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Substring search

Goal.  Find pattern of length M in a text of length N.

typically N >> M

Substring search 
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Substring search applications

Goal.  Find pattern of length M in a text of length N.

Substring search 
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typically N >> M
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Brute Force
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Screen scraping:  Java implementation

Java library.  The indexOf() method in Java's string library returns the index 

of the first occurrence of a given string, starting at a given offset.

public class StockQuote
{ 
   public static void main(String[] args)
   {
      String name = "http://finance.yahoo.com/q?s=";
      In in = new In(name + args[0]);
      String text = in.readAll();
      int start    = text.indexOf("Last Trade:", 0);
      int from     = text.indexOf("<b>",  start);
      int to       = text.indexOf("</b>", from);
      String price = text.substring(from + 3, to);
      StdOut.println(price);
   } 
}

% java StockQuote goog
582.93

% java StockQuote msft
24.84

http://algs4.cs.princeton.edu
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Brute-force substring search

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match

Check for pattern starting at each text position.

public static int search(String pat, String txt)
{
   int M = pat.length();
   int N = txt.length();
   for (int i = 0; i <= N - M; i++)
   {   
      int j;
      for (j = 0; j < M; j++)
         if (txt.charAt(i+j) != pat.charAt(j))
            break;
      if (j == M) return i;
   }
   return N;
}

12

Brute-force substring search:  Java implementation

index in text where
pattern starts

not found

i   j  i + j   0  1  2  3  4  5  6  7  8  9  1 0

          A  B  A  C  A  D  A  B  R  A  C

4   3   7            A  D  A  C  R

5   0   5              A  D  A  C  R
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Check for pattern starting at each text position.

public static int search(String pat, String txt)
{
   int M = pat.length();
   int N = txt.length();
   for (int i = 0; i <= N - M; i++)
   {   
      int j;
      for (j = 0; j < M; j++)
         if (txt.charAt(i+j) != pat.charAt(j))
            break;
      if (j == M) return i;
   }
   return N;
}
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Brute-force substring search:  Java implementation

index in text where
pattern starts

not found
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Brute Force: Worst Case

Brute-force algorithm can be slow if text and pattern are repetitive.

Worst case.  ~ M N char compares.
13

Brute-force substring search:  worst case

Brute-force substring search (worst case)

 i   j  i+j   0  1  2  3  4  5  6  7  8  9

              A  A  A  A  A  A  A  A  A  B 

 0   4   4    A  A  A  A  B 
 1   4   5       A  A  A  A  B 
 2   4   6          A  A  A  A  B 
 3   4   7             A  A  A  A  B 
 4   4   8                A  A  A  A  B 
 5   5  10                   A  A  A  A  B

   

txt

pat

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match

In many applications, we want to avoid backup in text stream.

・Treat input as stream of data.

・Abstract model:  standard input.

Brute-force algorithm needs backup for every mismatch.

Approach 1.  Maintain buffer of last M characters.

Approach 2.  Stay tuned.

Backup

14

“ATTACK AT DAWN”
substring search

machine

found

A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  B

                    A  A  A  A  A  B

A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  B

                  A  A  A  A  A  B

matched chars
mismatch

shift pattern right one position

backup 

Same sequence of char compares as previous implementation.

・ i points to end of sequence of already-matched chars in text.

・ j stores # of already-matched chars (end of sequence in pattern).

public static int search(String pat, String txt)
{
   int i, N = txt.length();
   int j, M = pat.length();
   for (i = 0, j = 0; i < N && j < M; i++)
   {
      if (txt.charAt(i) == pat.charAt(j)) j++;
      else { i -= j; j = 0;  }
   }
   if (j == M) return i - M;
   else            return N;
}
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Brute-force substring search:  alternate implementation

explicit backup

i   j   0  1  2  3  4  5  6  7  8  9  1 0

      A  B  A  C  A  D  A  B  R  A  C

7   3           A  D  A  C  R

5   0             A  D  A  C  R

16

Algorithmic challenges in substring search

Brute-force is not always good enough.

Theoretical challenge.  Linear-time guarantee.

Practical challenge.  Avoid backup in text stream.

fundamental algorithmic problem

Now is the time for all people to come to the aid of their party. Now is the time for all good people to 
come to the aid of their party. Now is the time for many good people to come to the aid of their party. 
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good 
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of 
their party. Now is the time for all good people to come to the aid of their party. Now is the time for 
each good person to come to the aid of their party. Now is the time for all good people to come to the aid 
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the 
time for all good people to come to the aid of their party. Now is the time for many or all good people to 
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now 
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to 
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now 
is the time for many good people to come to the aid of their party. Now is the time for all good people to 
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their 
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for 
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come 
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is 
the time for all good Republicans to come to the aid of their party. Now is the time for all good people 
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their 
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good 
Democrats to come to the aid of their party.

often no room or time to save text

Ryszard Janicki Substring Search: Brute Force and KMP 5/24



Backup

Brute-force algorithm can be slow if text and pattern are repetitive.

Worst case.  ~ M N char compares.
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Algorithmic challenges in substring search

Brute-force is not always good enough.

Theoretical challenge.  Linear-time guarantee.

Practical challenge.  Avoid backup in text stream.

fundamental algorithmic problem

Now is the time for all people to come to the aid of their party. Now is the time for all good people to 
come to the aid of their party. Now is the time for many good people to come to the aid of their party. 
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good 
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of 
their party. Now is the time for all good people to come to the aid of their party. Now is the time for 
each good person to come to the aid of their party. Now is the time for all good people to come to the aid 
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the 
time for all good people to come to the aid of their party. Now is the time for many or all good people to 
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now 
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to 
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now 
is the time for many good people to come to the aid of their party. Now is the time for all good people to 
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their 
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for 
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come 
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is 
the time for all good Republicans to come to the aid of their party. Now is the time for all good people 
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their 
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good 
Democrats to come to the aid of their party.

often no room or time to save text
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Knuth-Morris-Pratt Algorithm: Example I

It employs a clever method to always avoid backup and will
run in O(N).

Let S = ‘babcbabcabcaabcabcabcacabc’ and
P = ‘abcabcacab’.

To find P in S we slide P along S from left to right, looking at
the characters that are opposite one another.

Initially, we try the following configuration:

Sec. 7.2 Precomputation for String-Searching Problems 213

Problem 7.2.2. Is the method illustrated of interest if the target string is very
long and if it cannot be divided into substrings ?

Problem 7.2.3. If T (P, Si) is true with probability E > 0 even if Si does not
contain P, what is the order of the number of operations required in the worst case to
find P in S or to confirm that it is absent ?

Many variations on this theme are possible. In the preceding example the func-
tion B takes two consecutive characters of the string as parameters. It is easy to invent
such functions based on three consecutive characters, and so on. The number of bits in
the signature can also be changed.

Problem 7.2.4. Can we define a function B based on a single character?
If this is possible, is it useful ?

Problem 7.2.5. If the character set contains the 128 characters of the ASCII
code, and if the computer in use has 32-bit words, we might define B by

B (c 1, c 2) = (128 val (c 1) + val (c 2)) mod 32.

Is this to be recommended ? If not, what do you suggest instead ?

7.2.2 The Knuth-Morris-Pratt Algorithm

We confine ourselves to giving an informal description of this algorithm (henceforth :
the KMP algorithm), which finds the occurrences of P in S in a time in 0 (n).

Example 7.2.2. Let S = "babcbabcabcaabcabcabcacabc" and P = "abcabcacab".
To find P in S we slide P along S from left to right, looking at the characters that are
opposite one another. Initially, we try the following configuration :

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

We check the characters of P from left to right. The arrows show the comparisons car-
ried out before we find a character that does not match. In this case there is only one
comparison. After this failure we try

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTT
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Knuth-Morris-Pratt Algorithm: Example II

Initially, we try the following configuration:

Sec. 7.2 Precomputation for String-Searching Problems 213

Problem 7.2.2. Is the method illustrated of interest if the target string is very
long and if it cannot be divided into substrings ?

Problem 7.2.3. If T (P, Si) is true with probability E > 0 even if Si does not
contain P, what is the order of the number of operations required in the worst case to
find P in S or to confirm that it is absent ?

Many variations on this theme are possible. In the preceding example the func-
tion B takes two consecutive characters of the string as parameters. It is easy to invent
such functions based on three consecutive characters, and so on. The number of bits in
the signature can also be changed.

Problem 7.2.4. Can we define a function B based on a single character?
If this is possible, is it useful ?

Problem 7.2.5. If the character set contains the 128 characters of the ASCII
code, and if the computer in use has 32-bit words, we might define B by

B (c 1, c 2) = (128 val (c 1) + val (c 2)) mod 32.

Is this to be recommended ? If not, what do you suggest instead ?

7.2.2 The Knuth-Morris-Pratt Algorithm

We confine ourselves to giving an informal description of this algorithm (henceforth :
the KMP algorithm), which finds the occurrences of P in S in a time in 0 (n).

Example 7.2.2. Let S = "babcbabcabcaabcabcabcacabc" and P = "abcabcacab".
To find P in S we slide P along S from left to right, looking at the characters that are
opposite one another. Initially, we try the following configuration :

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

We check the characters of P from left to right. The arrows show the comparisons car-
ried out before we find a character that does not match. In this case there is only one
comparison. After this failure we try

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTT

We check the characters of P from left to right. The arrows
show the comparisons carried out before we find a character
that does not match.

In this case there is only one comparison. After this failure we
try

Sec. 7.2 Precomputation for String-Searching Problems 213

Problem 7.2.2. Is the method illustrated of interest if the target string is very
long and if it cannot be divided into substrings ?

Problem 7.2.3. If T (P, Si) is true with probability E > 0 even if Si does not
contain P, what is the order of the number of operations required in the worst case to
find P in S or to confirm that it is absent ?

Many variations on this theme are possible. In the preceding example the func-
tion B takes two consecutive characters of the string as parameters. It is easy to invent
such functions based on three consecutive characters, and so on. The number of bits in
the signature can also be changed.

Problem 7.2.4. Can we define a function B based on a single character?
If this is possible, is it useful ?

Problem 7.2.5. If the character set contains the 128 characters of the ASCII
code, and if the computer in use has 32-bit words, we might define B by

B (c 1, c 2) = (128 val (c 1) + val (c 2)) mod 32.

Is this to be recommended ? If not, what do you suggest instead ?

7.2.2 The Knuth-Morris-Pratt Algorithm

We confine ourselves to giving an informal description of this algorithm (henceforth :
the KMP algorithm), which finds the occurrences of P in S in a time in 0 (n).

Example 7.2.2. Let S = "babcbabcabcaabcabcabcacabc" and P = "abcabcacab".
To find P in S we slide P along S from left to right, looking at the characters that are
opposite one another. Initially, we try the following configuration :

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

We check the characters of P from left to right. The arrows show the comparisons car-
ried out before we find a character that does not match. In this case there is only one
comparison. After this failure we try

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTT
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Knuth-Morris-Pratt Algorithm: Example III

There is only one comparison. After this failure we try

Sec. 7.2 Precomputation for String-Searching Problems 213

Problem 7.2.2. Is the method illustrated of interest if the target string is very
long and if it cannot be divided into substrings ?

Problem 7.2.3. If T (P, Si) is true with probability E > 0 even if Si does not
contain P, what is the order of the number of operations required in the worst case to
find P in S or to confirm that it is absent ?

Many variations on this theme are possible. In the preceding example the func-
tion B takes two consecutive characters of the string as parameters. It is easy to invent
such functions based on three consecutive characters, and so on. The number of bits in
the signature can also be changed.

Problem 7.2.4. Can we define a function B based on a single character?
If this is possible, is it useful ?

Problem 7.2.5. If the character set contains the 128 characters of the ASCII
code, and if the computer in use has 32-bit words, we might define B by

B (c 1, c 2) = (128 val (c 1) + val (c 2)) mod 32.

Is this to be recommended ? If not, what do you suggest instead ?

7.2.2 The Knuth-Morris-Pratt Algorithm

We confine ourselves to giving an informal description of this algorithm (henceforth :
the KMP algorithm), which finds the occurrences of P in S in a time in 0 (n).

Example 7.2.2. Let S = "babcbabcabcaabcabcabcacabc" and P = "abcabcacab".
To find P in S we slide P along S from left to right, looking at the characters that are
opposite one another. Initially, we try the following configuration :

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

We check the characters of P from left to right. The arrows show the comparisons car-
ried out before we find a character that does not match. In this case there is only one
comparison. After this failure we try

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTT

This time the first three characters of P are the same as the
characters opposite them in S, but the fourth does not match.

Up to now, we have proceeded exactly as in the naive
algorithm. However we now know that the last four characters
examined in S are abcx where x 6= ”a”.

Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three
characters along : such an alignment cannot be correct.

So let us try sliding P four characters along.

214 Preconditioning and Precomputation Chap. 7

This time the first three characters of P are the same as the characters opposite them
in S, but the fourth does not match. Up to now, we have proceeded exactly as in the
naive algorithm. However we now know that the last four characters examined in S
are abcx where x #"a". Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three characters along : such an align-
ment cannot be correct. So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Following this mismatch, we know that the last eight characters examined in S are
abcabcax where x # "c". Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

There is no need to recheck the first four characters of P : we chose the movement of
P in such a way as to ensure that they necessarily match. It suffices to start checking
at the current position of the pointer. In this case we have a second mismatch in the
same position. This time, sliding P four places along might work. (A three-place
movement is not enough: we know that the last characters examined in S are ax,
where x is not a "b".)

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Yet again we have a mismatch, and this time a three-place movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTT

We complete the verification starting at the current position of the pointer, and this
time the correspondence between the target string and the pattern is complete.

To implement this algorithm, we need an array next[ I.. m ]. This array tells us
what to do when a mismatch occurs at position j in the pattern.
If next [ j ] = 0, it is useless to compare further characters of the pattern to the target
string at the current position. We must instead line up P with the first character of S
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Knuth-Morris-Pratt Algorithm: Example IV

So let us try sliding P four characters along.

214 Preconditioning and Precomputation Chap. 7

This time the first three characters of P are the same as the characters opposite them
in S, but the fourth does not match. Up to now, we have proceeded exactly as in the
naive algorithm. However we now know that the last four characters examined in S
are abcx where x #"a". Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three characters along : such an align-
ment cannot be correct. So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Following this mismatch, we know that the last eight characters examined in S are
abcabcax where x # "c". Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

There is no need to recheck the first four characters of P : we chose the movement of
P in such a way as to ensure that they necessarily match. It suffices to start checking
at the current position of the pointer. In this case we have a second mismatch in the
same position. This time, sliding P four places along might work. (A three-place
movement is not enough: we know that the last characters examined in S are ax,
where x is not a "b".)

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Yet again we have a mismatch, and this time a three-place movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTT

We complete the verification starting at the current position of the pointer, and this
time the correspondence between the target string and the pattern is complete.

To implement this algorithm, we need an array next[ I.. m ]. This array tells us
what to do when a mismatch occurs at position j in the pattern.
If next [ j ] = 0, it is useless to compare further characters of the pattern to the target
string at the current position. We must instead line up P with the first character of S

Following this mismatch, we know that the last eight
characters examined in S are abcabcax where x 6= ”c”.

Sliding P one or two places along cannot be right ; however
moving it three places might work.

214 Preconditioning and Precomputation Chap. 7

This time the first three characters of P are the same as the characters opposite them
in S, but the fourth does not match. Up to now, we have proceeded exactly as in the
naive algorithm. However we now know that the last four characters examined in S
are abcx where x #"a". Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three characters along : such an align-
ment cannot be correct. So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Following this mismatch, we know that the last eight characters examined in S are
abcabcax where x # "c". Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

There is no need to recheck the first four characters of P : we chose the movement of
P in such a way as to ensure that they necessarily match. It suffices to start checking
at the current position of the pointer. In this case we have a second mismatch in the
same position. This time, sliding P four places along might work. (A three-place
movement is not enough: we know that the last characters examined in S are ax,
where x is not a "b".)

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Yet again we have a mismatch, and this time a three-place movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTT

We complete the verification starting at the current position of the pointer, and this
time the correspondence between the target string and the pattern is complete.

To implement this algorithm, we need an array next[ I.. m ]. This array tells us
what to do when a mismatch occurs at position j in the pattern.
If next [ j ] = 0, it is useless to compare further characters of the pattern to the target
string at the current position. We must instead line up P with the first character of S
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Knuth-Morris-Pratt Algorithm: Example V

Sliding P one or two places along cannot be right ; however
moving it three places might work.

214 Preconditioning and Precomputation Chap. 7

This time the first three characters of P are the same as the characters opposite them
in S, but the fourth does not match. Up to now, we have proceeded exactly as in the
naive algorithm. However we now know that the last four characters examined in S
are abcx where x #"a". Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three characters along : such an align-
ment cannot be correct. So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Following this mismatch, we know that the last eight characters examined in S are
abcabcax where x # "c". Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

There is no need to recheck the first four characters of P : we chose the movement of
P in such a way as to ensure that they necessarily match. It suffices to start checking
at the current position of the pointer. In this case we have a second mismatch in the
same position. This time, sliding P four places along might work. (A three-place
movement is not enough: we know that the last characters examined in S are ax,
where x is not a "b".)

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Yet again we have a mismatch, and this time a three-place movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTT

We complete the verification starting at the current position of the pointer, and this
time the correspondence between the target string and the pattern is complete.

To implement this algorithm, we need an array next[ I.. m ]. This array tells us
what to do when a mismatch occurs at position j in the pattern.
If next [ j ] = 0, it is useless to compare further characters of the pattern to the target
string at the current position. We must instead line up P with the first character of S

There is no need to recheck the first four characters of P : we
chose the movement of P in such a way as to ensure that they
necessarily match.
It suffices to start checking at the current position of the
pointer. In this case we have a second mismatch in the same
position.
This time, sliding P four places along might work. (A
three-place movement is not enough: we know that the last
characters examined in S are ax , where x is not a ”b”.)

214 Preconditioning and Precomputation Chap. 7

This time the first three characters of P are the same as the characters opposite them
in S, but the fourth does not match. Up to now, we have proceeded exactly as in the
naive algorithm. However we now know that the last four characters examined in S
are abcx where x #"a". Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three characters along : such an align-
ment cannot be correct. So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Following this mismatch, we know that the last eight characters examined in S are
abcabcax where x # "c". Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

There is no need to recheck the first four characters of P : we chose the movement of
P in such a way as to ensure that they necessarily match. It suffices to start checking
at the current position of the pointer. In this case we have a second mismatch in the
same position. This time, sliding P four places along might work. (A three-place
movement is not enough: we know that the last characters examined in S are ax,
where x is not a "b".)

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Yet again we have a mismatch, and this time a three-place movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTT

We complete the verification starting at the current position of the pointer, and this
time the correspondence between the target string and the pattern is complete.

To implement this algorithm, we need an array next[ I.. m ]. This array tells us
what to do when a mismatch occurs at position j in the pattern.
If next [ j ] = 0, it is useless to compare further characters of the pattern to the target
string at the current position. We must instead line up P with the first character of S
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Knuth-Morris-Pratt Algorithm: Example VI

This time, sliding P four places along might work. (A
three-place movement is not enough: we know that the last
characters examined in S are ax , where x is not a ”b”.)

214 Preconditioning and Precomputation Chap. 7

This time the first three characters of P are the same as the characters opposite them
in S, but the fourth does not match. Up to now, we have proceeded exactly as in the
naive algorithm. However we now know that the last four characters examined in S
are abcx where x #"a". Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three characters along : such an align-
ment cannot be correct. So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Following this mismatch, we know that the last eight characters examined in S are
abcabcax where x # "c". Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

There is no need to recheck the first four characters of P : we chose the movement of
P in such a way as to ensure that they necessarily match. It suffices to start checking
at the current position of the pointer. In this case we have a second mismatch in the
same position. This time, sliding P four places along might work. (A three-place
movement is not enough: we know that the last characters examined in S are ax,
where x is not a "b".)

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Yet again we have a mismatch, and this time a three-place movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTT

We complete the verification starting at the current position of the pointer, and this
time the correspondence between the target string and the pattern is complete.

To implement this algorithm, we need an array next[ I.. m ]. This array tells us
what to do when a mismatch occurs at position j in the pattern.
If next [ j ] = 0, it is useless to compare further characters of the pattern to the target
string at the current position. We must instead line up P with the first character of S

Yet again we have a mismatch, and this time a three-place
movement is necessary.

214 Preconditioning and Precomputation Chap. 7

This time the first three characters of P are the same as the characters opposite them
in S, but the fourth does not match. Up to now, we have proceeded exactly as in the
naive algorithm. However we now know that the last four characters examined in S
are abcx where x #"a". Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three characters along : such an align-
ment cannot be correct. So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Following this mismatch, we know that the last eight characters examined in S are
abcabcax where x # "c". Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab

T

There is no need to recheck the first four characters of P : we chose the movement of
P in such a way as to ensure that they necessarily match. It suffices to start checking
at the current position of the pointer. In this case we have a second mismatch in the
same position. This time, sliding P four places along might work. (A three-place
movement is not enough: we know that the last characters examined in S are ax,
where x is not a "b".)

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTTTT

Yet again we have a mismatch, and this time a three-place movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab

TTTTTT

We complete the verification starting at the current position of the pointer, and this
time the correspondence between the target string and the pattern is complete.

To implement this algorithm, we need an array next[ I.. m ]. This array tells us
what to do when a mismatch occurs at position j in the pattern.
If next [ j ] = 0, it is useless to compare further characters of the pattern to the target
string at the current position. We must instead line up P with the first character of S

We complete the verification starting at the current position
time the correspondence between the target string and the
pattern is complete.
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KMP: Failure Function I

The main idea of the KMP algorithm is to preprocess the
pattern string P so as to compute a failure function f that
indicates the proper shift of P so that, to the largest extent
possible, we can reuse previously performed comparisons.

Specifically, the failure function f (j) is defined as the length
of the longest prefix of P that is a suffix of P[1..j ] (note that
we did not put P[0..j ] here).

Prefix: let x = a1 . . . an be a string. The strings λ (empty
string), a1, a1a2, . . . , a1 . . . aj , . . . , a1 . . . an are prefixes of x .

Suffix: let x = a1 . . . an be a string. The strings λ (empty
string), an, an1an, . . . , aj . . . an, . . . , a1 . . . an are suffixes of x .

Consider x = abacab.
Prefixes λ, a, ab, aba, abac, abaca, abacab.
Suffixes: λ, b, ab, cab, acab, bacab, abacab.
The longest prefix of x that is a suffix of x is ab.
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KMP: Failure Function II

The failure function f (j) is defined as the length of the
longest prefix of P that is a suffix of P[1..j ] (note that we did
not put P[0..j ] here).

We also use the convention that f (0) = 0.

The importance of this failure function is that it ‘encodes’
repeated substrings inside the pattern itself.

Consider the pattern string P = abacab.

The KMP failure function f (j) for the string P is as shown in
the following table:

j 0 1 2 3 4 5

P[j] a b a c a b

f (j) 0 0 1 0 1 2
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KMP: Failure Function: Example I

P = abacab

j 0 1 2 3 4 5

P[j] a

f (j) 0

⇒
j 0 1 2 3 4 5

P[j] a b

f (j) 0 0

⇒

j 0 1 2 3 4 5

P[j] a b a

f (j) 0 0 1

⇒
j 0 1 2 3 4 5

P[j] a b a c

f (j) 0 0 1 0

⇒

j 0 1 2 3 4 5

P[j] a b a c a

f (j) 0 0 1 0 1

⇒
j 0 1 2 3 4 5

P[j] a b a c a b

f (j) 0 0 1 0 1 2
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KMP: Failure Function: Example II

P = abcabcacab
j 0 1 2 3 4 5 6 7 8 9

P[j] a

f (j) 0

⇒

j 0 1 2 3 4 5 6 7 8 9

P[j] a b

f (j) 0 0

⇒

j 0 1 2 3 4 5 6 7 8 9

P[j] a b c

f (j) 0 0 0

⇒

j 0 1 2 3 4 5 6 7 8 9

P[j] a b c a

f (j) 0 0 0 1

⇒

j 0 1 2 3 4 5 6 7 8 9

P[j] a b c a b

f (j) 0 0 0 1 2

⇒
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P = abcabcacab

j 0 1 2 3 4 5 6 7 8 9
P[j] a b c a b
f (j) 0 0 0 1 2

⇒

j 0 1 2 3 4 5 6 7 8 9
P[j] a b c a b c
f (j) 0 0 0 1 2 3

⇒

j 0 1 2 3 4 5 6 7 8 9
P[j] a b c a b c a
f (j) 0 0 0 1 2 3 1

⇒

j 0 1 2 3 4 5 6 7 8 9
P[j] a b c a b c a c
f (j) 0 0 0 1 2 3 1 0

⇒

j 0 1 2 3 4 5 6 7 8 9
P[j] a b c a b c a c a
f (j) 0 0 0 1 2 3 1 0 1

⇒

j 0 1 2 3 4 5 6 7 8 9
P[j] a b c a b c a c a b
f (j) 0 0 0 1 2 3 1 0 1 2
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The Knuth-Morris-Pratt Algorithm: Pseudocode

The KMP pattern matching algorithm, shown below, incrementally
processes the text string T comparing it to the pattern string P.

660 Chapter 23. String Algorithms

23.3 The Knuth-Morris-Pratt Algorithm

The main idea of the KMP algorithm is to preprocess the pattern string P so as
to compute a failure function f that indicates the proper shift of P so that, to the
largest extent possible, we can reuse previously performed comparisons. Specifi-
cally, the failure function f(j) is defined as the length of the longest prefix of P
that is a suffix of P [1..j] (note that we did not put P [0..j] here). We also use the
convention that f(0) = 0. Later, we will discuss how to compute the failure func-
tion efficiently. The importance of this failure function is that it “encodes” repeated
substrings inside the pattern itself.

Example 23.2: Consider the pattern string P = "abacab" from Example 23.1.
The KMP failure function f(j) for the string P is as shown in the following table:

j 0 1 2 3 4 5
P [j] a b a c a b
f(j) 0 0 1 0 1 2

The KMP pattern matching algorithm, shown in Algorithm 23.7, incrementally
processes the text string T comparing it to the pattern string P .

Algorithm KMPMatch(T, P ):
Input: Strings T (text) with n characters and P (pattern) with m characters
Output: Starting index of the first substring of T matching P , or an indication

that P is not a substring of T
f ← KMPFailureFunction(P ) // construct the failure function f for P
i ← 0
j ← 0
while i < n do

if P [j] = T [i] then
if j = m− 1 then

return i−m+ 1 // a match!
i ← i+ 1
j ← j + 1

else if j > 0 // no match, but we have advanced in P then
j ← f(j − 1) // j indexes just after prefix of P that must match

else
i ← i+ 1

return “There is no substring of T matching P .”

Algorithm 23.7: The KMP pattern matching algorithm.
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Intuition Behind the KMP Algorithm I

During the execution of the KMP algorithm, each time there
is a match, we increment the current indices.

On the other hand, if there is a mismatch and we have
previously made progress in P, then we consult the failure
function to determine the new index in P where we need to
continue checking P against T .

Otherwise (there was a mismatch and we are at the beginning
of P), we simply increment the index for T (and keep the
index variable for P at its beginning).

We repeat this process until we find a match of P in T or the
index for T reaches n, the length of T (indicating that we did
not find the pattern P in T ).
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Intuition Behind the KMP Algorithm II

The main part of the KMP algorithm is the while-loop, which
performs a comparison between a character in T and a
character in P each iteration.

Depending upon the outcome of this comparison, the
algorithm either moves on to the next characters in T and P,
consults the failure function for a new candidate character in
P, or starts over with the next index in T .

The correctness of this algorithm follows from the definition of
the failure function.

The skipped comparisons are actually unnecessary, for the
failure function guarantees that all the ignored comparisons
are redundant—they would involve comparing characters we
already know match.
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An illustration of the KMP pattern matching algorithm

j 0 1 2 3 4 5

P[j] a b a c a b

f (j) 0 0 1 0 1 2

23.3. The Knuth-Morris-Pratt Algorithm 661

Intuition Behind the KMP Algorithm

During the execution of the KMP algorithm, each time there is a match, we incre-
ment the current indices. On the other hand, if there is a mismatch and we have
previously made progress in P , then we consult the failure function to determine
the new index in P where we need to continue checking P against T . Otherwise
(there was a mismatch and we are at the beginning of P ), we simply increment the
index for T (and keep the index variable for P at its beginning). We repeat this
process until we find a match of P in T or the index for T reaches n, the length
of T (indicating that we did not find the pattern P in T ).

The main part of the KMP algorithm is the while-loop, which performs a com-
parison between a character in T and a character in P each iteration. Depending
upon the outcome of this comparison, the algorithm either moves on to the next
characters in T and P , consults the failure function for a new candidate character in
P , or starts over with the next index in T . The correctness of this algorithm follows
from the definition of the failure function. The skipped comparisons are actually
unnecessary, for the failure function guarantees that all the ignored comparisons
are redundant—they would involve comparing characters we already know match.

In Figure 23.8, we illustrate the execution of the KMP pattern matching algo-
rithm on the same input strings as in Example 23.1. Note the use of the failure
function to avoid redoing one of the comparisons between a character of the pat-
tern and a character of the text. Also note that the algorithm performs fewer overall
comparisons than the brute-force algorithm run on the same strings (Figure 23.2).

1

a b a c a a b a c c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

no comparison

needed here

Figure 23.8: An illustration of the KMP pattern matching algorithm. The failure
function f for this pattern is given in Example 23.2. The algorithm performs 19
character comparisons, which are indicated with numerical labels.

The algorithm performs 19 character comparisons, which are
indicated with numerical labels.
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Constructing the KMP Failure Function

We compare the pattern to itself.

Each time we have two characters that match, we set
f (i) = j + 1.

Note that since we have i > j throughout the execution of the
algorithm, f (j − 1) is always defined when we need to use it.

We want time complexity O(m), where m = length(P)
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23.3. The Knuth-Morris-Pratt Algorithm 663

Algorithm KMPFailureFunction(P ):
Input: String P (pattern) with m characters
Output: The failure function f for P , which maps j to the length of the longest

prefix of P that is a suffix of P [1..j]

i ← 1
j ← 0
f(0) ← 0
while i < m do

if P [j] = P [i] then
// we have matched j + 1 characters
f(i) ← j + 1
i ← i+ 1
j ← j + 1

else if j > 0 then
// j indexes just after a prefix of P that must match
j ← f(j − 1)

else
// we have no match here
f(i) ← 0
i ← i+ 1

Algorithm 23.9: Computation of the failure function used in the KMP pattern
matching algorithm. Note how the algorithm uses the previous values of the failure
function to efficiently compute new values.

The intuition behind the worst-case efficiency of the KMP algorithm comes
from our being able to get the most out of each comparison that we do, and by our
not performing comparisons we know to be redundant. The KMP algorithm is best
suited for strings from small-size alphabets, such as DNA sequences.

Limitations for Repeated Queries

The BM and KMP pattern matching algorithms presented above speed up the
search of a pattern in a text by preprocessing the pattern (to compute the failure
function in the KMP algorithm or the last function in the BM algorithm). In some
applications, however, we would like to take a complementary approach, where
we would consider a string searching algorithms that preprocess the text to sup-
port multiple queries. This approach is suitable for applications where a series of
queries is performed on a fixed text, so that the initial cost of preprocessing the text
is compensated by a speedup in each subsequent query (for example, a website that
offers pattern matching in Shakespeare’s Hamlet or a search engine that offers web
pages on the Hamlet topic).

Note how the algorithm uses the previous values of the failure
function to efficiently compute new values.
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Analysis of the KMP Algorithm

Theorem

The Knuth-Morris-Pratt algorithm performs pattern matching on a
text string of length n and a pattern string of length m in
O(n + m) time.

The running time analysis of the KMP algorithm may seem a
little surprising at first, for it states that, in time proportional
to that needed just to read the strings T and P separately, we
can find the first occurrence of P in T .
Also, it should be noted that the running time of the KMP
algorithm does not depend on the size of the alphabet.
The intuition behind the worst-case efficiency of the KMP
algorithm comes from our being able to get the most out of
each comparison that we do, and by our not performing
comparisons we know to be redundant.
The KMP algorithm is best suited for strings from small-size
alphabets, such as DNA sequences.
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