aren't neessarily the best enodings for a SAT solver. We are

omparing here only blak-box lause-solving speeds.

521. A variety of simple shemes has been surveyed by S. Jabbour, J. Lonla, L. Sa��s,

and Y. Salhi, arXiv:1402.1956 [s.AI℄ (2014), 13 pages.

522. For yles of length T we an introdue 27T variables xyz

t

for 1 � x; y; z � 3 and

0 � t < T , signifying that vertex (x; y; z) oupies slot t in the path. Binary exlusion

lauses :xyz

t

_:x

0

y

0

z

0

t

0

, when xyz = x

0

y

0

z

0

and t 6= t

0

or when xyz 6= x

0

y

0

z

0

and t = t

0

,

ensure that no vertex appears twie in the path, and that no two verties oupy the

same slot. A valid path is spei�ed via the adjaeny lauses

:xyz

t

_

_

fx

0

y

0

z

0

(t+1) mod T

j 1 � x

0

; y

0

; z

0

� 3 and jx

0

� xj+ jy

0

� yj+ jz

0

� zj = 1g:

We represent the shadows by introduing 36 variables a!b�, ba!�, a!�b, b�a!, �a!b, �ba!

for 1 � a � 2 and 1 � b � 3; here a!�b (for example) means that the shadow of

(x; z) oordinates has a transition between (a; b) and (a+1; b). These variables appear

in ternary lauses suh as (:xyz

t

_ :(x+1)yz

t

0

_ x!�z) ^ (:xyz

t

_ :(x+1)yz

t

0

_ x!y�)

whenever x < 3 and t

0

� t� 1 (modulo T). To exlude loops we append lauses like

:1!1� _ :2!1� _ :31!� _ :32!� _ :2!3� _ :22!� _ :1!2� _ :11!�;

this one exludes the loop in the example illustration. There are 39 suh loop-defeating

lauses, one for eah of the 13 simple yles in eah shadow.

September 23, 2015

290 ANSWERS TO EXERCISES 7.2.2.2

break symmetry

unary lauses

bipartite

exlusions

at-most-one

Rikard

Winkler

delta sequene

Winkler

break symmetry

reeted ternary ode

spanning trees

van Deventer

hollow mazes

Mysterians

author

Tseytin

graph-based axioms

parity-related lauses

4-regular

girth

4SAT

Markstr�om

omparison of run times

endomorphisms

broke symmetry

Spene

3D mathing

Finally we an break symmetry by asserting the unary lauses 121

T�1

, 111

0

, 112

1

without loss of generality, after verifying that no solution an avoid all eight orners.

Clearly T must be an even number, beause the graph is bipartite; also T < 27.

If the method of exerise 12 is used for the exlusions, we obtain a total of 6264 lauses,

822 variables, and 17439 ells when T = 16; there are 9456 lauses, 1242 variables, and

26199 ells when T = 24. These lauses are too diÆult for Algorithm D. But Algo-

rithm L resolves them almost instantaneously for any given T ; they turn out to be satis-

�able if and only if T = 24, and in that ase there are two essentially di�erent solutions.

One of these yles, due to John Rikard (who introdued this problem at Cambridge

University, ira 1990), is beautifully symmetri, and it is illustrated on the over of

Peter Winkler's bookMathematial Mind-Benders (2007). It an be represented by the

delta sequene (322

�

3133

�

1

�

2112

�

3

�

2

�

23

�

1

�

3

�

312

�

1

�

1

�

2), where `k' and `

�

k' hange oordinate k by

+1 or �1. The other is unsymmetri and represented by (3321

�

21

�

3

�

3

�

1221

�

2323

�

1

�

1

�

31

�

2

�

1

�

3

�

2).

523. (Solution by Peter Winkler.) With oordinates (x; y; z) for 1 � x � m, 1 � y � n,

1 � z � 2, any yle with loopless shadows must ontain at least two steps (x; y; 1)���

(x; y; 2) and (x

0

; y

0

; 1) ��� (x

0

; y

0

; 2). We an assume that x < x

0

and that x

0

� x is

minimum. The m� 2 shadow ontains (x; 1)��� (x; 2) and (x

0

; 1)��� (x

0

; 2), together

with (say) the path (x; 1)���� � ����(x

0

; 1), but without the edge (x

00

; 2)���(x

00

+1; 2) for

some x

00

with x � x

00

< x

0

. The unique shortest path from (x; y) to (x

0

; y

0

) in the m�n

shadow ontains some edge (x

00

; y

00

)��� (x

00

+1; y

00

); hene (x

00

; y

00

; 1)��� (x

00

+1; y

00

; 1)

must our twie in the yle.

524. This problem involves lauses very muh like those for a yli path, but simpler;

we have T = 27 and no \wrap-around" onditions. With typially 1413 variables, 10410

lauses, and 28701 ells, Algorithm L shines again, needing only a gigamem or two to

handle eah of several ases that break symmetry based on starting and ending points.

There are four essentially di�erent solutions, eah of whih an be assumed to start

at 111; one ends at 333, another at 133, another at 113, and the other at 223. Using

the delta sequene notation above, they are: 332

�

3

�

32331

�

3

�

3

�

233

�

2

�

3

�

31332

�

3

�

3233 (whih is

reeted ternary ode); 31

�

3133

�

1

�

1211

�

3

�

3

�

13

�

1

�

3231

�

3133

�

1

�

1; 32

�

3231

�

3

�

23

�

2

�

3132

�

3233

�

2

�

2

�

122

�

1

�

2

�

2;

1122

�

1

�

1

�

213

�

1211

�

2

�

2

�

1

�

131122

�

1

�

1

�

21.

[Suh paths, and more generally spanning trees that have loopless shadows, were

invented in 1983 by Oskar van Deventer, who alled them \hollow mazes"; see The

Mathemagiian and Pied Puzzler (1999), 213{218. His Mysterians puzzle is based on

an amazing Hamiltonian path on P

5

P

5

P

5

that has loopless shadows.℄

525. The author's best solution, as of July 2015, had 100 variables, 400 lauses, and

1200 literals (ells); it was derived from Tseytin's examples of exerise 245, applied to a

more-or-less random 4-regular graph of girth 6 on 50 verties. Tseytin's onstrution,

with one odd vertex and 49 even ones, yields 400 lauses of 4SAT, whih are quite

hallenging indeed. It an be simpli�ed to a 3SAT problem by insisting further that

every even vertex must have degree exatly 2 in the subgraph spei�ed by true edges.

(See K. Markstr�om, J. Satis�ability, Boolean Modeling and Comp. 2 (2006), 221{227).

That simpli�ed problem still turned out to be fairly hallenging: It was proved

unsatis�able by Algorithm L in 3.3 T� and by Algorithm C in 1.9 T�. (But by applying

the endomorphisms of exerise 473, whih broke symmetry by adding 142 lauses of

length 6, the running time went down to just 263 M� and 949 M�, respetively.)

Another lass of small-yet-diÆult problems is worth mentioning, although it

doesn't �t the spei�ations of this exerise [see I. Spene, ACM J. Experimental Algo-

rithmis 20 (2015), 1.4:1{1.4:14℄: Every instane of 3D mathing whose representation

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 291

exat over problem

5SAT

ompetition

daning links

as an exat over problem has 5n rows and 3n olumns, with �ve 1s in eah olumn and

three 1s in eah row, an be represented as a SAT problem in 3n variables, 10n binary

lauses, and 2n quinary lauses, hene only 30n total literals. This 5SAT problem has

the same number of literals as the 3SAT problem disussed above, when n = 40; yet it

is onsiderably more diÆult if the mathing problem is unsatis�able. (On the other

hand, the problem of this kind that defeated all the SAT solvers in the 2014 ompetition

orresponds to a mathing problem that is solved almost instantaneously by the daning

links method: Algorithm 7.2.2.1D needs less than 60 M� to prove it unsatis�able.)

526. We prove by indution on jF j that it's possible to leave at most w(F) lauses

unsatis�ed, where w(F) =

P

C2F

2

�jCj

: If all lauses of the multiset F are empty we

have w(F) = jF j, and the result holds. Otherwise suppose the variable x appears in F .

Let l = x if w(fC j x 2 C 2 Fg) � w(fC j �x 2 C 2 Fg); otherwise l = �x. A simple

alulation shows that w(F j l) � w(F). [JCSS 9 (1974), 256{278, Theorem 3.℄

999. : : :

September 23, 2015

INDEX TO ALGORITHMS AND THEOREMS

Algorithm 7.2.2.2A, 28{29, 208.

Algorithm 7.2.2.2A

�

, 208{209.

Algorithm 7.2.2.2B, 31.

Lemma 7.2.2.2B, 58.

Theorem 7.2.2.2B, 59.

Algorithm 7.2.2.2C, 68.

Theorem 7.2.2.2C, 52{54.

Algorithm 7.2.2.2D, 33{34.

Algorithm 7.2.2.2E, 176.

Corollary 7.2.2.2E, 113.

Theorem 7.2.2.2E, 111.

Algorithm 7.2.2.2F, 205.

Theorem 7.2.2.2F, 86.

Theorem 7.2.2.2G, 70.

Algorithm 7.2.2.2I, 61.

Theorem 7.2.2.2J, 82.

Algorithm 7.2.2.2K, 216{217.

Theorem 7.2.2.2K, 90.

Algorithm 7.2.2.2L, 38{39.

Algorithm 7.2.2.2L

0

, 212.

Lemma 7.2.2.2L, 82.

Theorem 7.2.2.2L, 82.

Algorithm 7.2.2.2M, 82{83.

Theorem 7.2.2.2M, 83.

Algorithm 7.2.2.2P, 77.

Algorithm 7.2.2.2P

0

, 241.

Program 7.2.2.2P

0

, 242.

Algorithm 7.2.2.2R, 146.

Theorem 7.2.2.2R, 56.

Algorithm 7.2.2.2S, 93.

Theorem 7.2.2.2S, 87.

Algorithm 7.2.2.2T, 249{250.

Theorem 7.2.2.2U, 78{79.

Algorithm 7.2.2.2W, 79{80, 242.

Corollary 7.2.2.2W, 79.

Algorithm 7.2.2.2X, 44{45.

292

September 23, 2015

GOLDSMITHINDEX AND GLOSSARY

The republi of letters is at present divided into three lasses.

One writer, for instane, exels at a plan or a title-page,

another works away the body of the book,

and a third is a dab at an index.

| OLIVER GOLDSMITH, in The Bee (1759)

When an index entry refers to a page ontaining a relevant exerise, see also the answer to

that exerise for further information. An answer page is not indexed here unless it refers to a

topi not inluded in the statement of the exerise.

�S (boundary set), 58, 154, 180, 188.

0{1 matries, 106{109, 151, 176{177, 181,

see also Grid patterns.

1SAT, 49, 148.

2-olorability of hypergraphs, 185.

2SAT, 49, 51{54, 77{78, 80, 101, 144,

147, 149, 157, 159, 266.

3-regular graphs, 147, 154, 231.

3CNF, 3, 148.

3D MATCHING problem, 134, 225, 290{291.

3D visualizations, 116{118.

3SAT, 3{4, 47{51, 59, 60, 78{80, 93{94, 131,

135, 146, 148{151, 153, 182{184, 231.

4-yles, 109{110, 178, 225, 274.

4-regular graphs, 290.

4SAT, 49, 51, 150, 290.

5SAT, 51, 58, 224, 291.

6SAT, 51.

7SAT, 51, 151.

8 queens problem, 25, 282.

90

Æ

-rotational symmetry, 138, 202, 275.

100 test ases, 113{124, 127, 182, 184.

; (the empty set), 185.

� (the empty lause), 3, 27, 185, 291.

� (the empty string), 3, 85.

� (the tolerane for onvergene), 93{94.

" (o�set in heuristi sores), 126, 213.

�x (1s ount), see Sideways sum.

� (irle ratio), see Pi.

� (damping fator for variable ativity),

67, 125{127, 155, 286.

� (damping fator for reinforement), 93{94.

% (damping fator for lause ativity),

74, 125{127, 286.

� parameter, 125{127, 235, 286.

�(a; b) funtion, 147.

� (golden ratio), 146, 147, 160, 251.

 (agility threshold), 76{77, 124{127,

240, 286.

 (on�dene level), 93, 255.

a.s.: almost surely, 149, 153.

AAAI: Amerian Assoiation for Arti�ial

Intelligene (founded in 1979);

Assoiation for the Advanement of

Arti�ial Intelligene (sine 2007), 67.

Absorbed lauses, 168.

Aordion solitaire, 282.

Ahlioptas, Dimitris (Aqliìpta,

Dhm trh), 221.

ACT(), 74, 125.

ACT(k), 66{68, 75, 125, 132.

Ative path, 13.

Ative ring, 32.

Ativity sores, 67, 74{76, 125, 132,

155, 239.

Ayli orientation, 161.

Adams, Douglas Noel (42), 126.

Adaptive ontrol, 46, 126.

Addition, enoding of, 100{101, 114; see

also Full adders, Half adders.

Adjaeny matrix, 281.

Adjaent pairs of letters, avoiding, 248.

AGILITY, 76, 158, 240.

Agility level, 76, 124, 158.

Agility threshold (), 76{77, 124{127,

240, 286.

Ahmed, Tanbir (t;nbIr a;hemd), 5, 147.

Alava, Mikko Juhani, 80.

Aldous, David John, 219.

Algorithm L

0

, 39, 147.

Alie, 20{24, 139{141.

All-di�erent onstraint, 171.

All solutions, 143, 266.

Alon, Noga (OEL� DBEP), 174, 254, 260.

Aloul, Fadi Ahmed (¾Ø¿n¬¿m �Ì� Ý�n³),

112, 281, 284.

Analysis of algorithms, 146{152,

158{160, 164.

Anestors, 43.

AND operation, 9, 10, 13.

bitwise (x & y), 28, 29, 31, 37, 38, 66, 68,

76, 81, 196, 209{211, 220, 241.

Andr�e, Pasal, 131.

Anisimov, Anatoly Vasilievih (Anisimov,

Anatoli� Vasil~eviq), 249.

Annexstein, Fred Saul, 274.

Anti-maximal-element lauses, 56, 62, 97,

115, 153, 155, 157, 167.

293

September 23, 2015

294 INDEX AND GLOSSARY

Antisymmetry, 178.

Appier dit Hanzelet, Jean, 57.

April Fool, 7.

Ardila Mantilla, Federio, 256.

Arithmeti progressions, 4, 114.

avoiding, 135.

Armies of queens, 180.

As��n Ah�a, Roberto Javier, 267.

Asserting lause, see Foring lause.

Assoiative blok design, 4.

Assoiative law, 227.

Asymmetri Boolean funtions, 178.

Asymmetri elimination, 260.

Asymmetri tautology, see Certi�able

lauses.

Asymptoti methods, 53{54, 147{151,

164, 210, 226, 230, 283.

At-least-one onstraint, 171, 265.

At-most-one onstraint, 6, 97{99, 103,

104, 120, 134, 149, 170, 171, 238,

265, 266, 289.

ATPG: Automati test pattern generation,

see Fault testing.

Atserias, Albert Per��, 262.

Audemard, Gilles, 72.

Aurifeuille, L�eon Fran�ois Antoine,

fators, 14.

Autarkies, 44, 71, 146, 152, 177, 214,

215, 217.

testing for, 146, 214.

Autarky priniple, 44.

Automati test pattern generation, see

Fault testing.

Automaton, 272.

Automorphisms, 108, 111, 180, 197,

236, 277.

Autosifting, 220.

Auxiliary variables, 6, 8, 15, 17, 60, 97, 101,

104, 105, 109, 135, 136, 148, 170{174,

186, 262, 268, 276{279, 280{281, 287.

AVAIL stak, 257.

Averages, 120.

Avoiding submatries, 106{107.

Awkward trees, 227.

Axiom lauses, 54, 59, 100, 264, 266.

Bahus, Fahiem, 73, 271.

Bakjumping, 64, 68, 74, 132, 233, 236, 239.

Baktrak trees, see Searh trees.

Baktraking, 4, 27{34, 38{39, 64, 105,

128, 129, 132, 151, 176, 190, 204,

219, 231, 236.

Bailleux, Olivier, 8, 26, 135, 137, 143,

174, 272.

Baker, Andrew Baer, 98.

Balas, Egon, 206.

Baldassi, Carlo, 93.

Ball, Walter William Rouse, 180.

Ballot numbers, 78.

Balls and urns, 221.

Banbara, Mutsunori (), 264,

267, 268.

Bartley, William Warren, III, 129.

Basket weavers, 141.

Bather, Kenneth Edward, 266.

Baumert, Leonard Daniel, 265.

Bayardo, Roberto Xavier, Jr., 132.

Bayes, Thomas, networks, 95.

BCP: Boolean onstraint propagation,

see Unit propagation.

BDD: A redued, ordered binary deision

diagram, 17{18, 102, 103, 132, 137, 148,

174, 181, 188, 193, 194, 197, 202, 220.

BDD base, 219.

Belief propagation, 95.

Ben-Dor, Amir (XEC-OA XIN�), 289.

Ben-Sasson, Eli (OEYY -OA IL�), 57{58,

153, 231.

Benhmark tests, 35, 131{133, 139,

147, 190, 206.

100 test ases, 113{124, 127, 182, 184.

Bender, Edward Anton, 250.

Beresin, May, 275.

Berghammer, Rudolf, 204.

BerkMin solver, 132.

Berlekamp, Elwyn Ralph, 17.

Berman, Piotr, 224.

Bernhart, Frank Rei�, 188.

Bernoulli, Jaques (= Jakob = James),

distribution, multivariate, 89.

Bethe, Hans Albreht, 95.

Better reasons, 157.

Bias messages, 92.

Biased random bits, 12, 241.

Biere, Armin, v, 66, 76, 96, 129, 132, 166,

188, 258, 260, 261, 269, 280.

Big lauses, 145.

BIMP tables, 36{41, 43, 45, 124, 144, 235.

Binary addition, 114.

Binary lauses, 3, 6, 36, 124, 133, 155{156.

Binary onstraints, 171.

Binary deoder, 179.

Binary impliation graph, see Dependeny

digraph, 41.

Binary matries, 106{109, 151, 176{177,

181, see also Grid patterns.

Binary multipliation, 8.

Binary number system, 9, 98.

Binary reurrene relations, 189.

Binary relations, 56.

Binary searh, 187.

Binary strings, 181.

Binary tensor ontingeny problem,

142, 151.

Binomial oeÆients, 149.

Binomial onvolutions, 250.

Bipartite graphs, 58, 177, 290.

Bipartite mathing, 150.

September 23, 2015

INDEX AND GLOSSARY 295

Bipartite struture, 90.

Birthday paradox, 49.

Bishops, 141.

Bitmaps, 17, 139.

Bitwise operations, 11, 12, 81, 158, 161,

241, 246, 258{259.

Blak and blue priniple, 146, 216.

Blak and white priniple, 146.

Blake, Arhie, 130.

blit, 234, 236.

Blok deomposition, 275.

Blok designs, 106.

Blok diagonal matries, 177.

Bloked lauses, 102, 215, 260, 261, 269.

binary, 146.

elimination of, 167.

Bloked self-subsumption, 167.

Bloking digraph, 215.

Bloks in Life, 197, 200.

Bloom, Burton Howard, oding, 258.

Bloom, Thomas Frederik, 185.

Bob, 20{24, 115, 139{141.

B�ohm, Max Joahim, 131.

Bollob�as, B�ela, 54, 220.

Bonaina, Maria Paola, 129.

book graphs, 126, 179.

Boole, George, 129.

Boolean hains, 9, 11, 12, 102, 114, 173.

optimum, 178{179.

Boolean formulas, 1.

Boolean funtions, 14{16.

expressible in kCNF, 220.

synthesis of, 178{179.

Boppana, Ravi Babu, 174.

Borgs, Christian, 54.

Bottom-up algorithms, 252.

Boufkhad, Yaine (��³Øp ÑÛ�nÚ), 8, 26, 131,

135, 137, 143, 174, 272.

Boundary sets, 58, 154, 180, 188.

Boundary variables, 230.

Bounded model heking, 16{24, 132,

137{141, 157, 179{180.

Branhing heuristis, 105, 144, see also

Deision literals.

Branhing programs, 102, 173, 174.

Branhless omputation, 242.

Braunstein, Alfredo, 90, 91, 256.

Breadth-�rst searh, 37, 43, 68, 130, 235.

Break ount, 79.

Breaking symmetries, vii, 5, 19, 105{114,

138, 176{181, 187, 188, 190{192, 238,

267, 281{283, 285, 288{290.

in graph oloring, 99{100, 114, 171,

179, 187.

Broadasting, 170.

Broadword omputations, 11, 12, 158,

161, 246, 258.

Brown, Cynthia Ann Bloher, 30, 32,

131, 151, 226.

Brown, Thomas Craig, 185.

Brummayer, Robert Daniel, 269.

Brunetti, Sara, 206.

Bryant, Randal Everitt, v, 7, 187.

BST(l), 211.

BSTAMP ounter, 211.

Bukingham, David John, 197, 200.

Buddy system, 36, 144, 235.

Bugrara, Khaled Mohamed

(Ò�mǱ¯Øpm �Ì�Ë �¿n�), 226.

Bugs, 16, 69, 77, 133, 240.

Bulnes-Rozas, Juan Bautista, 215.

Bumped proess, 21.

Bundala, Daniel, 196.

Burney, Charles, viii.

Burns, James Edward, 204.

Buro, Mihael, 131.

Buss, Samuel Rudolph, v, 153, 270.

Bystanders, see Easy lauses.

C-SAT solver, 131.

Cahe memories, 24.

Calabro, Chris, 288.

Candidate variables, 40{44, 131, 214.

Canonial forms, 138, 248.

Cardinality onstraints, 7{8, 26, 104, 106,

113, 114, 121, 135, 143, 187, 188,

193, 194, 196, 204, 285.

for intervals, 100, 190, 280.

Carlier, Jaques, 131.

Carlitz, Leonard, 162.

Carriers in Life, 197, 200.

Carroll, Lewis (= Dodgson, Charles

Lutwidge), 129{130.

Carry bits, 9, 12, 101, 192, 193.

Cartier, Pierre Emile, 83, 86, 163.

Case analysis, 27, 130.

CDCL (onit driven lause learning)

solvers, 62{71, 103, 121, 132{133, 155.

ombined with lookahead solvers, 129.

ompared to lookahead solvers, 98{100,

118{121, 182, 290.

Cells of memory, 28, 122{124.

Cellular automata, 17, 202.

Certi�able lauses, 168, 260.

Certi�ates of unsatis�ability, 69{71,

157, 169, 176, 178.

Cha� solver, 67, 132.

Chain rule for onditional probability, 254.

Chains, see Boolean hains, Resolution

hains, s-hains.

Channel assignment, 136.

Channeling lauses, 264.

Charateristi polynomial of a matrix,

163, 218.

Chavas, Jo�el, 91.

Chayes, Jennifer Tour, 54.

Chebyshev (= Tshebyshe�), Pafnutii

Lvovih (Qebyxev�, Pafnut��

September 23, 2015

296 INDEX AND GLOSSARY

L~voviq� = Qebyxev, Pafnuti�

L~voviq), inequality, 221.

polynomials, 247.

Cheshire Tom, 24{26, 115, 142{143.

Chess, 7, 170.

Chessboards, 18, 25, 99, 106, 115, 138, 180.

Chiral symmetry (rotation but not

reetion), 138, 202, 275.

Chordal graphs, 163{164.

Chromati number �(G), 99, 135{136,

147, 174, 281.

Chung Graham, Fan Rong King

(), 283.

Chv�atal, V�alav (= Va�sek), 5, 52, 59, 185.

Cimatti, Alessandro, 132.

Ciruits, Boolean, 10, 101{103, 114, see

also Boolean hains.

Cirular lists, 32.

Clarke, Edmund Melson, Jr., 132.

Clashing pairs of letters, 84.

Clausal proofs, see Certi�ates of

unsatis�ability.

Clause ativity sores, 74, 239.

Clause-learning algorithms, 61{62, 103,

118, 121, 132{133, 154{155.

Clauses per literal, 150, 231; see also

Density of lauses.

Claw graph, 249.

Clih�es, 76.

Clique Loal Lemma, 165.

Cliques, 81, 100, 162, 167, 169, 171,

179, 190.

overing by, 165.

Closest strings, 114, 181, 182.

Clusters, 166.

CNF: Conjuntive normal form, 9, 101,

154, 173, 193, 196.

Coomparability graphs, 249, 250.

Coe, Timothy Vane, 201.

Coexisting armies of queens, 180.

Cographs, 163, 250.

Cohen, Bram, 79, 246.

Coja-Oghlan, Amin, 221.

Colexiographi order, 206, 278.

Coloring a graph, 6{7, 99{100, 153, 179, 260.

frational, 135.

multiple, 135.

of queens, 99{100, 114{115, 171.

radio, 136.

Column sums, 151.

Commutative law, 27, 180, 227.

partial, 83, 250{251.

Comparator modules, 115, 137.

Comparison, lexiographi, 101, 111{113.

Comparison of running times, 34{35, 39,

69, 97{100, 105{107, 110, 112, 118{128,

182, 184, 218, 237, 264, 281, 290.

Compensation resolvents, 39, 144, 147.

Competitions, 131{133, 291.

Complement of a graph, 134.

Complementation of unary representations,

100.

Complemented literals, 2{4, 37, 62{64,

78, 111, 210, 266.

Complete binary trees, 8, 135, 230.

Complete bipartite graphs K

m;n

, 250, 254.

Complete graphs K

n

, 153, 178, 186, 262.

Complete k-partite graphs, 250, 262.

Complete t-ary trees, 160.

Compressing, see Purging unhelpful lauses.

Conditional autarkies, 215.

Conditional expetation inequality, 150.

Conditional symmetries, 107, see

Endomorphisms.

Conditioning operations (F j l and F jL), 27,

96, 143, 157, see Unit onditioning.

Cones in trae theory, 87.

Con�dene level (), 93, 255.

Conit lauses, 63, 70, 171; see also

Prelusion lauses.

Conit driven lause learning, 62{69,

103, 121, 132{133, 155.

Conits, 62, 124, 132.

Conjuntive normal form, 1, 9, 101,

154, 173, 193, 196.

irredundant, 257.

Conjuntive prime form, 104.

Conneted graphs, 177.

Connetedness testing, 169{170.

Connetion puzzles, 170.

CoNP-omplete problems, 3, 207.

Conseutive 1s, 88, 175, 254.

Consensus of impliants, 130.

Consistent Boolean formulas, see

Satis�able formulas.

Consistent partial assignments, 30, 165.

Constrained variables in partial assignments,

165{166.

Contests, 131{132.

Context free languages, 175.

Contiguous United States, 136.

Contingeny tables, binary, 142.

3D, 151.

Convex funtions, 216.

Convex hulls, 247.

Convolution priniple, 250.

Conway, John Horton, 17, 139, 201.

Cook, Stephen Arthur, 61, 62, 130{131,

154, 229, 237.

ook lauses, 157.

Cooper, Ale Steven, 285.

Core assignments, 166.

Core of Horn lauses, 174, 216.

Coupon olletor's test, 220.

Covering assignments, 166, 221, 255.

Covering problems, 2, 193, 194, see also

Domino overings.

Covering strings, 181.

September 23, 2015

INDEX AND GLOSSARY 297

CPLEX system, 26, 289.

CPU: Central Proessing Unit (one

omputer thread), 121.

Crawford, James Melton, Jr., 98, 113.

Cray 2 omputer, 137.

Critial setions, 21{23, 140{141.

Crossover point, see Threshold of

satis�ability.

Crusoe (= Kreutznaer), Robinson, vii.

CSP: The onstraint satisfation

problem, 283.

Cube and onquer method, 129.

Cubi graphs (3-regular, trivalent),

147, 154, 231.

Cu�ink pattern, 255.

Culver, Clayton Lee, 185.

Cut rule, 59.

Cuto� parameters, 41, 145.

Cutting planes, 184, 206.

Cyle detetion problem, 260.

Cyle graphs C

n

, 135, 160, 262.

Cyle struture of a permutation, 108,

112{113, 163, 178, 277.

Cyli DPLL algorithm, 33.

Cyli patterns, 19.

Cyli permutations, 163.

da Vini, Leonardo di ser Piero, 7.

Dadda, Luigi, 9, 114, 136, 173.

Dags: Direted ayli graphs, 54.

of resolutions, 54{56, 70.

Damping fators, 46, 67, 74, 76, 93{94,

125, 126, 155.

Daning links, 5, 121, 134, 208, 288, 291.

Danthev, Stefan Stoyanov (Danqev,

Stefan Sto�nov), 110.

Darwihe, Adnan Youssef

(�Ú×�� µ�ØÚ ÎnÏ�«), 67, 262.

Data strutures, 28{34, 36{38, 43, 66{67,

80, 95{96, 143{145, 155{156, 159,

167, 238, 273.

Davis, Martin David, 9, 31{32, 130, 298.

Dawson, Thomas Rayner, 170.

De Morgan, Augustus, laws, 3.

de Vries, Sven, 206.

de Wilde, Boris, 213.

Deadlok, 22{23.

Debugging, 69, 77.

Dehter, Rina Kahana (XHKC �PDK DPIX), 67.

Deision literals, 62, 69, 124, 132.

Deision trees, see Searh trees.

Deomposable matries, 177.

Default parameters, 93, 125{126.

Default values of gates, 11.

De�nite Horn lauses, 174.

Defoe, Daniel (= Daniel Foe), vii.

Degree of a vertex, 191.

Degrees of truth, 37{39, 42{43, 45{46, 216.

Dekker, Theodorus Jozef, 140.

Del Lungo, Alberto, 206.

Delayer, 55{56, 152{153.

Deletion from a heap, 234.

Delta sequene, 290.

Demenkov, Evgeny Alexandrovih

(Demenkov, Evgeni� Aleksandroviq),

280.

Density of lauses: The number of lauses

per variable, 50{51, 150, 231, 288.

Dependene graph in trae theory, 248.

Dependene of literals, 63.

Dependeny digraph (of literals), 41, 131,

168, 215, 237, 260.

Dependeny-direted baktraking, see

Bakjumping.

Dependeny graph (of events), 82, 164, 165.

Dependeny on a variable, 137.

Depth-�rst searh, 130.

Dequen, Gilles Maurie Mareau, 131.

Determinants, 162, 163, 251.

Deterministi algorithm, 17, 120.

Deventer, Mattijs Oskar van, 290.

DFAIL, 46, 147.

Dfalse literals, 45.

Diagonals of a matrix, 24{25, 141{142.

Diagram of a trae, 84.

D��az Cort, Jos�e Maria (= Josep), 51.

Dik, William Brisbane, 180.

DiÆult instanes of SAT, 5, 14, 26, 51,

55{59, 118{121, 153{154, 184, 190,

192, 197, 206, 280.

Digital tomography, 24{26, 115, 141{143,

167, 285.

Digraphs, 54, 108, 161, 162, 263, see also

Bloking digraph, Dependeny digraph,

Impliation digraph.

Dijkstra, Edsger Wybe, 22, 202, 204.

DIMACS: Center for Disrete Mathematis

and Theoretial Computer Siene, 131.

DIMACS: DIMACS Series in Disrete

Mathematis and Theoretial Computer

Siene, inaugurated in 1990.

Ding, Jian (), 51.

Diret enoding, 98, 114, 171, 186,

264, 265, 281.

Diret sum of graphs or matries, 162, 177.

Direted ayli graphs of resolutions,

54{56, 70.

Direted graphs, see Digraphs.

Disarding the previous learned lause,

72, 156.

Disrepany patterns, 114, 182.

Disjoint shortest paths, 276.

Disjuntive normal forms, 14, 115,

130, 195, 257.

Distane d(u; v) in a graph, 262.

Distint literals, 2.

Division of traes, 85, 161, 250.

September 23, 2015

298 INDEX AND GLOSSARY

DNF: Disjuntive normal form, 14, 115,

130, 195, 257.

Dodgson, Charles Lutwidge, 129{130.

Domino overings, 110, 114, 115, 143,

177, 178.

Don't-ares, 194, 280.

Double lique hints, 100, 114, 171.

Double oloring, 115, 135.

Double lookahead, 45{46, 126, 131, 286.

Double order, 214.

Double truth, 45.

Doubly linked lists, 28, 257, 259.

Downhill resolution, 96, 166.

Downhill transformations, 95.

Doyle, Arthur Ignatius Conan, 72.

DPLL (Davis, Putnam, Logemann,

Loveland) algorithm, 32{33, 62.

with lookahead, 38, 131.

DT (double truth), 45.

Dtrue literals, 45.

Dual of a Boolean funtion, 130, 174.

Dubois, Olivier, 131.

Dudeney, Henry Ernest, 114, 263.

Dufour, Mark, 37.

Dull, Brutus Cylops, 181.

Durfee, William Pitt, square, 276.

Dynami storage alloation, 144.

Dynamial system, disrete, 16.

e, as soure of \random" data, 12, 193.

Eager data strutures, 30, 36, 156.

Easy lauses, 149.

Eaters in Life, 20, 139.

E�en, Niklas G�oran, v, 67, 96, 166,

203, 260, 268.

Ehlers, Thorsten, 196.

Eightfold symmetry, 138, 198.

Elegane, 35{36, 196.

Elimination of lauses, 167{168; see also

Purging unhelpful lauses.

Elimination of variables, 60{61, 95{97, 101,

102, 129, 130, 154{155, 166{168, 173,

174, 256{257, 259{260, 270, 272.

Embedded graphs, 169, 262.

Empilements, 84, 161, 248.

Empirial performane measurements,

122{124.

Empty lause (�), 3, 27, 185.

Empty list, representation of, 33, 210.

Empty partial assignment, 166.

Empty set (;), 185.

Empty string (�), 3, 85.

Enoding into lauses, 6, 18, 97{105, 120,

134, 170, 179, 198, 202.

ternary data, 100, 141, 179.

Endomorphisms, 107{111, 177{178,

181, 281, 290.

Equal sums, enoding of, 174.

Equally spaed 1s, 4, 114, 135; see

also waerden .

Equivalene lasses in trae theory, 84.

Equivalene of Boolean funtions, 178.

Erd}os, P�al (= Paul), 81, 107, 190, 281.

disrepany patterns, 114, 179, 182.

Erp rules, 95{96, 166{168, 259.

Evaluation of Boolean funtions, 137,

178{179, 194.

Even-length yles, 277.

Even-odd endomorphisms, 110, 177{178.

Exat over problems, vii, 2, 5{6, 28, 134,

183, 186, 219, 225, 257, 291.

by pairs (perfet mathings), 109{110,

see also Domino overings.

by triples (3D MATCHING), 134,

225, 290{291.

frational, 135{136.

Exlusion lauses, 6, 21, 99, 114, 134,

149, 153, 238, 260, 289.

Exlusive or, ternary, 136.

Existential quanti�ers, 60.

Expander graphs, 58, 231.

Exploitation stak, 259.

Exploration phase of lookahead, 40, 43{44.

Exponential time, 144.

hypothesis, 288.

Extended resolution, 60, 71, 133, 154,

168, 215.

Extreme distribution, 87, 89, 163.

fator �fo(m;n; z), 10, 12, 114, 184, 192.

fator lifo(m;n; z), 10, 114, 184, 192.

fator rand (m; n; z; s), 10, 184.

Fatorization, 8{10, 136, 184, 192.

of traes, 86, 162, 250.

Failed literals, 97, 167, 175, 269.

Fallaious reasoning, 16, 284.

False hits, 258.

False literals preferred, 31, 33, 67,

125{127, 286.

Fanout gates, 10{14, 136.

Fat lauses, 58.

Fault testing, 10{14, 114, 126, 136{137,

167, 260.

Feedbak mehanism, 46, 104.

Fermat, Pierre de, 10.

Fernandez de la Vega, Weneslas, 52.

Fibonai, Leonardo, of Pisa (= Leonardo

�lio Bonaii Pisano), numbers,

160, 215, 254.

ruler funtion, 246.

Fihte, Johannes Klaus, 262.

Field of a variable, 91, 165.

FIFO: �rst in, �rst out, 10.

Finite-state automata, 175.

First in, �rst out, 10.

First moment priniple, 53, 148, 150.

First order logi, 59, 130.

Fishetti, Matteo, 206.

Fixed point of endomorphisms, 177.

September 23, 2015

INDEX AND GLOSSARY 299

Fixed values of literals, 37, 42{46.

FKG inequality, 89.

Flag bits, 235.

Flammenkamp, Ahim, 198.

Flexibility oeÆients, 91.

Flikering state variables, 141.

Flipops in Life, 138, 143.

Floating point arithmeti, 91{92, 217, 239.

overow, 67.

Floor tiling, 115, 143, 199.

Flower snarks, 69, 147, 153, 157.

Flushing literals and restarting, 68, 75{77,

124, 132, 157, 158, 169, 234, 246.

Foata, Dominique Cyprien, 83, 86, 163.

Fous of attention, 41, 67, 91, 132.

Foe, Daniel (= Daniel Defoe), vii.

Footprint heuristi, 279.

Fored literals, 45.

Foring lause, 62, see Unit propagation.

Foring representations, 104{105, 174,

175, 274.

Forests, 43, 87, 163.

Forgetting lauses, 168, 169, see Purging

unhelpful lauses.

Four bit protool, 115.

Four Color Theorem, 7.

Fourfold symmetry, 138.

Frational oloring number, 135.

Frational exat over, 135{136.

Franes, Moti (QQPXT ICEN), 285.

Frano, John Vinent, 131, 148, 225, 274.

Free literals and free variables, 38,

66, 165{166.

Freeman, Jon William, 131.

Friedgut, Ehud (HEBCIXT CED�), 51.

Frontier (�

in

), 180, 188.

Frost, Daniel Hunter, 67.

fsnark lauses, 69, 71, 114, 147{148,

153, 157.

Full adders, 9, 136, 179, 192, 268, 278.

modi�ed, 114, 280.

Full runs, 73, 158, 235.

Furtlehner, Cyril, 91.

G�: Gigamems = billions of memory

aesses, 97, 118.

per minute, 289.

Gadgets, 134, 183.

Gallager, Robert Gray, 95.

Game of Life, 17{20, 97, 114, 137{139,

143, 167.

Garden of Eden, 139.

Gardner, Martin, 7, 19, 181, 188, 283.

Gates, 10{13, 101{103, 121, 136.

GB GATES, 13{14.

Gebauer, Heidi Maria, 224.

Geek art, 116{117.

Generalization of resolution, 226.

Generating funtions, 85, 89{90, 151,

158{159, 164, 188, 194, 219, 222,

230, 284.

exponential, 162.

Generi graph, 174.

Gent, Ian Philip, v, 265, 283.

Gentzen, Gerhard Karl Erih, 59.

Geometri distribution, 244, 262.

Georges, John Periles, 192.

Gerdes, Paulus Pierre Joseph, 205.

Gessel, Ira Martin, 248.

Giant strong omponent, 52.

Gigamem (G�): One billion memory

aesses, 35, 39, 97, 188.

per minute, 289.

Ginsberg, Matthew Leigh, 113.

Gipatsi patterns, 141.

Girth of a graph, 176, 290.

Given literals (F j l or F jL), 27, 96, 143,

157; see also Unit onditioning.

Gliders in Life, 19, 138{139, 197, 201.

symmetry of, 200.

Global ordering, 284.

Gluose measure, see Literal blok distane.

Goerdt, Andreas, 52.

Goldberg, Allen Terry, 131, 225.

Goldberg, Eugene Isaaovih (Gol~dberg,

Evgeni� Isaakoviq), 70, 132.

Goldman, Jay Robert, 250.

Goldsmith, Oliver, 293.

Golomb, Solomon Wolf, 265.

Gonz�alez-Are, Te�o�lo Franiso, 268.

Gosper, Ralph William, Jr., 20, 198.

Goultiaeva, Alexandra Borisovna

(Gul~t�eva, Aleksandra Borisovna),

73.

Grabarhuk, Peter Serhiyevih (Grabarquk,

Petro Serg��oviq), 263.

Grabarhuk, Serhiy Alexeevih (Grabarquk,

Serg�� Oleks��oviq), 263.

Grabarhuk, Serhiy Serhiyevih (Grabarquk,

Serg�� Serg��oviq), 263.

Graham, Ronald Lewis (), 185, 283.

Graph-based axioms, 59, 154, 178, 290.

Graph oloring problems, see Coloring

a graph.

Graph embedding, 169, 262.

Graph layout, 116{118.

Graph quenhing, 114, 179{180, 281.

Gray, Frank, odes, 201, 282.

Greedy algorithms, 80, 136, 172.

Greenbaum, Steven Fine, 102.

Grid graphs, 110, 136, 151, 162{163.

list oloring of, 151.

Grid patterns, 17{20, 24{26, 137{139, 142.

rotated 45

Æ

, 141{142.

Griggs, Jerrold Robinson, 192.

Grinbergs, Emanuels Donats Fr��drihs

J�anis, 218.

September 23, 2015

300 INDEX AND GLOSSARY

Gritzman, Peter, 206.

Gr�otshel, Martin, 264.

Gu, Jun (), 77.

Gu�eret-Jussien, Christelle, 267.

Guilherme De Carvalho Resende,

Mauriio, 16.

GUROBI system, 289.

Guy, Rihard Kenneth, 17, 19, 107.

Gwynne, Matthew Simon, 105, 270, 273.

Hakers, 199.

Haken, Armin, 57, 58.

Halevi, Shai (IELD IY), 289.

Half adders, 9, 192, 268.

Halting problem, 130.

Hamadi, Youssef (âamady ©uÓaf, Ý�nÌ�

µ�ØÚ), 236.

Hamilton, William Rowan, yles, 169.

paths, 184.

Hamming, Rihard Wesley, distane, 285.

Han, Hyojung (), 236.

Handwaving, 89.

Hanzelet, see Appier dit Hanzelet.

Hard lauses, 168.

Hard sudoku, 183.

Hartman, Christiaan, 202.

Haven, G Neil, 131.

Head of the list, 28.

Header elements, 225.

HEAP array, 67, 158, 233{235, 240.

Heap data struture, 67, 214.

insertion and deletion from, 234.

Heaps of piees, 83.

Height of a literal, 214.

Height of a trae, 85.

Heilmann, Ole Jan, 251.

Helpful rounds, 169.

Heule, Marienus (= Marijn) Johannes

Hendrikus, iv, v, 37, 40, 46, 71, 75,

97{98, 104, 129, 134, 147, 182, 186,

202, 213, 239, 260, 261, 263.

Heuristi sores, 90{95.

for lauses, 72{74, 125{127, 158, 239, 286.

for variables, 40{44, 61, 67, 80, 126,

145{147, 214.

Hidden weighted bit funtion, 173.

Hierarhy of hardness, 176, 178.

Hilton, Anthony John William, 191.

Hint lauses, 100, 114, 171.

Hirsh, Edward Alekseevih (Girx, �duard

Alekseeviq), 215.

Historial notes, 32, 59{60, 105,

129{133, 231.

Hollow mazes, 290.

Holmes, Thomas Sherlok Sott, 72.

Homomorphi embedding, 169, 262.

Honest representations, 105, 270.

Hoory, Shlomo (IXEG DNLY), 224.

Hoos, Holger Hendrik, v, 125{127, 133, 160.

Horn, Alfred, lauses, 132, 166, 176,

216, 263.

ore of, 174, 216.

renamed, 176, 263.

Horsley, Daniel James, 274.

Horton, Robert Elmer, numbers, 152.

Hsiang, Jieh (), 129.

Hume, David, 1.

Hunt, Warren Alva, Jr., 71, 239.

Hutter, Frank Roman, 125, 133.

Hypergraph 2-olorability, 185.

Hyperresolution, 56, 228, 257.

Idle Year solitaire, 180.

If-then-else operation (u? v: w), 81,

102, 152, 173, 219.

ILS: Iterated Loal searh, 125.

Impagliazzo, Russell Graham, 55, 288.

Impliation digraph, 52, 144.

in situ deletion, 156.

Inlusion and exlusion, 221{222, 256.

Inonsistent lauses, see Unsatis�able

formulas.

Indeomposable matries, 177.

Independent verties, 7, 147.

Indued graph, 262.

Indution proofs by mahine, 24, 203.

In�nite loop, 244.

Initial guess for literals, 31, 33, 66,

125{127, 286.

Initial state X

0

, 16{17, 21, 24, 140, 202.

Inproessing, 95, 168.

Input and output, 120.

Input states, 175.

Insertion into a heap, 234.

Integer programming, 26, 184, 206, 285.

Interative SAT solving, 142.

Interlaed roots of polynomials, 163.

Internet, ii, iii, v, 118.

Intersetion graphs, 84, 161.

Interval graphs, 87, 163.

Intervals, ardinality onstrained to,

100, 190, 280.

Invariant assertions, 23{24, 43, 115, 140,

203, 216, 217, 255, 261.

Inverse permutations, 112, 265.

Inversions of a permutation, 213.

Involution polynomial of a set, 163.

Involutions, signed, 112{113, 180, 277{278.

INX array, 38, 211, 286.

IP: Integer programming, 26, 184, 206, 285.

Irredundant CNF, 257.

Irreexive relation, 56.

Irving, Robert Wylie, 151.

Isaas, Rufus Philip, 218.

Isolated verties, 262.

IST array, 38.

ISTACK array, 38, 145.

ISTAMP ounter, 37{38, 46, 145.

September 23, 2015

INDEX AND GLOSSARY 301

Iterated loal searh, 125.

Iwama, Kazuo (), 224.

Jabbour, Sa��d (jabur Óayd, �Øq~ �Û¬�),

236, 289.

Jaquet, Philippe Pierre, 225.

Jagger, Mihael Philip \Mik", 1.

Janson, Carl Svante, v.

J�arvisalo, Matti Juhani, 105, 132, 260, 261.

Jeanniot, Serge, 215.

Jeavons, Peter George, v.

Jerrum, Mark Rihard, 151.

Job shop problems, 172.

Johnson, David Stier, 184, 191.

Johnson, Samuel, viii.

Join of graphs, 162.

k-indution, 203.

K�: Kilomems = thousands of memory

aesses, 98.

K

m;n

(omplete bipartite graph), 176.

Kamath, Anil Prabhakar (aEnl þBAkr

kAmT), 16.

Kaporis, Alexis Constantine Flora (Kapìrh,

Alèxio Kwnstant�nou Fl¸ra), 51.

Karmarkar, Narendra Krishna (nr��dý

�k	Z krmrkr), 16.

Karp, Rihard Manning, 52, 268.

Karpi�nski (= Karpinski), Marek

Miezys law, 224.

Karpovsky, Mark Girsh, 285.

Kasif, Simon (SIQK OERNY), 265.

Katona, Gyula (Optim�alis Halmaz), 107.

Kautz, Henry Alexander, 79, 132.

Kaye, Rihard William, 207.

Keller, Robert Marion, 83.

Kernel of a graph, 99, 134, 186, 188, 218.

lauses for, 114, 134.

Kilomem (K�): One thousand memory

aesses, 39, 98.

Kim, Jeong Han (), 54.

King moves, 134, 169.

Kingwise onneted ells, 170.

Kirousis, Lefteris Miltiades (KuroÔsh,

Eleujèrio Milti�dh), 51.

Kitagawa, Satoshi (), 264, 267.

Kleine B�uning (= Kleine-B�uning), Hans

Gerhard, 131, 185.

Knapsak problem with a partial

ordering, 158.

Knessl, Charles, 225.

Knight moves, 115, 169.

Knuth, Donald Ervin (), i, vi, 1,

14, 16, 19, 51{52, 72, 74, 93, 94, 118,

125{127, 192, 193, 195, 197, 202,

210, 212, 213, 216, 227, 235{237,

240, 242, 249, 260, 264{267, 275,

278, 279, 282, 286, 290.

Knuth, John Martin (), see Truth.

Kojevnikov, Arist Alexandrovih

(Ko�evnikov, Arist Aleksandroviq),

280.

Kolipaka, Kashyap Babu Rao (G�Þ�

©

�G �G�l®

�

a

�� g�k�Ò), 90, 161, 255.

Konev, Boris Yurevih (Konev, Boris

�r~eviq), 281.

Kou�ril, Mihal, 5, 185.

Kroening, Daniel Heinrih Friedrih

Emil, v, 203, 288.

Krom, Melven Robert, lauses, see 2SAT.

kSAT, 3, 49{51, 146, 148, 150, 183.

Kulikov, Alexander Sergeevih (Kulikov,

Aleksandr Sergeeviq), 280.

Kullmann, Oliver, v, 5, 105, 129, 147, 152,

215, 216, 218, 228, 260, 270, 273.

Kwekkeboom, Cornelis (= Kees)

Samu�el, 202.

L(2; 1) labeling of graphs, 136.

L

7

lattie, 255.

Labeled pyramids, 162.

Labeled traes, 162.

Lalas, Efthimios George (L�la, EujÔmio

Gewrg�ou), 51.

Lamport, Leslie B., 24, 204.

Land mines, 142.

Landman, Brue Mihael, 185.

Langford, Charles Dudley, problem of

pairs, vii, 5{6, 34, 98, 121, 125,

134, 170, 186, 289.

langford (n), 6, 34{35, 39, 97, 98, 114,

121, 134, 210, 236, 289.

langford

0

(n), 6, 98, 114, 134, 289.

langford

00

(n), 98.

langford

000

(n), 264.

Larrabee, Tray Lynn, 13, 137.

Las Vegas algorithms, 159{160.

Last in, �rst out, 10.

Late Binding Solitaire, 114, 180.

Latin retangle onstrution, 151.

Latties of partial assignments, 165{166.

Lauria, Massimo, v, 56.

Laurier, Jean-Louis, 187.

Lazy data strutures, 30{34, 36, 65,

156, 234.

Le Berre, Daniel Claude Yves, 132.

Learned lauses, 63{65, 70{71, 124, 132, 168.

sequene of, 70, 156.

Learning a Boolean funtion, 14{16,

115, 137.

Least ommon anestor, 253.

Left division of traes, 85, 161.

Left fator of a trae, 161{162.

Lemaire, Bernard Fran�ois Camille, 282.

Lemma generation, see Clause-learning

algorithms.

Length of a trae, 85.

Lettmann, Theodor August, 185.

Level 0, 62, 66, 124, 156, 207, 233.

September 23, 2015

302 INDEX AND GLOSSARY

Levels of values, 62{66, 156, 233.

Levesque, Hetor Joseph, 50.

Levine, Eugene, 275.

Lewis, Jerome Luther, 275.

Lex-leader: The lexiographially smallest

element, 111, 283.

Lexiographi order, 4, 25, 26, 30, 101, 105,

107, 109, 111{113, 115, 197, 282{283.

enoded in lauses, 101, 173, 174.

Lexiographi row/olumn symmetry,

106{107, 177, 181, 274.

Lexiographially smallest (or largest)

solution, 25{26, 111{113, 142,

157, 282, 283.

Lexiographially smallest traes, 84,

161, 162, 250.

Leyton-Brown, Kevin Eri, 125, 133.

Li, Chu Min (), 131.

Li, Wei (), 149.

Lieb, Elliott Hershel, 251.

Life, Game of, 17{20, 97, 114, 137{139,

143, 167.

Light speed in Life, 139.

Line graph of a graph, 147, 249.

Linear equations, 26, 231.

Linear extensions, see Topologial sorting.

Linear inequalities, 184.

enoding of, 100{101, 172, 173.

Linear programming relaxation, 26.

Lines, abstrated, 106.

Links, daning, 5, 121, 134, 208, 288.

Lisitsa, Alexei Petrovih (L�s�a, Al�kse�

P�trov�q), 281.

List oloring of graphs, 135, 151.

List merging, 231, 258.

Literal blok distane, 72, 74, 158.

Literals, 2, 111.

ushing, 76.

internal representation, 28, 37, 66,

208, 209, 242, 257.

Litman, Ami (ONHIL INR), 285.

Livelok, 22{23.

Llunell, Albert Oliveras i, 267.

LNCS: Leture Notes in Computer Siene,

inaugurated in 1973.

Loal Lemma, 81{90, 133, 151, 160{165.

Log enodings, 98, 114{115, 173.

Logemann, George Wahl, 31{32, 130, 298.

Longest simple path, 23, 203.

Lonla, Jerry, 289.

Look-bak, see Bakjumping.

Lookahead autarky lauses, see Blak

and blue priniple.

Lookahead forest, 42{44, 145{147, 168.

Lookahead solvers, 38{46, 55, 97, 129,

131, 176.

ombined with CDCL solvers, 129.

ompared to CDCL solvers, 98{100,

118{121, 182, 290.

Loopless shadows, 184.

Lopsidependeny graphs, 82, 83, 160,

164, 165, 185, 224.

Lov�asz, L�aszl�o, 81, 82, 185, 191.

Loveland, Donald William, 32, 130, 298.

Lower semimodular latties, 255{256.

Loyd, Samuel, 263.

Luby, Mihael George, 80, 159.

Luks, Eugene Mihael, 113.

M�: Megamems = millions of memory

aesses, 69, 98.

Maaren, Hans van, 37, 46.

MaColl (= MColl), Hugh, 227.

MaMahon, Pery Alexander, Master

Theorem, 250, 251.

Mader, Adolf, 275.

Madigan, Conor Franis, 132.

Magi, 193.

Magi sequenes, 285.

Magneti tape, 32.

Makespan, 172{173.

Mallah, Sven, 289.

Malik, Sharad (frd mElk), 132.

Maneva, Elitza Nikolaeva (Maneva, Elia

Nikolaeva), 166, 256.

Mapping three items into two-bit odes, 179.

marh solver, 40, 216.

Marek, Vitor Wiktor, 216.

Markov (= Marko�), Andrei Andreevih

(Markov, Andre� Andreeviq), the

elder, inequality, 158, 241.

Markov, Igor Leonidovih (Markov, �gor

Leon�doviq), 112, 281, 284.

Markstr�om, Klas Jonas, 290.

Marques da Silva (= Marques-Silva),

Jo~ao Paulo, 132.

Marriage theorem, 224.

Martin, Alexander, 264.

Mathing polynomial of a graph, 249.

Mathings in a graph: Sets of disjoint

edges, 150, 230, 249.

perfet, 109{110, 177.

Mathews, Edwin Lee (41), 67.

Matrix multipliation, 260.

Mauro, David Whittlesey, 192.

Maximal elements, 56, 62, 97, 115,

153, 157, 167.

Maximal planar graphs, 186.

Maximum independent sets, 87, 136,

187, 188.

Maximum number of 1s, 106{109,

135, 136, 177.

MAXSAT lower bound, 184.

\Maybe" state, 20.

Mazurkiewiz, Antoni Wies law, 83.

MColl (= MaColl), Hugh, 227.

MGregor, William Charles, 7, 188.

graphs, 7{8, 114{115, 134, 135, 188.

Mean running time, 120.

September 23, 2015

INDEX AND GLOSSARY 303

Median operation, 9, 136, 179.

Median running times, 99, 120{124, 127.

Megamem (M�): One million memory

aesses, 201.

M�ejean, Henri-Mihel, 226.

Mellin, Robert Hjalmar, transforms, 151.

Mem (�): One 64-bit memory aess, 34.

MEM array, 66, 68, 124, 156.

Memo ahe, 60, 233.

Memoization tehnique, 233.

Memoryless property, 244.

Menagerie, 116{117.

Merge networks, 266.

Merging lists, 231, 258.

Mertens, Stephan, 51.

Message passing, 90{95, 165{166.

Method I, 61.

Method IA, 61, 154.

Method of Trees, 129.

Methuselah solitaire, 282.

Methuselahs in Life, 19.

M�ezard, Mar Jean Marel, 51, 90, 91, 95.

Midpoint inequalities, 266.

Mijnders, Sid, 213.

Mills, Burton Everett, 130.

Minesweeper, 142{143.

Minimally unsatis�able lauses, 150, 153.

Minimum overs, 193.

MiniSAT, 67.

Minterms, 179.

Mithell, David Geo�rey, 50.

Miters, 121, 182.

Mitshe, Dieter Wilhelm, 51.

Mixed metaphors, 76.

Mixed-radix number systems, 268.

MMIX omputer, ii, 158.

Mobile Life paths, 18{19, 138{139.

ipops, 138.

M�obius, Augustus Ferdinand, funtions, 86.

series, 86, 160, 162{163, 165, 247, 249.

Mod 3 addition, 114, 179.

Mod 3 parity, 179.

Mod 4 parity, 179.

Model heking, 16{17, 137{141, 179{180.

Model RB, 149.

Modi�ed full adders, 114, 280.

Modular latties, 255.

mone (�1), 242.

Monien, Burkhard, 215.

Monkey wrenh priniple, 113, 181.

Monotone funtions, 163.

Boolean, 137, 281.

Monotoni lauses, 5, 133, 157.

Monotoni paths, 108, 276.

Montanari, Andrea, 95.

Monus operation (x

.

�y = maxf0; x�yg),

92, 247, 268.

Moore, Edward Forrest, 202.

Morehead, Albert Hodges, 282.

Morel, Henri, 226.

Moser, Robin Alexander, 82, 254.

Moskewiz, Matthew Walter, 132.

Mossel, Elhanan (LQEN OPGL�), 166.

Mott-Smith, Geo�rey Arthur, 282.

Move odes, 29{31, 34, 144, 145, 155, 210.

MPR: Mathematial Preliminaries Redux, v.

Mueller, Rolf Karl, 60, 130.

M�uller, Mike, 196.

Multiommodity ows, 170.

Multigraphs, 231.

Multilinear funtion, 86.

Multipliation of binary numbers, 8{9,

12{14, 114, 136, 173.

Multipliation of traes, 85, 161.

Multisets, 3, 214, 224, 250.

Multivalued graph olorings, 99.

Mutilated hessboard, 110, 114,

177{178, 286.

Mutual exlusion protools, 20{24,

115, 139{141.

Mutzbauer, Otto, 275.

Mux operation (u? v: w), 81, 102,

152, 173, 219.

Mysterians, 290.

n-ube, 79, 136, 148, 184.

n.f.: not falsi�ed, 271.

n queens problem, 25, 115, 171, 282.

NAND operation, 60.

Napier, John, Laird of Merhiston, 9, 173.

Near truth, 37{39.

Neessary assignments, 45, 146.

Negated auxiliary variables, 105.

Negative k-lauses, 157.

Negative literals, 2, 132, 153.

Nesting phase of lookahead, 40, 42{43,

145{147.

Newbie variables, 41.

Newton, Isaa, method for root�nding,

216{217.

Niborski, Rodolfo, 190.

Niemel�a, Ilkka Niilo Fredrik, 105.

Nieuwenhuis, Robert Lukas Mario, 267.

Nightingale, Peter William, 265.

No-player game, 17.

Nodes of a searh tree, 34{35, 69, 124.

Noels, Alain, 202.

Noisy data, 181.

Nonattaking queens, 25, 115, 171, 282.

Nonaveraging sets, 114, 135.

Nonhromati retangles, 176{177.

Nonhronologial baktraking, see

Bakjumping.

Nonommutative variables, 162.

Nononstrutive proofs, 57, 58, 81, 202.

Nondeterministi �nite-state automata, 175.

Nondeterministi polynomial time, 131.

Nondeterministi proesses, 20, 141, 182.

Noninterseting paths, 170.

September 23, 2015

304 INDEX AND GLOSSARY

Nonnegative oeÆients, 164.

Nonprimary olumns, 186.

Nonterminal symbols, 175.

Normal hains, 278.

Normal funtions, 279.

Not-all-equal SAT, 185.

Notational onventions, vi.

�S (boundary set), 58, 154, 180, 188.

C

0

� C

00

(resolvent), 54, 152.

C � C

0

(subsumption), 61, 152.

F j l (F given l), 27, 96, 291.

F jL (F given L), 27, 103, 157.

F ` C (F implies C), 59, 152, 153.

F `

1

�, 70, 157, 175.

F `

1

l, 103{104, 176.

F `

k

�,

F `

k

l, 175{176.

G � H (diret sum), 162, 177.

jlj (a literal's variable), 2.

�v (v or �v), 2.

hxyzi (median), 9.

x& y (bitwise AND), 28, 29, 31, 37, 38, 66,

68, 76, 81, 196, 209{211, 220, 241.

x j y (bitwise OR), 43, 196, 241, 258{259.

x � y (bitwise XOR), 28, 137, 196,

208, 220, 241.

x

.

�y (monus), 92, 247, 268.

x? y: z (if-then-else), 81, 102, 152,

173, 219.

w(�), 57.

w(� ` �), 57.

k� ` Ck, 57.

�(C), 59, 153.

Novikov, Yakov Andreevih (Novikov,

�kov Andreeviq), 70, 132.

Nowakowski, Rihard Joseph, 107, 275.

NP-omplete problems, 1, 3, 27, 87,

130{131, 134, 142, 151, 181{183, 207,

268, see also CoNP-omplete problems.

NT (near truth), 37{39.

Null lause (�), 3, 27, 185, 291.

Null list, representation of, 33, 210.

Null partial assignment, 166.

Null set (;), 185.

Null string (�), 85.

Nullary lause (�), 3, 27, 185, 291.

Number theory, 14, 137, 192.

Ourrene threshold of a graph, 160.

Odd permutations, 218.

Odd-even merge network, 266.

Odd-even transposition sort, 263.

Oliveras i Llunell, Albert, 267.

On-the-y subsumptions, 124, 156.

One-in-three satis�ability, 183.

One-per-lause satis�ability, 183.

Open shop sheduling problems, 115,

172{173.

OR operation, 9, 10, 13, 258.

bitwise (x j y), 43, 196, 241, 258{259.

Orbits of a permutation group, 108, 277.

Order enoding, 98{101, 114, 120, 170{173,

190, 268, 281.

Order of a permutation, 111.

Organ-pipe permutations, 171.

Oriented yle detetion, 260.

Oriented trees, 108.

Orphan patterns in Life, 139.

Orponen, Olli Pekka, 80.

Osillators in Life, 19, 138{139.

Output states, 175.

OVAL array, 74, 125, 237, 240.

Over�tting, 182.

Overow in arithmeti, 67, 240.

Oxuso�, Laurent, 215.

} (tautology, the always-true lause), 3, 58,

60, 152, 180, 215, 226{228, 258.

P = NP, 1.

Palindromes, 136.

Panagiotou, Konstantinos (Panagi¸tou,

Konstant�no), 221.

Papadimitriou, Christos Harilaos

(Papadhmhtr�ou, Qr�sto Qaril�ou),

77, 240, 241.

Parallel multipliation iruits, 12{14, 137.

Parallel proesses, 20, 24, 121, 128{129.

Parameters, tuning of, 80{81, 93{94,

124{128.

ParamILS, 125, 286{287.

Parity-related lauses, 153{154, 172,

178, 231{232, 290.

Partial assignments, 30, 61, 62, 165, 176.

Partial baktraking, 208.

Partial latin square onstrution, 151.

Partial orderings, 56, 85, 115, 248.

of dimension � 2, 213.

Partiipants, 41, 44, 145.

Path detetion, 169.

Path graphs P

n

, 84, 160, 253.

Patiene, see Solitaire games.

Paturi, Ramamohan (g��eî�o�Z ÑV�Ý), 288.

Paul, Jerome Larson, 5.

Paull, Marvin Cohen, 148.

PC

k

, 176, 178.

Pearl, Judea (LXT DCEDI), 95.

Pegden, Wesley Alden, v, 164, 253.

Peierls, Rudolf Ernst, 95.

Peres, Yuval (QXT LAEI), 221.

P�erez Gim�enez, Xavier, 51.

Perfet mathings in a graph, 109{110, 177.

Permanent of a matrix, 183, 251.

Permutation polynomial of a set, 163.

Permutation posets, 213.

Permutations, 105, 265.

signed, see Signed permutations.

weighted, 163.

Permuting variables and/or omplementing

them, see Signed permutations.

September 23, 2015

INDEX AND GLOSSARY 305

Peterson, Gary Lynn, 23, 115, 140, 204.

Petrie, Karen Elizabeth Je�erson, 283.

Phase saving, 67, 75.

Phase transitions, 50{52, 149{150.

Phi (�), 146, 147, 160, 251.

Phoenix in Life, 198, 207.

Pi (�), as soure of \random" data, 12,

46, 108, 115, 147, 184, 193, 286;

see also Pi funtion.

Pi funtion, 102, 174.

Piees, in trae theory, 84{87.

Pigeonhole priniple, 57.

lauses for, 57{59, 105{106, 113, 153,

176, 181, 186, 265.

Pikhurko, Oleg Bohdan (P�hurko, Oleg

Bogdanoviq), 285.

Pile sums, 151.

Pinusians, 133.

Pipatsrisawat, Thammanit (= Knot)

(¾Ô¾Ñ²¹ìÈ�ÕÊÇÑÊ´́, ¸��Á¹Ôµ́ (= ¹Íµ)), 67, 262.

Pixel images, 200; see also Grid patterns.

Plaisted, David Alan, 102.

Planning, 132.

Playing ards, 114, 180, 282.

Points, abstrated, 106.

Poison ards, 282.

Poisson, Sim�eon Denis, probability, 225.

Polarities, 3, 67, 76, 207, 237.

P�olya, Gy�orgy (= George), theorem, 284.

Polynomials in trae theory, 85.

Population in Life, 19.

Portfolio solvers, 133.

Posets, see Partial orderings.

Positive autarkies, 146.

Positive j-lauses, 157.

Positive literals, 2, 132, 146.

Postho�, Christian, 275.

Postorder, 42{43, 214.

Postproessor, 96.

Prelusion lauses, 99, 171, 186.

Preorder, 42{43, 214.

Preproessing of lauses, 95{97, 103,

166{168, 182, 268, 272, 278.

Preseletion phase of lookahead, 40{42, 147.

Prestwih, Steven David, 264.

Primary variables, 104, 105.

Prime lauses, 174, 270, 273.

Prime impliants, 281.

Pringsheim, Alfred Israel, 88, 164.

Prins, Jan Fokko, 267.

Probabilisti method, 81.

Probability of satis�ability, 47{54.

prod (m; n), 12{14, 114, 137.

Prodution rules, 175.

Pro�le of a searh tree, 151.

Progress, display of, 30, 145, 155.

Progress saving, 67, see Phase saving.

Projetion of a path, 184.

Projetive plane, 274.

Propagation, kth order, 175{176, 273.

Propagation ompleteness (UC

1

), 176.

Proper anestors, 164.

Proto truth, 37, 42.

Prover{Delayer game, 55{56, 152{153.

PSATO solver, 159.

Pseudo-Boolean onstraints, see Threshold

funtions.

PT (proto truth), 37, 42.

Pudl�ak, Pavel, 55.

Puget, Jean-Fran�ois, 113.

Purdom, Paul Walton, Jr., 30, 32,

131, 151, 226.

Pure yles, 140.

Pure literals, 29, 31, 32, 34, 44, 60, 130,

135, 146, 152, 208, 215, 227, 256,

259, 268, 269, 275.

Purging unhelpful lauses, 68, 71{75, 124,

132, 157, 158, 168, 182, 184, 235.

threshold for, 74, 125, 127.

Putnam, Hilary, 9, 32, 130, 298.

Pyramids in trae theory, 87, 162.

q.s.: quite surely, 149, 153, 169.

QDD: A quasi-BDD, 188.

Quad-free matries, 106{107, 113,

176{177, 274, 284.

Quanti�ed formulas, 60, 154.

Queen graphs, 25, 99{100, 114{115,

120, 171, 180, 181.

Quenhable graphs, 179{180, 281.

Quik, Jonathan Horatio, 181.

Quilt patterns, 198.

Quimper, Claude-Guy, 272.

Quine, Willard Van Orman, 129, 130.

R(G) (Loal Lemma bounds), 82, 87{90,

160, 163{165.

Radio olorings, 136.

Radix-d representation, 173.

Rado, Rihard, 191.

Ramakrishnan, Kajamalai Gopalaswamy, 16.

raman graphs, 231.

Ramani, Arathi (Bmg� ���), 112,

281, 284.

Ramanujan Iyengar, Srinivasa (ÿ��W�

�W�WÈ{h I�axWm), graphs, 154;

see also raman graphs.

Ramos, Antonio, 75.

Ramsey, Frank Plumpton, theorem, 81.

rand , 39{40, 46, 50, 115, 147, 182.

Random bits, biased, 12, 241.

Random hoies, 12.

Random deision variables, 125{127,

155, 286.

Random graphs, 81.

Random permutations, 233.

September 23, 2015

306 INDEX AND GLOSSARY

Random satis�ability problems, 47{54,

91, 151.

2SAT, 51{54, 149.

3SAT, 39{40, 46{51, 59{60, 80, 93{94,

147{149, 153, 242.

kSAT, 49{51, 146, 148.

Random walks, 77{81, 125, 243.

Random words, 149.

Randomized methods, 77, 129, 182, 210.

RANGE sores, 74, 125{127, 158, 239.

RAT, see Resolution erti�able lauses.

Rauzy, Antoine Bertrand, 131, 215.

Reahability in a graph, 169.

Ready list, 32.

Real roots of polynomials, 163, 249.

Real truth, 37{39.

Reasons, 62, 72, 157, 165, 233.

Rebooting, 22.

Rekhow, Robert Allen, 61.

Reurrene relations, 151, 177, 189, 215, 243.

Reursive proedures, 27, 130, 172, 186, 233.

Reyling of lauses, 66, 124.

Redution of lauses, 27, 143; see also

Simpli�ation of lauses.

Redundant lauses, 257.

Redundant literals, 65, 155{156, 232, 234.

Redundant representations, 171.

Reed, Brue Alan, 52.

Reeted ternary ode, 290.

Reetion symmetries, 112, 138, 156.

Refutation hains, 57, 227.

Refutation trees, 152.

Refutations, 54{60, 70, 110, 152; see also

Certi�ates of unsatis�ability.

Regular expressions, 174{175.

Regular resolution, 55, 152, 231.

Reinforement messages, 91{93.

Reliability polynomials, 83.

Relutant doubling, 77, 80{81, 159{160.

Relutant Fibonai sequene, 160.

Renamed Horn lauses, 176, 263.

Repeated lauses, 49.

Replaement priniple, 96.

Representation of Boolean funtions, 104,

see Enoding into lauses.

Representing three states with two bits, 179.

Resaled ativity sores, 67.

Resende, see Guilherme De Carvalho

Resende.

Resizing of data strutures, 210.

Resolution erti�able lauses, 261.

Resolution hains, 57{59, 152, 153, 227.

Resolution of lauses, 54{65, 70, 101, 129,

130, 144, 167, 185, 215, 224, 256.

implementation of, 167.

Resolution refutations, 54{60, 70, 110, 152;

see also Certi�ates of unsatis�ability.

extended, 60, 71, 133, 154, 168, 215.

regular, 55, 152, 231.

treelike, 55{56, 152{153.

Resolvable lauses, 164.

Resolvent (C

0

� C

00

), 54, 130, 152.

Restarting, 80{81, 95, 125, 132.

and ushing literals, 68, 75{77, 124, 132,

157, 158, 169, 234, 246.

Restrited growth strings, 179.

Restrited pigeonhole priniple, 58.

Reusing the trail, 75.

Reverse unit propagation, 71.

Revolving door Gray ode, 282.

Reynaud, G�erard, 226.

Rihards, Keith, 1.

Rikard, John, 290.

Right division of traes, 85, 161.

Right fator of a trae, 161.

Riis, S�ren M�ller, 110.

Ripo�, Robert Iosifovih (Ripov, Robert

Iosifoviq), 7.

Rivest, Ronald Linn, lauses, 4, 55,

70, 134, 144, 182.

Roberts, Fred Stephen, 136.

Robertson, Aaron Jon, 185.

Robinson, Gilbert de Beauregard, 275.

Robinson, John Alan, 59, 96, 227.

Rodr��guez Carbonell, Enri, 267.

Rokiki, Tomas Gerhard, 200.

Rooij, Iris van, 207.

Rook paths, 206.

Rookwise onneted ells, 170.

Ross, Kenneth Andrew, 282.

Rotational symmetry, 138, 202, 275.

Rotors in Life, 138.

Roussel, Olivier Mihel Joseph, 132, 272.

Routing, disjoint, 170.

Row sums, 151.

Roy, Amitabha (aimt;& r;Y), 113.

RT (real truth), 37{39, 43.

Ruler doubling, 160.

Ruler of Fibonais, 246.

Running times, 89{90.

omparison of, 34{35, 39, 69, 97{100,

105{107, 110, 112, 118{128, 182, 184,

218, 237, 264, 281, 290.

mean versus median, 120.

worst ase, 144, 146, 154.

Runs of 1s, 26, 143, 175.

s-hains, 52{53, 149.

s-snares, 53, 149.

S

1

(y

1

; : : : ; y

p

), 6.

S

k

(m; n), 50{54.

S

k;n

, 49{51, 148, 149.

S

�r

(x

1

; : : : ; x

n

) and S

�r

(x

1

; : : : ; x

n

), 8,

see Cardinality onstraints.

Saddle point method, 226.

Sahni, Sartaj Kumar (srtAj k� mAr

sAhnF), 268.

Sa��s, Lakhdar (ÓayÓ laØ�ar, �Ún�

Ǳ �¿), 236, 289.

September 23, 2015

INDEX AND GLOSSARY 307

Sakallah, Karem Ahmad (?m¶n� �Ì�

Ê�n»), 112, 132, 281, 284.

Salhi, Yakoub (Þ�¿n� oØ¸¬Ú), 289.

Sampling with and without replaement,

49{50, 132, 226.

Samson, Edward Walter, 60, 130.

SAT: The satis�ability problem, 3.

SAT solvers, 1, 131{133.

SATexamples.tgz, 118.

Satis�able formulas, 1.

variability in performane, 35, 120{121,

128, 287.

Satis�ability, 1{184.

history, 32, 59{60, 105, 129{133.

thresholds for, 50{54, 91, 148{149, 221.

Satis�ability-preserving transformations,

107{113.

Satisfying assignments, 1, 30, 143{144,

166, 214, 219.

SATzilla solver, 132{133.

Shaefer, Thomas Jerome, 289.

Shensted, Craige Eugene (= Ea Ea), 275.

Shlipf, John Stewart, 274.

Shmitt, John Roger, 285.

Shoen�eld, Jon Ellis, 192.

Sh�oning, Uwe, 78.

Shrag, Robert Carl, 132.

Shroeppel, Rihard Crabtree, 197.

Shwarzkopf, Bernd, 282.

Sott, Alexander David, 224, 251, 252.

Sott, Allan Edward Jolioeur, 207.

Sott, Sidney Harbron, 191.

Soville, Rihard Arthur, 162.

Searh trees, 28{29, 32{34, 124, 152.

expeted size, 151{152.

optimum, 144.

Seond moment priniple, 54, 221, 222.

Seitz, Simo Sakari, 80.

Self-subsumption, 96, 167, 168, 257.

Selman, Bart, 50, 79, 132.

Semimodular latties, 255{256.

Sentinel values, 259.

Sequential onsisteny, 24.

Sequential lists, 36{37, 144.

Sequents, 59.

Serial orrelation oeÆients, 143.

Set partitions, 220.

SGB, see Stanford GraphBase.

Shadows of paths, 184.

Shandy, Tristram, iii.

Sharp thresholds, 51{52, 149.

Shearer, James Bergheim, 82, 87, 160.

Sheeran, Mary, 203.

Shlyakhter, Ilya Alexander (Xl�hter,

Il~� Aleksandroviq), 284.

Shmoys, David Bernard, 267.

Shortest paths, 262.

Shortz, William Frederi, v.

SIAM: The Soiety for Industrial and

Applied Mathematis, 204.

Sideways sum (�x): Sum of binary digits,

114, 143, 179, 195, 279.

seond order (�

(2)

x), 143.

Sifting, 219, 220.

Siftup in a heap, 234.

Signature of a lause, 72, 158.

Signature of a literal, 258.

Signed mappings, 180{181.

Signed permutations, 4, 111, 178.

involutions, 112{113, 180, 277{278.

Silva, see Marques da Silva.

Silver, Stephen Andrew, 138, 200.

Simmons, Gustavus James, 192.

Simon, Laurent Dominique, 72, 132.

Simple yles and paths, 23{24, 140.

simplex graphs, 136.

Simpli�ation of lauses, 65, 155, 232; see

also Preproessing of lauses.

Sims, Charles CoÆn, tables, 283.

Simultaneous read/write, 141.

Simultaneous write/write, 141.

Sinlair, Alistair, 80, 159, 256.

Singh, Satnam, 203.

Single lookahead unit resolution, 105, 176.

Single-stuk-at faults, 10{14, 114, 136{137.

Sink: A vertex with no suessor, 87, 214.

omponents, 108{110.

Sinz, Carsten Mihael, v, 8, 117, 118,

135, 174, 189, 280.

Skip Two solitaire, 282.

Slak, in trae theory, 88, 251.

Slisenko (= Slissenko), Anatol Olesievith

(Slisenko, Anatol~ Oles~eviq), 59.

SLS: Stohasti loal searh, 77.

SLUR algorithm, 105, 176.

Sly, Allan Murray, 51.

Smile, 207.

Smith, Barbara Mary, 283.

Snake dane, 138.

Snakes, 52{54, 149.

Snares, 52{54, 149.

Snark graphs, 69, 147, 153, 157.

Snevily, Hunter Saint Clair, 5.

Sorates, son of Sophronisus of

Alopee (Swkr�th Swfrwn�skou

>Alwpek¨jen), 129.

Soft lauses, 168.

Sokal, Alan David, 251, 252.

Solitaire games, 180, 282.

Solutions, number of, 48, 219.

Somenzi, Fabio, 236.

S�orensson, Niklas Kristofer, v, 67,

155, 203, 268.

Sorting networks, 115, 137, 203, 263, 266.

Soure: A vertex with no predeessor,

87, 252.

Spaeships in Life, 139, 201.

September 23, 2015

308 INDEX AND GLOSSARY

Spanning trees, 281, 290.

Sparse enoding, see Diret enoding.

Spekenmeyer, Ewald, 131, 215.

Spene, Ivor Thomas Arthur, 290.

Spener, Joel Harold, 81, 82, 254.

Spiral order, 206.

Stable Life on�gurations, 19, 197.

Stable partial assignments, 165{166.

Staks, 37{39, 43.

Staking the piees, 84{85.

St�almark, Gunnar Martin Natanael, 56,

132, 153, 203, 232, 238.

Stamm-Wilbrandt, Hermann, 131.

STAMP(l), 258.

Stamping of data, 37{38, 64, 66, 145,

155, 211, 236, 258{260.

Standard deviation, 48, 240.

Stanford GraphBase, ii, 12, 13, 126,

179, 214, 231.

Stanford University, 282.

Stanley, Rihard Peter, 275.

Star�sh graphs, 249.

Starvation, 22{24, 115, 140, 141.

Statistial mehanis, 90.

Stators in Life, 138.

Stege, Ulrike, 207.

Stein, Cli�ord Seth, 267.

Steinbah, Heinz Bernd, 275.

Steiner, Jaob, tree paking, 264.

triple systems, 106, 274.

Sterne, Laurene, iii.

Stikel, Mark Edward, 132.

Stiking values, 67, see Phase saving.

Still Life, 19, 138, 200.

Stirling, James, approximation, 221, 240.

subset numbers, 149, 220, 226.

Stohasti loal searh, 77.

Stopping time, 48{50, 148.

Strahler, Arthur Newell, numbers, 152.

Strengthening a lause, 96, 156, 259{260.

St�r��brn�a, Jitka, 224.

Strihman, Ofer (ONKIXHY XTER), 203.

Stritly distint literals, 2{3, 52, 165.

Strings generalized to traes, 83.

Strong omponents: Strongly onneted

omponents, 41{42, 52{53, 108,

131, 215, 221, 263.

Strong exponential time hypothesis, 183.

Strong produt of graphs, 134.

Strongly balaned sequenes, 179.

Stuk-at faults, single, 10{14, 114, 136{137.

St�utzle, Thomas G�unter, 125.

Subadditive law, 59.

Sububes, 148.

Subforests, 42.

Subinterval onstraints, 190.

Submatries, 106{109, 177.

Subset sum problem, 268.

Substitution, 257.

Subsumption of lauses, 61, 96, 124, 152,

155, 156, 166{168, 181, 269.

implementation, 167, 259.

on-the-y, 124, 156.

Subtration, enoding of, 100.

Sudoku, 183, 225.

Summation by parts, 48.

Summers, Jason Edward, 200.

Sun, Nike (), 51.

Support lauses, 99, 114, 171.

Survey propagation, 51, 90{95, 165{166, 213.

Swaminathan, Ramasubramanian (= Ram)

Pattu (�W�Âj����h �eÅ

z�W��W�h), 274.

Swapping to the front, 211, 242.

Sweep of a matrix, 108{109, 177.

Swoop of a matrix problem, 109.

Syllogisms, 129.

Symeater in Life, 200.

Symmetri Boolean funtions, 179, 207, 219,

270; see also Cardinality onstraints.

S

�1

, see At-most-one onstraint.

S

1

, 6, 220.

S

�1

, see At-least-one onstraint.

S

r

, 135, 179, 256.

Symmetri threshold funtions, see

Cardinality onstraints.

Symmetrial lauses, 105{106, 156.

Symmetrial solutions, 138, 183, 274.

Symmetries of Boolean funtions, 178.

Symmetry breaking, vii, 5, 105{114, 138,

176{181, 187, 188, 190{192, 238, 267,

281{283, 285, 288{290.

in graph oloring, 99{100, 114, 171,

179, 187.

Symmetry from asymmetry, 19, 201.

Synthesis of Boolean funtions, 137,

178{179, 194.

Szab�o, Tibor Andr�as, 224.

Szegedy, M�ari�o, 90, 161, 255.

Szeider, Stefan Hans, 224, 284.

Szemer�edi, Endre, 59.

Szpankowski, Wojieh, 225.

t-snakes, 53, 54, 149.

T�: teramems = trillions of memory

aesses, 110, 121, 126, 265, 281.

Tableaux, 275.

Taga, Akiko (), 264, 267.

Tajima, Hiroshi (), 100.

Tak, Peter van der, 75.

Takaki, Kazuya (), 224.

Tamura, Naoyuki (), 100, 171,

264, 267, 268.

\Take aount," 37, 43, 45{46, 217, 235.

Tanjo, Tomoya (), 268.

TAOCP: The Art of Computer

Programming, problem, 115, 169.

Tape reords, 32.

Tardos, G�abor, 82, 224, 254.

September 23, 2015

INDEX AND GLOSSARY 309

Tarjan, Robert Endre, 41, 42, 214, 217.

Tarnished wires, 13, 193.

Tatami tilings, 115, 143.

TAUT: The tautology problem, 3, 129, 130.

Tautologial lause (}), 3, 58, 60, 152,

180, 215, 226{228, 258.

Tensors, 151.

Teramem (T�): One trillion memory

aesses, 40, 106, 107, 110, 217,

218, 286.

Ternary lauses, 3{6, 36, 118, 131, 183;

see also 3SAT.

Ternary numbers, 100, 141, 179.

Ternary operations, 9, 136.

Territory sets, 84, 161, 163.

Test ases, 113{124.

apsule summaries, 114{115.

Test patterns, see Fault testing.

Tetris, 84.

Theobald, Gavin Alexander, 190.

Theory and pratie, 109.

Three-oloring problems, see Flower snarks.

Threshold funtions, 100{101, 175.

Threshold of satis�ability, 50{54, 91,

148{149, 221.

Threshold parameter �, 126, 213, 286.

Thurley, Mar, 262.

Tie-breakers, 74, 239.

Tiling a oor, 115, 138, 143, 199.

Time stamps, see Stamping of data.

Timeouts, 120.

TIMP tables, 36{40, 43, 45, 144{145.

To-do stak, 259.

Tomographially balaned matries, 141.

Tomography, 24{26, 115, 141{143, 167, 285.

Top-down algorithms, 252.

Topologial sorting, 85, 248.

Toruses, 134, 138, 200.

Touhed lauses, 44.

Touhed variables, 259.

Tovey, Craig Aaron, 150, 223.

Tower of Babel solitaire, 282.

Tower of London solitaire, 282.

Trae of a matrix: The sum of its diagonal

elements, 108, 218.

Traes (generalized strings), 83{90,

161{162, 252, 254.

Tradeo�s, 125{126.

Trail (a basi data struture for Algorithm

C), 62{65, 68, 72, 124, 166, 236, 238.

reusing, 75.

Training sets, 15{16, 115, 125{127, 133,

137, 182, 286.

Transitions between states, 16{24,

175, 202, 218.

Transitive law, 56, 228.

Tree-based lookahead, see Lookahead forest.

Tree funtion, 230.

Tree-ordered graphs, 163{164.

Treelike resolution, 55{56, 152{153.

Treengeling solver, 121.

Triangle-free graphs, 167.

Triangles (3-liques), 167, 238, 264.

Triangular grids, 136.

Tribonai numbers, 216.

Triggers, 46, 126.

Trivalent graphs, 147, 154, 231.

Trivial lauses, 124{127, 156, 236, 239.

Trivially satis�able lauses, 3.

Truemper, Klaus, 273.

Truszzy�nski, Miros law (= Mirek)

Janusz, 216.

Truth, degrees of, 37{39, 42{43, 45{46, 216.

Truth tables, 129{130, 179, 194, 220, 277.

Tseytin, Gregory Samuelovih (Ce�tin,

Grigori� Camuiloviq), 9, 59{60, 71,

133, 152, 154, 168, 178, 215, 231, 290.

enodings, 9, 17, 101{102, 136, 173, 195.

enodings, half of, 192, 268.

Tsimelzon, Mark Boris, 134.

Tuning of parameters, 124{128, 133, 182.

Tur�an, P�al (= Paul), 190.

Turton, William Harry, 180.

Two-level iruit minimization, 257.

UC

k

, 176, 273.

UIP: Unique impliation point, 132, 233.

Unary lauses, see Unit lauses.

Unary representation (= order enoding),

98{101, 114, 120, 170{173, 190,

268, 281.

Undoing, 28{31, 37{39, 95{96, 143{145,

208, 212, 217{218.

Uniform distribution, 159.

Unique impliation points, 132, 233.

Uniquely satis�able lauses, 48, 219.

Unit lauses (= unary lauses), 3, 6, 9, 13,

21, 23, 30, 31, 33, 35, 36, 66, 70, 130,

144, 151, 157, 192, 205, 210, 238, 290.

Unit onditioning, 27, 96, 166, 259, 261.

Unit propagation (`

1

), 31{34, 36, 62, 65,

68, 70{71, 93, 97{99, 103{104, 132, 155,

157, 165, 171, 174, 236, 270, 272, 276.

generalized to `

k

, 175.

Universality of Life, 17.

Unneessary branhes, 55, 227.

Unsatis�able ore, 185.

Unsatis�able formulas, 1.

impliations of, 104, 175{176.

Unsolvable problems, 130.

Urns and balls, 221.

Urquhart, Alisdair Ian Fenton, 231.

VAL array, in Algorithm C, 66{68, 73{76,

233{236, 238, 240.

in Algorithm L, 37{39, 43, 216.

Valid partial assignments, 165{166.

Van de Graa�, Robert Jemison, 198.

van der Tak, Peter, 75.

September 23, 2015

310 INDEX AND GLOSSARY

van der Waerden, Bartel Leendert, 4.

numbers, 5, seeW (k

0

; : : : ; k

b�1

).

van Deventer, Mattijs Oskar, 290.

Van Gelder, Allen, 71, 233, 237, 263.

van Maaren, Hans, 37, 46.

van Rooij, Iris, 207.

van Zwieten, Joris Edward, 37.

VAR array, in Algorithm L, 38, 182, 211.

Variability in performane on satis�able

problems, 35, 120{121, 128, 287.

on unsatis�able problems, 69, 121,

128, 287.

Variable elimination, 96{97, 101, 102,

129, 154{155, 166{168, 173, 174,

256{257, 259{260, 270, 272.

Variable interation graphs, 116{118, 182.

Variables, 2.

introduing new, 3, 6, 8, 9, 13, 60;

see Auxiliary variables, Extended

resolution.

Variane, 49, 158, 164, 240, 243.

Vassilevska Williams, Virginia Panayotova

(Vasilevska, Virgini� Pana�otova),

167.

Vaughan, Theresa Phillips, 162.

Veri�ation, 16, 157; see also Certi�ates

of unsatis�ability.

Viennot, G�erard Mihel Fran�ois Xavier,

83, 84, 87, 162, 249.

Vini, Leonardo di ser Piero da, 7.

Virtual unswapping, 211.

Visualizations, 116{118.

Vitushinskiy, Pavel Viktorovih

(Vituxinski�, Pavel Viktoroviq),

282.

Vries, Sven de, 206.

VSIDS, 132.

W (k

0

; : : : ; k

b�1

) (van der Waerden

numbers), 4{5, 127, 133.

waerden (j; k;n), 4{5, 32, 35, 37, 39{42,

45, 63{66, 69, 71{75, 97, 112, 115,

121, 127{129, 133, 142{145, 156, 157,

166, 167, 181, 210, 236, 256.

Waerden, Bartel Leendert van der, 4.

numbers, 5, seeW (k

0

; : : : ; k

b�1

).

Wagsta�, Samuel Stand�eld, Jr., 190.

Wainwright, Robert Thomas, 138,

166, 197, 198.

Walks in a graph, 260.

WalkSAT algorithm, 79{81, 93{94, 118, 125,

159{160, 182, 191, 265, 281.

Walsh, Toby, 272.

Warmup runs, 125, 239.

Warners, Johannes (= Joost) Pieter, 268.

Warrington, Gregory Saunders, 285.

Wathed literals, 30{34, 65{66, 68, 132,

144, 155, 233{236.

Weakly foring, 174.

Websites, ii, iii, v, 118.

Weighted permutations, 163.

Wein, Joel Martin, 267.

Weismantel, Robert, 264.

Welzl, Emmerih Oskar Roman (=

Emo), 158.

Wermuth, Udo Wilhelm Emil, v.

Wetzler, Nathan David, 71, 239.

Wheel graphs (W

n

), 191.

Whittlesey, Marshall Andrew, 192.

Width of a resolution hain, 57{59, 153{154.

Wieringa, Siert, 129.

Wigderson, Avi (OEFXCBIE IA�), 57{58,

153, 231.

Wilde, Boris de, 213.

Williams, Rihard Ryan, v, 270.

Williams, Virginia Panayotova Vassilevska

(Virgini� Pana�otova Vasilevska),

167.

Wilson, David Brue, 54, 149, 221.

Windfalls, 43, 147, 182, 217.

Winkler, Peter Mann, 290.

Winn, John Arthur, Jr., 275.

Wires of a iruit, 10{14, 136.

Wobble funtion, 51, 151.

Worst ase, 144, 146, 154, 239, 244.

Write bu�ers, 24.

Xeon omputer, 289.

XOR operation, 9, 10, 13, 136.

bitwise (x� y), 28, 137, 196, 208, 220, 241.

Xray-like projetions, 24.

Xu, Ke (), 149.

Xu, Lin (), 133.

Xu, Yixin (), 255.

Yaroslavtsev, Grigory Nikolaevih

(�roslavev, Grigori� Nikolaeviq),

280.

Yeh, Roger Kwan-Ching (), 192.

Yuster, Raphael (XHQEI L�TX), 260.

Z(m;n) (Zarankewiz numbers),

106{107, 176.

Zanette, Arrigo, 206.

Zarankiewiz, Kazimierz, 106.

quad-free problem, 106{107, 113, 176.

Z�avodn�y, Jakub, 196.

Zehina, Riardo, 51, 90, 91, 256.

Zhang, Hantao (), 129, 132.

Zhang, Lintao (), 132.

Zhao, Ying (), 132.

Zhu, Yunshan (), 132.

ZSEV (zero or set if even), 242.

Zukerman, David Isaa, 80, 159.

Zwik, Uri (WIEEV IXE�), 260.

Zwieten, Joris Edward van, 37.

