Substring Search: Brute Force and

Knuth-Morris-Pratt Algorithm
Comp Sci 2C03

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Brute force based on Algorithms by Robert Sedgewick and Kevin Wayne (Chapter 5.3)

Ryszard Janicki Substring Search: Brute Force and KMP

1/24

Substring Search (Pattern Matching)

Goal. Find pattern of length M in a text of length .

typically N >> M

patte)en— N E E D L E

text —TI N A H A Y S T A C K N E E D L E I N A

T

match

Ryszard Janicki Substring Search: Brute Force and KMP 2/24

Check for pattern starting at each text position.

1 j i+43 0 1 2 3 4 5 6 7 8 910
txt—A B A C A D A B R A C
A B R ~— pat
A entries in red are

for reference only

2

1

3 A B / mismatches

3 / A entries in gray are
5

5

o vl W N BB O
O R ORFr ON

entries in black s B /
match the text A
4 10 A B R A
™ return i when jisM 4

match

Ryszard Janicki Substring Search: Brute Force and KMP 3/24

Brute Force: Java

Check for pattern starting at each text position.

i j oi+3 01 2 3 456 7 8 9 10
A B ACADABTR RASC
4 3 7 A D AC
5 A

public static int search(String pat, String txt)
{

int M pat.length(Q);

int N = txt.lengthQ;

for (int i = 0; i <= N - M; i++)

{
int j;
for (3 = 0; j < M; j++)
if (txt.charAt(i+j) != pat.charAt(j))
break; dex in text wh
o - - Index In text wnhere
} if (G == M return i; pattern starts

Ryszard Janicki Substring Search: Brute Force and KMP 4/24

Brute Force: Worst Case

Brute-force algorithm can be slow if text and pattern are repetitive.

i j o i+] 01 2 3 45 6 7 8 9
txt—A A A A A A A A A B

0 4 4 A A A A B-<«—pat

1 4 5 A A A A B

2 4 6 A A A A B

3 4 7 A A A A B

4 4 8 A A A A B

5 5 10 A A A A B

)

match

Worst case. ~M N char compares.

Ryszard Janicki Substring Search: Brute Force and KMP

Brute-force algorithm needs backup for every mismatch.

matched chars
l mismatch
/
A A A A AA
A A A A A B
backup

>

/ "
shift pattern right one position

Approach 1. Maintain buffer of last M characters.

Ryszard Janicki Substring Search: Brute Force and KMP 6/24

Knuth-Morris-Pratt Algorithm: Example |

@ It employs a clever method to always avoid backup and will
run in O(N).

@ Let S = 'babcbabcabcaabcabcabcacabc’ and
P = ‘abcabcacab’.

@ To find P in S we slide P along S from left to right, looking at
the characters that are opposite one another.

o Initially, we try the following configuration:

S babcbabcabcaabcabcabcacabe
P abcabcacab
T\

Ryszard Janicki Substring Search: Brute Force and KMP

Knuth-Morris-Pratt Algorithm: Example Il

o Initially, we try the following configuration:

S babcbabcabcaabcabcabcacabe
P abcabcacab
T\

@ We check the characters of P from left to right. The arrows
show the comparisons carried out before we find a character
that does not match.

@ In this case there is only one comparison. After this failure we

try
S babcbabcabcaabcabecabcacabe
P abcabcacab
T

Ryszard Janicki Substring Search: Brute Force and KMP

Knuth-Morris-Pratt Algorithm: Example Il

@ There is only one comparison. After this failure we try

S babcbabcabcaabcabcabcacabe
P abcabcacab
T

@ This time the first three characters of P are the same as the
characters opposite them in S, but the fourth does not match.

@ Up to now, we have proceeded exactly as in the naive
algorithm. However we now know that the last four characters
examined in S are abcx where x £ "a".

e Without making any more comparisons with S, we can
conclude that it is useless to slide P one, two, or three
characters along : such an alignment cannot be correct.

@ So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabec
P abcabcacab
TTTTTT17T

Ryszard Janicki Substring Search: Brute Force and KMP

Knuth-Morris-Pratt Algorithm: Example IV

@ So let us try sliding P four characters along.

S babcbabcabcaabcabcabcacabc
P abcabcacab
TTTTTT17T

o Following this mismatch, we know that the last eight

characters examined in S are abcabcax where x # "c".

@ Sliding P one or two places along cannot be right ; however

moving it three places might work.
\Y babcbabcabcaabcabcabcacabc
P abcabcacab

Ryszard Janicki Substring Search: Brute Force and KMP 10/24

Knuth-Morris-Pratt Algorithm: Example V

@ Sliding P one or two places along cannot be right ; however
moving it three places might work.

S babcbabcabcaabcabcabcacabc
P abcabcacab
T

@ There is no need to recheck the first four characters of P : we
chose the movement of P in such a way as to ensure that they
necessarily match.

@ It suffices to start checking at the current position of the
pointer. In this case we have a second mismatch in the same
position.

@ This time, sliding P four places along might work. (A
three-place movement is not enough: we know that the last
characters examined in S are ax, where x is not a "b".)

S babcbabcabcaabcabcabcacabec
P abcabcacab
T

Ryszard Janicki Substring Search: Brute Force and KMP 11/24

Knuth-Morris-Pratt Algorithm: Example VI

@ This time, sliding P four places along might work. (A
three-place movement is not enough: we know that the last
characters examined in S are ax, where x is not a "b".)

S babcbabcabcaabcabcabcacabec
P abcabcacab
N

@ Yet again we have a mismatch, and this time a three-place
movement is necessary.

S babcbabcabcaabcabcabcacabc
P abcabcacab
TTTTTT

@ We complete the verification starting at the current position
time the correspondence between the target string and the
pattern is complete.

Ryszard Janicki Substring Search: Brute Force and KMP 12/24

KMP: Failure Function |

@ The main idea of the KMP algorithm is to preprocess the
pattern string P so as to compute a failure function f that
indicates the proper shift of P so that, to the largest extent
possible, we can reuse previously performed comparisons.

e Specifically, the failure function f(j) is defined as the length
of the longest prefix of P that is a suffix of P[1..j] (note that
we did not put P[0..j] here).

o Prefix: let x = a;...a, be a string. The strings A (empty
string), a1, a1a2,...,a1...4dj,...,ar...an are prefixes of x.

o Suffix: let x = a;...a, be a string. The strings A (empty
string), an, aman, ..., dj...an,...,ai...an are suffixes of x.

o Consider x = abacab.

Prefixes A, a, ab, aba, abac, abaca, abacab.
Suffixes: A, b, ab, cab, acab, bacab, abacab.
The longest prefix of x that is a suffix of x is ab.

Ryszard Janicki Substring Search: Brute Force and KMP

KMP: Failure Function Il

@ The failure function f(j) is defined as the length of the
longest prefix of P that is a suffix of P[1..j] (note that we did
not put P[0..j] here).

e We also use the convention that f(0) = 0.

@ The importance of this failure function is that it ‘encodes’
repeated substrings inside the pattern itself.

o Consider the pattern string P = abacab.

e The KMP failure function f(j) for the string P is as shown in
the following table:

J
il
()

1 2
b a
0 1

NG| O

4
a
1

Ol | O
o0 | Ww

Ryszard Janicki Substring Search: Brute Force and KMP

KMP: Failure Function: Example |

@ P = abacab

7 J0 1 2 3 4 5 7 J0 1 2 3 4 5
Pli] | a =|P[jl|a b =
f() | 0 fG) |0 O

Jj |0 1 3 45 j [0 1 3 45
Pil]|a b a =|P[jl|la b a ¢ =
fG)|o0 0 1 fGg)|o 0 1 0O

j |01 2 3 5 j |0 1 2 3 5
Plil|la b a ¢ =|Pljl|la b a ¢ b
fG)/0 0 1 0 1 f)J0 0 1 0 1 2

Ryszard Janicki Substring Search: Brute Force and KMP

KMP: Failure Function: Example Il

@ P = abcabcacab

J 01 2 3 4 5 6 7 8 9

Plj] | a =
f(G) | 0

j |01 2 3 4 5 6 7 8 9

P[j] | a b =
fGg)|0 O

j |01 2 3 4 5 6 7 8 9
Pilla b c =
fG)|0 0 O

j |01 2 3 4 5 6 7 8 9
Pil|a b ¢ a =
fGg)|0 0 0 1

/0 1 2 3 456 7 8 9
Pijlla b ¢ a b =
fGg)|0 0 0 1 2

Ryszard Janicki Substring Search: Brute Force and KMP 16/24

@ P = abcabcacab

2 3 4 5 6 7 8 9

1

0

2

1

0 0 O

3 4 5 6 7 8 9

2

2

1
2 3 4 5 6 7 8 9

0 0 O

1

0

2

1
2 3 4 5 6 7 8 9

0 0 O

1

0

0 0 0 1 2
2 3 4 5 6 7 8 9

0

1

2

1

0 0 O

3 4 5 6 7 8 9

2

2

1

0 0 O

il

()

Pl

()

Pl

()

il

()

il

()

Pl

()

Substring Search: Brute Force and KMP 17/24

Ryszard Janicki

The Knuth-Morris-Pratt Algorithm: Pseudocode

The KMP pattern matching algorithm, shown below, incrementally

processes the text string T comparing it to the pattern string P.
Algorithm KMPMatch(7, P):

Input: Strings T (text) with n characters and P (pattern) with m characters
Output: Starting index of the first substring of 7" matching P, or an indication

that P is not a substring of T’
f < KMPFailureFunction(P)
140
70
while i < n do

if P[j] = T[] then
if j = m — 1 then

/I construct the failure function f for P

return: —m + 1 // a match!
141+ 1
j—j+1
else if j > 0 // no match, but we have advanced in P then
j<—fG-1 /I j indexes just after prefix of P that must match
else
14— 1+1

return “There is no substring of 7" matching P.”

Ryszard Janicki

Substring Search: Brute Force and KMP

Intuition Behind the KMP Algorithm |

@ During the execution of the KMP algorithm, each time there
is a match, we increment the current indices.

@ On the other hand, if there is a mismatch and we have
previously made progress in P, then we consult the failure
function to determine the new index in P where we need to
continue checking P against T.

@ Otherwise (there was a mismatch and we are at the beginning
of P), we simply increment the index for T (and keep the
index variable for P at its beginning).

@ We repeat this process until we find a match of P in T or the

index for T reaches n, the length of T (indicating that we did
not find the pattern P in T).

Ryszard Janicki Substring Search: Brute Force and KMP

Intuition Behind the KMP Algorithm Il

@ The main part of the KMP algorithm is the while-loop, which
performs a comparison between a character in T and a
character in P each iteration.

@ Depending upon the outcome of this comparison, the
algorithm either moves on to the next characters in T and P,
consults the failure function for a new candidate character in
P, or starts over with the next index in T.

@ The correctness of this algorithm follows from the definition of
the failure function.

@ The skipped comparisons are actually unnecessary, for the
failure function guarantees that all the ignored comparisons
are redundant—they would involve comparing characters we
already know match.

Ryszard Janicki Substring Search: Brute Force and KMP

An illustration of the KMP pattern matching algorithm

1
b
0

J
P[]
f(i)

Lafvfalefalafoafecfabfafe]afblafa]b]b]

N| G| o1

4
a
1

Oln | O
=L [N
[« o W NOS)

1.2 3 4 5 6
Lalvfafelafb]

7
/Ialblalclalbl

8 9 10 11 12
no comparison |a|b|a|c|a|b|
needed here

13
Lafbfafefa]o]

14 15 16 17 18 19
Lalofafefaly

The algorithm performs 19 character comparisons, which are

indicated with numerical labels.
Ryszard Janicki

Substring Search: Brute Force and KMP

Constructing the KMP Failure Function

@ We compare the pattern to itself.

@ Each time we have two characters that match, we set
f(i)=j+1

o Note that since we have i > j throughout the execution of the
algorithm, f(j — 1) is always defined when we need to use it.

e We want time complexity O(m), where m = length(P)

Ryszard Janicki Substring Search: Brute Force and KMP

Algorithm KMPFailureFunction(P):
Input: String P (pattern) with m characters
Output: The failure function f for P, which maps j to the length of the longest
prefix of P that is a suffix of P[1..5]
141
j<0
f(0) <0
while i < m do
if P[j] = PJ[i] then
/I we have matched j + 1 characters
Fi) < G+1
1 1+1
jJj+1
else if j > 0 then
/I 7 indexes just after a prefix of P that must match
J -1
else

// we have no match here
f(i) <0

i1+ 1

Note how the algorithm uses the previous values of the failure
function to efficiently compute new values.
Ryszard Janicki

Substring Search: Brute Force and KMP 23/24

Analysis of the KMP Algorithm

The Knuth-Morris-Pratt algorithm performs pattern matching on a
text string of length n and a pattern string of length m in
O(n+ m) time.

@ The running time analysis of the KMP algorithm may seem a
little surprising at first, for it states that, in time proportional
to that needed just to read the strings T and P separately, we
can find the first occurrence of P in T.

@ Also, it should be noted that the running time of the KMP
algorithm does not depend on the size of the alphabet.

@ The intuition behind the worst-case efficiency of the KMP
algorithm comes from our being able to get the most out of
each comparison that we do, and by our not performing
comparisons we know to be redundant.

@ The KMP algorithm is best suited for strings from small-size
alphabets, such as DNA sequences.

Ryszard Janicki Substring Search: Brute Force and KMP

