
1

Knuth-Morris-Pratt &
Boyer-Moore Algorithms

by Robert C. St.Pierre

Overview
Notation review
Knuth-Morris-Pratt algorithm

Discussion of the Algorithm
Example

Boyer-Moore algorithm
Discussion of the Algorithm
Example

Applications in automatic proving

Notation Review (1)
T[1..n] – text to search, length n

Characters from Σ

P[1..m] – pattern text, length m
Characters from Σ
m <= n

Σ – finite alphabet
δ – transition function in a FA

Notation Review (2)
Pk – k-character prefix P[1..k] of
P[1..m]
w is a prefix of x, denoted w ⊂ x, if x =
wy for some string y ∈ Σ*

w is a suffix of x, denoted w ⊃ x, if x =
yw for some string y ∈ Σ*

ε - empty string

Notation Review (3)
s – shift

0 ≤ s ≤ n – m

If T[s+1..s+m] = P[1..m] then s is
called a valid shift else s is called an
invalid shift.
The string-matching problem is to find
all valid shifts.

The Kunth-Morris-Pratt (KMP)
Algorithm

Θ(m) preprocessing time
Saves a factor of |Σ| over the
preprocessing time for the FA

Done by using an auxiliary function π, instead
of the transition function δ.

Θ(n) matching time
Section 32.4 in text.

2

KMP Algorithm
Discussion – Prefix Function (1)

“The prefix function π for a pattern
encapsulates knowledge about how the
pattern matches against shifts of itself.
This information can be used to avoid
testing useless shifts in the naive
pattern matching algorithm or to avoid
the precomputation of δ for a string-
matching automation.”

KMP Algorithm
Discussion – Prefix Function (2)

KMP Algorithm
Discussion – Prefix Function (3)

KMP Algorithm
Discussion – Prefix Function (4)

Formally:
Given a pattern P[1..m], the prefix
function for the pattern P is the function
π : {1, 2, …, m} -> {0, 1, …, m-1} such
that π[q] = max{k: k < q and Pk ⊃ Pq}.
π[q] is the length of the longest prefix
of P that is a proper suffix of Pq.

KMP Algorithm
Discussion – Pseudocode (1)
Compute-Prefix-Function(P)
1. m <- length[T]
2. π[1] <- 0
3. k <- 0
4. for q <- 2 to m
5. do while k > 0 and P[k+1] != P[q]
6. do k <- π[k]
7. if P[k+1] = P[q]
8. then k <- k + 1
9. π[q] <- k
10. return π

KMP Algorithm
Discussion – Pseudocode (2)
KMP-Matcher(T, P)
1. n <- length[T]
2. m <- length[P]
3. π <- Compute-Prefix-Function(P)
4. q <- 0 ; Number of characters matched.
5. for i <- 1 to n ; Scan the text from left to right
6. do while q > 0 and P[q+1] != T[i]
7. do q <- π[q] ;Next character does not match.
8. if P[q+1] = T[I]
9. then q <- q + 1 ;Next character matches
10. if q = m ;Is all of P matched?
11. then print “Pattern occurs with shift” i – m
12. q <- π[q] ;Look for the next match

3

KMP Algorithm
Discussion – Correctness (1)

Lemma 32.5 (Prefix-function iteration lemma)
Let P be a pattern of length m with prefix function
π. Then, for q = 1, 2, …, m, we have
π∗[q] = {k: k < q and Pk ⊃ Pq}.

Lemma 32.6
Let P be a pattern of length m, and let π be
the prefix function for P. For q = 1, 2, …,
m, if π[q] > 0, then π[q] – 1 ∈ π∗[q - 1].

KMP Algorithm
Discussion – Correctness (2)

KMP Algorithm
Examples (HTML based)

http://www.cs.utexas.edu/users/moore/
best-ideas/string-searching/kpm-
example.html
http://www-igm.univ-
mlv.fr/~lecroq/string/examples/exp8.ht
ml

KMP Algorithm
Examples (Applets)

http://www-igm.univ-
mlv.fr/~lecroq/string/node8.html
http://www-sr.informatik.uni-
tuebingen.de/~buehler/BM/BM.html

The Boyer-Moore Algorithm
“If the pattern P is relatively long and
the alphabet Σ is reasonably large, then
[this algorithm] is likely to be the most
efficient string-matching algorithm.”
Matches right to left, unlike KMP.
This algorithm is NOT in the second
edition of our book, but is in section
34.5 of the first edition.

Boyer-Moore Algorithm
Discussion – Matcher Function (1)

Boyer-Moore-Matcher(T, P, Σ)
1. n <- length[T]
2. m <- length[P]
3. λ <- Compute-Last-Occurrence-Function(P, m, Σ)
4. γ <- Compute-Good-Suffix-Function(P, m)
5. s <- 0
6. while s <= n – m
7. do j <- m
8. while j > 0 and P[j] = T[s+j]
9. do j <- j – 1
10. if j = 0
11. then print “Pattern occurs at shift s”
12. s <- s + γ[0]
13. else s <- s + max(γ[0], j – λ[T[s+j]])

4

Boyer-Moore Algorithm
Discussion – Matcher Function (2)

The function Boyer-Moore-Matcher(T,P, Σ)
“looks remarkably like the naive string-
matching algorithm.” Indeed, commenting
out lines 3-4 and changing lines 12-13 to
s <- s + 1, results in a version of the naive
string-matching algorithm.
The Boyer-Moore Algorithm uses the greater
of two heuristics to determine how much to
shift next by.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (1)

The first heuristic, is the bad-character
heuristic.
In general, works as follows:
P[j] != T[s+j] for some j, where 1<= j <= m.
Let k be the largest index in the range 1 <= k
<= m such that T[s+j] = P[k], if any such k
exists. Otherwise let k = 0.
We can safely increase by j – k, three cases
to show this.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (2)

Case 1. k = 0, so increase by j.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (3)

Case 2. k < j, so increase by j – k.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (4)

Case 3. k > j, resulting in a negative
shift, but the good-suffix heuristic
recommendation is ignored.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (5)

Compute-Last-Occurrence-Function(P,m,Σ)
1. for each character a ∈ Σ
2. do λ[a] = 0
3. for j <- 1 to m
4. do λ[P[j]] <- j
5. return λ

The running time of this procedure is O(|Σ| + m).

5

Boyer-Moore Algorithm
Discussion – Heuristic Good (1)

Define the relation Q ~ R for strings Q
and R to mean that Q ⊃ R or R ⊃ Q.
If two strings are similar, then we can
align them with their rightmost
characters matched, and no pair of
aligned characters will disagree.
The relation “~” is symmetric.
Q ~ R and S ~ R imply Q ~ S

Boyer-Moore Algorithm
Discussion – Heuristic Good (2)

“If P[j] != T[s+j], where j < m, then the
good-suffix heuristic says that we can safely
advance by
γ[j] = m – max{k: 0 <= k < m and

P[j+1..m] ~ Pk}”
“γ[j] is the least amount we can advance s
and not cause any characters in the “good
suffix” T[s + j + 1..s + m] to be mismatched
against the new alignment of the pattern.”
γ[j] > 0 for all j = 1..m, which ensures that
this algorithm makes progress.

Boyer-Moore Algorithm
Discussion – Heuristic Good (3)

Boyer-Moore Algorithm
Discussion – Heuristic Good (4)
Compute-Good-Suffix-Function(P,m)
1. π <- Compute-Prefix-Function(P)
2. P’ = reverse(P)
3. π’ <- Compute-Prefix-Function(P’)
4. For j <- 0 to m
5. do γ[j] <- m – π[m]
6. For i <- 1 to m
7. do j <- m – π’[i]
8. if γ[j] > i - π’[i]
9. then γ[j] <- i - π’[i]
10. return γ

This function has running time O(m).

Boyer-Moore Algorithm
Discussion – Running Time

Worst case is O((n – m + 1)m + |Σ|)
Compute-Last-Occurrence-Function takes
time O(m + |Σ|).
Compute-Good-Suffix-Function takes time
O(m).
O(m) time is spent validating each valid
shift s.

Boyer-Moore Algorithm
Examples (HTML based)

http://www.cs.utexas.edu/users/moore/
best-ideas/string-searching/fstrpos-
example.html

6

Boyer-Moore Algorithm
Examples (Applets)

http://www-igm.univ-
mlv.fr/~lecroq/string/node14.html
http://www.blarg.com/~doyle/bmi.html
http://www-sr.informatik.uni-
tuebingen.de/~buehler/BM/BM.html

References
1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest,

Clifford Stein. Introduction to Algorithms. 2st Edition. MIT,
2001.

2. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest.
Introduction to Algorithms. 1st Edition. MIT, 1990.

