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Knuth-Morris-Pratt & 
Boyer-Moore Algorithms

by Robert C. St.Pierre
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Applications in automatic proving

Notation Review (1)
T[1..n] – text to search, length n

Characters from Σ

P[1..m] – pattern text, length m
Characters from Σ
m <= n

Σ – finite alphabet
δ – transition function in a FA

Notation Review (2)
Pk – k-character prefix P[1..k] of 
P[1..m]
w is a prefix of x, denoted w ⊂ x, if x = 
wy for some string y ∈ Σ*

w is a suffix of x, denoted w ⊃ x, if x = 
yw for some string y ∈ Σ*

ε - empty string

Notation Review (3)
s – shift

0 ≤ s ≤ n – m

If T[s+1..s+m] = P[1..m] then s is 
called a valid shift else s is called an 
invalid shift.
The string-matching problem is to find 
all valid shifts.

The Kunth-Morris-Pratt (KMP) 
Algorithm

Θ(m) preprocessing time
Saves a factor of |Σ| over the 
preprocessing time for the FA

Done by using an auxiliary function π, instead 
of the transition function δ.

Θ(n) matching time
Section 32.4 in text.
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KMP Algorithm
Discussion – Prefix Function (1)

“The prefix function π for a pattern 
encapsulates knowledge about how the 
pattern matches against shifts of itself.  
This information can be used to avoid 
testing useless shifts in the naive 
pattern matching algorithm or to avoid 
the precomputation of δ for a string-
matching automation.”

KMP Algorithm
Discussion – Prefix Function (2)

KMP Algorithm
Discussion – Prefix Function (3)

KMP Algorithm
Discussion – Prefix Function (4)

Formally:
Given a pattern P[1..m], the prefix 
function for the pattern P is the function 
π : {1, 2, …, m} -> {0, 1, …, m-1} such 
that π[q] = max{k: k < q and Pk ⊃ Pq}.
π[q] is the length of the longest prefix 
of P that is a proper suffix of Pq.

KMP Algorithm
Discussion – Pseudocode (1)
Compute-Prefix-Function(P)
1. m <- length[T]
2. π[1] <- 0
3. k <- 0
4. for q <- 2 to m
5. do while k > 0 and P[k+1] != P[q]
6. do k <- π[k]
7. if P[k+1] = P[q]
8. then k <- k + 1
9. π[q] <- k
10. return π

KMP Algorithm
Discussion – Pseudocode (2)
KMP-Matcher(T, P)
1. n <- length[T]
2. m <- length[P]
3. π <- Compute-Prefix-Function(P)
4. q <- 0                                         ; Number of characters matched.
5. for i <- 1 to n                               ; Scan the text from left to right
6. do while q > 0 and P[q+1] != T[i]
7. do q <- π[q]                  ;Next character does not match.
8. if P[q+1] = T[I]
9. then q <- q + 1              ;Next character matches
10. if q = m                             ;Is all of P matched?
11. then print “Pattern occurs with shift” i – m
12. q <- π[q]                 ;Look for the next match 
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KMP Algorithm
Discussion – Correctness (1)

Lemma 32.5 (Prefix-function iteration lemma)
Let P be a pattern of length m with prefix function 
π.  Then, for q = 1, 2, …, m, we have 
π∗[q] = {k: k < q and Pk ⊃ Pq}.

Lemma 32.6
Let P be a pattern of length m, and let π be 
the prefix function for P.  For q = 1, 2, …, 
m, if π[q] > 0, then π[q] – 1 ∈ π∗[q - 1].

KMP Algorithm
Discussion – Correctness (2)

KMP Algorithm
Examples (HTML based)

http://www.cs.utexas.edu/users/moore/
best-ideas/string-searching/kpm-
example.html
http://www-igm.univ-
mlv.fr/~lecroq/string/examples/exp8.ht
ml

KMP Algorithm
Examples (Applets)

http://www-igm.univ-
mlv.fr/~lecroq/string/node8.html
http://www-sr.informatik.uni-
tuebingen.de/~buehler/BM/BM.html

The Boyer-Moore Algorithm
“If the pattern P is relatively long and 
the alphabet Σ is reasonably large, then 
[this algorithm] is likely to be the most 
efficient string-matching algorithm.”
Matches right to left, unlike KMP.
This algorithm is NOT in the second 
edition of our book, but is in section 
34.5 of the first edition.

Boyer-Moore Algorithm
Discussion – Matcher Function (1)

Boyer-Moore-Matcher(T, P, Σ)
1. n <- length[T]
2. m <- length[P]
3. λ <- Compute-Last-Occurrence-Function(P, m, Σ)
4. γ <- Compute-Good-Suffix-Function(P, m)
5. s <- 0
6. while s <= n – m
7. do j <- m
8. while j > 0 and P[j] = T[s+j]
9. do j <- j – 1
10. if j = 0
11. then print “Pattern occurs at shift s”
12. s <- s + γ[0]
13. else s <- s + max(γ[0], j – λ[T[s+j]] )
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Boyer-Moore Algorithm
Discussion – Matcher Function (2)

The function Boyer-Moore-Matcher(T,P, Σ) 
“looks remarkably like the naive string-
matching algorithm.”  Indeed, commenting 
out lines 3-4 and changing lines 12-13 to 
s <- s + 1, results in a version of the naive 
string-matching algorithm.
The Boyer-Moore Algorithm uses the greater 
of two heuristics to determine how much to 
shift next by.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (1)

The first heuristic, is the bad-character 
heuristic.
In general, works as follows: 
P[j] != T[s+j] for some j, where 1<= j <= m.  
Let k be the largest index in the range 1 <= k 
<= m such that T[s+j] = P[k], if any such k 
exists. Otherwise let k = 0.
We can safely increase by j – k, three cases 
to show this.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (2)

Case 1. k = 0, so increase by j.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (3)

Case 2. k < j, so increase by j – k.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (4)

Case 3. k > j, resulting in a negative 
shift, but the good-suffix heuristic 
recommendation is ignored.

Boyer-Moore Algorithm
Discussion – Heuristic Bad (5)

Compute-Last-Occurrence-Function(P,m,Σ)
1. for each character a ∈ Σ
2. do λ[a] = 0
3. for j <- 1 to m
4. do λ[P[j]] <- j
5. return λ

The running time of this procedure is O(|Σ| + m).
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Boyer-Moore Algorithm
Discussion – Heuristic Good (1)

Define the relation Q ~ R for strings Q 
and R to mean that Q ⊃ R or R ⊃ Q.
If two strings are similar, then we can 
align them with their rightmost 
characters matched, and no pair of 
aligned characters will disagree.
The relation “~” is symmetric.
Q ~ R and S ~ R imply Q ~ S

Boyer-Moore Algorithm
Discussion – Heuristic Good (2)

“If P[j] != T[s+j], where j < m, then the 
good-suffix heuristic says that we can safely 
advance by
γ[j] = m – max{k: 0 <= k < m and     

P[j+1..m] ~ Pk}”
“γ[j] is the least amount we can advance s 
and not cause any characters in the “good 
suffix” T[s + j + 1..s + m] to be mismatched 
against the new alignment of the pattern.”
γ[j] > 0 for all j = 1..m, which ensures that 
this algorithm makes progress.

Boyer-Moore Algorithm
Discussion – Heuristic Good (3)

Boyer-Moore Algorithm
Discussion – Heuristic Good (4)
Compute-Good-Suffix-Function(P,m)
1. π <- Compute-Prefix-Function(P)
2. P’ = reverse(P)
3. π’ <- Compute-Prefix-Function(P’)
4. For j <- 0 to m
5. do γ[j] <- m – π[m]
6. For i <- 1 to m
7. do j <- m – π’[i]
8. if γ[j] > i - π’[i]
9. then γ[j] <- i - π’[i]
10. return γ

This function has running time O(m).

Boyer-Moore Algorithm
Discussion – Running Time

Worst case is O((n – m + 1)m + |Σ|)
Compute-Last-Occurrence-Function takes 
time O(m + |Σ|).
Compute-Good-Suffix-Function takes time 
O(m).
O(m) time is spent validating each valid 
shift s.

Boyer-Moore Algorithm
Examples (HTML based)

http://www.cs.utexas.edu/users/moore/
best-ideas/string-searching/fstrpos-
example.html
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Boyer-Moore Algorithm
Examples (Applets)

http://www-igm.univ-
mlv.fr/~lecroq/string/node14.html
http://www.blarg.com/~doyle/bmi.html
http://www-sr.informatik.uni-
tuebingen.de/~buehler/BM/BM.html
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