The Knuth-Morris-Pratt Algorithm

- $O(n+m)$ in worst case.
- Slower than Boyer-Moore in practice.
- Can be adapted to search for k patterns of total length n in $O(k+n+m)$ time (Aho-Corasick).

Key idea:
Preprocess P to get larger shifts at mismatches (analogous to Boyer-Moore, but adapted to left-to-right scan).

Definition. For each position i in $P, s p_{i}(P)$ is the length of the longest proper suffix of $P[1 \ldots i]$ that matches a prefix of P.

$$
\begin{array}{rlllllllllll}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 \\
P[i] & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} \\
s p_{i} & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3 & 4
\end{array}
$$

The Weak KMP Shift Rule

For any alignment of P and T, if the first mismatch is between $P[i]$ and $T[k]$, then shift P right by $i-\left(s p_{i-1}+1\right)=i-s p_{i-1}-1$ places, so that $P\left[s p_{i-1}+1\right]$ is aligned with $T[k]$. If an occurrence of P is found, then shift P right by $n-s p_{n}$ places.

abababb.ba.ba.b.baa.ba.b.ba.ba.ba.b.ba.ba.ba.b abablababa.ba.b
12345678901
a.ba.babbababbaa.ba.b.ba.ba.ba.b.ba.ba.ba.b a.babbababab

12345678901
a.ba.ba.b.ba.ba.bba_aba.b.ba.ba.b a.b.b a.b a.ba.b a.ba.bbabababab

12345678901
a.ba.ba.b.ba.ba.b.ba_aba.b.ba.ba.ba.b.ba.ba.ba.b
abababbaba.ba.b
12345678901
a.baba.b.ba.babba.ababbabababba.ba.bab ababbababab
12345678901
ababbababab

Definition. For each position i in $P, s p_{i}^{\prime}(P)$ is the length of the longest proper suffix of $P[1 \ldots i]$ that matches a prefix of P such that $P[i+1] \neq P\left[s p_{i}^{\prime}+1\right]$.

The Strong KMP Shift Rule

For any alignment of P and T, if the first mismatch is between $P[i]$ and $T[k]$, then shift P right by $i-\left(s p_{i-1}^{\prime}+1\right)=i-s p_{i-1}^{\prime}-1$ places, so that $P\left[s p^{\prime}{ }_{i-1}+1\right]$ is aligned with $T[k]$. If an occurrence of P is found, then shift P right by $n-s p^{\prime}{ }_{n}$ places.

Knuth-Morris-Pratt

The strong KMP shift rule does not miss any occurrences of P. . .

The same is true for the weak rule.

The Knuth-Morris-Pratt algorithm does at most $2 m$ character comparisons:

- A compare/shift phase consists of all comparisons between successive shifts.
- After a shift, comparisons start with either the last character from T that was examined in the previous phase or with the character to its right.
\Rightarrow Total number of comparisons is at most $m+s$,

$$
\text { where } s=\# \text { (shifts) }
$$

Since $s<m$, \#(comparisons) $<2 m$.

Definition. Position $j>1$ maps to i if

$$
i=j+Z_{j}(P)-1
$$

(i.e., i is the right end of a Z-box starting at j).

Theorem. For any $i>1, s p_{i}^{\prime}(P)=Z_{j}=i-j+1$, where j is the smallest position that maps to i. If there is no such j then $s p^{\prime}(P)=0$.

Example. For $P=$ ababbababab, two Z-boxes end at $P[11]$: ab $\left(Z_{10}\right)$ and abab $\left(Z_{8}\right)$. Thus, $s p^{\prime}{ }_{11}(P)=4$.

Preprocessing to find the $s p^{\prime}$-values:
compute $Z(P)$

$$
\begin{aligned}
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \quad s p^{\prime}(P) \leftarrow 0 \\
& \text { for } j \leftarrow n \text { downto } 2 \text { do } \\
& \quad i \leftarrow j+Z_{j}(P)-1 \\
& \quad s p^{\prime}(P) \leftarrow Z_{j}(P)
\end{aligned}
$$

All $s p^{\prime}$-values can be computed in $O(n)$ time.

Definition. For $i=1,2, \ldots, n+1$, the (strong) failure function is $F^{\prime}(i)=s p^{\prime}{ }_{i-1}+1$, where $s p^{\prime}{ }_{0}=0$.

$K M P(P, T)$
compute the failure function F^{\prime}
$c \leftarrow 1 ; p \leftarrow 1$
while $c+(n-p) \leq m$ do while $P[p]=T[c]$ and $p \leq n$ do $p++; c++$
if $p=n+1$ then
report occurrence of P starting at $T[c-n]$
if $p=1$ then $c++$
$p \leftarrow F^{\prime}(p)$

