
;

Maxime Crochemore
Wojciech Rytter

ewels
of.
Stringology

ewels
of

Stringology

This page is intentionally left blank

.^ X

\

1

Maxime Crochemore
Universite Marne-la- Vallee, France

Wojciech Rytter

(

: i
- •

^ , , . - ^ " " ' ' ' " • ' " ' • • • > • »

y „.,.,-<•-•• r:
^

Warsaw University, Poland & University of Liverpool, UK

ewels
°f.

Stringoh

World Scientific
New Jersey * London • Singapore • Hong Kong

Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Fairer Road, Singapore 912805

USA office: Suite IB, 1060 Main Street, River Edge, NJ 07661

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

JEWELS OF STRINGOLOGY

Copyright © 2002 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-02-4782-6

This book is printed on acid-free paper.

Printed in Singapore by Mainland Press

Preface

The term stringology is a popular nickname for string algorithms as well as
for text algorithms. Usually text and string have the same meaning. More
formally, a text is a sequence of symbols. Text is one of the basic data types to
carry information. This book is a collection of the most beautiful and at the
same time very classical algorithms on strings. The selection has been done by
the authors, and is rather personal, among so many famous algorithms that
were natural candidates to be included and that belong to a field that has
become now fairly popular.

One can partition algorithmic problems discussed in this book into practical
and theoretical problems. Certainly string matching and data compression are
in the first class, while most problems related to symmetries and repetitions
are in the second. However, we believe that all the problems are interesting
from an algorithmic point of view and enable the reader to appreciate the
importance of combinatorics on words.

In most textbooks on algorithms and data structures the presentation of ef
ficient algorithms on words is quite short as compared to issues in graph theory,
sorting, searching, and some other areas. At the same time, there are many
presentations of interesting algorithms on words accessible only in journals and
in a form directed mainly at specialists. There are still not many books on
text algorithms, especially the books which are oriented toward undergraduate
and graduate students. In the book the difficult parts are indicated by a star,
so the basic text becomes painless for undergraduate students. We hope that
this book will cover a gap on algorithms on words in book literature for the
broader audience, and bring together the many results presently dispersed in
the masses of journal articles.

March 2002

M. Crochemore, W. Rytter

v

This page is intentionally left blank

Contents

Preface v

1 Stringology 1

1.1 Text file facilities 2

1.2 Dictionaries 5

1.3 Data compression 6

1.4 Applications of text algorithms in genetics 7

1.5 Efficiency of algorithms 8

1.6 Some notation and formal definitions 10

1.7 Some simple combinatorics of strings 11

1.8 Some other interesting strings 14

1.9 Cyclic shifts and primitive words 16

Bibliographic notes 17

2 Basic string searching algorithms 19

2.1 Knuth-Morris-Pratt algorithm 20

2.2 Boyer-Moore algorithm and its variations 26

Bibliographic notes 31

3 Preprocessing for basic searchings 33

3.1 Preprocessing patterns for MP and KMP algorithms 33

3.2 Table of prefixes 36

3.3 Preprocessing for Boyer-Moore algorithm 39

3.4 * Analysis of Boyer-Moore algorithm 41

Bibliographic notes 44

4 On-line construction of suffix trees 45

vn

viii CONTENTS

4.1 Tries and their compact versions 45

4.2 Prelude to Ukkonen algorithm 49

4.3 Ukkonen algorithm 51

Bibliographic notes 53

5 More on suffix trees 59

5.1 Several applications of suffix trees 59

5.2 McCreight algorithm 63

Bibliographic notes 68

6 Subword graphs 69

6.1 Directed acyclic graph 69

6.2 On-line construction of subword graphs 73

6.3 The reverse perspective 79

6.4 Compact subword graphs 82

Bibliographic notes 84

7 Text algorithms related to sorting 85

7.1 The naming technique: KMR algorithm 85

7.2 Two-dimensional KMR algorithm 90

7.3 Suffix arrays 91

7.4 Constructing suffix trees by sorting 95

7.5 The Lowest-Common-Ancestor dictionary 101

7.6 Suffix-Merge-Sort 103

Bibliographic notes 107

8 Symmetries and repetitions in texts 111

8.1 Searching for symmetric words I l l

8.2 Compositions of symmetric words 114

8.3 Searching for square factors 119

Bibliographic notes 123

9 Constant-space searchings 125

9.1 Constant-space matching for easy patterns 125

9.2 MaxSuffix-Matching 127

9.3 Computation of maximal suffixes 129

CONTENTS ix

9.4 Matching patterns with short maximal suffixes 131

9.5 Two-way matching and magic decomposition 133

9.6 Sequential sampling for unordered alphabets 136

9.7 Galil-Seiferas algorithm 138

9.8 Cyclic equality of words 139

Bibliographic notes 140

10 Text compression techniques 141

10.1 Substitutions 142

10.2 Static Huffman coding 145

10.3 Dynamic Huffman coding 151

10.4 Factor encoding 154

Bibliographic notes 161

11 Automata-theoretic approach 163

11.1 Aho-Corasick automaton 164

11.2 Determinizing automata 173

11.3 Two-way pushdown automata 176

Bibliographic notes 181

12 Approximate pattern matching 183

12.1 Edit distance 183

12.2 Longest common subsequence problem 186

12.3 String matching with errors 191

12.4 String matching with don't care symbols 194

Bibliographic notes 196

13 Matching by dueling and sampling 199

13.1 String matching by duels 199

13.2 String matching by sampling 204

Bibliographic notes 207

14 Two-dimensional pattern matching 209

14.1 Multi-pattern approach 211

14.2 Don't cares and non-rectangular patterns 212

14.3 2D-Pattern matching with mismatches 214

x CONTENTS

14.4 Multi-pattern matching 215

14.5 Matching by sampling 218

14.6 An algorithm fast on the average 221

Bibliographic notes 222

15 Two-dimensional periodicities 225

15.1 Amir-Benson-Farach algorithm 225

15.2 Geometry of two-dimensional periodicities 235

15.3 * Patterns with large monochromatic centers 242

15.4 * A version of the Galil-Park algorithm 244

Bibliographic notes 247

16 Parallel text algorithms 249

16.1 The abstract model of parallel computing 249

16.2 Parallel string-matching algorithms 252

16.3 * Splitting technique 255

16.4 Parallel KMR algorithm and application 258

16.5 Parallel Huffman coding 263

16.6 Edit distance — efficient parallel computation 268

Bibliographic notes 269

17 Miscellaneous 271

17.1 Karp-Rabin string matching by hashing 271

17.2 Shortest common superstrings 274

17.3 Unique-decipherability problem 276

17.4 Parameterized pattern matching 278

17.5 Breaking paragraphs into lines 281

Bibliographic notes 284

Bibliography 285

Index 305

Chapter 1

Stringology

One of the simplest and natura l types of information representation is by means
of wri t ten texts . This type of da ta is characterized by the fact tha t it can
be wri t ten down as a long sequence of characters. Such linear a sequence
is called a text. The texts are central in "word processing" systems, which
provide facilities for the manipulation of texts. Such systems usually process
objects tha t are quite large. For example, this book probably contains more
than a million characters. Text algorithms occur in many areas of science and
information processing. Many text editors and programming languages have
facilities for processing texts . In biology, text algorithms arise in the s tudy
of molecular sequences. The complexity of text algorithms is also one of the
central and most studied problems in theoretical computer science. It could
be said tha t it is the domain in which practice and theory are very close to
each other.

The basic textual problem in stringology is called pattern matching. It is
used to access information and, no doubt, at this moment many computers
are solving this problem as a frequently used operation in some application
system. Pa t t e rn matching is comparable in this sense to sorting, or to basic
ari thmetic operations.

Consider the problem of a reader of the French dictionary "Grand Larousse,"
who wants all entries related to the name "Marie-Curie-Sklodowska." This is
an example of a pa t t e rn matching problem, or string matching. In this case,
the name "Marie-Curie-Sklodowska" is the pat tern . Generally we may want to
find a string called a pattern of length m inside a text of length n, where n is
greater than m. The pa t t e rn can be described in a more complex way to denote
a set of strings and not just a single word. In many cases n is very large. In
genetics the pa t t e rn can correspond to a gene tha t can be very long; in image

1

2 CHAPTER 1. STRINGOLOGY

processing, digitized images sent serially contain millions of characters each.
The string-matching problem is the basic question considered in this book,
together with its variations. String matching is also the basic subproblem in
other algorithmic problems on texts. Following is a (not exclusive) list of basic
groups of problems discussed in this book:

• variations on the string-matching problem

• problem related to the structures of the segments of a text

• data compression

• approximation problems

• finding regularities

• extensions to two-dimensional images

• extensions to trees

• optimal time-space implementations

• optimal parallel implementations.

The formal definition of string matching and many other problems is given
in the next chapter. We now introduce some of them informally in the context
of applications.

1.1 Text file facilities

The UNIX system uses text files for exchanging information as a main fea
ture. The user can get information from the files and transform them through
different existing commands. The tools often behave as filters that read their
input once and produce the output simultaneously. These tools can easily be
connected with each other, particularly through the pipelining facility. This
often reduces the creation of new commands to a few lines of already existing
commands.

One of these useful commands is grep, acronym of "general regular expres
sion print." An example of the format of grep is

grep Marie-Curie-Sklodowska Grand-Larousse

provided "Grand-Larousse" is a file on your computer. The output of this
command is the list of lines from the file that contains an occurrence of the
name "Marie-Curie-Sklodowska." This is an instance of the string-matching
problem. Another example with a more complex pattern can be

1.1. TEXT FILE FACILITIES 3

grep '"Chapter [0 - 9] ' Book

to list the titles of a book assuming titles begin with "Chapter" followed by a
number. In this case the pattern denotes a set of strings (even potentially infi
nite), and not simply one string. The notation to specify patterns is known as
regular expressions. This is an instance of the regular-expression-matching
problem.

The indispensable complement of grep is sed (stream editor). It is designed
to transform its input. It can replace patterns of the input with specific strings.
Regular expressions are also available with sed. But the editor contains an
even more powerful notation. This allows, for example, the action on a line
of the input text containing the same word twice. It can be applied to delete
two consecutive occurrences of a same word in a text. This is simultaneously
an example of the repetition-finding problem, pattern-matching problem
and, more generally, the problem of finding regularities in strings.

The very helpful matching device based on regular expressions is om
nipresent in the UNIX system. It can be used inside text editors such as
ed and vi, and generally in almost all UNIX commands. The above tools, grep
and sed, are based on this mechanism. There is even a programming language
based on pattern-matching actions. It is the awk language, where the name
awk comes from the initials of the authors, Aho, Weinberger, and Kernighan.
A simple awk program is a sequence of pattern-action statements:

p a t t e r n l {act ion 1}
pa t t e rn2 {act ion 2}
pa t t e rn3 {act ion 3}

The basic components of this program are patterns to be found inside the
lines of the current file. When a pattern is found, the corresponding action is
applied to the line. Therefore, several actions may be applied sequentially to
a same line. This is an example of the multi-pattern matching problem.
The language awk is meant for converting data from one form to another
form, counting things, adding up numbers, and extracting information for
reports. It contains an implicit input loop, and the pattern-action paradigm
often eliminates control flow. This also frequently reduces the size of a program
to a few statements. For instance, the following awk program prints the number
of lines of the input that contain the word "abracadabra":

abracadabra {count++}
END {pr in t count}

The pattern "END" matches the end of input file, so that the result is printed
after the input has been entirely processed. The language contains attractive

4 CHAPTER 1. STRINGOLOGY

features that strengthen the simplicity of the pattern-matching mechanism,
such as default initialization for variables, implicit declarations, and associa
tive arrays providing arbitrary kinds of subscripts. All this makes awk a con
venient tool for rapid prototyping. The awk language can be considered as a
generalization of another UNIX tool, lex, aimed at producing lexical analyzers.
The input of a lex program is the specification of a lexical analyzer by means of
regular expressions (and a few other possibilities). The output is the source of
the specified lexical analyzer in the C programming language. A specification
in lex is mainly a sequence of pattern-action statement as in awk. Actions
are pieces of C code to be inserted in the lexical analyzer. At run time, these
pieces of code execute the action corresponding to the associated pattern, when
found. The following line is a typical statement of a lex program:

[A-Za-z]+([A-Za-zO-9])* { yyval = Install(); return(ID);}

The pattern specifies identifiers, that is, strings of characters starting with one
letter and containing only letters and digits. This action leads the generated
lexical analyzer to store the identifier and to return the string type "ID" to
the calling parser. It is another instance of the regular expression-matching
problem. The question of constructing pattern-matching automata is an
important component having a practical application in the lex software.

Texts such as books or programs are likely to be changed during elabora
tion. Even after their completion they often support periodic upgrades. These
questions are related to text comparisons. Sometimes we also wish to find
a string, and do not completely remember it. The search has to be performed
with an entirely non-specified pattern. This is an instance of the approxi
mate pattern matching. Keeping track of all consecutive versions of a text
may not be helpful because the text can be very long and changes may be hard
to find. The reasonable way to control the process is to have an easy access
to differences between the various versions. There is no universal notion as to
what the differences are, or conversely, what the similarities are, between two
texts. However, it can be agreed that the intersection of the two texts is the
longest common subtext of both. In our book this is called the longest com
mon subsequence problem, so that the differences between the two texts are
the respective complements of the common part. The UNIX command diff
builds on this notion. An option of the command diff produces a sequence of
ed instructions to transform one text into the other. The similarity of texts
can be measured as the minimal number of edit operations to transform one
text into the other. The computation of such a measure is an instance of the
edit distance problem.

1.2. DICTIONARIES 5

1.2 Dictionaries

The search of words or pat terns in static texts is quite a different question
than the previous pat tern-matching mechanism. Dictionaries, for example,
are organized in order to speed up the access to entries. Another example
of the same question is given by indexes. Technical books often contain an
index of chosen terms tha t gives pointers to par ts of the text related to words
in the index. The algorithms involved in the creation of an index form a
specific group. The use of dictionaries or lexicons is often related to na tura l
language processing. Lexicons of programming languages are small, and their
representation is not a difficult problem during the development of a compiler.
To the contrary, English contains approximately 100,000 words, and even twice
tha t if inflected forms are considered. In French, inflected forms produce more
than 700,000 words. The representation of lexicons of this size makes the
problem a bit more challenging.

A simple use of dictionaries is illustrated by spelling checkers. The UNIX
command, spell, reports the words in its input t ha t are not s tored in the lexi
con. This rough approach does not yield a pertinent checker, but , practically,
it helps to find typing errors. The lexicon used by spell contains approxi
mately 70,000 entries stored within less than 60 kilobytes of random-access
memory. Quick access to lexicons is a necessary condition for producing good
parsers. The da ta s tructure useful for such access is called an index. In our
book indexes correspond to da ta structures representing all factors of a given
(presumably long) text. We consider problems related to the construction of
such structures: suffix t r e e s , d i rec ted acycl ic w o r d graphs , factor au
t o m a t a , suffix arrays. The PAT tool developed at the N O E D Center
(Waterloo, Canada) is an implementation of one of these s tructures tailored
to work on large texts . There are several applications tha t effectively require
some understanding of phrases in natural languages, such as da t a retrieval
systems, interactive software, and character recognition.

An image scanner is a kind of photocopier. It is used to give a digitized
version of an image. When the image is a page of text, the na tura l output of the
scanner must be in a digital form available to a text editor. The transformation
of a digitized image of a text into a usual computer representation of the text
is realized by an Optical Character Recognition (OCR). Scanning a text with
an OCR can be 50 times faster than retyping the text on a keyboard. Thus,
OCR softwares are likely to become more common. But they still suffer from
a high degree of imprecision. The average rate of error in the recognition of
characters is approximately one percent. Even if this may happen to be rather
small, this means tha t scanning a book produces approximately one error per
line. This is compared with the usually very high quality of texts checked

6 CHAPTER 1. STRINGOLOGY

by specialists. Technical improvements on the hardware can help eliminate
certain kinds of errors occurring on scanned texts in printed forms. But this
cannot alleviate the problem associated with recognizing texts in printed forms.
Reduction of the number of errors can thus only be achieved by considering the
context of the characters, which assumes some understanding of the structure
of the text. Image processing is related to the problem of two-dimensional
pattern matching. Another related problem is the data structure for all
subimages, which is discussed in this book in the context of the dictionary
of basic factors.

The theoretical approach to the representation of lexicons is either by means
of trees or finite state automata. It appears that both approaches are equally
efficient. This shows the practical importance of the automata theoretic
approach to text problems. At LITP (Paris) and IGM (Marne-la-Vallee)
we have shown that the use of automata to represent lexicons is particularly
efficient. Experiments have been done on a 700,000 word lexicon of LADL
(Paris). The representation supports direct access to any word of the lexicon
and takes only 300 kilobytes of random-access memory.

1.3 Data compression

One of the basic problems in storing a large amount of textual information
is the text compression problem. Text compression means reducing the
representation of a text. It is assumed that the original text can be recovered
from its compressed from. No loss of information is allowed. Text compression
is related to the Huffman coding problem and the factorization problem.
This kind of compression contrast with other kinds of compression techniques
applied to sounds or images, in which approximation is acceptable. Availability
of large mass storage does not decrease the interest for compressing data.
Indeed, users always take advantage of extra available space to store more
data or new kinds of data. Moreover, the question remains important for
storing data on secondary storage devices. Examples of implementations of
dictionaries reported above show that data compression is important in
several domains related to natural language analysis. Text compression is
also useful for telecommunications. It actually reduces the time to transmit
documents via telephone network, for example. The success of Facsimile is
perhaps to be credited to compression techniques.

General compression methods often adapt themselves to the data. This
phenomenon is central in achieving high compression ratios. However, it ap
pears, in practice, that methods tailored for specific data lead to the best
results. We have experimented with this fact on data sent by geostationary

1.4. APPLICATIONS OF TEXT ALGORITHMS IN GENETICS 7

satellites. The data have been compressed to seven percent of their original
size without any loss of information.

The compression is very successful if there are redundancies and regularities
in the information message. The analysis of data is related to the problem of
detecting regularities in texts. Efficient algorithms are particularly useful
to expertise the data.

1.4 Applications of text algorithms in genetics

Molecules of nucleic acids carry a large segment of information about the fun
damental determinants of life, and, in particular, about the reproduction of
cells. There are two types of nucleic acids known as desoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). DNA is usually found as double-stranded
molecules. In vivo, the molecule is folded up like a ball of string. The skeleton
of a DNA molecule is a sequence on the four-letter alphabet of nucleotides:
adenine (A), guanine (G), cytosine (C), and thymine (T). RNA molecules are
usually single-stranded molecules composed of ribonucleotides: A, G, C, and
uracil (U).

Processus of "transcription" and "translation" lead to the production of
proteins, which also have a string composed of 20 amino acids as a primary
structure. In a first approach all these molecules can be viewed as texts. The
discovery twenty years ago of powerful sequencing techniques has led to a rapid
accumulation of sequence data. Prom the collection of sequences up to their
analysis many algorithms on texts are implied. Moreover, only fast algorithms
are often feasible because of the huge amount of data involved.

Collecting sequences can be accomplished through audioradiography gels.
The automatic transcription of these gels into sequences is a typical two di
mensional pattern-matching problem in two dimensions. The reconstruc
tion of a whole sequence from small segments, used for instance in the shotgun
sequencing method, is another example of a problem that occurs during this
step. This problem is called the shortest common superstring problem:
construction of the shortest text containing several given smaller texts.

Once a new sequence is obtained, the first important question to ask is
whether it resembles any other sequence already stored in data banks. Before
adding a new molecular sequence into an existing data base one needs to know
whether or not the sequence is already present. The comparison of several
sequences is usually realized by writing one over another. The result is know
as an alignment of the set of nucleotides. Alignment of two sequences is the
edit distance problem: compute the minimal number of edit operations to
transform one string into another. It is realized by algorithms based on dy-

8 CHAPTER 1. STRINGOLOGY

namic programming techniques similar to the one used by the UNIX command
diff.

The problem of the longest common subsequence is a variation of the
alignment of sequences. A tool, called agrep, developed at the University
of Arizona, is devoted to these questions, related to approximate string
matching.

Further questions about molecular sequences are related to their analysis.
The aim is to discover the functions of all parts of the sequence. For example,
DNA sequences contain important regions (coding sequences) for the produc
tion of proteins inside the cell. However, no good answer is presently known
for finding all coding sequences of a DNA sequence. Another question about
sequences is the reconstruction of their three-dimensional structure. It seems
that a part of the information resides in the sequence itself. This is because,
during the folding process of DNA, for example, nucleotides match pairwise
(A with T, and C with G). This produces approximate palindromic symme
tries (as TTAGCGGCTAA). Involved in all these questions are approximate
searches for specific patterns, for repetitions, for palindromes, or other
regularities.

1.5 Efficiency of algorithms

Efficient algorithms can be classified according to what is meant by efficiency.
There exist different notions of efficiency depending on the complexity measure
involved. Several such measures are discussed in this book: sequential time,
memory space, parallel time, and number of processors.

This book deals with "feasible" problems. We can define them as problems
having efficient algorithms, or as solvable in time bounded by a small-degree
polynomial. In the case of sequential computations we are interested in lower
ing the degree of the polynomial corresponding to time complexity. The most
efficient algorithms usually solve a problem in linear-time complexity. We are
also interested in space complexity. Optimal space complexity often means a
constant number of (small integer) registers in addition to input data. There
fore, we say that an algorithm is time-space optimal if it works simultaneously
in linear time and in constant extra space. These are the most advanced se
quential algorithms, and also the most interesting, both from a practical and
theoretical point of view.

In the case of parallel computations we are generally interested in the par
allel time T(n) as well as in the number of processors P(n) required for the
executions of the parallel algorithm on data of size n. The total number of
elementary operations performed by the parallel algorithm is not greater than

1.5. EFFICIENCY OF ALGORITHMS 9

the product T(n)P{n).

Efficient parallel algorithms are those that operate in no more than poly-
logarithmic (a polynomial of logs of input size) time with a polynomial number
of processors. The class of problems solvable by such algorithms is denoted by
NC and hence we call the related algorithms NC-algorithms. An NC-algorithm
is optimal if the total number of operations T(n)P(n) is linear. Another possi
ble definition is that this number is essentially the same as the time complexity
of the best known sequential algorithm solving the given problem. However,
we adopt the first option here because algorithms on strings usually have a
time complexity which is at least linear.

Precisely evaluating the complexity of an algorithm according to some mea
sure is often difficult, and, moreover, it is unlikely to be of much use. The "big
O" notation clarifies what the important terms of a complexity expression are.
It estimates the asymptotic order of the complexity of an algorithm and helps
compare algorithms between each others. Recall that if / and g are two func
tions from and to integers, then we say that / = 0(g) if / (n) < C.g(n) when
n > N, for some constants C and N. We write / = @(g) when the functions
/ and g are of the same order, which means that both equalities / = 0(g) and
g = O(f) hold.

Comparing functions through their asymptotic orders leads to these kinds of
inequalities: 0(n°-7) < 0(n) < O(nlogn), or O(n l o g n) < 0(logn") < 0(n\).

Within sequential models of machines one can distinguish further types
of computations: off-line, on-line and real-time. These computations are also
related to efficiency. It is understood that real-time computations are more
efficient than general on-line, and that on-line computations are more efficient
than off-line. Each algorithm is an off-line algorithm: "off-line" conceptually
means that the whole input data can be put into the memory before the actual
computation starts. We are not interested then in the intermediate results
computed by the algorithm, but only in the final result (though this final result
can be a sequence or a vector). The time complexity is measured by the total
time from the moment the computation starts (with all input data previously
memorized) up to the final termination. In contrast, an on-line algorithm is
like a sequential transducer. The portions of the input data are "swallowed"
by the algorithm step after step, and after each step an intermediate result is
expected (related to the input data read so far). It then reads the next portion
of the input, and so on. In on-line algorithms the input can be treated as
an infinite stream of data, consequently we are not interested mainly in the
termination of the algorithm for all such data. The main interest for us is
the total time T(n) for which we have to wait to get the n-th first outputs.
The time T(n) is measured starting at the beginning of the whole computation
(activation of the transducer). Suppose that the input data is a sequence and

10 CHAPTER 1. STRINGOLOGY

that after reading the n-th symbol we want to print "1" if the text read to this
moment contains a given pattern as a suffix, otherwise we print "0". Hence
we have two streams of data: the stream of input symbols and an output
stream of answers "1" or "0". The main feature of the on-line algorithm is
that it has to give an output value before reading the next input symbol. The
real-time computations are those on-line algorithms that are in a certain sense
optimal; the elapsing time between reading two consecutive input symbols (the
time spent for computing only the last output value) should be bounded by a
constant. Most linear on-line algorithms are in fact real-time algorithms.

We are primarily interested in off-line computations in which the worst-
case running time is linear, but on-line and real-time computations, as well as
average complexities are also discussed in this book.

1.6 Some notation and formal definitions

Let A be an input alphabet-a, finite set of symbols. Elements of A are called
the letters, the characters, or the symbols. Typical examples of alphabets
are: the set of all ordinary letters, the set of binary digits, or the set of 256
8-bit ASCII symbols. Texts (also called words or strings) over A are finite
sequences of elements of A. The length (size) of a text is the number of its
elements (with repetitions). Therefore, the length of aba is 3. The length of a
word x is denoted by \x\. The input data for our problems will be words, and
the size n of the input problem will usually be the length of the input word.
In some situations, n will denote the maximum length or the total length of
several words if the input of the problem consists of several words.

The i-th element of the word x is denoted by x[i] and i is its position on x.
We denote by x[i. .j] the factor x[i]x[i + 1] . . . x[j] of x. If i > j , by convention,
the word x[i. .j] is the empty word (the sequence of length zero), which is
denoted by e.

We say that the word x of length m is a factor (also called a subword) of
the word y if x = y[i + 1. .i + n] for some integer i. We also say that x occurs
in y at position i, or that the position i is a match for x in y.

We define the notion of subsequence (sometimes called a subword). The
word a; is a subsequence of y if x can be obtained from y by removing zero or
more (not necessarily adjacent) letters from it. Likewise, a; is a subsequence
of y if x = y[ii}y[i2\ • • • y[im], where z i , i 2 , . . . , im is an increasing sequence of
indices on y.

Next we define formally the basic problem covered in this book. We often
consider two texts pat (the pattern) and text of respective lengths m and n.

1.7. SOME SIMPLE COMBINATORICS OF STRINGS 11

-<
X

>-

border ofx

border ofx

Figure 1.1: Duality between periods and borders of texts.

String matching (the basic problem). Given texts pat and text, verify if
pat occurs in text. This is a decision problem: the output is a Boolean value.
It is usually assumed that m <n. Therefore, the size of the problem is n. A
slightly advanced version entails searching for all occurrences of pat in text,
that is, computing the set of positions of pat in text. Let us denote this set by
MATCH(pat, text). In most cases an algorithm computing MATCH(pat, text)
is a trivial modification of a decision algorithm, this is the reason why we
sometimes present only decision algorithms for string matching.

Instead of just one pattern, one can consider a finite set of patterns and
ask if a given text contains a pattern from the set. The size of the problem is
now the total length of all patterns plus the length of the text.

1.7 Some simple combinatorics of strings

The main theoretical tools in string-matching algorithms are related to math
ematical properties of periodicities in strings. We define the notion of period
of a word, which is central in almost all strings matching algorithms. A period
of a word x is an integer p, 0 < p < \x\, such that

x[i] = x[i + p]

for a l i i G { 1 , . . . , \x\ - p}. When there is no ambiguity, we also say that the
word x[l. .p] is a period of x. This is the usual definition of a period for a
function denned on integers, as x can be viewed. Note that the length of a
word is always a period of it, so that any word has at least one period. We
denote by period(x) the smallest period of x. We additionally say that x is
periodic if period(x) < \x\/2.

The notion of border of a text is a dual notion to that of period, see Fig
ure 1.1. A border of x is any word that is simultaneously a prefix and a suffix
of x. Observe that x and the empty string e are borders of x.

Let us denote by Border (x) the longest nontrivial border (not the whole

12 CHAPTER!. STRINGOLOGY

a b c

i i +(p-q) i +p
p-q

Figure 1.2: Quantity p — q is also a period because letters a and b are both
equal to letter c.

word) of x. Note that

{\x\ - \Border(x)\, \x\ - \Border2(x)\,..., |a:| - \Borderk(x)\)

is the sequence of all periods of x in increasing order (k is the smallest integer
for which Borderk(x) is the empty word).

Example. The periods of aabaaabaa (of length 9) are 4, 7, 8 and 9. Its
corresponding proper borders are aabaa, aa, a, e.

Periodicity Lemma

Let a; be a non-empty word and p be an integer such that 0 < p < \x\. Then
each of the following conditions equally defines p as a period of x:

1. a; is a factor of some word yk with \y\ = p and k > 0,

2. x may be written (uv)k with \uv\ = p, v a non-empty word, and k > 0,

3. for some words y, z and w, x = yw = wz and \y\ = \z\ = p.

Lemma 1.1 [Periodicity Lemma] Letp and q be two periods of the word x. If
p + q < \x\, then gcd(p, q) is also a period of x.

Proof. The conclusion trivially holds if p = q. Assume now that p > q.
First we show that the condition p + q < |a;| implies that p - q is a period of x.
Let x = x[l]o;[2]... x[n\ {x[i\s are letters). Given x[i) the i-th letter of x, the
condition implies that either i - q > 1 or i + p < n. In the first case, q and p
being periods of a;, x[i] = x[i — q] = x[i~q+p\. In the second case, for the same
reason, x[i] = x[i+p] = x[i+p — q\. Thus p — q is a period of x. This situation
is shown in Figure 1.2. The rest of the proof, left to the reader, is by induction
on the integer max(p, q), after noting that gcd(p, q) equals gcd(p - q,q). •

1.7. SOME SIMPLE COMBINATORICS OF STRINGS 13

a a
b b

a a
a a

b b
a a

b b
a a

a a
b

Figure 1.3: After cutting off its last two letters, Fibs is a symmetric word, a
palindrome. This is not accidental.

There is a stronger version of the periodicity lemma for which we omit the
proof.

Lemma 1.2 [Strong Periodicity Lemma] If p and q are two periods of a word
x such that p + q — gcd(p, q) < \x\, then gcd(p, q) is also a period of x.

An interesting family: Fibonacci words

Fibonacci words form an interesting family of words (from the point of view of
periodicities). In sone sense, the inequality that appears in Strong Periodicity
Lemma is optimal. The example supporting this claim is given by the Fibonacci
words with the last two letters deleted.

Let Fibn be the n-th Fibonacci word (n > 0). It is denned by

Fibo = £, Fib\ = b, Fib-i = a, and Fibn = Fibn-iFibn-2, for n > 2.

Fibonacci words satisfy a large number of interesting properties related to
periods and repetitions. Note that Fibonacci words (except the first two words
of the sequence) are prefixes of their successors. Indeed, there is an even
stronger property: the square of any Fibonacci word of high enough rank is a
prefix of its succeeding Fibonacci words. Among other properties of Fibonacci
words, it must be noted that they have no factor in the form u4 (u non empty
word) and they are almost symmetric, see Figure 1.3. Therefore, Fibonacci
words contain a large number of periodicities, but none with an exponent
higher than 3.

The lengths of Fibonacci words are the well-known Fibonacci numbers,
/ 0 = 0, / i = 1, /2 = 1, /3 = 2, f4 = 3, The first Fibonacci words of the
sequence (Fibn,n > 2) are

14 CHAPTER!. STRINGOLOGY

Fib3=ab, \Fib3\ = 2,
FibA = aba, |Fi&4| = 3,
Fibr, = abaab, \Fib5\ = 5,
Fibe = abaababa, \Fibe\ = 8,
Fib-j = abaababaabaab, \Fibr\ = 13,
Fibs = abaababaabaababaababa, \Fib$\ = 21,
Fibg = abaababaabaababaababaabaababaabaab, \Fibg\ = 34.

1.8 Some other interesting strings

Fibonacci words of rank greater than 1 can be treated as prefixes of a single
infinite Fibonacci string Fib^. Similarly we can define the words of Thue-
Morse T(n) as prefixes of a single infinite word Too. Assume we count positions
on this word starting from 0. Denote by g{k) the number of " 1 " in the binary
representation of the number k. Then

T (k) = \ a i f 9 ^ iS e V e n '
16 otherwise.

The Thue-Morse words Tn are the prefixes of Too of length 2™. We list several
of them below.

Ti = ab,
Ti = abba,
Tz = abbabaab,
TA = abbabaabbaababba,
Tg = abbabaabbaababbabaababbaabbabaab.

These words have the remarkable property of being overlap-free, which means
that there is no nonempty word x that occurs in them at two positions which
distance is smaller than |a;|. However these words are mostly known for the
following square-free property: they contain no nonempty word in the form xx
(nor, indeed, in the form axaxa, a £ A).

Let us define the following invertible encoding:

P(a) = a, /3(b) = ab, and /3(c) = abb.

Lemma 1.3 For each integer n the word /3_1(Tn) is square free.

The lemma says in particular that there are infinitely many "square-free"
words. Let T^ be the word over the alphabet {0,1,2} which symbols are the
number of occurrences of letter "b" between two consecutive occurrences of

1.8. SOME OTHER INTERESTING STRINGS 15

letter "a" in Too • Then such an infinite word is also "square-free". We have

T4, = 2 1 0 2 0 1 2 . . .

Other interesting words are sequences of moves in the Hanoi towers game.
There are six possible moves depending from which stack to which other stack
an disk is moved. If we have n disks then the optimal sequence consists of
2™ — 1 moves and forms a word Hn. The interesting property of these words
is that all of them are "square-free".

Yet another family of words that has a strange relation to numbers g{k) is
given by the binary words Pn, where Pn is the n-th row of the Pascal triangle
modulo 2. In other words:

Pn(i) = (") m o d 2.

We list below some of these words.
Po = 1
Pi = 1 1
Pi = 1 0 1
p 3 = 1 1 1 1
Pi = 1 0 0 0 1
Ps = 1 1 0 0 1 1

The word Pn has the following remarkable property: the number of " 1 " in Pn

equals 2 » K

Let us consider the infinite string W which symbols are digits and which
results from concatenating all consecutive natural numbers written in decimal.
Hence,

W = 01234567891011121314151617181920212223242526272829303132...

Denote by Wn the prefix of W of size n. For a word x, let us denote by occn(x)
the number of occurrences of x in Wn. The words Wn have the following
interesting property: for every two nonempty words x and y of a same length

occn(x)
lim y—r = 1.

n->oo OCCn{y)

This means, in a certain sense, that the sequence W is quite random.

An interesting property of strings is how many factors of a given length
k they contain. Assume the alphabet is {a, b} . For a given k we have 2k

different words of length k. A natural question is:

what is the minimal length ^(k) of a word containing each subword of
length k.

16 CHAPTER 1. STRINGOLOGY

Obviously 7(fc) > 2k + k-l, since any shorter word has less than 2k factors. It
happens that 7(/c) = 2k + k — 1. The corresponding words are called de Bruijn
words. In these strings each word of length k occurs exactly once. For a given
A; there are exponentially many de Bruijn words. For example for k = 1 we
can take ab, for k = 2 we take aabba or abaab and for k = 3 we can take de
Bruijn word aaababbbaa.

There is an interesting relation of de Bruijn words to Euler cycles in special
graphs Gfc. The nodes of Gk are all words of length k — 1 and for any word
x = a\ai... a/t_i of length k — 1 we have two directed edges

aia2.--dk-i —> <Z2...afc_i-a, aia2...afc_i —> a,2---ak-i-b

The graph has a directed Euler cycle (containing each edge exactly once). Let
a\a,2 ... O-N be the sequence of labels of edges in a Euler cycle. Observe that
N — 2fc. As de Bruijn word we can take the word:

a\CL2 • •. aNdiCi2 • • • flfc-i-

1.9 Cyclic shifts and primitive words

A cyclic shift of x is any word vu, when x can be written in the form uv. Let
us consider how many different cyclic shifts a word can have.

Example. Consider the cyclic shifts of the word abaaaba of length 7. There
are exactly 7 different cyclic shifts of abaaaba, the 8-th shift goes back to the
initial word.

b
b

a
a
a

a
a
a
a

a
a
a
a
a

b
b
b
b
b
b

a
a
a
a
a
a
a

a
a
a
a
a
a
a

b
b
b
b
b
b

a
a
a
a
a

a
a
a
a

a
a
a

b
b

A word w is a said to be primitive if it is not of the form w = vk, for a
natural number k > 2. As a consequence of the periodicity lemma we show
the following fact.

Lemma 1.4 Assume the word x is primitive. Then x has exactly \x\ different

1.9. CYCLIC SHIFTS AND PRIMITIVE WORDS 17

cyclic shifts. In other words:

\{vu : u and v words such that x = uv and u ^ s}\ = \x\.

Proof. Assume x of length p has two cyclic shifts that are equal. Hence
x = uv = u'v', and vu = v'u', where u 7̂ u'.

Assume without loss of generality that |u'| < \u\. Then u = u'a, v' = a • v
and vu'a — avu'. Hence the text a • v • u' • a has borders a • v • u' and
a. Consequently, the text a • v • u' • a has two periods of size r = \a\ and
p = \vu'a\. At the same time r + p = \a • v • u' • a\.

The periodicity lemma implies that the text has period gcd(r,p). Since
r < p this shows that p is divisible by the length of the smaller period. This
implies that a; is a power of a smaller word, which contradicts the assumption.
Consequently x cannot have two identical cyclic shifts. •

We show a simple number-theoretic application of primitive words and
cyclic shifts. In 1640 the great French number theorist Pierre de Fermat stated
the following theorem.

Theorem 1.1 [Fermat's Simple Theorem] If p is a prime number and n is
any natural number then p divides np — n.

Proof. Define the equivalence relation = on words by x = y if x is a cyclic
shift of y. A word is said to be unary if it is in a form ap, for a letter a. Take
the set S of all non-unary words of length p over the alphabet {1 ,2 , . . . , n}.
All these words are primitive since their length is a prime number and they
are non-unary. According to Lemma 1.4 each equivalence class has exactly p
elements. The cardinality of S is np — n and S can be partitioned into disjoint
subsets of the same cardinality p. Hence the cardinality of S is divisible by p,
consequently nP — n also is. This completes the proof. •

Bibliographic notes

Complementary notions, problems and algorithms in stringology may be found
in the books by Crochemore and Rytter [CR 94], by Stephen [St 94], by Gusfield
[Gu 97], by Crochemore, Hancart and Lecroq [CHL 01], and in the collective
book edited by Apostolico and Galil [AG 97].

This page is intentionally left blank

Chapter 2

Basic string searching
algorithms

The string-matching problem is the most studied problem in algorithmics on
words, and there are many algorithms for solving this problem efficiently. We
assume that the pattern pat is of length m, and that the text text has length
n, both are given as read-only arrays. Two basic string-matching algorithms
are Knuth-Morris-Pratt (KMP) algorithm and Boyer-Moore (BM) algorithm.
Each of them consists of two phases:

pattern-preprocessing phase: computing certain tables related to the pattern:
Bord, Strong.Bord, BM Shift,

searching phase: finding the first one or all occurrences of pat in text.

In this chapter we present the searching phases of both algorithms together
with searching phases of their variations. The preprocessing phases are more
technical; they are included in the next chapter. We begin with a scheme of a
brute-force algorithm that uses quadratic time. Such a naive algorithm is, in
fact, an origin of KMP and BM algorithms. The informal scheme of such a
naive algorithm is:

(*) for i := 0 to n — m do
check if pat — text[i + 1. A + m].

19

20 CHAPTER 2. BASIC STRING SEARCHING ALGORITHMS

2.1 Knuth-Morris-Pratt algorithm

The actual implementation of (*) differs with respect to how we implement the
checking operation: scanning the pattern from the left or scanning the pattern
from the right (or otherwise). We then get two brute-force algorithms. Both
algorithms have quadratic worst-case complexity. In this section we discuss
the first of them (left-to-right scanning of the pattern).

To shorten the presentation of some algorithms we assume that the state
ment return(:r) outputs the value of x and stops the whole algorithm.

If pat = an/2b and text = an~lb then in the algorithm brute-forcel a
quadratic number of symbol comparisons takes place. However, the average
complexity is not so high.

Algorithm brute-forcel;
i :=0 ;

while i < n — m do begin
j := 0; { left-to-right scan of pat }
while j < m and pat[j + 1] = text[i + j + 1] do

i •= j +1;
if j = m then return(true);
{ invl(i, j) } i :— i+1; { length of shift = 1 }

end;
return(false) { there was no return earlier }

Our first linear-time algorithm is a natural, improved version of the naive
algorithm brute-forcel. We present a constructive proof of the following.

Theorem 2.1 The string-matching problem can be solved in 0(\text\ + \pat\)
time using 0(\pat\) space. The constants involved in "O" notation are inde
pendent of the size of the alphabet.

Remark. We are disappointed with this theorem on one point. The size of
additional memory is rather large though linear in the size of the pattern. We
show later that a constant number of registers suffices to achieve linear-time
complexity (again the size of the alphabet does not intervene).

Let us look more closely at the algorithm brute-forcel and at its main
invariant

invl(i,j): pat[l. .j] = text[i + 1. A + j] and (j = m or
pat[j + l] ^text[i+j + l}).

2.1. KNUTH-MORIUS-PRATT ALGORITHM 21

i

pgfj I T Z Z H

I 1 — •

text |_ _ _ _ _ _ _ _ _ _ _ _
1 i i+j

Figure 2.1: Shifting the pattern to the next safe position.

In fact, we first use the slightly weaker invariant

invl'(i,j): pat[l. .j] = text[i + 1. .i+j].

The invariant essentially says that the value of j gives us a lot of information
about the last part of the text scanned up to this point.

Morris-Pratt algorithm

Using the invariant invl'(i, j), we are able to make longer shifts of the pattern.
Present shifts in algorithm brute-forcel always have length 1, Let s denote (the
length of) a safe shift, where "safe shift s" means that, based on the invariant,
we know that there is no occurrence of the pattern at positions between i and
i + s, but there may be one at position i + s.

Assume j > 0, let k = j — s, and suppose an occurrence of the pattern
starts at position i + s. Then, pat[1. .k] and pat[l. .j] are suffixes of the same
text text[l. .i + j], see Figure 2.1. Hence, the following condition is implied by
invl':

cond(j, k): pat[l. .k] is a proper suffix of pat[l. .j].

Therefore the shift is safe if k is the largest position satisfying cond(j,k).
Denote this position by Bord[j]. Hence the smallest positive safe shift is

MP.Shift\j]=j-Bord[j].

The function (table) Bord is called a failure function because it helps us at the
time of a failure (mismatch). It is the crucial function. It is stored in a table
with the same name. We also call this table the table of borders. The failure
function allows us to compute the length of the smallest safe shift, which is
s = j — Bord[j].

22 CHAPTER 2. BASIC STRING SEARCHING ALGORITHMS

a
a b a

a b a b a

a b a b a b a b a b b

b
b

b

a b a b

b a b a b a

a b a b a b a b
I

b a b a b a b a a b a b a a b a b a b a b a b b

text

a b a b a b a b a b b pattern

Figure 2.2: The history of algorithm MP on an example of text and pattern.

Note that Bord[j] is precisely the length of the largest proper border of
pat[l. .j], Border(pat[l. .j]), as defined in Chapter 1. The longest proper border
of a word x is the longest (non trivial) overlap when we try to match x with
itself.

Example. For pat = abababababb we have:

Bord = [0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0].

The same pattern is used in Figure 2.2.

In the case j = 0, that is, when pat[\. .j] is the empty word, we have a
special situation. Since, in this situation, the length of the shift must be 1, we
then define Bord[0] = —1. An improved version of algorithm brute-forcel is
the Morris-Pratt algorithm (MP) below.

Lemma 2.1 The time complexity of the algorithm MP is linear in the length
of the text. The maximal number of character comparisons executed is 2n — m.

Proof. Let T(n) be the maximal number of symbol comparisons "pat[j +
1] = text[i+j + l]V executed by the algorithm MP. There are at most n—m+1
unsuccessful comparisons (at most one for any given i). Consider the sum

2.1. KNUTH-MORRIS-PRATT ALGORITHM 23

i + j . Its maximal value is n and minimal value is 0. Each time a successful
comparison is made the value of i + j increases by one unit. This value,
observed at the time of comparing symbols, never decreases. Hence, there are
at most n successful comparisons. If the first comparison is successful then
we have no unsuccessful comparison for position i = 0. We conclude that:
T(n) < n + n — m = 2n — m. For pat = ab and text = aaaa... a we have
T(n) = 2n-m D

Algorithm MP; { algorithm of Morris and Pratt }
i := 0; j := 0;

while i < n — m do begin
while j < m and pat[j + 1] =

J '=J ' + 1;
if j = m then return(true);

= text[i + j + 1] do

i := i + MP-Shift[j}; j := max(0, j - MP.Shift\j]);
end;
return(false)

Knuth-Morris-Pratt algorithm

We have not yet taken into account the full invariant invl of algorithm brute-
forcel, but only its weaker version invl'. We have left the mismatch property
apart. We now develop a new version of algorithm MP that incorporates the
mismatch propertyr

pat[j + 1} ^ text[i+j + 1].

The resulting algorithm, called KMP, improves the number of comparisons
performed on a given letter of the text. The clue for improvement is the
following: assume that a mismatch in algorithm MP occurs on the letter pat[j+
1] of the pattern. The next comparison is between the same letter of the text
and pat [k +1] if k = Bord [j]. But if pat [k + 1] = pat [j +1], the same mismatch
appears. Therefore, we can avoid considering the border of pat[l. .j] of length
k in this situation.

For m > j > 0 consider a condition stronger than cond(j, k) by a one-
comparison information:

strong-Cond(j, k): (pat[l. .k] is a proper suffix of pat[l. .j] and
pat[k + l] y£pat[j + l}).

24 CHAPTER 2. BASIC STRING SEARCHING ALGORITHMS

a b a a b a b a a b

Bord

Prefix lengths

-1 0 0 1

0 1 2 3

1 ^ "

0

1 2

4 5

^ ^ 3

^ 4

5

s_Bord -1 0

0 1

2-«

-1 1 0 2

2 3 4 5

^ -*

- - 4

— 5

Figure 2.3: Functions Bord and Strong.Bord for pattern abaab.

We then define Strong.Bord[j] as k, where k is the smallest integer satisfy
ing strong.cond(j, k), and as —1 otherwise. Moreover, we define Strong.Bord[m]
as Bord[m\. We say that Strong.Bord[i] is the length of the longest strong bor
der of pat[l. .j}. Figure 2.3 illustrates the difference between functions Bord
and Strong.Bord on pattern abaab.

Algorithm KMP; { algorithm of Knuth,
i := 0; j := 0;

while i < n — m do begin
while j <m and pat[j + 1] = text

j = j + i;
if j = m then return(true);
i:=i + KMP.Shift[j\;
j := max(0, j - KMP.Shift[j});

end;
return(false)

Morris and Pratt }

[i+j + 1] do

The algorithm KMP is the algorithm MP in which table 5ord is replaced
by table Strong.Bord and MP.Shift is replaced by:

KMP-Shift[j} Strong. Bord[j].

The history of the algorithm is shown in Figure 2.4. The table Strong.Bord is
more effective in the on-line version of algorithm KMP below (on-line-KMP).
Assume that the text ends with the special end-marker end-of-text. Each time

2.1. KNUTH-MORRIS-PRATT ALGORITHM 25

I a b a a b u b a a b a a|
pattern

la b a a b a b a a b a al |a b a a b afb] MATCH

0
a b

| a b a |a|

b a a b a | b|

a b a a b a b a a b a lal

a b a a b a b a a b a | a

a b a a b a b a a b a b a a b a c a b a a b a a

text

b a b a a b a a

Figure 2.4: The history of algorithm KMP on example strings.

we process the current input symbol, we then output 1 if the part of the text
read so far ends with the pattern pat; otherwise we output 0.

Denote by delay (m) the maximal time, measured as the number of state
ments

j := Strong-Bord[j]

elapsed between two consecutive reads, for patterns of length m. By delay'(m),
we denote the time corresponding to the use of Bord instead of Strong^Bord.

Algorithm on-line-KMP;
{ on-line linear version of KMP search }

iea,d(symbol); j := 0;
while symbol ^ end-of-text do begin

while j < m and pat[j + 1] = symbol do begin
j := j + 1; if j = m then write(l) else write(O);
rea.d(symbol);

end;
if Strong-Bord[j] = — 1 then begin

write(O); rea,d(symbol); j := 0;
end else

j :— Strong-Bord[j];
end

The large gap between delay (m) and delay'(m) can be seen on the following
example: pat = aaaa... a and text — am~1b. In this case, delay (m) = 1 while

26 CHAPTER 2. BASIC STRING SEARCHING ALGORITHMS

delay'(m) is the length of pat. The value of delay(m) is generally small.

Using properties of text periodicities presented in the next chapter the
following lemma can be deduced (see also [KMP 77]).

Lemma 2.2 For KMP algorithm delay(m) = O(logm), and the bound is
tight.

Observe that for texts on binary alphabets delay(m) is constant. This
means that in this case, the algorithm is real-time. However, if patterns are
over the alphabet {a,b} and texts over {a,b,c}, then the delay can be loga
rithmic.

It is an interesting exercise to program transformations that modify the al
gorithm on-line-KMP to achieve a real-time computation independently of the
size of the alphabet. This means that the time between two consecutive reads
must be bounded by a constant. The crucial observation is that if we execute
uj := Strong _Bord[j]" then we know that for the next j — Strong _Bord[j] in
put symbols the output value will be 0 ("no match"). This allows for dispersal
of output actions between input actions (reading symbol) in such a way that
the time between consecutive writes-reads is bounded by a constant. To do
so, we can maintain up to m last symbols of the text text in a table. We leave
details to the reader. It is interesting to observe that the real-time condition
can be achieved by using any of the tables Bord, Strong.Bord. In this way, we
sketched the proof of the following result (which becomes much more difficult
if the model of computation is a Turing Machine).

Theo rem 2.2 There is a real-time algorithm for string matching on a Ran
dom Access Machine.

2.2 Boyer-Moore algorithm and its variations

In this section we describe yet another basic approach to string matching. We
can get another naive string-matching algorithm, similar to brute-force 1, if the
scan of the pattern is done from right to left. This algorithm has quadratic
worst-case behavior, but (similarly to algorithm brute-force 1) its average-time
complexity is linear. In this section we discuss a derivative of brute-forced:
the Boyer-Moore algorithm. The main feature of this algorithm is that it is
efficient in the sense of worst-case (for most variants) as well as average-case
complexity. For most texts and patterns the algorithm scans only a small part
of the text because it performs "jumps" on the text. The algorithm brute-force2
wastes information related to the invariant:

2.2. BOYER-MOORE ALGORITHM AND ITS VARIATIONS 27

pat

pat\
1

•1
JSi

i

L.
k-s

1
. shift ,i

text
i+J

Figure 2.5: The case s < j : s = BM.Shift\j).

inv2 : pat[i + 1. .m] = text[i + J + 1.A + m) and pat[i] =£ text[i + j]

Algorithm brute-force2;
i : = 0 ;

while i < n — m do begin
j :— m; { right-to-left scan of pat }
while j > 0 and pat\j] = text[i + j] do

j" := j - 1;
if j = 0 then return true;
{ inv2(i,j) } i :—i + l; { length of shift = 1 }

end;
r e t u r n false;

The information gathered by the algorithm is "stored" at the value of j .
Suppose that we want to make better shifts using the invariant. A shift s is said
to be safe if we are certain that between i and i+s there is no starting position
of the pattern in the text. Suppose that the pattern appears at position i + s
(see figure 2.5), where the case s < j is presented). Then, the following
conditions hold:

condl(j, s) : for each k such that j < k < m, s > k or pat[k — s] = pat[k],
amd2(j, s): if s < j then pat\j — s] ^ pat[j) { mismatch property }.

We define two kinds of shifts, each associated with a suffix of the pattern
represented by a position j < m, and defined by its length:

Weak„BM-Shift[j] = min{s > 0 : amdl(j,s) holds},
BM.Shift\j] = min{s > 0 : condl(j, s) and cond2(j, s) hold}.

We also define

28 CHAPTER 2. BASIC STRMG SEARCHING ALGORITHMS

full match

a b a a b a b a a b a a
partial match

mismatches

a b a a

BM Shifts

a b a a b b b a a b a b a a b a a b a a b a b a a b a a

text

Figure 2.6: The history of algorithm BM on example strings.

Weak.BMShift[rn) = BM.Shift\m] =m— Bord[m] = period(pat).

BM algorithm is a version of brute-forceS in which, in a mismatch situation, a
shift of length BMShift[j] is executed instead of only a one-position shift (see
Figure 2.6).

Algorithm BM;
{ improved version of hrute-force2 }

i:=0;
while i < n — m do begin

j := m;
while j > 0 and pat[j] = text[i+j] do

if j = 0 then return true;
{ inv2(i,j) }i:=i + BMShift[j};

end;
return false;

Compare a run of this algorithm with a run of the similar algorithm that
uses Weak-BM Shift instead of BM Shift. Take as an example the strings

pat = eababababa and text = aaaaaaaaaababababa.

For strings of similar structure the algorithm BM makes 0(n) comparisons
while its weaker version (when the table Weak.BM Shift is used instead of

2.2. BOYER-MOORE ALGORITHM AND ITS VARIATIONS 29

BMShift), makes 0(n2) comparisons. This shows that, contrary to the be
havior of MP and KMP algorithms, the utilization of the mismatch property
is here crucial to achieve linear-time complexity. In the next chapter we prove
the following nontrivial fact.

Theo rem 2.3 . Algorithm BM makes 0(n) comparisons to find the first oc
currence of a pattern in a text of length n.

Boyer and Moore introduced also another "heuristic" useful in increasing
lengths of shifts. Suppose that we have a situation, where symb = text[i+j] (for
j > 0), and symb does not occur at all in the pattern. Then, in the mismatch
situation, we can make a shift of length s = j . For example, if pat = a100 and
t = (a"b)10, then we can always shift 100 positions, and eventually make only
10 symbol comparisons. For the same input words, algorithm BM makes 901
comparisons.
If we take pat = bam~l and text = a 2 m _ 1 , the heuristic used alone (with
out using table BM.Shift) leads to a quadratic number of comparisons. Let
LAST(symb) be the last position of an occurrence of symbol symb in pat. If
there is no occurrence, LAST(symb) is set to zero. Then, we can define a
new shift, replacing instruction "i := i + BMShift[j]" of BM algorithm by
"i := i + max{BM-Shift\j\,j - LAST(text[i + j]))."

The shift of length j — LAST(text[i + j]) is called an occurrence shift.
In practice, it may improve the time of the search for some inputs, though
theoretically it is not entirely analyzed. If the alphabet is binary, and more
generally for small alphabets, the occurrence heuristic has little effect.

BM algorithm is a simple as well as a very efficient algorithm. Its beauty
relies upon its simplicity, and this is somehow partially lost when we optimize
this algorithm. On the other hand the efficiency can be improved. We describe
two algorithms in which inspection of the pattern starts from the right end of
the pattern (the main feature of BM).

If we wish to find all occurrences of pat in text with algorithm BM (trivially
modified to report all occurrences), then the complexity can become quadratic.
The simplest example is given by a text and a pattern over a one-letter alpha
bet. Observe a characteristic feature of this example: high periodicity of the
pattern. Let p be the period of the pattern. If we discover an occurrence of
pat at some position in text, then the next shift must naturally be equal to p.
Afterward, we have only to check the last p symbols of pat. If they match with
the text, then we can report a complete match without inspecting all other
m — p symbols of pat. This simple idea is embodied in the algorithm below.
The variable named memory "remembers" the number of symbols that we do
not have to inspect (memory = 0 or memory = m — p). In fact, it remembers
the prefix of the pattern that matches the text at the current position. This

30 CHAPTER 2. BASIC STRING SEARCHING ALGORITHMS

technique is called prefix memorization. The correctness of the following algo
rithm is straightforward. The period of pat can be precomputed once for all
searches for pat.

Algorithm BMG;
{ BM algorithm with prefix memorization }

p = period(pat) = BM.Shift[0} }
i := 0; memory := 0;
while i < n — m do begin

j :=m
while j > memory and pat[j] = text[i + j] do

3 : = j - 1 ;
if j = memory then begin

write(i); memory :=m—p;
end else memory := 0;
{ inv2(i,j) } i:=i + BMShift[j};

end;

Theorem 2.4 Algorithm BMG makes 0(n) comparisons.

Proof. We shall prove in Chapter 3 (by a complicated argument) that the
number of comparisons to find the first occurrence is 0(n' + m), where n' is
the position of the first occurrence. This implies that the complexity to find all
occurrences is 0(n + r.m), where r is the number of occurrences of pat in text.
This is because between any two consecutive occurrences of pat in text, BMG
does not make more comparisons than the original BM algorithm. Hence, if
p > 2m/2, since r < n/p, n + r.m is 0(n). We have yet to consider the case
p < m/2. In this case, we can group occurrences of the pattern into chains of
positions distant only by p (for two consecutive positions in a group).
Within each such chain every text symbol is inspected at most only once. The
gaps between chains are larger than m/2, and, inside each such gap, BMG
does not work slower than BM algorithm. An argument similar to that used
in the case of large periods can now be applied. •

BM algorithm is particularly fast for alphabets that are large relatively
to the length of the pattern, because shifts are likely to be long. For small
alphabets, the average number of symbol comparisons is linear. We design
next an algorithm making Ofo1-2^) comparisons on the average. Hence, if 771
is of the same order as n, the algorithm makes only O(logn) comparisons. It
is essentially based on the same strategy as BM algorithm, and can be treated
as another variation of it.

2.2. BOYER-MOORE ALGORITHM AND ITS VARIATIONS 31

For simplicity, we assume that the alphabet has only two elements, and that
each symbol of the text is chosen independently with the same probability. Let
r = 2 [log m] .

Theorem 2.5 The algorithm fast-on-average runs in 0(n log m/m) expected
time and (simultaneously) in 0(n) worst-case time if the pattern is prepro-
cessed. The preprocessing of the pattern takes 0{m) time.

Proof. A preprocessing phase is needed to efficiently check if text[i — r. A] is
a factor of pat in 0{r) time. Any of the data structures developed in Chapters
4, 5 and 6 (a suffix tree or a DAWG) can be used. Assume that text is a random
string. There are 2 r + 1 > m2 possible segments of text, and less than m factors
of pat of length r. Hence, the probability that the suffix of length r of text is a
factor of pat is not greater than 1/m. The expected time spent in each of the
subintervals [1. .m], [m - r. .2.m - r — 1], . . . is 0{m.l/m + r) = 0(r) (these
are consecutive subintervals of size m that have overlap of size r). There are
0(n/m) such intervals. Thus, the total expected time of the algorithm is of
order (r + l) n / m = n(logm + l) /m. •

Algorithm fast-on-average;
i := m;

while i < n do begin
if text[i — r. A] is a factor of pat then

compute all occurrences of pat which starting
positions are in [i — m. A — r] applying KMP algorithm

else { pattern does not start in [i — m. A — r] }
i := i + m — r;

end

Bibliographic notes

MP algorithm is from Morris and Pratt [MP 70]. The fundamental algorithm
considered in this chapter (KMP algorithm) has been designed by Knuth,
Morris, and Pratt [KMP 77]. Our exposition is slightly different than in this
paper. A criterion that says whether an on-line algorithm can be transformed
into a real-time algorithm has been shown by Galil in [Ga 81]. The principle
applies to MP and KMP algorithms.

Algorithm BM is originally from Boyer and Moore [BM 77]. The variant
BMG is from Galil [Ga 79]. Another interesting variation of Boyer-Moore al
gorithm is the algorithm Turbo-BM, see [C-R 92]. The additional memory is

32 CHAPTER 2. BASIC STRING SEARCHING ALGORITHMS

only increased by two integer variables storing the last shift and the size of the
last matched part. The algorithm makes at most 2n letter comparisons. Apos-
tolico and Giancarlo [AG 86] designed a variant using an additional memory
of size proportional to the pattern length and that makes no more than 2n/3
symbol comparisons (see [CL 97]).

Chapter 3

Preprocessing for basic
searchings

In this chapter we discuss the preprocessing phases for the algorithms Knuth-
Morris-Pratt, Boyer-Moore and their variations. Some combinatorics of words
is needed for the analysis of Boyer-Moore algorithm. This analysis is rather
sophisticated and can be omitted in the first reading.

3.1 Preprocessing patterns for MP and KMP
algorithms

The preprocessing for the algorithms MP and KMP consists in the compu
tation of the tables of borders and strong borders. We start with the com
putation of the table Bord, and our aim is to derive a linear-time algorithm.
We present in this subsection two solutions. The first approach is to use algo
rithm MP to compute Bord. This, at first instance, can appear contradictory
because Bord is needed inside the algorithm. However, we compute Bord in
parts.

Whenever a value Bord[j] is needed in the computation of Bord[i] for i >
j then Bord[j] is already computed. Suppose that text = pat (or indeed
text = pat[2. .m]. We apply algorithm MP starting with i = 1 (for i = 0
nothing interesting happens) and continue with i = 2 , 3 , . . . ,m — 1. Then
Bord[r] = j > 0 whenever i + j = r is a successful comparison for the first
time. If Bord[r] > 0 then such a comparison will take place. Assume that
initially Bord[i] = - 1 for all j > 0. Our interest here is only a side effect of the

33

34 CHAPTER 3. PREPROCESSING FOR BASIC SEARCHINGS

algorithm MP (computation of the border table). The complexity of algorithm
compute-Borders 1 is linear. The argument is the same as for algorithm MP.

procedure compute-Bordersl;
{ a version of algorithm MP with text =

i := 1; j := 0;
while i < m + 1 do begin

while i + j < m and pat[j + 1] =

J ' :=J' + 1;

= pat }

= pat[i + j + 1] do begin

if Bord[i + j] = —1 then Bord[i + j] := j ;
end;
i := i + j — Bord[j}; j := max(0, Bord[j});

end

Next, we present the most classical linear-time algorithm computing table
Bord.

procedure compute-Borders2;
{ computes the failure table Bord for pat,

Bord[0] := - 1 ; t := - 1 ;
for j := 1 to m do begin

while t > 0 and pat[t +
t:=t + l; Bord[j] := t;

end

I] ^ M J]

second

do t :=

version }

= Bord[t];

The history of the algorithm is illustrated on an example string in Fig
ure 3.1.

Lemma 3.1 The maximum number of character comparisons executed by al
gorithm compute-B'orders2 is 2.m — 3.

Proof. The complexity can be analyzed using a so-called "store principle."
Interpret t as the number of items in a store. Note that when t < 0, no
comparison is done, and t becomes null. Therefore, we can consider that the
store is initially empty. For each j running from 2 to m, we add at most one
item (at statement t := t + 1). However, whenever we execute the statement
ut := Bord[t]," the value of t strictly decreases, which can be interpreted as
deleting a nonzero number of items from the store. The total number of items
inserted does not exceed m — 2. Hence, the total number of executions of

3.1. PREPROCESSING PATTERNS 35

Bord[ll]=6

a b a a b a [b] — - m a t c h

a b a a b a b a a b a | ~ a j ^
, , , , mismatch

a b a a b a b a a b a
a b a a b a b a a b a a b a b a a b a b a

Bordf201 =11

Figure 3.1: Computation of Bord[20] = Bord[Bord[19]] + l = 7 using procedure
computeJborders2. The iteration for j — 20 starts with t = Bord[l9] = 11.

statement "t := 5oni[t]" for unsuccessful comparisons "pat[t 4- 1] ^= pat[j]"
does not exceed m — 2. For each j running from 2 to m, there is at most one
successful comparison. The total number of successful comparisons then does
not exceed m — 1. Hence, the total number of comparisons does not exceed
2 . m - 3 . D

The computation of strong borders of prefixes of the pattern pat relies
on the following observation. Let t = Bord[j]. Then, Strong-Bord[j] — t if
pat[t + 1] ^ pat[j + 1]. Otherwise, the value of Strong-Bord[j] is the same
as the value of Strong-Bord[t] because pat[t + 1] = pat[j + 1]. Note that the
strong border of pat itself is its border, as if pat were followed by a marker.

procedure compute-strong-borders;
{ computes table Strong -Bord for pattern pat }

Strong-Bord[0] := —1; t := —1;
for j := 1 to m do begin { t equals Bord[j -

while t > 0 and pat[t + 1] ^ pat[j] do t:
t:=t + l;

-1]}
= 5tron5_Bord[t];

if j = m or pat[t + 1] =£ pat[j + 1] then Strong-Bord[j] := t
else 5iron5_5ord[j] := Strong-Bord[t};

end

Example. Consider the pattern abam 2. Strong borders computed by the

36 CHAPTER 3. PREPROCESSING FOR BASIC SEARCHINGS

PREF[s]

table PREF already computed for this part

PREFQ]
newly computed

Figure 3.2: The typical situation when executing the procedure
Compute-Prefixes.

procedure compute-strong-borders are given by the following table Strong .Bord:

Strong.Bord[0] = —1, Strong.Bord[l] = 0, Strong.Bord[2] = —1, and
Strong.Bord[j] = 1, for 3 < j < m.

This is a worst case for which exactly 3m—5 symbol comparisons are performed
by the algorithm.

3.2 Table of prefixes

We introduce another useful table, denoted by PREF, related to the border
table and BM.Shift table. It is defined by

PREF[i] = max{j : pat[i. .i + j - 1] is a prefix of pat }.

In the first algorithm we compute PREF scanning the pattern left-to-right.
Assume we scan the j - t h (j > 1) position and the following invariant is pre
served (see Figure 3.2):

the values of PREF[t] for t < j are already computed, and
s < j is a position such that s + PREF[s] - 1 is maximum.

We add a special end-marker at position m+1 on pat to simplify the description
of the algorithm. We use an auxiliary function Naive-Scan{p, q), such that

Naive-Scanip, q) = max{fc > 1 such that pat\p. .p + k — 1] = pat[q, .q + k — 1]}.

If there is no such k > 0 then Naive-Scan(p, q) = 0. Obviously the time
complexity of Naive-Scan(p, q), measured as number of comparisons, is at most
k + 1, where k is the value returned by the function.

3.2. TABLE OF PREFIXES 37

a b a a b a b a a b a

Shifts a b a a b a b a a b a

a b a a b a

a b a text

a b a a b a b a a b a a b a b a a b a b a a b a c

position 14

0 1

3 0

6 0 1

1 0 1 3 0

Table PREF 111) 0 | 1|3 |0 |6 | 0 | 1|3 |0 | 1|

0 1 3 0 6 0 1 n 0 1J3 0 110 1 3 0 6 0 1 3 0 1 0

Figure 3.3: The behavior of the procedure Compute-Prefixes on an example
string.

function Naive-Scan(p, q)
result := 0;

while (p < n) and (q < n) do begin
if (t\p\ ^ t[q\) then break;
p:=p+l; q:=q+l;

end;
r e t u r n result;

result := result + 1;

Figure 3.3 illustrates the behavior of algorithm Compute-Prefixes. We have
PREF[U] = 11, and s = 14, for the positions 15, 16, 17, . . . , 25; for each such
position j the corresponding PREF[j] value is copied from the initial segment
of the PREF table as PREF[j - 1 4 + 1].

38 CHAPTER 3. PREPROCESSING FOR BASIC SEARCHINGS

For example PREF[17] = PREF[17 - 1 4 + 1] = PREF[4] = 3. This
means that we do not need any new comparison for some values which are just
duplicated.

procedure Compute-
PREF[1] := 0; s

Prefixes;

= i;
for j :— 2 to m do begin

k:=j-s + l
if r < j then

PREF[j]

r := s + PREF[s] -
begin
:= Naive-Scan(j, 1);

- i ;

if PREF[j] > 0 then s :=j;
end else if PREF[k] + k< PREF[s]

PREF[J\ •
else begin

x := Naivi
PREF[j] :

end
end;

PREF[1] := n;

= PREF[k]

i-Scan(r + 1, r — j +
= r — j + 1 + x; s :-

2);
= 3\

then

Relation between tables of prefixes and of borders

Using the precomputed table PREF we can easily construct the tables of bor
ders and strong borders in the procedure compute-Borders3.

procedure compute-Borders3;
for k := 0 to m do Strong-.Bord[k\ := —1;

for j := m down to 1 do begin
i:=j + PREF[j] - 1; Strong.Bord[i) := PREF[j};

end;
Bord[l] := 0; Bord[m] := Strong-Bord[m};
for j := m— 1 down to 2 do

Bord[i] := mm{Bord[i + 1] — 1, Strong.Bord[i}};

A reverse computation is also possible: compute PREF knowing the table
Bord. It is based on the following observation:

if Bord[i] = j then pat[i — j + 1. A] is a prefix of pat.

3.3. PREPROCESSING FOR BOYER-MOORE ALGORITHM 39

This leads to the following (almost correct) algorithm. Though useful, this
algorithm is not entirely correct. In the case of one-letter alphabets only one
entry of table PREF will be accurately computed. But its incorrectness is
quite "weak." If PREF[k] > 0 after the execution of the algorithm then it
is accurately computed. Moreover, PREF is computed for "essential" entries.
The entry i is essential iff PREF[i\ > 0 after applying this algorithm. These
entries partition interval [1. .m] into subintervals for which further computation
is relatively simple.

The computation of the table for nonessential entries is executed as follows:
traverse the interval left-to-right and update PREF[i] for each entry i. Take
the first (to the left of i, including i) essential entry k with PREF[k] > i — k+1,
then set

PREF\i] = min{PREF[i -k + 1], PREF[k] - (t - jfe)}.

If there is no such essential entry, then PREF[i] = 0.

procedure Alternative-Compute-PREF;
{ correct for essential entries }

for i := 1 to n do PREF[i] := 0;
for i := 1 to n do begin

j := Bord[i}; PREF[i -j + 1] := max(PREF[i -
end

-j + l],j)\

Remark. Apply this for an example pattern over a one-letter alphabet to see
how it works.

3.3 Preprocessing for Boyer-Moore algorithm

We show that the time complexity of computing the table BMShift is lin-
ear.First, using the table PREF, it is very easy to construct a linear-time
algorithm for the computation of the table S of suffixes: S[j] is the length of
the largest suffix of the whole pattern ending at j . This table is used in the
Apostolico-Giancarlo algorithm, and will be used in the precomputation of the
table BMShift. It is easy to see that the computation of S is reducible to the
computation of the table PREF for the reverse of the pattern.

40 CHAPTERS. PREPROCESSING FOR BASIC SEARCHINGS

|c|«|b|»'17TbTaTbTaTnF|a|b|a| a|b|7T7|b jaffeltTU lb |a |

3 Ic la |b |a |a IbTTTbTTTTTb * jitja j ajb 1 alaTbl71¥17TaTbT71

fc1»|b|a|a|bjtifcl»'la|b|a|b|a| a|b |a |a |b |a |b|a |a |Fj71

[e]a |b |a |a |b |a |b |a |a fb |a |b |a | t|b|a |a |b |a |b]al&fjliljfl

ji22

Figure 3.4: The case when BMJ3hift\j] < j . For j = 22, and an example string
of size m = 25, we have BMShift[22] = min{m -k : j = m- S[k] = 22}.
We have here m - S[k] = 22, so S[k] = 3. For k = 9, 14, 22, we have
S[9] = 5[14] = 5[22] = 3, hence BMShift[22] = m - 22 = 25 - 22 = 3.

p rocedure compute-table-of-suffixes(P);
PR := reverse(P);

compute table of prefixes PREFR for the word PR;
for each i do S[i] := PREFR[m - » + 1] ;

Observe that if BMShift[j] = m-~k<j, then S[k] =m-j. For example,
for j = 22 and example pattern in Figure 3.4, BM.Shift\j] = 3, and 5[25-3] =
TO- j = 3. Using this observation and the table S, the shifts for BM algorithm
are computed now as follows.

p rocedure compute-BMShifts;
for k := 1 t o n - 1 do begin

j :=m — S[k}; BM-Shift[j] :=m-k;
end

The correct values of BMJ5hift\j] are not computed here for the case when
BMJShift[j] > j . In this case the mismatch property is ignored and the com
putation is reducible to computing borders of the whole pattern. We leave the
consideration of this special (easy) case and the completion of the procedure
compute-BMShifts to the reader.

3.4. * ANALYSIS OF BOYER-MOORE ALGORITHM 41

current match of the pattern

Figure 3.5: The part text[i + J — 1.A + m] of the text is the current match; v
denotes the shortest full period of the suffix of the pattern, v is a period of the
current match. Shaded area is the "forbidden" part of the text.

3.4 * Analysis of Boyer-Moore algorithm

Now we analyze the Boyer-Moore algorithm. The tight upper bound for
the number of comparisons done by BM algorithm is approximately 3.n. The
proof of this is rather difficult but it yields a fairly simple proof of a 4.n bound.
The fact that the bound is linear is completely non trivial, and surprising in
view of the quadratic behavior of BM algorithm when modified to search for
all occurrences of the pattern. The algorithm uses variable j to enlarge shifts,
but afterwards "forgets" about the checked portion of the text. In fact, the
same symbol in text can be checked a logarithmic number of times.

If we replace BM-Shift by Weak.BM.Shift then the time complexity be
comes quadratic (a counterexample is given by text and patterns with the
structure

pat = ca(ba)k and text = a2k+2(ba)k.

Hence, one small piece of information (the "one bit" difference between in
variants inv2, inv2') considerably reduces the time complexity in the worst
case. This contrasts with improved versions of algorithm brute-forcel, where
invl and invl' present similar complexities (see Chapter 2). The difference
between the usefulness of information with one mismatched symbol gives evi
dence of the great importance of a (seemingly) technical difference in scanning
the pattern left-to-right versus right-to-left.

Assume that, in a given non-terminating iteration, BM algorithm scans
the part text[i + j — 1. A + m] of the text and then makes the shift of length
s = BM.Shift[j], where j > 0 and s > (mj)/3. By current match, we mean
the scanned part of text without the mismatched letter (see Figure 3.5).

42 CHAPTER 3. PREPROCESSING FOR BASIC SEARCHINGS

Lemma 3.2 Let s be the value of the shift made in a given non-terminating
iteration of BM algorithm. Then, at most 3.s positions of the text scanned at
this iteration have been scanned in previous iterations.

Proof. It is easier to prove a stronger claim:

(*): positions in the segment [i + j + k. A + m — 2.k] on text are
scanned for the first time during this iteration, where k is the size
of the shortest full period v of pat[m — s + 1. .m].

In other words: only the first k and the last 2.k positions of the current match
could have been scanned previously. Denote by v the shortest full period v of
pat[m — s + 1. .m]. The following property of the current match result from
the definition of the shift:

(Basic property) v is a period of the current match, and v is a suffix of
the pattern.

We introduce the notion of critical position in the current match. This is
an internal position in this match in which the distance from the end of the
match is a nonzero multiple of fc, (see Figure 3.5). We say that a previous
match ends at a position q in the text, if, in some previous iteration, the end
of the pattern was positioned at q.

Claim 1. No previous match ends at a critical position of the current match.
Proof, (of the claim) The position i + m is the end position of the current

match. It is easy to see that if a critical point of the current match is the end
of the match in a previous iteration i, then, in the iteration immediate after i,
the end of the pattern is at position i + m + shift. Hence, the current match
under consideration would not exist—a contradiction. This ends the proof of
the claim. •

Claim 2. The length of the overlap of the current match and the previous
match is smaller than k.

Proof, (of the claim) Recall that by a match we mean a scanned part of the
text without the mismatch position. The period v is a suffix of the pattern. We
already know, from Claim 1, that the end of the previous match cannot end at
a critical position. Hence, if the overlap is at least k long, then v occurs inside
the current match with the end position not placed at a critical position. The
primitive word v then properly overlaps itself in a text in which the periodicity
is v. But, this is impossible for primitive words (due to periodicity lemma).
This proves the claim. •

3.4. * ANALYSIS OF BOYER-MOORE ALGORITHM 43

Claim 3. Assume that a previous match ends at position q inside a forbidden
area, and is completely contained in the current match. Then, there is no
critical point (in the current match) to the right of q.

Proof, (of the claim) Suppose there is a critical position r to the right
of q. It is then easy to see that r — q is a good candidate for the shift in
the BM algorithm. The algorithm takes the smallest such candidate as an
actual shift. If the shift is smaller than r — q, we have a new position q\ < r.
Then, we will have a sequence of previous matches with end positions ql, q2,
q3, This sequence terminates in r, otherwise we would have an infinite
increasing sequence of natural numbers smaller than r, which is impossible.
This contradicts Claim 1, since we have a previous match ending at a critical
position in the current match. This completes the proof of the claim. •

Proof of lemma. Now we are ready to show that (*) holds. The proof is by
contradiction. Assume that in some earlier iteration we scan the "forbidden"
part of the text (shaded in Figure 3.5). Let q be the end position of the match
in this iteration. Then q is not a critical position, and this match is contained
completely in the current match (its overlap with the current match is shorter
than k and q lies too far from the beginning of the current match). By the same
argument, the rightmost critical position in the current match is to the right
of q. Hence, we have found a previous match that is completely contained in
the current match and in which the end position lies to the left of some critical
position. This is impossible, however, due to Claim 3. This completes the
proof of the lemma. •

Theorem 3.1 The Boyer-Moore algorithm makes at most An symbol com
parisons to find the first occurrence of the pattern (or to report no matches).
The linear-time complexity of the algorithm does not depend on the size of the
alphabet.

Proof. The cost of each non-terminating iteration can be split into two
parts:

1. the cost of scanning some positions of the text for the first time,

2. three times the length of the shift.

The total cost of all non-terminating iterations can be estimated by separately
totaling all costs of type (1), this gives at most n, and all costs of type (2),
which gives at most 3.(n — m). The cost of a terminating iteration is at most
m. Hence, the total cost of all iterations is upper bounded by:

n + 3(n — m) +m < 4.n,

44 CHAPTER 3. PREPROCESSING FOR BASIC SEARCHINGS

which completes the proof. •

Bibliographic notes

The analysis of KMP algorithms is from Knuth, Morris, and Pratt [KMP 77].
The analysis of BM algorithm is from Cole [Co 91] [Co 77].

Chapter 4

On-line construction of
suffix trees

We present here the first basic data structure representing the set J-{text) of all
factors (subwords) of a given word. Their importance derives from a multitude
of applications. For simplicity we assume throughout this chapter that the
alphabet A is of constant size (otherwise, the complexity of algorithms should
be multiplied by log \A\). Since J7(text) is a set, the most typical problem
related to such data structures is the Membership Problem:

test if a; £ T(text).

The data structure D representing the set J-(text) is said to be good if:

(1) D has linear size,

(2) D can be constructed in linear time,

(3) D enables to test the membership problem in 0(|a;|) time after prepro
cessing text.

4.1 Tries and their compact versions

Our approach to represent the set of factors of a text is graph theoretical. Let
G be an acyclic rooted directed graph in which the edges are labeled with
symbols or with words: label(e) denotes the label of edge e. The label of a
path IT (denoted by label(-K)) is the composition of labels of its consecutive
edges. The edge-labeled graph G represents the set:

45

46 CHAPTER 4. ON-LINE CONSTRUCTION OF SUFFIX TREES

Labels(G) = {label(-7r) : 7r is a directed path in G starting at the root }.

We also say that G represents the set of factors of text if Labels(G) = J7(text).

The first naive approach to represent T(text) is to consider graphs that
are trees in which edges are labeled by single symbols. These trees are called
subword tries. Figure 4.1 shows the trie associated with the 6-th Fibonacci
word Fibe = abaababa. In these trees, the links from a node to its children
are labeled by letters. In the tree associated with text, a path down the tree
spells a factor of text. All paths from the root to leafs spell suffixes of text.
And all suffixes of text are labels of paths from the root. In general, these
paths do not necessarily end in a leaf. The nodes correspond to subwords of
the given text, each node can be identified with the word "spelled" by the path
from the root to this node. In tries and suffix trees we distinguish nodes which
correspond to suffixes of the given text, we call them essential nodes. Essential
nodes are shaded in black in Figure 4.1.

Observation. The tries are not "good" representations of !F(text), because
they can be too large. If text = anbnanbnd, then Trie(text) has a quadratic
number of nodes. We define a chain in a trie as a longest path consisting
of non-essential nodes with outdegree one, except possibly the extremities of
the chain. Two subtrees of a trie are isomorphic iff they have the same sets of
paths leading from their roots to their essential nodes. We consider two kinds of
succinct representations of the set J-(text). They both result from compacting
the tree Trie(text). Two types of compaction can be applied, separately or
simultaneously:

compacting chains, which produces the suffix tree of the text,

merging isomorphic subtrees (e.g., all leaves are to be identified), which
leads to the directed acyclic word graph (DAWG) of the text, discussed in
Chapter 6.

The suffix tree ST(text) is the compacted version of Trie(text) when using
the first method of compaction, see Figure 4.1 and Figure 4.2. Each chain ir
(path consisting of nodes of out-degree one) is compacted into a single edge
e with label(e) = [i,j], where text[i. .j] = label(n) (observe that a compact
representation of labels is also used). Note a certain nondeterminism here,
because there can be several possibilities of choosing i and j representing the
same factor text[i. .j] of text. Any such choice is acceptable. In this context
we identify the label [i,j] with the word text[i. .j}. The tree ST (text) is called
the suffix tree of the word text.

For a node v of ST(text), let val(v) be label(n), where TT is the path from
the root to v. Whenever it is unambiguous we identify nodes with their values,
and paths with their labels. Note that the suffix tree obtained by compacting

4.1. TRIES AND THEIR COMPACT VERSIONS 47

Figure 4.1: The tree Trie(text) and its compacted version, the suffix tree
ST(text), for the 6-th Fibonacci word: abaababa. The essential nodes are
black. The numbers at these nodes indicate starting positions of the suffixes
corresponding to the paths leading to these nodes. It is possible that the suffix
tree contains some internal nodes with only one son since essential nodes are
not deleted when compacting the trie.

48 CHAPTER 4. ON-LINE CONSTRUCTION OF SUFFIX TREES

Figure 4.2: The suffix tree for the word of Figure 4.1 with end-marker:
ST{abaababa4f)- There are no internal nodes of out-degree one.

root

path n

path 7t

suffix link suf

Figure 4.3: A suffix link suf points to the node representing the factor with
the first letter removed, if such node exists.

4.2. PRELUDE TO UKKONEN ALGORITHM 49

chains has the following property: the labels of edges starting at a given node
are words having different first letters. Therefore, the branching operation
performed to visit the tree is reduced to comparisons on the first letters of
the labels of outgoing edges. If we assume that no suffix of text is a proper
prefix of another suffix (this is satisfied with a right end-marker), the leaves
of Trie(text) are in one-to-one correspondence with the non-empty suffixes of
text. The following fact about suffix trees is trivial, though a crucial one.

Lemma 4.1 The size of the suffix tree ST(text) is linear (0(\text\)).

The crucial concept in efficient construction of tries and suffix trees is the table
of suffix links: if x is the string corresponding to the node u then suf[u] is a
node which represents the string x with the first letter cut off, see Figure 4.3.
If there is no such node then suf[u] = nil. By convention, we define suf[root] —
root.

4.2 Prelude to Ukkonen algorithm

We denote the prefix of length i of the text by p%. We add a constraint on
the suffix trie construction: not only do we want to build Trie(p), but we also
want to build on-line intermediate trees (see Figure 4.5)

Trie{pl), Trie(p2),..., Trieip71'1).

However, we do not keep all these intermediate suffix tries in memory, because
overall it would take a quadratic time. Rather, we transform the current tree,
and its successive values are exactly Trie(p1), Trie(p2),..., Trie(pn). Doing so
we also require that the construction takes linear time (on fixed alphabets).

Let us examine closely how the sequence of uncompacted trees is con
structed in Figure 4.5. The nodes corresponding to suffixes of the current
text pz are shaded. Let Vk be the suffix of length k of the current prefix p%

of the text. Identify Vk with its corresponding node in the tree. The nodes
Vk are the essential nodes. In fact, additions to the tree (to make it grow
up) are "essentially" created at such essential nodes. Consider the sequence
Vi, Uj - i , . . . , vo of suffixes of p1 in decreasing order of their length. Compare
such sequences in trees for the prefixes of the word abaabb, see Figure 4.5.

The basic property of the sequence of trees TWe(pl) is related to the way
they grow. It is easily described with the sequence of essential nodes. Let
ai = text[i] and let Vj be the first node in the sequence Ui_i, Vi-2, • • • ,vo of
essential nodes, such that child(vj,ai) exists. Then, the tree Trie(pl) result
from Trie{pl~l) by adding a new outgoing edge labeled ai, to each of the

50 CHAPTER 4. ON-LINE CONSTRUCTION OF SUFFIX TREES

existing suffix links

Before

new suffix links created

new nodes

Figure 4.4: One iteration in the construction of Trie(text). Thick edges are
created at this step as well as new links for the corresponding new sons.

4.3. UKKONEN ALGORITHM 51

nodes i>i_i, Uj_2, • • • , vj-i simultaneously creating a new son (see Figure 4.4).
If there is no such node Vj, then a new outgoing edge labeled â is added to
each of the nodes t>i_i, Vj-2) • • •, VQ.

The sequence of essential nodes can be generated by iteratively taking suffix
links from its first element, the leaf for which the value is the prefix read so
far. The sequence of essential nodes is given by:

(vi,Vi-i,...,v0) = (vi,sw/[vi],su/2[-i;j],...,su/l[vi)].

Using this observation we obtain the algorithm on-line-trie.

Theorem 4.1 The algorithm on-line-trie builds the tree Trie(p) of suffixes of
text on-line in time proportional to the size of Trie(j>).

Proof. The complexity results from the fact that the work performed in
one iteration is proportional to the number of created edges. •

Algorithm on-line-trie;
create the two-node tree Trie(text

for i :=
at :=
Vi-l

k:=

2 to n do begin
= £ex£[z];
:= deepest leaf of Trie(pl~
min{fe : son(suf [vi-\],a

create dj-sons for i>i_i, SU/[VJ_

and
end

new suffix links for them (

[1]) with suffix links;

-1);
i) ^ nil };
i], . . . , SM/fc-1[ui_i],
see Figure 4.4);

4.3 Ukkonen algorithm

Ukkonen algorithm can be viewed as a "compacted version" of the algorithm
on-line-trie. The basic point is that certain nodes of the trie do not exist
explicitly in the suffix tree (after chain compaction). Indeed every node of
the trie can be treated as an implicit node in the suffix tree. If this node
corresponds to a node of the suffix tree then we say that such an implicit node
is real. More formally: a pair (v,a) is an implicit node in T if v is a node of
T and a is a (proper) prefix of the label of an edge from v to a son of it. The
implicit node (v, a) is said to be a "real" node if a is the empty word.

Observation. The sequence of suffix trees produced by Ukkonen algorithm
will differ slightly from our definition. We keep in the tree only the deepest

52 CHAPTER 4. ON-LINE CONSTRUCTION OF SUFFIX TREES

internal essential node. Other essential nodes of out-degree one are not kept
explicitly. However at the end of the algorithm we can add a special end-
marker and this automatically will create all internal essential nodes. There
is another important implementation detail. If the node v is a leaf, then there
is no need to extend the edge coming from its father by a single symbol. If
the label of the edge is a pair of positions (l,r), then, after updating it, it
should be (I, r + 1). We can omit such updates by setting r to * for all leaves.
This *-symbol is automatically understood as the last scanned position i of
the pattern. Doing so reduces the amount of work involved at each iteration
of the algorithm.

The i-th iteration executed in the previous algorithm can be adapted to
work on a compact suffix tree ST{pl~l). Each node of Trie(pl~1) is treated as
an implicit node. The new algorithm simulates the version on-line-trie.

If Vi,Vi-i,... ,vo is the sequence of essential nodes, and if we know that
Vi, i>i_i,.. . , Vk are leaves, then we can skip processing them because this is done
automatically by the * trick. We thus start processing essential nodes from
Vk-i- In the algorithm we call it v, the working node. This node is indicated
in Figure 4.8. In other words the working node is the deepest internal essential
node (corresponding to one suffix of the actual text). We do not maintain the
set of essential nodes at lower levels. Another crucial concept is that of implicit
suffix links, denoted by imsuf. If u is an implicit node then its suffix link can
point to a non-real implicit node w, see Figure 4.6.

The computation of such a link is done by following the suffix link of the
real-node father of u, then following down by the path having the same label
as from father(u) to u, see Figure 4.6. Creation of new edges is illustrated in
Figure 4.9 and 4.10.

Theo rem 4.2 Ukkonen algorithm builds the compressed tree ST{text) in an
on-line manner. It works in linear time (on a fixed alphabet).

Proof. The correctness follows from the correctness of the version working
on an uncompacted tree. The new algorithm is just a simulation of it. To
prove the 0(\text\) time bound, it is sufficient to prove that the total work
is proportional to the size of ST {text), which is linear. The work is propor
tional to the work performed by processing all working paths (paths of implicit
suffix links needed to go from one working node to the working node of the
next iteration). The cost of processing one working path is proportional to
the decrease of distance between the working node and its father, plus some
additional additive constant, see Figure 4.7. This distance is defined in terms
of number of symbols from the implicit node (v, a) to its real father. If the
working node is real itself then this distance is zero. On the other hand, the
length of a is increased by at most one per iteration. Hence, the total increase

4.3. UKKONEN ALGORITHM 53

of a is linear and, consequently, the total number of length reductions of a's
is linear. •

Algorithm Ukkonen;
create the two-node tree Trie(text[l]) with suffix links;

{ v is the working node }
v := root;
for i := 2 to m do begin

a, := text[i\;
if son(v, ai) ^ nil then v := son(v, aj)
else begin

k := min{fc : son(imsuf [v],a,i) •=£ nil };
create arsons for v, imsuf[v],..., imsuf ~1[v],
and new imsuf links for new internal nodes;
v := son(imsuf ~ (v),a,i);
{ v is the deepest internal essential node of Trie(p1'

end
-1)}

Remark. If we want, at the end of the execution, to have a leaf corresponding
to each suffix, then one extra stage of Ukkonen algorithm to manage an end-
marker can do it, see Figure 4.10.

Bibliographic notes

The on-line algorithm that builds a compact suffix tree presented in the chap
ter has been discovered by Ukkonen [U 92]. The method is similar to the
construction of suffix DAWG's presented in Section 6.2.

54 CHAPTER 4. ON-LINE CONSTRUCTION OF SUFFIX TREES

Figure 4.5: The history of the computation of the algorithm on-line-trie. The
sequence of suffix tries Trie(p1), Trie(p2),..., Trie(p6) for the text p — abaabb.
Essential nodes are shaded. Edges created at the current step are thick. At
each step i of the algorithm on-line-trie we follow a path of suffix links from
the deepest node to the first node having an Oj-son.

4.3. UKKONEN ALGORITHM 55

Figure 4.6: Computation of the implicit suffix link for an implicit node u, see
also Figure 4.8.

father(v)

old suffix link I

son-father link

v w *- 9
new suffix link new suffix link new suffix link

Figure 4.7: The working path in Ukkonen algorithm. Its cost can be charged
to the decrease of the distance (measured in symbols) between the working
node and its explicit father (the quantity p — q), plus an additive constant.

56 CHAPTER 4. ON-LINE CONSTRUCTION OF SUFFIX TREES

working path of suffix links 5 new edges to be created

Figure 4.8: The tree during one stage of Ukkonen algorithm, the working node
is shaded. The path of implicit suffix links is indicated by arrows. When letter
b is added to the text, five new edges labelled by b are to be created.

4.3. UKKONEN ALGORITHM 57

extending by the letter b ST(abaababaabaabaabab)

0

b 6 °
/

11

a 12

O.

working node j , _

9 °
3 1

new nodes

new edges

Figure 4.9: After extending the text by the letter b, several new edges, indicated
by thick lines, are created.

extending by the letter #

I ST(abaababaabaabaabab#)

Figure 4.10: After extending the previous text by the end-marker # several new
nodes (thick circles) are added to the tree. In this tree, each suffix corresponds
to exactly one leaf.

This page is intentionally left blank

Chapter 5

More on suffix trees

We present a few out of multitude of applications of suffix trees. In this
chapter we sketch yet another renown algorithm for the suffix tree construction:
McCreight algorithm. Assume the alphabet is of a constant size.

5.1 Several applications of suffix trees

There is a data structure slightly different from the suffix tree, known as the
position tree. It is the tree of position identifiers. The identifier of position i
on the text is the shortest prefix of text[i. .n] that does not occur elsewhere in
text. Identifiers are well-defined when the last letter of text is a marker. Once
we have the suffix tree of text, computing its position tree is fairly obvious (see
Figure 5.1). Moreover, this shows that the construction works in linear time.

Theorem 5.1 The position tree can be computed in linear time.

One of the main applications of suffix trees is evident in the situation in
which the text text is like a dictionary. In this situation, the suffix tree or the
position tree acts as an index on the text. The index contains virtually all the
factors of the text. With the data structure, the problem of locating a word
w in the dictionary can be solved efficiently. But we can also perform other
operations rapidly, such as computing the number of occurrences of w in text.

Theorem 5.2 The suffix tree of text can be preprocessed in linear time so that,
for a given wordw, the following queries can be executed on-line in 0(\w\) time:

• find the first occurrence of w in text;

59

60 CHAPTER 5. MORE ON SUFFIX TREES

• starting position of abbe

Figure 5.1: The position tree of text = aabbabbc.

• find the last occurrence of w in text;

• compute the number of occurrences of w in text.

We can list all occurrences of w in text in time 0{\w\ + k), where k is the
number of occurrences.

Proof. We can preprocess the tree, computing bottom-up, for each node,
values first, last and number, corresponding respectively to the first position
in the subtree, the last position in the subtree, and the number of positions
in the subtree. Then, for a given word w, we can (top-down) retrieve this
information in 0(|u>|) time (see Figure 5.2). This gives the answer to the first
three queries of the statement.

To list all occurrences, we first access the node corresponding to the word w
in 0(|w|) time. Then, we traverse all leaves of the subtree to collect the list
of positions of w in text. Let k be the number of leaves of the subtree. Since
all internal nodes of the subtree have at least two sons, the total size of the
subtree is less than 2.k, and the traversal takes 0(k) time. This completes the
proof. •

The longest common factor problem is a natural example of a problem easily
solvable in linear time using suffix trees, and very difficult to solve without any
essential use of "good" representation of the set of factors. In fact, it has long
been believed that no linear-time solution to the problem is possible, even if
the alphabet is fixed.

5.2. SEVERAL APPLICATIONS OF SUFFIX TREES 61

Bottom-up pre-computation
of first, last, number

Top-down retrieval
path of w

first(v) = first occurrence of w
t(v) = last occurrence of w

number(v) = number of occurrences of w

subtree rooted at v

Figure 5.2: We can preprocess the tree to compute (bottom-up), for each node,
its corresponding values first, last, and number. Then, for a given word w, we
can retrieve this information in 0(|w|) time.

longest path extensible
into* and y

longest common
factor of x and y

special symbol

Figure 5.3: Finding longest common factors with suffix tree.

62 C H A P T E R 5. MORE ON SUFFIX TREES

T h e o r e m 5.3 The longest common factor of k words can be found in linear
time in the size of the problem, i.e., the total length of words (k is a constant,
alphabet is fixed).

Proof. The proof for case k = 2 is illustrated by Figure 5.3. The general
case, with k fixed, is solved similarly. We compute the suffix tree of the text
consisting of the given words separated by distinct markers. Then, exploring
the tree bot tom-up, we compute a vector informing for each node whether a
leaf corresponding to a position inside the i-th subword is in the subtree of
this node. The deepest node with positive information of this type for each i
(1 < i < k) corresponds to a longest common factor. The total t ime is linear.
This completes the proof. Q

Suffix trees can be similarly applied to the problem of finding the longest
repeated factor inside a given text. The solution is analogous to the solution of
the longest common factor problem, considering tha t k = 1 and searching for a
deepest internal node. Problems of this type (related to regularities in strings)
is t reated in more details in Chapter 8, where we show an algorithm having
the running t ime 0(n log n) . This latter algorithm is simpler and does not use
suffix trees or equivalent da ta structures. It also covers the two-dimensional
case, where our "good" representations (considered in the present chapter) are
not well suited.

Let LCPref(i,j) denote the length of the longest common prefix start ing
at positions i and j in a given text of size n. In Chapter 14 on two-dimensional
pa t t e rn matching we frequently use the following fact.

T h e o r e m 5.4 It is possible to preprocess a given text in linear time so that
each query LCPref(i,j) can be answered in constant time, for any positions
i,j. A parallel preprocessing in O(logn) time with 0(nj log n) processors of
an EREW PRAM is also possible (on a fixed alphabet).

Let LCA(u, v) denote the lowest common ancestor of nodes u, v in a given
tree T. The proof of Theorem 5.4 easily reduces to preprocessing the suffix
tree tha t enables LCA queries in constant t ime. The value LCPref(i,j) can
be computed as the size of the string corresponding to the node LCA(vi,Vj),
where Vi,Vj are leaves of the suffix tree corresponding to suffixes start ing at
positions i and j . In Chapter 7 we show (quite sofisticated) proof of the
following thorem.

T h e o r e m 5.5 It is possible to preprocess a given tree T in linear time in such
a way that each query LCA{u, v) can be answered in constant time. A parallel
preprocessing in 0 (log n) time with 0(n/ log n) processors of an EREW PRAM
is also possible (on a fixed alphabet).

5.2. MCCREIGHT ALGORITHM 63

root

inserted suffix

new edge labelled
by an interval

new leaf

Figure 5.4: Insertion of a suffix into the tree.

We present also how to use suffix trees on the next problem: compute the
number of distinct factors of text (cardinality of the set F(text)).

Lemma 5.1 We can compute the cardinality of the set !F(text) in linear time.

Proof. The weight of an edge in the suffix tree T is defined as the length of
its label. Then, the required number is the sum of weights of all labels in the
suffix tree. D

5.2 McCreight algorithm

We present an optional construction of suffix trees. McCreight algorithm is an
incremental algorithm. A tree is computed for a subset of consecutive suffixes
consisting of all suffixes longer than some value. The next suffix is then inserted
into the tree, and this continues until all (non-empty) suffixes are included in
the tree.

Consider the structure of the path corresponding to a new suffix p inserted
into the tree T. Such a path is indicated by the thick line in Figure 5.4. Denote
by insert(p, T) the tree obtained from T after insertion of the string p. The
path corresponding to p in insert(p,T) ends in the most recently created leaf
of the tree. Denote the father of this leaf by head. It may be that the node

64 CHAPTER 5. MORE ON SUFFIX TREES

head does not exist yet in the initial tree T (it is only an implicit node at the
time of construction), and has to be created during the insert operation.

Let (w, a) be an implicit node of the tree T (w is a node of T, a is a
word). The operation break(w, a) on the tree T is defined only if there is an
edge outgoing node w in which the label 6 has a as a prefix. Let (3 be such
that 5 = a(3. The (side) effect of the operation break(w, a) is to break the
corresponding edge; a new node is inserted at the breaking point, and the edge
is split into two edges of respective labels a and f3. The value of break(w, a)
is the node created at the breaking point.

Let v be a node of the tree T, and let q be a subword of the input word text
represented by a pair of integers l,r where q = text[l. .r]. The basic function
used in the suffix tree construction is the function find. The value find(v,q)
is the last implicit node along the path starting at v and labeled by q. If this
implicit node is not real, it is (w, a) for some non-empty a, and the function
find converts it into the "real" node break(w,a).

Algorithm Scheme of McCreight algorithm;
T := two-node tree with one edge labeled by pi =

for i := 2 to n do begin
{ insert next suffix pi = text[i. .n] }
localize headi as head(pi,T),

starting the search from suf [father(headl
and using fastfind whenever possible;

T:= insert(pi,T);
end

= text;

-l)]

The important aspect of the algorithm is the use of two different imple
mentations of the function find. The first one, called fastfind, deals with the
situation when we know in advance that the searching path labeled by q is
fully contained in some existing path starting at v. This knowledge allows us
to find the searched node much faster using the compressed edges of the tree
as shortcuts. If we are at a given node u, and if the next letter of the path
is a, then we look for the edge outgoing u for which the label starts with a.
Only one such edge exists due to the definition of suffix trees. This edge leads
to another node u'. We jump in our searching path at a distance equal to
the length of the label of edge (u,u'). The second implementation of find is
the function slowfind that follows its path letter by letter. The application of
fastfind is a main feature of McCreight algorithm, and plays a central part in
its performance (together with links).

McCreight algorithm builds a sequence of compacted trees Tj in the order

5.2. MCCREIGHT ALGORITHM 65

fastfind(u, /3)

slowfind(v, y)

Figure 5.5: McCreight algorithm: the case where v = headi is a newly created
node.

i = 1,2,. . . , n. The tree T, contains the i-th longest suffixes of text. Note that
Tn is the suffix tree T(text), but that intermediate trees are not strictly suffix
trees.

At a given stage of McCreight algorithm, we have T — Tk-i and we attempt
to build 7fc. The table of suffix links plays a crucial role in the reduction of
the complexity. In the algorithm, the table suf is computed at a given stage
for all nodes, except for leaves and maybe for the present head. The algorithm
is based on the following two obvious properties:

1. headi is a descendant of the node suf[headj_i],

2. suf[v] is a descendant of suf [father (v)} for any v.

The basic work performed by McCreight algorithm involves localizing heads.
If it is executed in a rough way (top-down search from the root), then the time
is quadratic. The key to the improvement is the relation between headi and
headi-i, (Property 1). Hence, the search for the next head can start from
some node deep in the tree, instead of from the root. This saves some work
and the amortized complexity is linear. The behavior of McCreight algorithm
is illustrated in Figures 5.5, 5.6, 5.7 and 5.8.

66 CHAPTER 5. MORE ON SUFFIX TREES

. , , suffix link
father /-\^.-'

i-\

suffix link

leaf^Q

fastfind(u, P)

Figure 5.6: McCreight algorithm: the case where v is an existing node.

6 1

Figure 5.7: The tree of string abaababaabaababaababa$, after inserting the first
six suffixes, and the insertion of the 7-th suffix. The head in the left tree is
abaaba and, in the right one, it is baaba. The heads are indicated as black
circles. In this case, v = baaba is a newly created node, a = ba, 0 = aba.

5.2. MCCREIGHT ALGORITHM 67

Figure 5.8: The tree of string abaababaabaababaababa%, after inserting the first
eight suffixes, and the insertion of the 9-th suffix. In this case, v = aaba is a
newly created node, a = e, (3 = aba, and we perform a fastfind on the string
aba and a slowfind on the string ababaaba.

Algorithm McCreight;
T := two-node tree with one edge labeled by p\

for i := 2 to n do begin
{ insert next suffix pi = text[i. .n] }
let (3 be the label of the edge (father[headi-i
let 7 be the label of the edge (headi-i, leaf_
u := suf\father[headi_i]];
v := fastfind(u, f3);
suf[headi_i] := v;
if v has only one son then

{ v is a newly inserted node } headi := v
else headi '•= slowfind(v,7);

= text;

, headi-i);

1);

create a new leaf leaf^, make leaf\ a son of headi;
label the edge (headi, leafi) accordingly;

end

Theorem 5.6 McCreight algorithm runs in time 0(n) for constant alphabets.

Proof. The total complexity of all executions of fastfind and slowfind is
estimated separately. Let father i = father (headi). The complexity of one run

68 CHAPTER 5. MORE ON SUFFIX TREES

of slowfind at stage i is proportional to the difference \father^ — \fatheri_1\,
plus some constant. Therefore, the total time complexity of all runs of slowfind
is bounded by J^d father J — Ifather^^) + 0(n). This is obviously linear.
Similarly, the time complexity of one call to fastfind at stage i is proportional
to the difference \headi\ — \headi-i\, plus some constant. Therefore, the total
complexity of all runs of fastfind is also linear. CI

Bibliographic notes

The two basic algorithms for suffix tree construction are from Weiner [We 73]
and McCreight [McC 76]. Chen and Seiferas [CS 85] described the relation
between DAWG's (Chapter 6) and suffix trees. An excellent survey on appli
cations of suffix trees has been shown by Apostolico in [Ap 85]. As reported
in [KMP 77], Knuth conjectured in 1970 that a linear-time computation of
the longest common factor problem was impossible to achieve. Theorem 5.3
shows that it is indeed possible on a fixed alphabet. A direct computation of
uncompacted position trees, without the use of suffix trees, is given is [AHU
74]. The algorithm is quadratic because uncompacted suffix trees can have
quadratic size. The incremental algorithm for the suffix tree construction is
from McCreight [McC 76].

Chapter 6

Sub word graphs

The graph DAWG(text), called the suffix DAWG of text, is obtained by iden
tifying isomorphic subtrees of the uncompacted tree Trie(text) representing
J-(text). We call this process minimization. In fact it corresponds to the min
imization of finite deterministic automata. Observe that in the trie the nodes
are classified as essential (corresponding to suffixes) and non-essential. This
affects the minimization (see Figure 6.1). The reason to deal with DAWG's
instead of minimal subword automata is that DAWG's are easier to construct
on-line and their relation to suffix trees is more evident. Applications of suffix
DAWG's are essentially the same as applications of suffix trees. We assume
again in this chapter that the alphabet is of constant size.

6.1 Directed acyclic graph

Let re be a factor of text. We denote by end-pos(x) (end positions) the set of
all positions on text where an occurrence of x ends. Let y be another factor
of text. Then, the subtrees of Trie(text) rooted at x and y (recall that we
identify the nodes of Trie(text) with their labels) are isomorphic if and only if
end-pos(x) = end-pos(y). In the graph DAWG(text), paths having the same
set of end positions lead to the same node. Hence, the nodes of G correspond to
non-empty sets in the form end-pos(x). The root of the DAWG corresponds to
the whole set of positions {0 ,1 ,2 , . . . , n} on the text. From a theoretical point
of view, nodes of G can be identified with such sets (especially when analyzing
the construction algorithm). But, from a practical point of view, the sets are
never maintained explicitly. The end-pos sets, usually large, cannot directly
name nodes of G, because the sum of the sizes of all such sets happens to be

69

70 CHAPTER 6. SUBWORD GRAPHS

non linear.

The small size of DAWG's is due to the special structure of the family $
of sets end-pos. We associate with each node v of the DAWG its value val(v)
equals to the longest word leading to it from the root. The nodes of the DAWG
are, in fact, equivalence classes of nodes of the uncompacted tree Trie(text),
where the equivalence means subtree isomorphism. In this sense, val(v) is the
longest representative of its equivalence class.

Let u b e a node of DAWG(text) distinct from the root. We define suf[v]
as the node w such that val(w) is the longest suffix of val(v) not equivalent
to it. In other words, val(w) is the longest suffix of val(v) corresponding to a
node different from v. Note that the definition implies that val(w) is a proper
suffix of val(v). By convention, we define suf [root] = root. We also call the
table suf the table of suffix links, and edges (v, suf[v]) suffix links. The suffix
links on DAWG(dababd) are presented in Figure 6.2. Since the value of suf[v]
is a word strictly shorter than val(v), suf induces a tree structure on the set
of nodes. The node su/[i>] is interpreted as the father of v in the tree. The
tree of suffix links is the same as the tree structure of sets in $ induced by the
inclusion relation.

Theorem 6.1 The number of nodes of DAWG (text) is smaller than 2n.

Proof. Any two subsets of $ are either disjoint or one is contained in the
other. Thus, $ has a tree structure (see Figure 6.2). Since the value of suf[v]
is a word strictly shorter than val(v), the function suf induces a tree structure
on the set of nodes. All leaves are pairwise disjoint subsets of {1,2, . . . , n }
(we do not count position 0 that is associated with the root, because it is not
contained in any other end-pos set). Hence, there are at most n leaves. This
does not directly imply the thesis because it can occur that some internal nodes
have only one son (as in the example of Figure 6.2).

We partition nodes into two (disjoint) subsets according to the fact that val{y)
is a prefix of text or not. The number of nodes in the first subset is exactly
n + 1 (number of prefixes of text). We now count the number of nodes in the
other subset of the partition. Let t i b e a node such that val(y) is not a prefix
of text. Then val(v) is a non-empty word that occurs in at least two different
right contexts in text. But we can then deduce that at least two different
nodes p and q (corresponding to two different factors of text) are such that
suf[p] = suf[q] = v.

This shows that nodes like v have at least two sons in the tree inferred by suf.
Since the tree has at most n leaves (corresponding to non-empty prefixes), the
number of such nodes is less than n. Additionally note that if text contains
two different letters, the root has at least two sons but cannot be counted in

6.1. DIRECTED ACYCLIC GRAPH 71

0
b

vl<
cl

v4 ®

b

v7 ®
c

The trie

smallest

suffix automaton

DAWG(abcbc)

minimise
=3-

essential nodes

ignored

smallest subword

automaton

©

Figure 6.1: Representing the factors of abcbc. The minimization of the trie
depends on whether we consider essential nodes or not. For example in the
first case vl and vl are roots of non-isomorphic subtrees, while in the second
case they are roots of isomorphic trees. Nodes v-j and VQ are roots of isomorphic
subtrees in both cases. The roots of isomorphic subtrees are glued together.
Usually DAWG's and smallest subword automata do not differ too much.

72 CHAPTER 6. SUBWORD GRAPHS

a/

{ 2 , 4 } /

b\7
{3,5}

d

Ah 6}
a

{2}

1*
{3}

* * i

{2,4}.^

{3,5}. \
- • { 2 }

\ \ \
\ {4}

\ \ \
{5} \

/ /

{6'}'

Figure 6.2: DAWG{dababd) and its suffix links. The tree of suffix links shows
the structure of the family $ of end-pos sets. The structure of suffix links
of dababd is the same as the structure of the suffix tree of the reversed text
dbabad.

the second subset because val(root) = e is prefix of text. If text is of the form
a", the second subset is empty. Therefore, the cardinality of the class is indeed
less than n — 1.

This finally shows that there are less than (n + 1) + (n — 1) = 2n nodes. •

Theorem 6.2 DAWG(text) has less than N + n — 1 edges, where N is the
number of its nodes. This is independent of the size of the alphabet.

Proof. We consider a spanning tree T over DAWG(text), and count sepa
rately the edges belonging to the tree and the edges outside the tree. The tree
T is chosen to contain the branch labeled by the whole text. Since there are
N nodes in the tree, there are N — 1 edges in the tree. Let us count the other
edges of DAWG(text). Let (v,w) be such an edge. We associate with it the
suffix xay of text defined by: x is the label of the path in T going from the
root to v, a is the label of the edge (v, w), y is any factor of text extending xa
into a suffix of text for x, y € A*, a £ A.

The correspondence is one-to-one. The empty suffix is not considered, nor is
text itself because it is in the tree.

It remains n — 1 suffixes, which is the maximum number of edges outside
T. Hence the number of edges in DAWG(text) is less than N + n—l. •

6.2. ON-LINE CONSTRUCTION OF SUBWORD GRAPHS 73

suf /

0
0

suf

suf *

suf

0 >0
4 newnode

suf

^ ^ ^ newsink

suf

Q^sink /
^ ^ ^ ' newsink

0
Figure 6.3: One iteration in the on-line construction of DAWG's. newnode is
a clone of v.

The DAWG is not always strictly minimal. If minimality is understood in
terms of finite au tomata (number of nodes, for short) , then DAWG(text) is the
minimal au tomaton for the set of suffixes of text. Accepting states correspond
to the essential s tates of the DAWG (nodes corresponding to suffixes).

6.2 On-line construction of subword graphs

An on-line linear-time algorithm for suffix DAWG computat ion can be viewed
as a simulation of the algorithm on-line-trie from Chapter 4, in which isomor
phic subtrees are identified. When the text is extended by the letter a to the
right then the algorithm on-line-trie follows the working path: the sequence of
suffix links until an edge labeled a is found if ever. Then the algorithm creates
new vertices and updates suffix links. We describe a similar algorithm, but all
leaves of the trie are now identified as a special node called sink. In addit ion
the set of other nodes is parti t ioned into equivalent classes.

The peculiar feature of the on-line algorithm is tha t instead of gluing nodes
together it either creates single new nodes from scratch or creates clones of
existing nodes, so it makes a kind of s ta te splitting tha t is opposite to gluing.
This can be understood by the fact tha t there is a lot of gluing because all
leaves are glued together, but later some of these leaves do not correspond
to suffixes and should be split. State splitting is the basic operation of the

74 CHAPTER 6. SUBWORD GRAPHS

algorithm.

Algorithm on-line-DAWG;
create the one-node graph G — DAWG(s);

root := sink; suf[root] := nil;
for i := 1 to n do begin

a := text[i]; create a new node newsink;
make a solid a-edge (sink, newsink); w := suf[sink];
while (w ^ nil) and (son(w, a) — nil) do begin

make a non-solid a-edge (w, newsink); w := suf[w];
end;
v := son(w,a);
if w = nil then suf [newsink] := root
else if (w,v) is a solid edge then suf [newsink] := v
else begin { split the node v }

create a node newnode with the same outgoing edges as v,
except that they are all non-solid;
change (w, v) into a solid edge (w, newnode);
suf[newsink] := newnode; suf[newnode] := suf[v];
suf[v] := newnode; w := suf[w];
while w ^ nil and (w, v) is a non-solid a — edge do begin

{*} redirect this edge to newnode; w := suf[w[;
end;

end;
sink := newsink;

end

The algorithm processes the text from left to right. At each (Figure 6.4)
step, it reads the next letter of the text and updates the DAWG built so far. In
the course of the algorithm, two types of edges in the DAWG are considered:
solid edges (thick in Figure 6.6) and non-solid edges. The solid edges are those
contained in longest paths from the root. In other words, non-solid edges
are those creating shortcuts in the DAWG. The adjective solid means that
once these edges are created, they are not modified during the rest of the
construction. On the contrary, the target of non-solid edges may change after
a while. Figures 6.5, 6.8 and 6.7 show a run of the algorithm on text — aabbab.
The schema of one stage of the algorithm is graphically presented in Figure 6.3.

The transformation of DAWG(aabba) into DAWG(aabbab) points out a
crucial operation of the algorithm. The addition of letter b to aabba intro
duces new factors to the set J-'(aabba). They are all suffixes of aabbab. In

6.2. ON-LINE CONSTRUCTION OF SUBWORD GRAPHS 75

Splitting node

Figure 6.4: Iterative computation of DAWG(aabb). Solid edges are thick.

DAWG(aabba), nodes corresponding to suffixes of aabba, namely, vi, V2,v-j in
Figure 6.7 and 6.8, will now have an out-going 6-edge. Consider node v<i in
DAWG(aabba). It has an outgoing non-solid 6-edge. The edge is a shortcut
between V2 and V4, compared to the longest path from V2 to V4 which is labeled
by ab. The two factors ab and aab are associated with the node V4. But in
aabbab, only ab becomes a suffix, not aab. This is the reason why the node U4
is split into u4 and VQ in DAWG(aabbab).

When splitting a node, it may also occur that some edges need to be redi
rected to the created node. This situation is illustrated in Figure 6.5 by
DAWG(aabbabb) (see also Figure 6.6). In DAWG(aabbab) (Figure 6.5), the
node V5 corresponds to factors bb, abb, and aabb. In aabbabb, only bb and abb are
suffixes. Hence, in DAWG{aabbabb), paths labeled by bb and abb should reach
the node v\\, a clone of node v& obtained by the splitting operation. In the al
gorithm, we denote the son v of node w by son{w, a) such that label(w, v) = a.
We assume that son(w, a) = nil if there is no such node v. For each node
of DAWG{text) a suffix link named suf is defined. It creates lists of working
paths as shown in Figure 6.3. There, the working path is w\ = suf [sink],
u>2 — suf[wi], w — suflwz]. Generally, the node w is the first node on the path
having an outgoing edge (w, v) labeled by letter a. If this edge is non-solid,
then v is split into two nodes: v itself, and newnode. The latter is a clone of
node v, in the sense that out-going edges and the suffix-pointer for newnode
are the same as for v. The suffix link of newsink is set to newnode. Otherwise,
if edge (w, v) is solid, the only action performed at this step is to set the suffix

76 CHAPTER 6. SUBWORD GRAPHS

Figure 6.5: Transformation of DAWG(aabba) into DAWG(aabbab). The node
vg is a clone of V4.

6.2. ON-LINE CONSTRUCTION OF SUBWORD GRAPHS 77

Figure 6.6: The suffix DAWG's of aabbabb and aabbabbb. The working path
in the first graph consists of nodes vu and v@, since suf[sink] = i>n and
suf [vu] = VQ. There is no edge labeled by b from vu so a 6-edge is added to
vu. The non-solid edge labeled by b points from VQ to vu, a clone V13 of vu
is created and this edge is redirected to the clone.

78 CHAPTER 6. SUBWORD GRAPHS

Figure 6.7: The suffix DAWG of aabbabbba. The node v\s is a clone of vj.
Several edges leading to the cloned node are redirected. The non-solid a-edge
VQ —> v-j is redirected to V15.

link of newsink to v.

Theorem 6.3 Algorithm on-line-DAWG computes DAWG(text) in linear time.

Proof. We estimate the complexity of the algorithm. We proceed similarly
as in the analysis of the suffix tree construction. Let sinki be the sink of
DAWG(text[l. .i\). What we call the working path consists of nodes wx =
suf[sink], W2 = suf[wi], . . . , Wk+i = suf[wk\. The complexity of one iteration
is proportional to the length k, of the working path plus the number k' of
redirections made at step * of the algorithm. Let Ki be the value of k + k' at
the i-th iteration. Let depth(u) be the depth of node u in the graph of suffix
links corresponding to the final DAWG (the depth is the number of applications
of suf needed to reach the root). Then, the following inequality can be proved
(we leave it as an exercise): depth(sinki+\) < depth(sinki) — Ki + 2, and this
implies

Ki < depth(sinki) — depth(sinki+\) + 2.

Hence, the sum of all K^s is linear. D

6.3. THE REVERSE PERSPECTIVE 79

6.3 The reverse perspective

There are close relations between suffix trees and subword graphs, since they
are compact representations of the same trie. We examine the relations be
tween DAWG{w) and ST(wR) and principally the facts that suffix links of
DAWQ{w) correspond to ST(wR), and conversely suffix links of ST(wR) give
solid edges of DAWG(w). Two factors of text, x and y, are equivalent iff their
end-pos sets are equal. This means that one of the words is a suffix of the
other (say y is a suffix of a;), and then wherever x appears then y also ap
pears in text. However, what happens if, instead of end-positions, we consider
start-positions? Let us look from the "reverse perspective" and look at the
reverse pattern. Suffixes then become prefixes, and end-positions become first-
positions. Denote by first-pos{x) the set of first positions of occurrences of x
in text. Recall that a chain in a tree is a maximal path in which all the nodes
have out-degree one and they are non-essential nodes except the last one. The
following obvious lemma is crucial for understanding the relationship between
suffix trees and DAWG's.

Lemma 6.1 The following three properties are equivalent for two factors x
and y of text:
(1) end-pos(x) = end-pos(y) in text,
(2) first-pos(xR) = first-pos(yR) in textR,
(3) xR, yR are contained in the same chain of the uncompacted tree Trie(textR).

Observation. The reversed values of nodes of ST(textR) are the longest rep
resentatives of equivalence classes of factors of text. Hence nodes of ST(textR)
can be treated as nodes of DAWG(text).

From Suffix trees to subword graphs.

We strongly require here that all suffixes of the text have corresponding nodes
(essential nodes) in the suffix tree T, though some of these nodes can be of
outdegree one. Actually these are the trees constructed by Ukkonen algorithm,
which gives also suffix links. We use another family of links which are related
to suffix links (but work in reversed direction), the extension links denoted by
ext[a, v}. The value of ext[a, v] is the node w for which val(w) is the shortest
word having prefix ax, where x = val(v). If there is no such node w, then
ea;i[a,u] = nil.

Theorem 6.4 (1) DAWG(text) is the graph of extension links of the suffix
treeT = ST(textR).
(2) Solid edges of DAWG(text) are reverses of suffix links ofT.

80 CHAPTER 6. SUBWORD GRAPHS

Figure 6.8: (1) The suffix tree of abaabb with suffix links (cutting first letter).
(2) Reverses of suffix links give solid edges of the DAWG of the reversed text
bbaaba. (3) Three additional non-solid edges corresponding to extension links
of the suffix tree are added to obtain the complete DAWG of bbaaba.

Proof. The nodes of the DAWG correspond to nodes of T. In the DAWG
for text, the edge labeled a goes from the node v with val(v) = x to node w
with val(w) — y iff y is the longest representative of the class of factors that
contain word xa. If we consider the reversed text, then it means that axR is
the longest word yR such that first-pos(yR) = first-pos(axR) in textR. This
exactly means that

yR = ext[a,xR] and link[a,xR] = yR.

In conclusion, this also means that table link gives exactly all solid edges of
DAWG{text). 0

Theorem 6.5 If we are given a suffix tree T with the table of suffix links then
the table of extension links can be computed in linear time.

Proof. We reverse extension links: if suf[a • a] = a then ext[a, a] = a • a,
where we identify nodes with strings. Afterwards, we process the tree bottom
up:

if ext[u, a] = nil and ext[w, a] ̂ nil for a son w of u then
ext[u, a] := ext[w,a].

The whole process obviously takes linear time for constant-size alphabets. •

6.3. THE REVERSE PERSPECTIVE 81

Figure 6.9: The tree of suffix-links of DAWG(abcbc) is the suffix tree
ST((abcbc)R). The nodes are identified with their string representatives (in
the DAWG these are the labels of the longest paths leading to nodes).

Observation. If we have a suffix tree with essential nodes known, but without
suffix links then suffix links, can be easily computed bottom-up in linear time.

From subword graphs to suffix trees.

Let us look at the opposite direction. Assume again that we identify nodes
with their corresponding string representations. For each suffix link suf[y] = x
in DAWG(w) create the edge xR —>• yR labelled yR // xR, where / / means the
operation of cutting the prefix. The construction is illustrated in Figure 6.9
on an example DAWG (only suffix links of the DAWG are shown). The same
arguments as used in the proof of Theorem 6.4 can be applied to show the

82 CHAPTER 6. SUBWORD GRAPHS

following fact.

Theo rem 6.6 The tree of reversed suffix links of DAWG(text) is the suffix
treeT(textR).

6.4 Compact subword graphs

DAWG's result by identifying isomorphic subtrees in suffix tries. We consider
the construction of DAWG's by identifying isomorphic subtrees in suffix trees.
This construction gives a succinct representation of DAWG(w) called the com
pact DAWG od w and demoted as CVAWQ(w). This is a version of a DAWG in
which edges are labeled by words, and there are no non-essential nodes of out-
degree one (chains of non-essential nodes are compacted). In other words this
is a compacted DAWG. It is very easy to convert CVAWQ(w) into DAWG(w)
and vice versa. We show the transformation of a suffix tree into a CDAWG.
The basic procedure is the computation of equivalent classes of subtrees is
based on the following classical algorithm (see [AHU 74] for example).

L e m m a 6.2 Let T be a rooted ordered tree in which the edges are labeled by
letters (assumed to be of constant size). Then, isomorphic classes of all subtrees
of T can be computed in linear time.

We illustrate the algorithm with the example text string w = baaabbabb.
For technical reasons the end-marker # is added to the word w. But this end-
marker is later ignored in the constructed DAWG (it is only needed at this
stage). Then, the equivalence classes of isomorphic subtrees are computed.
The roots of isomorphic subtrees are identified, and we get the compacted
version G' of DAWG(w). The difference between the actual structure and the
DAWG is related to the lengths of strings that are labels of edges. In the
DAWG each edge is labeled by a single symbol. The "naive" approach could
be to break each edge labeled by a string of length k down into k edges. But
the resulting graph could have a quadratic number of nodes. We apply such an
approach with the following modification. By the weight of an edge we mean
the length of its label. For each node v we compute the heaviest (with the
largest weight) incoming edge. Denote this edge by inedge{v). Then, for each
node v, we perform a local transformation local—action(v) (see Figure 6.12). It
is crucial that all these local transformations local — action{v) are independent
and can be performed for all v. The entire process takes linear time.

6.4. COMPACT SUBWORD GRAPHS 83

Figure 6.10: After identification of isomorphic classes of nodes of the suffix tree
and removal of end-marker # we obtain the compact DAWG for baaabbabb.

Figure 6.11: After decompacting the compacted DAWG of Figure 6.10 we get
the suffix DAWG of baaabbabb.

84 CHAPTER 6. SUBWORD GRAPHS

Figure 6.12: The decompaction consists of local transformations. New nodes
(black nodes) are introduced on the heaviest incoming edges. It is illustrated
for all edges arriving to the sink node, see Figure 6.11.

Bibliographic notes

The impressive feature of DAWG's is their linear size, first discovered in
[BBEHC 83]. After marking nodes of the DAWG associated with suffixes
of the text as terminal states, the DAWG becomes an automaton recognizing
the suffixes of the text. In fact, this is indeed the minimal automaton for
the set of suffixes of the text. This point is discussed in [Cr 85] where an
algorithm to build the minimal automaton recognizing the set of all factors of
the text is also presented (the factor automaton can be slightly smaller than
DAWG{text)). Constructions of DAWG(text) by Blumer et al. [BBEHCS 85]
and Crochemore [Cr 86] are essentially the same.

On-line construction of DAWG's can be treated as a simulation of Ukkonen
algorithm, in which isomorphic classes of vertices are nodes of the DAWG. The
standard application of DAWG's is for building efficient dictionaries of factors
of many strings, see [BBHME 87].

The relationship between DAWG's and suffix trees is adeptly described in
[CS 85]. The application of DAWG's to find the longest common factor of two
words is presented in [Cr 86] (see also [Cr 87]).

Chapter 7

Text algorithms related to
sorting

The numbering or naming of factors of a text, corresponding to the sorted or
der of these factors, can be used to build a useful data structure. In particular,
the sorted sequence of all suffixes has a similar asymptotic efficiency for many
problems as that of suffix trees. Most algorithms in this chapter are optimal
within a logarithmic factor, but they are easy to implement and easier to un
derstand, compared with asymptotically more efficient and at the same time
much more sophisticated algorithms for DAWG's and suffix trees. Linear-time
algorithms for sorting integers in the range [1. .n] can be successfully used in
several text algorithms, some of them are presented below.

7.1 The naming technique: KMR algorithm

The central notion used in the algorithms of the section is called naming or
numbering. We define a version of the Karp-Miller-Rosenberg algorithm (KMR
algorithm) as an algorithm computing the data structure called the dictionary
of basic factors. In the algorithm we assign names to certain subwords, or pairs
of subwords.

Assume we have a sequence
S = (s i , s 2 , . . . ,st)

of at most n different objects. The naming of S is a table
X[l],X[2],...,X[t]

that satisfies conditions (1-2) below. If, in addition, it satisfies the third con
dition then the naming is called a sorted naming.

85

86 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

Positions = 1 2 3 4 5 6 7 8
text = a b a a b b a a # # #

Name! = 1 2 1 1 2 2 1 1
Name2 = 2 4 1 2 5 4 1 3
Name* = 3 6 1 4 8 7 2 5

Name of factor = 1 2 3 4 5 6 7 8
POS-L = 1 2
Pos2 = 3 1 8 2 5
P0S4, = 3 7 1 4 8 2 6 5

Figure 7.1: The dictionary of basic factors for an example text: tables of k-
names and of their positions. The A;-name at position i corresponds to the
factor text[i. .i + k — 1]; its name is its rank according to lexicographic order
of all factors of length k (order of symbols is a < b < #) . Indices k are powers
of two. The tables can be stored in 0(n log n) space.

1. Si = Sj <=> X[i] = X[j], for 1 < i,j < t.

2. X[i] € [1. .n] for each position i, 1 < i < t.

3. X[i] is the rank of Sj in the ordered list of the different elements of S.

Given the string text of length n, we say that two positions are fc-equivalent
if the factors of length k starting at these positions are equal. Such an equiv
alence is best represented by assigning to each position i a name or a number
to the factor of length k starting at this position. The name is denoted by
Namek[i] and called a fc-name. We assume that the table Namek is a good
and sorted numbering of all factors of a given length k.

We consider only those factors of the text whose length k is a power of two.
Such factors are called basic factors. The name of a factor is denoted by
its rank in the lexicographic ordering of factors of a given length. For each
fc-name r we also require (for further applications) a link Posk[r] to any one
position at which an occurrence of the /c-name r starts. Symbol # is a special
end-marker that has the highest rank in the alphabet. The text is padded with
enough end-markers to let the A;-name at position n defined.

The tables Name and Pos for a given text w are together called its dic
tionary of basic factors and is denoted by DBF(w). This dictionary is the
basic data structure of the chapter.

Remark. String matching for text and pattern pat of length m can be easily
reduced to the computation of a table Namem. Consider the string w —
patktext, where & is a special symbol not in the alphabet. Let Namem be the

7.1. THE NAMING TECHNIQUE: KMR ALGORITHM 87

J Composite-Name

| Name

H
Name

Figure 7.2: The object is decomposed into a constant number of parts of
identical shape; its composite name consists in assembling names of its parts.
The function Sort-Rename converts composite names into integers.

array which is part of DBF(patictext). If q = Namem[l] then the pattern pat
starts at all positions i on text such that Namem\i + m + l} = q.

Figure 7.1 displays DBF(abaabbaa4f). Three additional # ' s are appended
to guarantee that all factors of length 4 starting at positions 1 ,2 , . . . , 8 are well
defined. The figure presents tables Name and Pos. In particular, the entries of
P0S4 give the lexicographically-sorted sequence of factors of length 4. This is
the sequence of factors of length 4 starting at positions 3,7,1,4,8,2,6,5. The
ordered sequence is:

aabh, aa$#, abaa, abba, a # # # , baab, 6ao#, bbaa.

The central machinery of KMR algorithm is the procedure Sort-Rename that
is defined now. Let S be a sequence of total size t < n containing elements of
some linearly ordered set. The output of Sort-Rename(S) is an array of size t,
which is a good and sorted naming of S.

Example . Let S = (ab, aa, ab,ba,ab,ba,aa). Then

Sort-Rename(S) = (2, 1, 2, 3, 2, 3, 1)

For a given k, define (see Figure 7.2),

Composite-Namek[i] = (Name k[i], Name k[i + k}).

KMR algorithm is based on the following simple property of naming tables.

Lemma 7.1 [Key-Lemma] Name2k = Sort-Rename(Composite-Namek).

The main part of algorithm Sort-Rename is the lexicographic sort. We
explain the action of Sort-Rename on the following example:

88 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

x = ((1,2), (3,1), (2,2), (1,1), (2,3), (1,2)).

The method to compute a vector X of names satisfying conditions (1-3) is as
follows. We first create the vector y of composite entries y[i] = (x[i],i). Then,
the entries of y are lexicographically sorted. Therefore, we get the ordered
sequence

((1,1),4),((1,2),1),((1,2),6),((2,2),3),((2,3),5),((3,1),2).

Next, we partition this sequence into groups of elements having the same first
component. These groups are consecutively numbered starting from 1. The
last component i of each element is used to define the output element X[i] as
the number associated with the group. Therefore, in the example, we ge

X[4] = 1, X[l] = 2, X[6] = 2, X[3] = 3, X[5] = 4, X[2] = 5.

The linear-time lexicographic sorting based on bucket sort can be applied (see
[AHU 83], for example). Doing so, the procedure Sort-Rename has the same
complexity as sorting n elements of a special form, which yields the following
statement.

Lemma 7.2 If the vector x has size n, and its components are pairs of integers
in the range (1 ,2 , . . . ,n) , Sort-Rename(x) can be computed in time 0(n).

The dictionary of basic factors is computed by the algorithm KMR above.
Its correctness results from fact (*) below. The number of iterations is loga
rithmic, and the dominating operation is the call to procedure Sort-Rename.

Once all vectors Namep, for all powers of two smaller than r, are computed,
we easily compute the vector Nameq in linear time for each integer q < r. Let
t be the greatest power of two not greater than q. We can compute Nameq by
using the following fact:

(*) Nameq[i] = Nameq[j] iff {Namet[i\ = Namet[j]) and (Namet[i + q — t] =
Namet[j +q-i\).

7.1. THE NAMING TECHNIQUE: KMR ALGORITHM 89

Algorithm KMR;
{ a version of the Karp-Miller-Rosenberg algorithm }
{ Computation of DBF(text) }

K := largest power of 2 not exceeding n;

Computation of table Name:
Namei := Sort-Rename(text);
for k := 2 ,4 , . . . ,K do

Name<2k '•= Sort-Rename(Composite-Namek);

Computation of table Pos:
for k = 1,2,4, . . . ,K do

for 1 < i < n do Posk[Namek[i]] :— i;

Let us denote by LongestRepFactor(text) the length of the longest repeated
factor of text. It is the longest word occurring at least twice in text (occurrences
are not necessarily consecutive). When there are several such longest repeated
factors, we consider any of them. Let also LongestRepFactork(text) be the
maximal length of the factor that occurs at least k times in text. Let us
denote by REPk(r, text) the function that tests is there is a fc-repeating factor
of size r. Such function can be easily implemented to run in linear time if we
have DBF(w).

Theorem 7.1 The function LongestRepFactork(text) can be computed in time
0(n log n) for alphabets of size 0(n).

Proof. We can assume that the length n of the text is a power of two;
otherwise a suitable number of "dummy" symbols are appended to the text.
The algorithm KMR is used to compute DBF(text). We then apply a kind
of binary search using function REPk{r,text): the binary search looks for
the maximum r such that REPk (r, text) ^ nil. If the search is successful
then we return the longest (k times) repeated factor. Otherwise, we report
that there is no such repetitions. The sequence of values of REPk(r, text)
(for r = 1,2, .,n — 1) is "monotonic" in the following sense: if rl < r2 and
REPk{r2, text) / nil, then REPk(rl, text) ± nil. The binary search behaves
similarly to searching an element in a monotonic sequence. It has log n stages;
at each stage the value REPk(r, text) is computed in linear time. Altogether
the computation takes 0(n log n) time. This completes the proof. •

The longest repeated factor problem for texts can also be solved in a
straightforward way if we have already constructed the suffix tree ST(tree)

90 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

(see Chapters 4 and 5). The value LongestRepFactor(text) is the length of
the longest path (in the sense of the length of word corresponding to the
path) leading from the root of ST(tree) to an internal node. Generally,
LongestRepFactork(text) is the length of a longest path leading from the root to
an internal node in which the subtree contains at least k leaves. The computa
tion of such a path can be accomplished easily in linear time. The preprocessing
needed to construct the suffix tree makes the whole algorithm much more com
plicated than the one applying the strategy of KMR algorithm. Nevertheless,
this proves that the computation takes linear time with suffix trees.

7.2 Two-dimensional KMR algorithm

In the case of arrays, basic factors are k x k sub-arrays, where k is a power
of two. In this situation, Namek[i,j] is the name of the k x k sub-array of
a given array text having its upper left corner at position (i,j). We have
primarily discussed the construction of dictionaries of basic factors for strings.
The construction in the two-dimensional case is a simple extension of that
used for one-dimensional data. In the two-dimensional case, there is a fact
analogous to (*), which makes the algorithm work similarly.

The naming technique is used on sub-arrays. Let Namer[i,j] be the number
associated with the r xr sub-array of the array T having its upper-left corner
at position (i, j) . There is a fact, analogous to (*), illustrated by Figure 7.3:

(**) Name2P[i, j] = Name2P[k, I] iff the following conditions are satisfied:

Namep[i,j] — Namep[k,l]; Namep[i +p,j] = Namep[k +p,l\;

Namep [i, j + p] = Namep [k,l + p];

Namep [i + p, j + p] = Namep [k + p, I + p].

The longest repeated factor problem generalizes an equivalent 2-dimensional
problem in a straightforward way. For this problem, KMR algorithm gives
0(N log N) time complexity, which is the best upper bound known up to now.
The algorithm works also for finding repetitions in trees as well.

Using fact (**), the whole computation of repeating 2p x 2p sub-arrays
reduces to the computation of repeating pxp sub-arrays. The matrix Name2P is
computed from Namep using a procedure analogous to Sort-Rename. Here, the
internal lexicographic sorting is executed on elements having four components
(instead of two for texts). We then get the next result.

Theorem 7.2 The size of a longest repeated sub-array of an n x n array of
symbols can be computed in 0(NlogN) time, where N = n2 .

7.3. SUFFIX ARRAYS 91

(i,j)—(U+P)

(i+pJ)-(i+PJ+P)-

(k,l)—(k 1+p)—

(k+p,l)-(k+p,l+p)-

Figure 7.3: A repeated sub-array of size 2p x 2p. The occurrences can overlap.
The name of a sub-array is determined by names of its four quadrants.

7.3 Suffix arrays

There is a clever and rather simple way to deal with all (non-empty) suffixes
of a text: to arrange their list in increasing lexicographic order with the aim of
performing binary searches on them. The implementation of this idea leads to
a data structure called a suffix array. It is not exactly a "good" representation,
in the sense defined at the beginning of Chapter 4. But it is "almost good."
This means that it satisfies the following conditions:

(1) it has 0(n) size,

(2) it can be constructed in O(nlogn) time,

(3) the query x £ F(text) can be answered in 0(\x\ + logn) time.

So the time required to construct and use the structure is slightly greater than
that needed to compute the suffix tree (it is 0(nlog |v4|) for the latter). But
suffix arrays have two advantages:

• their construction is rather simple; it is even commonly admitted that,
in practice, it behaves better than the construction of suffix trees,

• it consists of two linear-size arrays which, in practice again, take little
memory space (typically three times less space than suffix trees).

Let text = a io2 . . . an, and let pi = a ia j+i . . . an be the i-th (non-empty) suffix
of the text. Let SufPos[k] be the position i where the fc-th smallest suffix

92 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

7 8 9 10 11 12 13

Figure 7.4: The edges correspond to regular pairs, these are pairs which take
part in a binary search.

of text starts (according to the lexicographic order of the suffixes). In other
words, the fc-th smallest suffix of text is psufPos{k)- Denote by LCPref(u,w)
the length of the longest common prefix of words (u, w).

We say that a pair of positions (i,j) in [1. .n] is regular iff there exist
integers p, k such that i = 1 + p • 2k and j = min{n, i + (p + 1) • 2k}. The
set of regular pairs is illustrated in Figure 7.4 for n = 13. In particular (l ,n)
is always a regular pair. The structure of regular pairs is a binary search tree
which enables to find a pattern using recursion of logarithmic depth.

Let Suffix(k) be the lexicographically fc-th suffix of text; it starts at position
SufPos[k\. The suffix array of text is the data structure consisting of both the
array SufPos, and the values

LCP[i,j] = LCPref [Suffix^), SuffixU)},

for all regular pairs (i,j). The entire data structure has 0(n) size because the
number of regular pairs is linear, so it satisfies condition (1). To show that
condition (2) is satisfied we can use the dictionary of basic factors to build the
arrays. Note that condition (2) is rather intuitive because it involves sorting
n words having certain mutual dependencies. But, in our opinion, the most
interesting property of suffix arrays is that they satisfy condition (3).

7.3. SUFFIX ARRAYS 93

Theorem 7.3 Assume that the suffix array of text is computed (we have tables
SufPos and LCPref for regular pairs). Then, for any word x, we can answer
the query "x G J-(text)" in 0(\x\ +log\text\) time.

Remark. The lexicographic ordering of suffixes has the following nice prop
erty. Let

minx = minjfe : x is a prefix of PsufPos[k}},
maxx = max{fc : i i s a prefix of PsufPos[k]}-

Then all occurrences of the subword x in text are at positions listed in the
table SufPos between indices minx and maxx.

We present an algorithm, written as a recursive binary search function find,
which computes an occurrence of the pattern. It is a binary search for x inside
the sorted sequence of suffixes. Let us define

Suffix[i,j] = (Suffix(i),Suffix(i + l),... ,Suffix(j)).

We describe the pattern searching recursively. The value of Search(Left, Right)
is the position of a suffix in the interval of suffixes Suffix [Left, Right] having x as
a prefix. If there is no such suffix then the output is nil. For a regular pair (i, j)
of non-consecutive positions, denote by Middle(i,j), middle position between
i and j , the position such that the pairs (i, Middle(i,j)) and (Middle(i,j),j)
are regular pairs. If i,j are consecutive then Middle(i,j) = i.

The crucial component of the algorithm is an additional memory given by
an integer M. The basic invariant is:

M = LCPref (Suffix(Left),x) or M = LCPref (Suffix (Right), x);
the value of M does not decrease during a run of the algorithm.

The basic additional function is Compare(x, Mid). The function compares, as
strings, x with Suffix(Mid), and returns the value left or right depending on
whether x is lexicographically smaller or greater than Suffix(Mid). A naive
comparison would consist in comparing consecutive letters starting from the
first one. However the clever comparison uses the knowledge of M and saves
usually a lot of single letter comparisons. If a letter at some position in x
is compared and there is an equality of two corresponding letters then this
position in x will never be checked again, since the value of M will increase.
Only letters at positions larger than M are possibly checked later.

Let us denote Suffix(Mid) = u, Suffix(Right) = w. Figure 7.5 illus
trates the situation where M = LCPref (x,w). The situation where M =
LCPref (x, Suffix(Left))) is symmetric.

94 CHAPTER?. TEXT ALGORITHMS RELATED TO SORTING

Suffix(Left) u = Suffix(Mid)

LCPREF(u,w)/

mismatch

w = Suffix(Right)
IS55

p
m 1 1
P̂ ' K:$S

ll m m
m m

LCPREF(x,w)
= M

x to be searched in this area

Figure 7.5: Suffix array searching: the case when LCPref(u, w) < M.

Description of the function Compare. There are two main possible cases:

Casel: LCPref(u,w) < M (the most interesting case).
We know that x is not a prefix of Suffix(Mid) and x should be searched
in the interval [Mid,... ,Right], see Figure 7.5. The function Compare
returns the value right.

Case2: LCPref(u,w) > M.
We compare letters of x against letters of u starting from position M +1
until the first mismatch occurs, or until the whole a; or u is read. We
update M, by adding the number of matching positions. If there is a
mismatch, and the letter of x is smaller than the corresponding letter of
u then we know that x should be searched in the interval [Left,... , Mid];
if there is a mismatch with the opposite result, or if u is a proper prefix
of a;, then it should be searched in [Mid,... , Right]. In the first case we
return left, in the second case the output is right. In the third case, when
there is no mismatch and M =\x\, we assume that Compare returns the
value left.

Instead of searching the pattern in the original text we search it in the sorted
list of suffixes. Initially, M = LCPref (Suffix(l),x). We call Search(l,n). If

7.4. CONSTRUCTING SUFFIX TREES BY SORTING 95

the output is i, then the pattern x starts at position i in the text.

Theorem 7.4 The data structure consisting of two tables SufPos and LCP
has the following properties: it has 0(n) size; it can be constructed in 0(n log n)
time; each query x £ T(text) can be answered in 0(\x\ + logn) time; the set
of all r occurrences of x in text can be found in time 0(\x\ + logn + r).

Proof. The first two points follow from the efficient use of the dictionary
of basic factors. The third point follows from the analysis of the function
Search. We make logarithmic number of iterations, and the total time spent
in making symbols comparisons when calling Compare is O(|o;|), due to the
savings implied by the use of variable M.
If we look carefully at the function Search then it happens that the returned
value i is the index of the lexicographically first suffix that has prefix.
This is due to the fact that in our description of the function Compare we
agreed that in the situation where there is no mismatch and M = \x\, Compare
returns the value left. If we change here left to right then Search(l,n) returns
the index of the lexicographically last suffix containing X clS cl prefix. All
occurrences of x are among these two suffixes and they can be listed from the
table SufPos. This additionally proves the last point. •

function Search(Left, Right): integer;
{ intelligent binary search for x in the sorted sequence of suffixes }

{ (Left, Right) is a regular pair }
if Left = Right and M = \x\ then return SufPos[Left]
else if Left — Right and M < \x\ then return nil
else begin

Mid := Middle (Left, Right);
if Compare(x, Mid) — left then return Search(Left, Mid)
else if Compare(x, Mid) = right

then return Search(Mid, Right)
end

7.4 Constructing suffix trees by sorting

One of the most important algorithms in stringology is Farach's suffix-tree
construction. It works in linear time, independently of the size of the alphabet,
but assuming the letters are integers. Unfortunately Farach's algorithm is still

96 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

p . a a b a b a b b a #

p~ a b a a b a b a b b a #

p , a b a b a b b a #

p_ a b a b b a #
mmssm

P9 a b b a #

p 1 2 a #

p , b a a b a b a b b a #

Pj b a b a a b a b a b b a #

P6 b a b a b b a *

b a b b a # P

H I b a #

P10 b b a #

Figure 7.6: The sorted sequence (top-down) of 12 suffixes of the string
x = babadbdbabba# with the Icp-values between suffixes (length of shaded
straps). The special suffix # and the empty suffix are not considered.
We have: lep = [1, 3, 4, 2, 1, 0, 2, 4, 3, 2, 1] and SufPos =
[4, 2, 5, 7, 9, 12, 3, 1, 6, 8, 11, 10].

7.4. CONSTRUCTING SUFFIX TREES BY SORTING 97

too complicated. To show a flavor of Farach's algorithm we show only an
algorithm which has a similar complexity assuming that we already know the
sorted order of all suffixes pi, p2, . . . of the string x, where Pi — ^i^i-\-\ • • • -^n

(though computing this order is the hardest part of Farach's algorithm). We
need a portion of the LCPref table, corresponding only to pairs of adjacent
suffixes (in the sorted sequence):

lcp[i] = LCPref (pSufPos[i\, PSufPos[i+i})-

In other words, lcp[i] is the length of the common prefix of the i-th and (i +1)-
th smallest suffixes in the lexicographic order. The table is illustrated, on an
example string, in Figure 7.6. We show constructively the following theorem.

Theorem 7.5 Assume we know the table SufPos[k] of a given text x. Then
the suffix tree for x can be computed in linear time, independently of the size
of the alphabet.

Proof. Assume first we know the table lep and the sorted sequence of
suffixes is:

Pi\ i Pi-z j Pis i • • • i Pin •

We create the suffix tree by inserting consecutive suffixes: each time we add
one edge outgoing the rightmost branch of the tree. The main operation is to
find a splitting node v on this branch. When the tree Tfc is created after insert
ing pix,pi2,pi3,...pik, then the splitting node can be found on the rightmost
branch at total depth lcp[k]. To find this node we follow the rightmost branch
bottom-up starting at the rightmost leaf, and jumping on each (compacted)
edge.

The total work is amortized by the total decreases in the depth of the rightmost
leaf. We distinguish here between the depth (number of nodes) and total depth
(length of the string corresponding to a path from the root). •

The algorithm shortly described in the previous proof is called here the
suffixes-insertion algorithm. The history of the algorithm is shown in Figures
7.7 and 7.8. This is probably the simplest suffix tree construction algorithm,
but it assumes we have sorted the sequence of suffixes. This can be easily done
in O(nlogn) time with KMR algorithm, but needs a sophisticated algorithm
to be done in 0(n) time independently of the alphabet size (alphabet is a set
of integers).

There is an interesting algorithm, which computes the table lep in a rather
strange manner. Let rank(i) be the rank of pt in the lexicographic ordering.
Assume lcp[0] = 0. Then we compute

98 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

Figure 7.7: The first 6 stages performed by the algorithm suffixes-insertion
to build the suffix tree of babaabababba# (see Figure 7.6). At each stage, one
edge is added (indicated by a thick line) from a node v on the rightmost path,
corresponding to the last processed i-th smallest suffix, to the leaf correspond
ing to (i + l)-th smallest suffix. The total depth of the splitting node v equals
lcp[i].

7.4. CONSTRUCTING SUFFIX TREES BY SORTING 99

Figure 7.8: The final 6 stages of the algorithm suffixes-insertion running on
string babaabababba#.

100 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

lcp[rank[l] — 1], lcp[rank[2] — 1], lcp[rank[3] — 1], . . . , lcp[rank[n] — 1]

in this order. In our example we have:

rank = [8, 2, 7, 1, 3, 9, 4, 10, 5, 12, 11, 6]

and we compute lep for positions

7, 1, 6, 0, 2, 8, 3, 9, 4, 11, 10, 5.

Let us denote by pred(i) the index of the suffix preceding pi in the sorted
sequence, so for example pred(6) = 1 and pred(l) = 7. Then, we consider pairs
(Ppred(i)>Pi) °f adjacent suffixes in the sorted list, in the order of the second
element of pairs (the entry with 0 is discarded):

(Ppred(l) .P l) , (Ppred(2),P2), (Ppred(3),P3), ••• , (Ppred(n),Pn)

= {Pi7,Pia), (P i i . P i 2) . (P io .P i r) . (P»2>Pi3)> (P i s . P i J * •••
= (P 3 , P l) , (P4 ,P2) , (P12.P3) , (P2 .P5) , (Pl,P6), •••

because ^M/POS = [4, 2, 5, 7, 9, 12, 3, 1, 6, 8, 11, 10].

The computation is based on the following inequality:

lcp[rank[i + 1] — 1] > lcp[rank[i] — 1] — 1,

which is equivalent to

LCPref{ppred(i+l),pi+l) > LCPref{ppred{i),pi) - 1.

In our example we have lcp[l] > lcs[7] — 1 and lcp[6] > lcp[l] — 1. We explain
the inequality on our example for i = 6. We have that (pi,P6) and (^5,^7) are
pairs of consecutive suffixes in the sorted list. In this case, the inequality can
be read as:

LCPref(p5,p7) > LCPrefipupe) - 1.

Observe that p-j is the suffix p% with the first letter deleted. Hence

LCPref{P5,p7) > LCPref(p2,p7) and LCPref(p5,p7) = LCPre}{Pl,p&) - 1.

Due to the inequality, when we compute the longest common prefix for the
next pair of suffixes we can start from the previous value minus one. The
amortized cost is easily seen to be linear.

7.5. THE LOWEST-COMMON-ANCESTOR DICTIONARY 101

7.5 The Lowest-Common-Ancestor dictionary

The lowest common ancestor problem (LCA, in short) is to find in constant
time, for any two leaves of the suffix tree, the deepest node which is ancestor
of both leaves. From the point of view of stringology, more important is the
related problem of longest common prefix (LCPREF): for two positions i and
j find in constant time LCPref (pi,Pj). Any solution to the LCA problem gives
easily a solution to the LCPREF problem.

Let us remind that lcp[i\ is the length of the common prefix of the i-th
and (i + l)-th smallest suffix for the lexicographic ordering. Observe that for
i < j :

LCPref (Suffix(i),Suffix(j)) = mm{lcp[t] : te[i..j-l]}.

Hence LCPref calculation reduces to the computation of range minima. We
can compute a dictionary of range minima, DRM, is a same way as the dic
tionary of basic factors. Instead of names we compute minima of numbers.
Denote MINk[i] = mm{lcp[t] : t e [i. A + 2fc - 1]}. If we know the tables
MIN for each k, 1 < k < logn, then we can compute a minimum over any
interval in constant time by taking minima of (possibly overlapping) subinter-
vals which sizes are powers of two. The dictionary of range minima can be
computed in O(nlogn) time and needs O(nlogn) space.

The LCA problem can be reduced to the LCPREF problem by precomput-
ing lowest common ancestors for neighboring leaves (in lexicographic order).
Let us denote:

lca[i] = LCA(Suffix(i),Suffix(i + l)

where LCA refers to the suffix tree. We have the following obvious fact.

Lemma 7.3 If LCPref (Suffix(i), Suffix(j)) = lcp[t] and t € [i. .j — 1] then

LCA(Suffix(i), Suffix(j)) = lca[t]

Hence we have proved in a very simple way the next statement.

Theorem 7.6 After O(nlogn) preprocessing time we can answer each LCPref
and each LCA query in constant time.

* The LCA problem with linear-time preprocessing

There are many algorithms to improve the time in Theorem 7.6 to linear. The
simplest one is an ingenious application of so-called "Four Russians" trick.

102 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

Again we deal with the range minima problem. The clue is the reduction of
the size of integers. Instead of the table lep we use the table D such that D[i\
is the depth of lca[i] = LCA(Suffix(i),Suffix(i + 1)) in the suffix tree. The
depth is the number of edges from the root to a given node. Now Lemma 7.3
can be replaced by this one.

Lemma 7.4 Ifmin{D[k] : k E [i. .j - 1]} = D[t] and t e [i. .j - 1] then

LCA{Suffix{i),Suffix{j)) = lca[t\.

Hence the LCA problem is reduced to range minima computations on the
table D.

Example. For the example string of the preceding section we have:

D = [1, 3, 4, 2, 1, 0, 2, 4, 3, 2, 1].

The main trick now is to convert this table to the sequence of numbers differing
by +1 or -1 and detect small segments that repeat. We insert between any
two adjacent elements the sequence of consecutive integers (in ascending or
descending order). For example the table D = [1, 3, 4, 2, 1, 0, 2, 4, 3, 2, 1]
is converted into

D' = [1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1].

It is easy to see that if D corresponds to a suffix tree then the length of the
table at most doubles.

Now we can assume that adjacent entries differ by one only. We partition
the table D' into blocks of length p = ~^p- For example assume that p = 3,
then the table [1,2,3,4,3,2,1,0,1,2,3,4,3, 2,1] is partitioned into the blocks

[1,2,3], [4,3,2], [1,0,1], [2,3,4], [3,2,1].

We compute minima for each block and get the compressed table [1, 2, 0, 2, 1].
The range minima problem for this table can be done in 0(j^^ • logn), i.e.,
0(n) time and space, by the algorithm from Theorem 7.6. It is enough to
precompute a range minima data structure for each block: for a given block
the queries are only for positions inside the block. We can scale the blocks by
subtracting the first element from each number. For example, this gives only
three different blocks:

[0,1,2], [0 , - 1 , - 2] , [0,-1,0], [0,1,2], [0 , - 1 , - 2] .

7.6. SUFFIX-MERGE-SORT 103

Each block corresponds to a sequence of p - 1 increments or decrements by +1
or - 1 . There are only 2P~1 such sequences, which is 0{^/n). Hence there are
only 0(y/n) different blocks. We apply the algorithm of Theorem 7.6 to each
of them. In fact a naive algorithm is sufficient since the number of blocks is
very small. The blocks with the same structure share the same data structure
to support range minima queries inside them.

range minimum in interval of blocks

Figure 7.9: A range minimum query is implemented as three queries, two
related to a single block, and one related to the compressed table of blocks.

If we have to find the minimum in the interval [i. .j] then we check first
in which blocks are i and j . Next we compute the minimum in the interval
of complete blocks and minima inside single blocks in which are the positions
i and j . This takes constant time. The range minimum query is split into
two queries related to single blocks and one query related to interval of blocks,
which can be answered with the dictionary for the compressed table D' (see
Figure 7.9). In this way we have proved the following theorem.

T h e o r e m 7.7 After 0(n) preprocessing time we can answer each LCPref and
each LCA query in constant time.

7.6 Suffix-Merge-Sort

It is easy to sort all suffixes of a string in 0(n log n) time using its dictionary
of basic factors or its suffix tree. McCreight and Ukkonen algorithms work
in 0(n log \A\) time for the alphabet A. Assume that the alphabet is a set
of integers in the range [1 . . .«] , so the alphabet can be sorted in linear time.
Farach gave the first algorithm which works for this case really in linear time,
the constant coefficient does not depend on the size of the alphabet. However
the improvement from 0(nlog|A|) to 0(n) is at the cost of a very complex
construction.

Basically, as we have seen in Section 7.4, the suffix-tree construction reduces
to the computation of the sorted sequence TZ = Suffix-Merge-Sort(x), for a

104 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

given text x. Denote by 1Zeven and TZ0dd the sorted sequences of suffixes
starting at odd positions 1,3,5, . . . and at even positions, respectively. Let us
sort the set of all pairs of adjacent symbols (integers) in the text x and let
rank(a, b) be the rank of a pair (a, b). Assume the text x has an even length,
x = a\a2 • • • a,2m (if necessary some dummy symbol can be appended). Denote

compress(a\a2 • •. a>2m) =
(rank(ai,a2), rank{a^,a^), rank(a5,a6),. •. , ranfc(a2m-i,a2m))-

Algorithm
{ a version

Suffix-Merge-Sort{x);
of Farach algorithm }

if \x\ = 1 then return single suffix of x
else begin

Step 1
Step 2
Step 3
Step 4

end

TZ0dd '•= Suffix-Merge-Sort(compress(x);
compute TZeven using TZodd]
construct Odd/Even-Oracle;
return MERGE(Sodd, Seven);

For example compress(2,3,1,2,3,2,1, 2,3,4) = (2 , 1 , 2,1,3). We can iden
tify 7Zocid with the sorted sequence of suffixes of compress(x). Each suffix
starting at an odd position can be treated as a sequence of pairs of adjacent
symbols a.2i-\a,2i encoded by their rank. At the same time we identify the
sorted sequence of suffixes with the sequence of their starting positions in x,
which is essentially the same as the table SufPos.

We explain each of the steps on the example string a; = babaabababba#.

Step 1 The only combination of letters on odd/even neighboring positions
are ab and ba, # # (we add # ' s at the end to have them in pairs). If we
encode ab by 1 and ba by 2 we obtain:

compress(babaabababba# = 2 2 1 1 1 2 #

that is twice shorter than x. The sorted sequence of its suffixes (after
re-scaling the positions from compress(x) to x) gives the following sorted
sequence of suffixes starting at odd positions in x:

TZodd = [5, 7, 9, 3, 1, 11].

Step 2 The sorted sequence of odd suffixes is used to give a single integer
name to each of them: its rank in the sorted sequence. The suffix at
odd position i can be now identified with the pair (x[i\, rank[i + 1]). The
sequence of consecutive even suffixes becomes now:

7.6. SUFFIX-MERGE-SORT 105

(S2,Si,S6,S8,S10,S12) = (a, 2), (a, I), (6,1), (6,1), (6,2), (a ,#) .

We use Sort-Rename to sort such pairs, the sorting order being equivalent
to the sorted order of even suffixes. This gives:

TZeven = [4, 2, 12, 6, 8, 10].

Step 3 Odd/Even-Oracle should give in constant time LCPref(Si, Sj) for any
pair of odd/even positions. This is the most complicated step and is
shortly described later.

Step 4 Using Odd/Even- Oracle we can compare lexicographically any pair of
odd/even suffixes in constant time. We are doing a standard linear-time
merging of two sorted sequences, with each comparison in constant time.
The output is:

Suffix-Merge-Sort(x) = TZ = [4, 2, 5, 7, 9, 12, 3, 1, 6, 8, 11, 10].

Complexity analysis. If we do not count the complexity of the recursive call
then the total complexity of all steps is 0(n). Observe that size of compress(x)
is twice smaller than that of x. Hence the total complexity T(n) can be esti
mated using the recurrence:

T(n) < r (f) + 0(n).

Consequently T(n) = 0(n).

* Linear-time construction of Odd/Even-Oracle

We sketch only the main ideas behind this quite involved construction. In
Section 7.4 we showed that suffix trees can be extremely easily constructed in
0(n) time if the sorted sequence TZ of suffixes is given, the linear time does not
dependent on the size of the alphabet. Denote the corresponding procedure
by TreeConstructiTZ). The sequence TZ is given by the table SufPos. A rough
structure of the Odd/Even-Oracle construction is as follows:

106 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

O

OverMerge
leaf

OverMerge

•

leaf

Figure 7.10: Two types of overmerging corresponding paths in T0dd and Te,

Algorithm Construct-Oracle;
Todd := TreeConstruct(TZ0dd);

Teven - —

TreeConstruct(TZeven);
T := 0verMerge(Todd, Teven);
compute Lowest-Common-Ancestor dictionary of T;
compute d-link for each odd-even node v &T;

for each v GT do
L(v) := depth of v in the tree of d-links;

return Odd/Even-Oracle dictionary =
tree T, table L, and LCA-dictionary of T;

The LCPref queries for odd i and even j are answered by Odd/Even-Oracle
as follows:

LCPref{Su Sj) = L(LCAT(SU Sj)).

Each suffix Si corresponds to a leaf of T. In the trees T0dd, Te,
node i with the suffix Si starting at position i.

identify the

Description of operation OverMerge. The paths from Tadd and Teven

are merged, an operation of merging two paths is schematically illustrated in

7.6. SUFFIX-MERGE-SORT 107

Figure 7.10. If two edges start with the same letter and are of different lengths
then the longer one is broken and a new node is created. If the shorter edge
ends with a leaf then we break it just before the last letter, to guarantee that
the leafs of T0dd and Teven correspond to different leaves in the tree T. If the
edges start with the same letter and have the same length then we create a
double edge, consisting of both edges with end-points identified. Figure 7.11
shows the result of overmerging the trees T0dd and Teven for an example string.

Description of table of rf-links. Considering Overmerge(T0dd,Teven), we
say that a node v in it is an odd/even node iff it has two descendant leaves
corresponding to an odd i and to an even leaf j such that LCA(i,j) = v. For
each odd/even node v define:

d{v) = LCA{i+ 1J + 1).

Denote by L(v) the depth of v in the tree of d-links; it is the smallest k such
that dk(v) = root. Some d-links are shown in Figure 7.11. We refer the reader
to [FFM 00] for the proof of the following lemma.

Lemma 7.5 [Correctness of Odd/Even Oracle] IfT = 0verMerge(Todd,Teven),
i is odd and j is even, then

LCPref(Si, Sj) = L(LCAT(Si, Sj).

The result of the lemma enables to find LCPref(Si, Sj) in constant time, if
the tree T, the table L and the LCA dictionary for T are precomputed (which
takes altogether linear time). Although it is a linear-time construction on the
whole, the overmerging operation is rather overloaded.

Bibliographic notes

The algorithm KMR is from Karp, Miller, and Rosenberg [KMR 72]. Another
approach is presented in [Cr 81]. It is based on a modification of Hopcroft's
partitioning algorithm [Ho 71] (see [AHU 74]), and the algorithm computes
vectors Namer for all values of r with the same complexity.

The notion of suffix array was invented by Manber and Myers [MM 90].
They use a different approach to the construction of suffix arrays than our
exposition (which refers to the dictionary of basic factors). The worst-case
complexities of the two approaches are identical, though the average complexity
of the original solution proposed by Manber and Myers is lower. A kind of
implementation of suffix arrays is considered by Gonnet and Baeza-Yates in

108 CHAPTER 7. TEXT ALGORITHMS RELATED TO SORTING

Figure 7.11: Illustration of algorithm Construct-Oracle on the word
babaabababbajf: T0dd, Teven, and T = OverMerge(Todd,Teven). We have:
d[vl] = v2, d[v2] = v3, d[v3] — v4, d[v4\ = root. Hence L[vl] = 4, since the d-
links depth of vl is 4, and LCPref(l, 6) = 4. We have also: LCPref(Si,S6) =
LCPref(S2,S7) + l = LCPref(S3,S8) + 2 = LCPref(S4,S9)+3 =
LCPref(S5,S10)+4 = 0 + 4.

7.6. SUFFIX-MERGE-SORT 109

[GB 91], and called Pat trees. The interesting linear-time computation of table
lep is from Kasai et al. [K-P 01].

The first linear-time alphabet-independent algorithm for integer alphabets
was given by Farach [Fa97]. It is an important theoretical milestone in suffix
tree constructions. The algorithm is still too complicated. We have shown a
much simpler algorithm, with the same complexity, assuming that the sorted
sequence of suffixes is already given. Suffix-Merge-Sort is a version of the
algorithm in [Fa 97] and [FFM 00].

This page is intentionally left blank

Chapter 8

Symmetries and repetitions
in texts

This chapter presents algorithms dealing with regularities in texts. By regu
larity we mean a similarity between one segment and some other factors of the
text. Such a similarity can be at least of two kinds: one segment is an exact
copy of the other, or it may be a symmetric copy of the other.

Algorithmically, an interesting exercise is to detect situations in which sim
ilar factors are consecutive in the text. For exact copies we get repetitions of
the same factor in the form xx (squares). In the case of symmetric copies we
have words in the form xxR, called even palindromes. Odd palindromes are
also interesting regularities (words of the form xaxR, where a; is a non-empty
word). The compositions of very regular words are in some sense also regular:
a palstar is a composition of palindromes. Algorithms of this chapter are aimed
at discovering these types of regularities in text.

8.1 Searching for symmetric words

We start with a decision problem that consists of verifying if a given text has
a prefix that is a palindrome; such palindromes are called prefix palindromes.
There is a very simple linear-time algorithm used to search for a prefix palin
drome:

• compute the failure function Bord of texthtextR (word of length 2n+1) ,

• then, text has a prefix palindrome iff Bord(2n + 1)^0.

I l l

112 CHAPTER 8. SYMMETRIES AND REPETITIONS IN TEXTS

However, this algorithm has two drawbacks: it is not an on-line algorithm, and
moreover, we could expect to have an algorithm that computes the smallest
prefix palindrome in time proportional to the length of this palindrome (if a
prefix palindrome exists). Later in the chapter (when testing palstars) it will
be seen why we impose such requirements.

For the time being, we restrict ourselves to even palindromes. In order to
improve on the above solution, we proceed in a similar way as in the derivation
of KMP algorithm: the efficient algorithm is derived from an initial brute-force
algorithm by examining its invariants. The time complexity of the algorithm
below is quadratic (in the worst case). A simple instance of a worst text for the
algorithm is text = abn. The key to the improvement is to make an appropriate
use of the information gathered by the algorithm. This information is expressed
by invariant

w(i,j) : text[i — j + 1. .i] = text[i + 1. A + j].

Algorithm brute-force;
{ looking for prefix even palindromes }

»:=1;
while i < [n/2j do begin

{ check if text[l. .2i] is a palindrome }
3 == 0;
while j < i and text[i — j] = text[i + 1 + j] do j := j + 1;
if j = i then return true;
{ inv(i,j): text[i — j] ^ text[i + j + 1] }
i := i + 1;

end;
return false;

The maximum value of j satisfying w(i,j) for a given position i is called
the radius of the palindrome centered at i, and denoted by Rad[i\. Hence,
algorithm brute-force computes values of Rad[i] but does not profit from their
computation. The information is wasted, because at the next iteration, the
value of j is reset to 0. As an alternative, we try to make use of all possible
information, and, for that purpose, the computed values of Rad[i] are stored in
a table for further use. The computation of prefix palindromes easily reduces
to the computation of table Rad. Hence, we convert the decision version of
algorithm brute-force into its optimized version computing Rad. For simplicity,
assume that the text starts with a special symbol.

The key to the improvement is not only a mere recording of table Rad, but
also a surprising combinatorial fact about symmetries in words. Suppose that

8.1. SEARCHING FOR SYMMETRIC WORDS 113

palindrome centered at i palindrome centered at i+k

palindrome centered at i-k

Figure 8.1: Case (b) of proof of Lemma 8.1.

we have already computed the sequence:

Rad[l], Rad[2], ..., Rad[i\.

It happens that we can sometimes compute many new entries of table Rad
without comparing any symbols. The following fact enables us to do so.

L e m m a 8.1 If the integer k is such that 1 < k < Rad[i] and Rad[i — k] =fi
Rad[i) — k, then Rad[i + k] = min(Rad[i — k], Rad[i] — k).

Proof. Two cases are considered:

Case (a) : Rad[i — k] < Rad[i] - k.
The palindrome of radius Rad[i — k] centered at t — k is completely
contained inside the longest palindrome centered at i. Position i — k is
symmetrical to i + k with respect to i. Hence, by symmetry with respect
to position i, the longest palindrome centered at i+k has the same radius
as the palindrome centered at i — k. This implies the conclusion in this
case: Rad[i + k] = Rad[i — k].

Case (b) : Rad[i — k}> Rad[i] - k.
The situation is illustrated in Figure 8.1. The maximal palindromes
centered at i — k, i and i + k are presented. Symbols a and 6 are distinct
due to the maximality of the palindrome centered at i. Hence, Rad[i +
k] — Rad[i] — k in this case.

Collecting the results of the two cases, we get Rad[i + k] = mm.(Rad[i —
k],Rad[i] -k). Q

114 CHAPTER 8. SYMMETRIES AND REPETITIONS IN TEXTS

Algorithm Manacher;
{ on-line computation of prefix even palindromes and of table Rad;

text starts with a unique left end-marker }
i := 2; Rad[l] := 0; j := 0; { j = Rad[i] }
while i < [n/2\ do begin

while text[i — j] = text[i + 1 + j] do j :=
if j = i then write(i); Rad[i] := j ;
h — 1-
while Rad[i — k] ^ Rad[i] — k do begin

Rad\i + k] := mm(Rad[i — k], Rad[i] -
end;
{ inv(i,j): text\i — j] =fi text[i + j + 1] }
j :=max(j - k,0);
i :— i + k;

end

j + i;

- k); k : = * + !;

During one stage of the algorithm that computes prefix palindromes, we
can update Rad[i + k] for all consecutive positions k = 1,2,... such that
Rad[i — k]=fi Rad[i] — k.li the last such k is k', we can then later consider the
next value of i as i + k', and start the next stage. The strategy applied here is
similar to shifts applied in string-matching algorithms in which values result
from a precise consideration on invariants. We obtain the algorithm Manacher
for on-line recognition of prefix even palindromes and computation of the table
of radii.

The solution presented for the computation of prefix even palindromes ad
justs easily to the table of radii of odd palindromes. The same holds true
for longest palindromes occurring in the text. Several other problems can be
solved in a straightforward way using the table Rad.

Theorem 8.1 The longest symmetrical factor and the longest (or shortest)
prefix palindrome of a text can be computed in linear time. If text has a prefix
palindrome, and if s is the length of the smallest prefix palindrome, then s can
be computed in time O(s).

8.2 Compositions of symmetric words

We now consider another question regarding regularities in texts. Let P* be
the set of words that are compositions of even palindromes, and let PAL*
denote the set of words composed of any type of palindromes (even or odd).

8.2. COMPOSITIONS OF SYMMETRIC WORDS 115

Recall that one-letter words are not palindromes according to our definition
(their symmetry is too trivial to be considered as an "interesting" feature).

Our aim now is to test whether a word is an even palstar, (a member of
P*) or a palstar (a member of PAL*). We begin with the simpler case of even
palstars.

Let first(text) be a function which value is the first position i in text such
that text[l. .i] is an even palindrome; it is zero if there is no such prefix palin
drome. The following algorithm tests even palstars in a natural way. It finds
the first prefix even palindrome and cuts it. Afterward, the same process is
repeated as often as possible. If we are left with an empty string, then the
initial word is an even palstar.

Theorem 8.2 Even palstars can be tested on-line in linear time.

Proof. It is obvious that the complexity is linear, even on-line. In fact,
Manacher algorithm computes the function first on-line. An easy modifica
tion of the algorithm gives an on-line algorithm operating within the same
complexity.

However, a more difficult issue is the correctness of function PSTAR. Suppose
that text is an even palstar. It then seems reasonable to expect that its de
composition into even palindromes does not necessarily start with the shortest
prefix even palindrome.

function PSTAR(t
s :=0 ;

while s < n do
if first(text\
s := s + firs

end;
return true;

ext); { is text an even

begin
s + 1. .n]) =
t(text[s + 1.

palstar ? }

0 then return false;

•«]);

Fortunately, and perhaps surprisingly, it so happens that we have always a
good decomposition (starting with the smallest prefix palindrome) if text is an
even palstar. So the greedy strategy of function PSTAR is correct. To prove
this fact, we need some notation related to decompositions. It is defined only
for texts that are even palindromes. Let

parse(text) = min{s : text\l. .s] £ P and text[s + 1. ,n] G P*}.

Now the correctness of the algorithm results directly from the following fact.

116 CHAPTERS. SYMMETRIES AND REPETITIONS IN TEXTS

\ center of parse(t)

prefix palindrome of length
smaller than first(t)

(b) | ; — — |]

i
first(t) parse(t)

textfl .. parse(t)] decomposes into at least 2 palindromes

Figure 8.2: The proof (by contradiction) of Theorem 8.2.

Claim. If text is a non-empty palstar, then parse(text) = first(text).

Proof of t h e claim. It follows from the definitions that first(text) <
parse(text), hence, it is sufficient to prove that the reverse inequality holds.
The proof is by contradiction. Assume that text is an even palstar such that
first(text) < parse(text). Consider two cases

Case (a) : parse(text)/2 < first(text) < parse(text),

Case (b) : 2 < first(text) < parse(text)/2.

The proof of the claim according to these cases is given in Figure 8.2. This
ends the proof of the theorem. D

If we try to extend the previous algorithm to all palstars, we are led to
consider functions firstl and parsel, analogue to first and parse, defined re
spectively as follows:

parsel(text) = min{s : text[l. .s] € PAL and text[s + 1. .n] e PAL*},
firstl(text) = min{s : text[l. ,s] € PAL}.

Unfortunately, when text is a palstar, the equation parsel(text) = firstl(text)
is not always true. A counter-example is the text text = bbabb. We have

8.2. COMPOSITIONS OF SYMMETRIC WORDS 117

parsel(text) — 5 and firstl(text) = 2. If text = abbabba, then parsel(text) = 7
and firstl(text) = 4. The third case is for text = aabab: we have parsel(text) =
firstl(text). Observe that for the first text, we have the equality parsel(text) =
2 • firstl(text) + 1; for the second text, we have parsel(text) = 2.firstl(text) — 1;
and for the third text, we have parsel(text) = firstl(text). It happens that it
is a general rule that only these cases are possible.

Lemma 8.2
Let x be a palstar, then parsel(x) G {firstl(x), 2.firstl(x) — 1,2.firstl(x) + 1}.

Proof. The proof is similar to the proof of the preceding lemma. In fact,
the two special cases (2.firstl(text) ± 1) are caused by the irregularity im
plied at critical points by considering odd and even palindromes together. Let
/ = firstl(text), and p = parsel(text). The proof of the impossibility of the
situation / < p < 2. / — 1 is essentially presented in the case (a) of Figure 8.2.
The proof of the impossibility of the two other cases, p = 2 . / and p > 2 . / + 1,
is similar. •

Theorem 8.3 Palstar membership can be tested in linear time.

Proof. Assume that we have computed the tables

F[i] — firstl(text[i + 1. .n]) and PAL[i] = (text[i + 1. ,n] is a palindrome).

Then it is easy to see that the algorithm PALSTAR recognizes palstars in
linear time.

Assuming the correctness of function PALSTAR, in order to prove that it
works in linear time, it is sufficient to show how to compute tables F and PAL
in linear time. The computation of PAL is trivial if the table Rad is known.
This latter can be computed in linear time.

The computation of table F is more difficult. For simplicity we restrict our
selves to odd palindromes, and compute the table

Fl[s] = min{s : text[l. .s] is an odd palindrome or s = 0}.

Assume Rad is the table of radii of odd palindromes: the radius of a palindrome
of size 2k +1 is k. We say that j is in the range of an odd palindrome centered
at i iff i - j + 1 < Rad[i] (see Figure 8.3).

A stack of positions is used. It is convenient to have some special position at
the bottom. Initially the first position 1 is pushed onto the stack, and i is set
to 2. One stage begins with the situation depicted in Figure 8.3. All a;'s are
positions put in the stack (entries of Fl waiting for their values). The whole
algorithm is:

118 CHAPTERS. SYMMETRIES AND REPETITIONS IN TEXTS

bottom of the stack

other elements on
the stack

positions j which are for the
first time in range of a palindrome

top of the stack

Figure 8.3: Stage (i) in the proof of Theorem 8.3: while the top position j
is in the range of the palindrome centered at i do begin pop(stack); Fl\j] :=
2(i - i) + 1 end; push(i).

for i:— 2 t o n do stage(t);
for all remaining elements j on the stack do

{ j is not in a range of any palindrome } Fl[j] := 0

The treatment of even palindromes is similar. In that case, F[i] is computed
as the niinimum value of even or odd palindromes starting at position i. This
completes the proof. D

function PALSTAR(text): Boolean; { palstar recognition }
pcdstar[n] := true; { the empty word is a palstar }

for i := n — 1 down t o 0 do begin

if / = 0 t h e n palstar[i] := true
else if PAL[i] t h e n pabtar[i} :=true
else pahtar[i] := (palstar[i + /] or pabtar[i + 2 / — 1]

or palstar [i + 2 / + 1])
end;
r e t u r n palstar[0];

It is perhaps surprising that testing whether a text is a composition of
a fixed number of palindromes is more difficult than testing for palstars.
Recall that here P denotes the set of even palindromes. It is very easy to
recognize compositions of exactly two words from P. The word text is such
a composition iff, for some internal position i, text[l. .i] and text[i + 1. .n] are
even palindromes. This can be checked in linear time if table Rad is already

8.3. SEARCHING FOR SQUARE FACTORS 119

computed. But this approach does not directly produce a linear-time algorithm
for P3. Fortunately, there is another combinatorial property of texts that is
useful for that case. Its proof is omitted.

Lemma 8.3 If x e P2, then there is a decomposition of x into words x[l. .s]
and x[s. .n] such that both are members of P, and that either the first word
is the longest prefix palindrome of x, or the second one is the longest suffix
palindrome of x.

One can compute the tables of all the longest palindromes starting or end
ing at positions on the word by a linear-time algorithm very similar to that
computing table F. Assume now that we have these tables, and also the table
Rad. One can then check if any suffix or prefix of text is a member of P2 in
constant time thanks to Lemma 8.3 (only two positions are to be checked using
preprocessed tables).

Now we are ready to recognize elements of P 3 in linear time. For each
position i we just check in constant time if text[l. A] € P2 and text[i+l. .n] G P.
Similarly, we can test elements of P 4 . For each position i we check in constant
time if text[l. A] e P 2 and text[i + l. .n] £ P2. We have just sketched the proof
of the following statement.

Theorem 8.4 The compositions of two, three, and four palindromes can be
tested in linear time.

As far as we know, there is presently no algorithm to test compositions of
exactly five palindromes in linear time. We have defined palindromes as non
trivial symmetric words (words of size at least two). One can say that for a
fixed k, palindromes of a size smaller than k are uninteresting. This leads to
the definition of PAL^ as palindromes of size at least k. Generalized palstars
(compositions of words from PALk) can also be defined. For a fixed k, there
are linear-time algorithms for such palstars. The structure of algorithms, and
the combinatorics of such palindromes and palstars are analogous to what is
presented in the section.

8.3 Searching for square factors

It is a non trivial problem to find a square factor in linear time, that is, a
non-empty factor in the form xx in a text. A naive algorithm gives cubic
bound on the number of steps. A simple application of failure functions gives
a quadratic algorithm. For that purpose, we can compute failure tables Bordi
for each suffix text[i. .n] of the text. Then, there is a square starting at position

120 CHAPTER 8. SYMMETRIES AND REPETITIONS IN TEXTS

middle of the square of size 2k

u
1

V

1 11

V. ^ v .

Figure 8.4: A square xx of size 2fc occurs in uv. The suffix of v[l. .k] of size q
is also a suffix of u; the prefix of v[k + 1. .\v\] of size p is a prefix of v. We have
PREF[k]+SUFu[k]>k.

i in the text iff Bordi[j] > j / 2 , for some l<j<n — i + 1. Since each failure
table is computed in linear time, the whole algorithm takes quadratic time.

We develop an 0(n log n) algorithm that tests the squarefreeness of texts,
and afterward design a linear-time algorithm (for fixed alphabets). The first
method is based on a divide-and-conquer approach. The main feature of both
algorithms is a fast implementation of the Boolean function test(u,v) that
tests whether the word uv contains a square, for two squarefree words u and
v. Then, if uv contains a square, it must begin in u and ends in v. Thus, the
operation test is a composition of two smaller Boolean functions: righttest and
lefttest. The first one searches for a square for which the center is on D, while
the second searches for a square for which the center is on u.

We now describe how righttest works on words u and v. We use two auxil
iary tables related to string matching. The first table PREF is defined on the
word v as in Section 3.2. For a position k on v, PREF[k) is the size of longest
prefix of v occurring at position k (it is a prefix of v[k + 1. .|x»]]. The second
table is called SUF. The value SUFu[k] (k is still a position on v) is the size
of longest suffix of v[l. .k] that is also a suffix of u. Table SUFU is a general
ization of table S discussed in Chapter 3. These tables can be computed in
linear time with respect to \v\. With the two tables, the existence of a square
in uv centered on v reduces to a simple test on each position of v, as shown by
Figure 8.4.

L e m m a 8.4 The Boolean value righttest(u,v) can be computed in 0(\v\) time
(independently of \u\).

8.3. SEARCHING FOR SQUARE FACTORS 121

Proof. The computation of tables PREF and SUFU takes 0(\v\) time. It
is clear (see Figure 8.4) that there exists a square centered on v iff, for some
position k, PREF[k] + SUFu[k] > k. All these tests take again 0(\v\) time. •

The dual version of Lemma 8.4 states that the value lefttest(u, v) can be
computed in 0(|u |) time, which gives the next result.

Corollary 8.1 The Boolean value test(u,v) can be computed in 0(\u\ + \v\)
time.

Proof. Compute righttest(u,v) and lefttest(u,v). The value test(u, v) is the
Boolean value: righttest(u,v) or lefttest(u,v).
The computation takes 0 (H) (Lemma 8.4), and 0(|u |) time (by symmetry
from Lemma 8.4), respectively. The result follows. •

function SQUARE {text): Boolean;
{ checks if text contains a square, n = \text\ }

if n > 1 then begin
if SQUARE(text[l. . |n/2j]) then return true;
if SQUARE{text[[n/2\ + 1. .n]) then return true;
if test(text[l. .|_n/2j], £ex£[[n/2j + 1. .n]) then return true;

end;
return false; { if value true not yet returned }

Theorem 8.5 Algorithm SQUARE tests whether a text of length n contains
a square in time O(nlogn).

Proof. The algorithm has 0(n log n) time complexity, because test can be
computed in linear time. The complexity can be estimated using a divide-and-
conquer recurrence. •

The algorithm SQUARE inherently runs in 0(n log n) time. This is due to
the divide-and-conquer strategy for the problem. But, it can be shown that
the algorithm extends to the detection of all squares in a text. And this shows
that the algorithm becomes optimal, because some texts may contain exactly
O(nlogn) squares. For example this happens for Fibonacci words.

We show that the question of testing the squarefreeness of a word can be
answered in linear time on a fixed alphabet. This contrasts with the previous
problem. The strategy uses again a kind of divide-and-conquer, but with an
unbalanced nature. It is based on a special factorization of texts. Our interest

122 CHAPTERS. SYMMETRIES AND REPETITIONS IN TEXTS

vl v2 v3 v4 v5 v6 v7

Pos(i)

Figure 8.5: Efficient factorization of the source, v5 is the longest factor occur
ring before position i.

is mainly theoretical because of a rather large overhead in memory usage.
The algorithm, or more exactly the factorization denned for the purpose, is
related to data compression methods based on the elimination of repetitions of
factors. The algorithm shows another profound application of data structures
developed in Chapters 4-6 for storing all factors of a text.

We first define the /-factorization of text (the / stands for factors) (see
Figure 8.5). It is a sequence of non-empty words (v\,V2, •.. ,vm), where

• vi = text[l], and

• for k > 1, Vk is denned as follows. If \v\V2 • • • Vfc-i| = i then Vk is the
longest prefix u of text[i + 1. .n] that occurs at least twice in text[l. A\u.
If there is no such u then Vk = text[i + 1]. We denote by pos(vk) the
smallest position I < i such that an occurrence of v^ starts at /. If there
is no such position then set pos(vk) = 0.

function linear-SQUARE(text): Boolean;
{ checks if text contains a square, n = \text\ }

compute the /-factorization (v\, i>2, • • • , vm)
for k := 1 t o m do

of text;

if at least one of the conditions of Lemma 8.5 holds then
return true;

return false; { if true has not been returnee y e t }

The /-factorization of a text, and the computation of values pos(vk) can be
realized in linear time with the directed acyclic word graph G = DAWG{texi)
or with the suffix tree T(text). Indeed, the factorization is computed while
the DAWG is built. The overall procedure has the same asymptotic linear

file:///v/V2

8.3. SEARCHING FOR SQUARE FACTORS 123

bound as just building the DAWG. This leads to the final result of the section,
consequence of the following observation which proof is left as an exercise.

Lemma 8.5 Let (yi, v2,. . •, vm) be the f-factorization of text. Then, text
contains a square iff for some k at least one of the following conditions holds:

1. \viv2...vk-i\ <pos(vk) + \vk\ < \viv2...vk\,

2. lefttest(vk-i,Vk) or righttest(vk-i,vk),

3. righttest(viv2 .. • Ufc-2, Ufe-iUfc)-

Theorem 8.6 Function linear-SQUARE tests whether a text of length n con
tains a square in time 0(n) (on a fixed alphabet), with 0(n) additional memory
space.

Proof. The computation of righttest{yiv2 .. • vk_2, vk-\vk) is the key point:
it can be executed in 0{\vk-\vk\) time. Thus the total time is proportional to
the sum of length of all vk's; hence it is linear. This completes the proof. •

Bibliographic notes

The algorithm for prefix palindromes is from Manacher [Ma 75]. The material
in the rest of the section and in Section 8.2 is mainly from Galil and Seiferas
[GS 78]. The reader can refer to [GS 78] for the proof of Lemma 8.3, and an
on-line linear-time algorithm for PALSTAR.

The first 0(n log n) algorithm for searching a square is by Main and Lorentz
[ML 79] (see also [ML 84]). The linear-time algorithm of Section 8.3 is from
Crochemore [Cr 83] (see also [Cr 86]). The f-factorization introduced here is a
variation of the Ziv-Lempel decomposition [ZL 77] used for text compression
and presented in Chapter 10.

A different method for achieving linear time square testing has been pro
posed by Main and Lorentz [ML 85].

Using suffix trees, Stoye and Gusfield show how to compute repetitions
efficiently in [SG 98].

This page is intentionally left blank

Chapter 9

Constant-space searchings

The most intriguing algorithms are those efficient simultaneously with respect
to two measures of complexity. The linear-time string matching with constant
space is a question of this type. There are several different time-space efficient
algorithms for this problem, all rely on simple combinatorics of periodicities in
texts.

9.1 Constant-space matching for easy patterns

We start with a family of patterns (self-maximal strings) that are very easy to
be searched for in texts in constant space and 0(n) time.

Denote by MaxSuf{w) the lexicographically maximal suffix of the word w.
The word w is said to be self-maximal if MaxSuf(pat) = pat.

Maximal suffixes of words and self-maximal words play an important role
in the computation of periods for several reasons (recall that period(x) is the
smallest period of x, see Chapter Is):

(1) If pat is periodic then period(MaxSuf (pat)) = period(pat).

(2) If pat is self-maximal then each of its prefixes also is.

(3) If pat is self-maximal then period(pat) can be trivially computed by the
following function:

We consider the function Naive-Period that correctly computes the period of
a word if this word is self-maximal.

125

126 CHAPTER 9. CONSTANT-SPACE SEARCMNGS

new period with
longer continuation

'old period
breaks here

Figure 9.1: Assume, in the algorithm Naive-Period, that pat[i—period (i — 1)] •£
patfA], Let a = pat[£], b = pat [i—period]. Since uz is a prefix of pat which is self-
maximal, we have and a < b. If Period(i) < i then, due to the two periodicities,
zb is a proper subword of pat[l. A — 1] that is lexicographically greater than
pat. This contradicts the self-maximality of pat. Hence Period(i) = i.

function Naive-Period(j);
{ computes the period of self-maximal pat }

period := 1;
for i := 2 to j do

if pat[i] 7̂ pat[i — period] t h e n period :=
r e t u r n period;

Example . The function Naive-Period usually gives incorrect output for non-
self-maximal words. For example, consider the string

pat = (aba)6 = abaabaabaabaabaaba.

The consecutive values of period computed by the function for all positions
are:

a b a a b a a b a a b a a b a a b a
1 2 2 4 5 5 7 8 8 10 11 11 13 14 14 16 17 17

Hence Naive-Period(18) = 17, for pat = (aba)6, while period(pat) = 3.

L e m m a 9.1 Assume pat is a self-maximal string. The function Naive-Period
computes correctly the exact period of pat, as well as of each prefix of pat.

9.2. MAXSUFFIX-MATCHING 127

Proof. An informal justification is given in Figure 9.1. •

We modify MP algorithm (Morris-Pratt algorithm) that uses one addi
tional table related to the pattern and a constant number of additional reg
isters. We consider how to get rid of the table. Recall that the basic table
needed in MP algorithm is the table MPShift[j] = j - Bord[j}. Recall also
that Bord[j] is precisely the length of the largest proper border of pat[l. .j].
Therefore

MP.Shift[j} = Period(j)

for j > 0, where Period(j) — period(pat[l. .j]). The MP algorithm can be
re-written by changing MPShift to Period(j), assuming Period(0) — 0.

In addition, for self-maximal patterns we can embed the computation of
Naive-Period(j) directly into MP algorithm. Period(j) is computed here uon-
the-fly" in an especially simple way. Doing so, we get the algorithm called
SpecialCase-MP. The next lemma follows directly from the correctness of both
algorithm Naive-Period(j) and algorithm MP.

Lemma 9.2 / / the pattern is self-maximal then we can find all its occurrences
in 0(1) space and linear time with the algorithm SpecialCase-MP.

Algorithm SpecialCase-MP;
i := 0; j := 0; period := 1;

while i < n — m do begin
while j <m and pat[j + 1]

3=3 + 1]
= text[i +

if j > period and pat\j] ^ pat\j —
period := j ;

end;

j + 1] do begin

period] then

MATCH: if j = m then return match at i;
i := i + period;
if j > 2 - period then j := j
else begin j := 0; period :—

end;
return no match;

— period;
1; end;

9.2 MaxSuffix-Matching

In this section we develop the first time-space optimal string-matching algo
rithm, which is a natural extension of Morris-Pratt algorithm and which as-

128 CHAPTER 9. CONSTANT-SPACE SEARCHINGS

U V

/ * s , * v

pat = Fib? = abaababaabaababaababa = abaababaabaa babaababa
V V V

text — abaabaa babaababa baa babaababa abaa babaababa ba

Figure 9.2: The decomposition of the 7-th Fibonacci word and history of
MaxSuffix-Matching on an example text. Only for the third occurrence of
v we check if there is an occurrence of u (underlined segment) to the left of
this occurrence of v, because gaps between previous occurrences of v are too
small. The first occurrence is too close to the beginning of text.

sumes that the alphabet is ordered. We assume that pat and text are read-only
arrays, and we count the additional memory space as the number of integer reg
isters (each in the range [0. .n]). We assume that the decomposition pat — u-v,
where v = MaxSuf(pat), is known. Algorithm SpecialCase-MP can be used to
report each occurrence of v. We extend this algorithm to general patterns by
testing in a naive way occurrences of u to the left of v. But we do not need
to test for u to the left of v for each occurrence of v due to the following fact
(see Figure 9.2).

Lemma 9.3 [Key-Lemma] Assume that an occurrence of v starts at position
i on text. Then, no occurrence of uv starts at any of the positions i — \u\ +
1, i — \u\ + 2,... , i on text.

Proof. This is because the maximal suffix v of pat can start at only one
position on pat. •

The algorithm that implement the remark of Lemma 9.3 is presented below.
It is followed by a less informal description.

Algorithm Informal-MaxSuffix-Matching;
Let pat — uv, where v = MaxSuf (pat);

Search for v with algorithm SpecialCase-MP;
for each occurrence of v at i on text do

Let prev be the previous occurrence of v;
if i —prev > \u\ then

if u occurs to the left of v then report a
{ occurrence of u is tested in a naive way

match;

}

9.3. COMPUTATION OF MAXIMAL SUFFIXES 129

Theorem 9.1 Algorithm MaxSuffix-Matching makes at most n extra symbol
comparisons in addition to the total cost of searching for v.

Proof. Additional naive tests for occurrences of u are related to disjoint
segments of text, due to Lemma 9.3. Then, altogether this takes at most n
extra symbol comparisons. •

Algorithm MaxSuffix-Matching;
i := 0; j := 0; period := 1; prev

while i < n — \v\ do begin
while j < \v\ and v[j + 1] =

j = j +1;
if j > period and v[j] ^

end;

{ MATCH OF v. } if j =
if i — prev > \u\ and u

report a match at i -
prev :— i;

end;
i := i + period;
if j > 2 • period then j := j
else begin j := 0; period :=

end

:=0;

text[i + j + 1] do

v[j — period] then

v\ then
— text[i — \u\ + 1.

- I « l ;

— period
1; end;

begin

period

.i] then

= j ;

begin

9.3 Computation of maximal suffixes

We can convert the function Naive-Period into a computation of the length
of the longest self-maximal prefix of a given text x. The algorithm simulta
neously computes its shortest period. The correctness is straightforward from
the previous discussion.

function Longest-Self-Maximal-Prefix (x);
period := 1;

for i :— 2 to |a;| do
if x[i] < x[i — period] then period := i
else if x[i] > x[i — period] then

return (i — 1,period);
return (|x|, period) { there was no return earlier };

130 CHAPTER 9. CONSTANT-SPACE SEARCHINGS

We use the algorithm Longest-Self-Maximal-Prefix as a key component in
the computation of the maximal suffix of the whole text. The function MaxSuf-
and-PeriodO returns the starting position of the maximal suffix of its input and
the period of the maximal suffix.

function MaxSuf-and-PeriodO(x);
i — 1 •
J • 1 i

repeat
(i, period) := Longest-Self-Maximal
if i = n then return (j, period)
else j := j + i — (i mod period);

forever { a return breaks the loop }

- Prefix (x[j. •«]);

Example. Let x = abcbcbacbcbacbc. Then, for the usual ordering of letters,

MaxSuf (x) = cbcbacbcbacbc,

which is also (cbcba)2cbc. The maximal suffix of xa is:

cbcbacbcbacbca = MaxSuf (x)a,

which is a border-free word. The maximal suffix of xb is

cbcbacbcbacbcb = MaxSuf (x)b.

This word has the same period as MaxSuf (x). Finally, the maximal suffix of
xc is cc.

We can rewrite the function MaxSuf-and-PeriodO as a self-contained func
tion which does not use calls to other functions. The code is shorter but looks
more tricky. It is impressive that such a short code describes a rather com
plex computation of maximum suffix together with its period in linear time
and constant additional space. The function mod can even be removed at
the expense of a slightly more complex structure of the algorithm, without
affecting the linear-time complexity.

Lemma 9.4 The algorithm MaxSuf-and-Period makes less than 2.\x\ letter
comparisons.

Proof. The value of expression s + j + k is increased by at least one unit
after each symbol comparison. The result then follows from inequalities 2 <
s+j + k<2.\x\ + l. •

9.4. MATCHING PATTERNS WITH SHORT MAXIMAL SUFFIXES 131

function Maxsuf-and-Period(x);
s := 1; i := 2; p := 1;

while (i < n) do begin
r := (i — s) mod p;
if (a:[i] = x[s + r]) then i := = i + l
else if (x[i\ < x[s + r]) then begin

i := i + 1; p :=i — s;
end else begin

s := i — r; i := s + 1; p
end;

end;
return (s,p);

= i ;

{ x[s. .n] = MaxSuf(x), p = period(MaxSuf (x)) }

9.4 Matching patterns with short maximal suf
fixes

Maximal suffixes have many unexpected properties. We use the following sim
ple property of maximal suffixes which proof is left to the reader (see Figure
9.3).

Figure 9.3: An overlap between u and v is impossible when v is the maximal
suffix of uv.

Lemma 9.5 Let v = MaxSuf(x) and x = uv. Then u and v cannot overlap:
no non-empty suffix ofu can be a prefix of v.

In this section we consider a special case of patterns x with short maximal
suffixes. They satisfy:

\MaxSuf{x)\ < |a;|/2.

132 CHAPTER 9. CONSTANT-SPACE SEARCHINGS

u I prefix of v H !
partial-match \ mismatch

of size j

i i+j+1

Figure 9.4: Illustration of the proof of the Short Prefixes Lemma: impossible
situation. Any next occurrence of v can start only to the right of position
i + j + 1 because an overlap between u and v is impossible.

Example . Let x = abababaaababaabababababah.
Then x decomposes into uMaxSuf(x) with

u = abababaaababaaa and MaxSuf(x) = bababababab.

L e m m a 9.6 [Short Prefixes Lemma] Assume the pattern pat has a short maxi
mal suffix. Let pat = uv be the decomposition of the pattern (v — MaxSuf{pat)).
Assume that we align the pattern pat starting at position i, scan part v and
find the first mismatch at the (j + l)-th position on v. Then we can skip safely
the pattern by j + 1 positions without missing any occurrence of pat in the text.

Proof. Assume that pat is aligned with text in such a way that text[i] is
aligned with the last letter of u. If we shift pat and align the segment v with
the text at a position between % and i + j + 1, then u and v will overlap on the
previously matched part of v, see Figure 9.4. But due to Lemma 9.5, u and v
cannot have a nonempty overlap. A contradiction that proves the result. •

We can now modify the MaxSuffic-Matching algorithm by inserting directly
the shift rule implied by the above lemma. It gives the instruction:

If j < \v\ t h e n Shift{j) = j + 1 else Shift{j) — period(v).

The resulting algorithm is called Two- Way Pattern-Matching.

T h e o r e m 9.2 Assume \MaxSuf(pat)\ < \pat\/2. Algorithm Two-Way Pattern-
Matching finds all occurrences of the pattern in O(l) space using at most 2»
symbol comparisons, if the maximal suffix v = MaxSuf(pat) is precomputed.

Proof. Due to large shifts we never test a position of v against the same
position of the text twice. Tests for u are done on disjoint segments of the
text. This gives at most n + n comparisons. •

9.5. TWO-WAY MATCHING AND MAGIC DECOMPOSITION 133

Algor i thm Two-way Pattern-Matching;
{ Simplified version of Crochemore-Perrin algorithm }

{ period = the period of v }
i := |u|; j := 0; prev := 0;
while i < n — \v\ do begin

while j < \v\ and v[j + 1] =
{ MATCH OF v. } if j =

if i — prev > |u| and u -
report a match at i

prev \= i; i := i+ period
end else
{ MISMATCH of v. }i :=

end

text[i + j + 1] do j = j + 1;
\v\ then begin
= text[i — \u\ + 1. A] then

- M;
; j := \v\ — period;

= i + j + l\

9.5 Two-way matching and magic decomposi
tion

For general patterns the algorithm of the preceding section would be incorrect.
The algorithm is based on the interaction between the two parts u and v of
the pattern. The nightmare scenario for this algorithm is the case of self-
maximal patterns because then u is empty and there is no useful interaction
at all. Fortunately, there is a surprising way to get around this problem.
Consider two inverse orderings of the alphabet, compute the maximal suffixes
with respect to these orderings, and keep the shorter of them. It does not
have to be short in the sense of the preceding section, but it is short enough
to guarantee the correctness of the two-way pattern matching.

We consider two alphabetical orderings on words. The first one, denoted by
<, is induced by a given ordering < on the alphabet. The second ordering on
words, called the reverse ordering and denoted by C, is obtained by reversing
the order < on the alphabet A.

Magic decomposit ion. Let x be a non-empty word on A. Let x = u\V\ =
U2V2, where v\ (resp. v2) is the alphabetically maximal suffix of x accord
ing to the ordering < (resp. C). If \v\\ < \v2\, then (u\,vi) is the magic
decomposition of x. Otherwise (112, ^2) is the magic decomposition of x.

Let (u, v) be the magic decomposition of pat and assume that the pattern
is nontrivial, which means here that it contains at least two distinct letters. In
this case certainly u is a non-empty word.

134 CHAPTER 9. CONSTANT-SPACE SEARCHINGS

a
a

a
a

b
b

a
a
a

a
a
a

b
b
b

a
b
a

*
a

a

*
b

b

*
b

b

*
a

a

*
b

b

*
a

a a a b b a

Figure 9.5: Searching pattern x = u • v = aabbab • aabaabbabaa. Text is the
bottom line. Since |u| = 6, we start searching for v at position 7; the mismatch
is at position 7 on v, so the shift has length 7 and we start testing v at position
14, aligning v at positions indicated by *, despite the fact that we missed the
match of v at position 10. But this occurrence cannot be preceded by u, so no
occurrence of uv is missed.

Example. Let x = aabbabaabaabbabaa. Then

magic-decomposition(x) = u • v = aabbab • aabaabbabaa.

Figure 9.5 gives an example of the use of this decomposition.

Theorem 9.3 Assume the pattern contains at least two distinct symbols. The
algorithm Two- Way Pattern-Matching is correct if (u, v) is the magic decom
position of the pattern.

Proof. We only need to show that Lemma 9.6 works also in the case where
(u, v) is the magic decomposition of pat, with u nonempty. The following fact
is obvious and we omit its proof.

Claim 1. For any words x and y, inequalities x < y and x C y are equivalent
to a; is a prefix of y.

Claim 2. Assume u occurs in v. v = zuy for some z, y. Then \zu\ is a period
of the whole pattern.
Proof of the claim. Let w = zu (Figure 9.6).

Without loss of generality we may assume that v is the maximal suffix for the
ordering <. Let pat — u'v' where v' is the maximal suffix for C. Let u" be the
non-empty word such that u = u'u" (see Figure 9.7). Recall that hypothesis
|v| < \v'\ implies that u' is a proper prefix of u. Since u"y is a suffix of a;, by
the definition of v', we get u"y C v' = u"v, hence y C v. By the definition of
v, we also have y < v. By Claim 1, these two inequalities imply that y is a
prefix of v. Hence, pat = uzuy, where y is a prefix of zuy. This shows that
\zu\ is a period of v and of the whole pattern, which completes the proof of
the claim.

9.5. TWO-WAY MATCHING AND MAGIC DECOMPOSITION 135

a period of pattern

u

1 u |

V

Figure 9.6: When (u, v) is the magic decomposition of the pattern, if « occurs
fully inside v then \zu\ is a global period of the pattern.

«'

u'

w

u

u" * 1

w

u

V'

V !
1

y
j

1

Figure 9.7: Illustration of the proof that y is a prefix of zuy.

a period of pattern
pattern

prefix of v
partial-match

of size j / mismatch text

Figure 9.8: Any second occurrence of u inside the pattern determines a period
of it. Then, the mismatch recurs.

136 CHAPTER 9. CONSTANT-SPACE SEARCHINGS

Assume now that we have a mismatch when scanning v and that we make
a shift of length smaller than j + 1, which results in placing u "inside" the
matched part of u. Observe that overlap is impossible due to Lemma 9.5.
Then we have the situation displayed in Figure 9.8. However the shift is a
period of the pattern, due to Claim 2. Hence the same mismatch happens,
so there is no match of the whole pattern starting at this position. Therefore
any shift smaller than j + 1 can be skipped. This complete the proof of the
theorem. O

For a position i on the word x a local period at i is any positive integer
per such that x[i — j] = x[i — j + per] for each j , 0 < j < per — 1, for which
both sides of the equation are denned. Denote by LocalPeriod(x, i) the size of
a minimal local period at i. We say that i is a critical factorization point if
period(x) = LocalPeriod(x, i). As a side effect of the proofs of the last theorem
we have the following corollary.

Theorem 9.4 Assume x contains at least two distinct symbols and let (u,v)
be its magic decomposition. Then \u\ is a critical factorization point of x. A
critical factorization point can be computed in constant space and linear time.

9.6 Sequential sampling for unordered alpha
bets

When the only access to the input data is by testing equality of two symbols, we
cannot use the previous algorithms MaxSuffix-matching nor Two- Way Pattern-
Matching since they are based on maximal suffixes.

We describe shortly the searching phases of two algorithms that work op
timally in this situation: Sequential-Sampling in the section and the Galil-
Seiferas algorithm in the next section.

The searching phases of both algorithms are simple, but the preprocessing
phases are not. Another disadvantage is that the cases of periodic and non-
periodic patterns should be considered separately. This was not necessary for
maximal-suffix-based algorithms.

Recall that a text x is periodic if period(x) < \x\/2. We consider only the
case when pat is not periodic but has a periodic prefix of pat. Let j be the
length of the longest periodic prefix of pat. Define the set

S = { p, q }, where p = j + 1 — period [pat])., .j]), q = j + 1.

The set S is called the sample of pat. The positions p and q are the first (from

9.6. SEQUENTIAL SAMPLING FOR UNORDERED ALPHABETS 137

the left) witnesses against the period period(pat[l. .j] of pat. This means that
q—p = period(pat[l. .q—1]) and pat[p] ^ pat[q}. Let us introduce the predicate:

MatchSample(i, S) = (text[i +p] = pat[p] and text[i + q] = pat[q\).

Observation. If MatchSample(i, S) holds then no occurrence of the pattern
starts at any position in i + 1, i + 2, . . . , i+p on text. The observation implies
that if the pattern matches the text at the positions of the sample, then the
next safe shift has length at least p. For example if pat — aaaaaaab then
S = {7,8}. In this case if MatchSample(i, S) then the next shift has length at
least 8.

Algorithm Sequential-Sampling; { Searching phase only }
{ the case where pat has a sample S = {p, q) }

i : = 0 ;
while i < n - m d o begin

if pat\p] ^ text[i + p] or pat[q] ̂ text[i + q] then i := i + 1
else begin

j •= 0;
while j <m and pat[j +1] = text[i + j +1] do j := j +1;

MATCH: if j = m then report a match at i;
MISMATCH: if j < q - 1 then i := i + p else i := i + \^];
end

end

Remark. In the algorithm, we assume that, when computing j := max{fc :
text[i + 1. A + k] = pat[l. .k] or k = 0}, symbols text[i + p] and text[i +
q] are not tested again, since we have already tested them when comput
ing MatchSample(i, S). We say that a word x is highly periodic if |a;| >
period(x)/3.

Theorem 9.5 Assume pat is not highly periodic but has a highly periodic
prefix. Then there exist a sample of pat for which the algorithm Sequential-
Sampling performs report the occurrences of pat in text. The algorithm makes
at most 2n symbol comparisons and uses a constant additional space.

Proof. Let pat[l. .q — 1] be the longest periodic prefix of pat, per be the
period of pat[l. .q — 1] and S = {q — per, q}. Negative tests on letters are
amortized by immediate shifts, i.e. two comparisons are amortized by a shift

138 CHAPTER 9. CONSTANT-SPACE SEARCHINGS

of length one. In case of a positive match of the sample S, we start to test
the full match of pat[l. .q], omitting earlier recognized symbols of the sample.
Symbols at positions in S do not belong to the period of the prefix pat[l. .q— 1],
so if a mismatch between text and the prefix is found we can make a shift of
length s = p. Hence the total work is not greater than q — 1 and p > ^ ^ (prefix
pat[l. .q — 1] is periodic) so q < 2 • s, and we get the proper amortization. •

9.7 Galil-Seiferas algorithm

The algorithm of Galil and Seiferas (GS algorithm in short) can be regarded
as another space-efficient implementation of MP algorithm. In the context
of MP algorithm, the idea behind saving on space is to avoid storing all the
periods of prefixes of the pattern. Only small periods are memorized, where
"small" is relative to the length of the prefix. Approximations of other periods
are computed when necessary during the search phase.

Highly repeating prefixes (hrp's). A primitive word w is called a highly
repeating prefix of x (a hrp of x, in short) if w3 is a prefix of x. Recall that a
word w is said to be primitive if it is not a (proper) power of any other word.
Primitive words are non-empty, so are hrp's.

GS-decomposition. We say that a word is GS-good if it has at most one
hrp. The decomposition (u, v) of x is said to be a GS-decomposition if

|u| < 2.period(v) and v has at most one hrp.

The basic idea behind GS algorithm is to scan the pattern from a posi
tion where a GS-good word starts. Fortunately, such a position always exists
because words satisfy a remarkable combinatorial property stated in the next
theorem, and which technical proof is omitted (we refer the interested reader
to [CR94]).

Theorem 9.6 [GS-decomposition theorem] Any non-empty wordx can befac-
torized into a GS-decomposition in 0(1) space and linear time.

Consider a GS-good word v as a pattern. Let p be the length of the only
hrp of v and let r be the length of the longest prefix of v having period p.
Then we can search for pattern v using a version of MP algorithm with the
shift function computed in constant space and constant time as follows:

(1) Shift(j)=pitje[2p..r],

9.8. CYCLIC EQUALITY OF WORDS 139

(2) Shift(j) = r | l , otherwise.

In the first case we reset j to j — p, in the second case we reset j to 0. The
cost of comparisons is amortized by shifts, and this proves the following.

Lemma 9.7 If v is a GS-good word, then we can search for v in constant
space and linear time with MP algorithm modified by the shift function Shift.

If the pattern pat is not GS-good, we consider its GS-decomposition (u,v).
Searching for the whole pattern is done by the previous search for its part
v, together with naive tests for the prefix part u. Since \u\ < 2.period(v),
comparisons for the latter tests are no more than \text\. This gives the following
informal description of Galil-Seiferas algorithm. Observe that it is quite
similar to MaxSuffix-Matching, where we have a part v (self-maximal word)
which search is simple and the other part u that is tested naively.

Algorithm GS\ { informal description }
{ search for pat in text }

(u, v) := GS-decomposition of pat;
find all occurrences of v in text using
MP algorithm with the modified shift function;
for each position q of an occurrence of v in text do

if u ends at q then report a match at position q— \u
{ occurrences of u are tested in a naive way }

9.8 Cyclic equality of words

A rotation of a word u of length n is any word of the form u[k + 1. .n]u[l. .k],
denoted by u^ (note that u^ = u^1 = u). Let u, w be two words of the
same length n. They are said to be cyclic-equivalent if u^' — w^> for some
i,j. If words u and w are written as circles, they are cyclic-equivalent if the
circles coincide after appropriate rotations.

There are several linear-time algorithms for testing the cyclic-equivalence
of two words. The simplest one is to apply any string matching algorithm to
pattern pat — u and text = ww because words u and w are cyclic-equivalent
iff pat occurs in text.

Another algorithm is to find maximal suffixes of uu and ww and check if
they are identical on prefixes of size n. We have chosen this problem because
there is simpler interesting algorithm, working in linear time and constant
space simultaneously, which deserves presentation.

140 CHAPTER 9. CONSTANT-SPACE SEARCHINGS

Define D(u) and D(w) as:

D(u) = {k : 1 < k < n and u^ > w^ for some j},
D(w) = {k : 1 < k < n and w^ > u^ for some j}.

We use the following simple fact:

if D{u) = [1. .n] or D{w) = [1. .n], then words w, W are not cyclic equivalent.

Now the correctness of the algorithm follows from preserving the invariant:

D(w) D [1. .i] and D(u) D [1. .j}.

Algorithm Cyclic-Equivalence(u, w)
{ checks cyclic equality of u and w of common length n }

x := uu; y := ww;
i := 0; j := 0;
while (i < n) and (j < n) do begi

k := 1;
while x[i + k] = y[j + k] do k :
if k > n then return true;
if x[i + k] > y[i + k] then i := i
{ invariant }

end;
return false;

n

= k + l;

+ k else j := j + k;

The number of symbol comparisons is linear. The largest number of com
parisons is for words in the forms u = 1 1 1 . . . 1201 and w = 1111. . . 120.

Bibliographic notes

The first time-space optimal string-matching algorithm is from Galil and
Seiferas [GS 83]. The same authors have designed other string-matching al
gorithms requiring only a small memory space [GS 80], [GS 81]. MaxSuffix-
Matching is from Rytter [Ry 02].

Two-Way Pattern-Matching is from Crochemore and Perrin [CP 91]. The
proof of the magic lemma is based on critical factorization. And the proof of
the critical factorization theorem can be found in [Lo 83], [CP 91] or [CR 94].
The computation of maximal suffixes is adapted from an algorithm of Duval
[Du 83].

Chapter 10

Text compression
techniques

The aim of data compression is to provide representations of data in a reduced
form. The information carried by data is left unchanged by the compression
processes considered in this chapter. There is no loss of information. In other
words, the compression processes that we discuss are reversible.

The main interest of data compression is its practical nature. Methods are
used both to reduce the memory space required to store files on hard disks or
other similar devices, and to accelerate the transmission of data in telecom
munications. This feature remains important particularly due to the rapid
increase of mass memory, because the amount of data increases accordingly
(to store images produced by satellites or medical scanners, for example). The
same argument applies to transmission of data, even if the capacity of existing
media is constantly improved.

We describe data compression methods based on substitutions. The meth
ods are general, which means that they apply to data about which little infor
mation is known. Semantic data compression techniques are not considered.
Therefore, compression ratios must be appreciated on that condition. Standard
methods usually save about 50% memory space.

Data compression methods attempt to eliminate redundancies, regulari
ties, and repetitions in order to compress the data. It is not surprising then
that algorithms have features in commons with others described in preceding
chapters.

After Section 10.1 on elementary notions about the compression problem,
we consider the classical Huffman statistical coding (Sections 10.2 and 10.3).

141

142 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

It is implemented by the UNIX (system V) command "pack." It admits an
adaptive version well suited for telecommunications, and implemented by the
"compact" command of UNIX (BSD 4.2). Section 10.4 deals with the general
problem of factor encoding, and contains the efficient Ziv-Lempel algorithm.

The "compress" command of UNIX (BSD 4.2) is based on a variant of this
latter algorithm.

10.1 Substitutions

The input of a data compression algorithm is a text. It is denoted by s, for
source. It should be considered as a string on the alphabet {0,1}. The output
of the algorithm is also a word of {0,1}* denoted by c, for encoded text. Data
compression methods based on substitutions are often described with the aid
of an intermediate alphabet A on which the source s translates into a text
text. A method is then defined by mean of two morphisms g and h from A*
to {0,1}*. The text text is an inverse image of s by the morphism g, which
means that its letters are coded with bits. The encoded text c is the direct
image of text by the morphism h. The set {(g(a), h(a)) : a £ A} is called the
dictionary of the coding method. When the morphism g is known or implicit,
the description of the dictionary is given simply by the set {a, h(a) : a £ A}.

We only consider data compression methods that have no loss of informa
tion. This implies that a decoding function f exists such that s = / (c). Again,
/ is often defined through a decoding function h' such that text = h'(c), and
then / itself is the composition of h! and g. The lossless information constraint
implies that the morphism h is one-to-one, and that h! is its inverse morphism.
This means that the set {h(a) : a G A} is a uniquely decipherable code.

The pair of morphisms, (g, h), Leads to a classification of data compression
methods with substitutions. We get four principal classes according to whether
g is uniform (i.e., all images of letters by g are words of the same length) or
not, and whether the dictionary is fixed or computed during the compression
process. Most elementary methods do not use any dictionary. Strings of a given
length are sometimes called blocks in this context, while factors of variable
lengths are called variables. A method is then qualified as block-to-variable
if the morphism g is uniform, or variable-to-variable if neither g nor h are
assumed to be uniform.

The efficiency of a compression method that encodes a text s into a text c
is measured through a compression ratio. It can be |s|/ |c| , or its inverse |c|/ |s | .
It is sometimes more sensible to compute the amount of space saved by the
compression: (\s\ — |c|)/|c|.

10.1. SUBSTITUTIONS 143

1100001 1100001 1100001 1100001 1100001 1100001
cl cl ct cL c l cl

encoded by

& a 6
0100110 1100001 0000110

Figure 10.1: Repetition coding (with ASCII code).

fixed dictionary
evolutive

dictionary

Block-to-Variable
differential encoding

statistical encoding (Huffman)
sequential statistical

encoding (Faller and Gallager)

Variable-to-Variable
repetitions encoding

factor encoding
Ziv and Lempel's

algorithm

The remainder of this section is devoted to the description of two basic
methods. They appear on the first line of the previous table repetitions encod
ing and differential encoding.

The aim of repetitions encoding is to efficiently encode repetitions. Let text
be a text on the alphabet A. Let us assume that text contains a certain quantity
of repetitions of the form aa.. .a for some character a (a £ A). Within text, a
sequence of n letters a, can be replaced by Szan, where the symbol & is a new
character (& ^ A). This corresponds to the usual mathematical notation an.
When all the repetitions of a fixed letter are encoded in such a manner, the
letter itself does not need to appear, so that a repetition is encoded by just
&n. This is commonly considered for space deletion in text format.

The string Scan that encodes a repetitions of n consecutive occurrences of
a is itself encoded on the binary alphabet {0,1}. In practice, letters are often
represented by their ASCII code. Therefore, the codeword of a letter belongs
to {0, l} f c with k = 7 or 8. Generally there is no problem in choosing the special
character & (in Figure 10.1, the real ASCII symbol & is used). Both symbols
& and a appear in the coded text c under their ASCII form. The integer n of
the string han should also by encoded on the binary alphabet. Note that it is
not sufficient to translate n by its binary representation, because we would be
unable to localize it at decoding time inside the stream of bits. A simple way
to cope with this is to encode n by the string O^bin(n), where bin(n) is the
binary representation of n, and t is the length of it. This works well because
the binary representation of n starts with a 1 (also because n > 0). There are
even more sophisticated integer representations, but none really suitable for
the present situation. Conversely, a simpler solution is to encode n on the same

144 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

number of bits as letters. If this number is k = 8 for example, the translation
of any repetitions of length less than 256 has length 3 letters or 24 bits. Thus
it is useless to encode a2 and a3. A repetition of more than 256 identical letters
is then cut into smaller repetitions. This limitation reduces the efficiency of
the method.

The second very useful elementary compression technique is differential en
coding, also called relative encoding. We explain it using an example. Assume
that the source text s is a series of dates

1981,1982,1980,1982,1985,1984,1984,1981,...

These dates appear in binary form in s, so at least 11 bits are necessary for
each of them. But, the sequence can be represented by the other sequence

1 9 8 1 , 1 , - 2 , 2 , 3 , - 1 , 0 , - 3 , . . .

assuming that the integer 1 in place of the second date is the difference between
the second and the first dates and so on. An integer in the second sequence,
except the first one, is the difference between two consecutive dates. The
decoding algorithm is straightforward, and processes the sequence from left
to right, which is well adapted for texts. Again, the integers of the second
sequence appear in binary form in the coded text c. In the example, all but
the first can be represented with only 3 bits each. This is how the compression
is realized on suitable data.

More generally, differential encoding takes a sequence (u\,U2,... ,un) of
data, and represents it by the sequence of differences (iti, u^—u\,..., un—u„_i)
where — is an appropriate operation.

Differential encoding is commonly used to create archives of successive ver
sions of a text. The initial text is fully memorized on the device. And, for
each following version, only the differences from the preceding one are kept
on the device. Several variations on this idea are possible. For example,
(ui,u2,...,un) can be translated into {u\,U2 — ui, • • • ,un — u-\), considering
that the differences are all computed relatively to the first element of the se
quence. This element can also change during the process according to some
rule.

Very often, several compression methods are combined to realize a whole
compression software. A good example of this strategy is given by the appli
cation to facsimile (FAX) machines, for which we consider one of the existing
protocols. Pages to be transmitted are made of lines, each of 1728 bits. A
differential encoding is first applied on consecutive lines. Therefore, if the nth

line is
010100101010101001001110100110111011000000...

10.2. STATIC HUFFMAN CODING 145

and the n + 1 line is

010100001010110111001110010110111010000000...

the following line to be sent is

000000100000011110000000110000000001000000...

in which a symbol indicates a difference between lines n and n + 1. Of course,
no compression at all would be achieved if the line were sent explicitly as it is.
There are two solutions to encoding the line of differences. The first solution
encodes runs of 1 occurring in the line both by their length and their relative
position in the line. Therefore, we get the sequence

(7,1), (7,4), (8,2), (10,1), . . .

which representation on the binary alphabet gives the coded text. The second
solution makes use of statistical Huffman codes to encode successive runs of 0s
and runs of Is. This type of codes is defined in the next section.

A good compression ratio is generally obtained when the transmitted im
age contains typeset text. But it is clear that "dense" pages lead to a small
compression ratio, and the that best ratios are reached with blank (or black)
pages.

10.2 Static Huffman coding

The most common technique for compressing a text is to redefine the codewords
associated with the letters of the alphabet. This is achieved by block-to-variable
compression methods. According to the pair of morphisms (g, h) introduced
in Section 10.1, this means that g represents the usual code attributed to the
characters (ASCII code, for example). More generally, the source is factorized
into blocks of a given length. Once this length is chosen, the method reduces
to the computation of a morphism h that minimizes the size of the encoded
text h(text). The key to finding h is to consider the frequency of letters, and
to encode frequent letters by short codewords. Methods based on this criterion
are called statistical compression methods.

Computing h requires finding the set C = {h(a) : a G A}, which must be a
uniquely decipherable code in order to permit the decoding of the compressed
text. Moreover, to get an efficient decoding algorithm, C is chosen as ah
instantaneous code, i.e., a prefix code, which means that no word of C is a
prefix of another word of C. It is quite surprising that this does not reduce the
power of the method. This is due to the fact that any code has an equivalent

146 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

Figure 10.2: The trie of the prefix code {0,10,1100,1101, 111}. Black nodes
correspond to codewords.

prefix code with the same distribution of codeword lengths. The property,
stated in the following theorem, is a consequence of what is known as the
Kraft-McMillan inequalities related to codeword lengths, which are recalled
first.

Kraft's inequality. There is a prefix code with word lengths i\,^2,---Ak
on the alphabet {0,1} iff

k

Y,2~li <1 (l(U)

McMillan's inequality. There is a uniquely decipherable code with word
lengths £i,£2, • • • ,£k on the alphabet {0,1} iff the inequality 10.1 holds.

Theo rem 10.1 A uniquely decipherable code with prescribed word lengths ex
ists iff a prefix code with the same word lengths exists.

Huffman's method computes the code C according to a given distribution
of frequencies of the letters. This method is both optimal and practical. The
entire Huffman's compression algorithm proceeds in three steps. In the first
step, the numbers of occurrences of letters (blocks) are computed. Let na

be the number of times letter a occurs in text. In the second step, the set
{na : a £ A} is used to compute a prefix code C. Finally, in the third step,
the text is encoded with the prefix code C found previously.

Note that the prefix code should be appended to the coded text because
the decoder needs it to perform the decompression. It is commonly put inside

10.2. STATIC HUFFMAN CODING 147

a header (of the compressed file) which contains additional information on the
file. Instead of computing the exact numbers of occurrences of letters in the
source, a prefix code can be computed on the base of a standard probability
distribution of letters. In this situation, only the third step is applied to encode
a text, which gives a very simple and fast encoding procedure. Obviously,
however, the coding is no longer optimal for a given text.

The core of Huffman algorithm is the computation of a prefix code, over the
alphabet {0,1}, corresponding to the distribution of letters {na : a € A}. This
part of the algorithm builds the word trie T of the desired prefix code. The
prefix property of the code ensures that there is a one-to-one correspondence
between codewords and leaves of T (see Figure 10.2). Each codeword (and leaf
of the trie) corresponds to some number na, and yields the encoding h(a) of
the letter a.

The size of the coded text is

\h(text)\ = y~]na x |/i(a)|.
a€A

On the trie of the code C the equality translates into

\h(text)\ = J 2 n0 x \level(fa)\

a£A

where fa is the leaf of T associated with letter o, and level(fa) is its distance
to the root of T. The problem of computing a prefix code C = {h(a) : a £ A}
such that \h(text)\ is minimum becomes a problem on trees:

• find a minimum weighted binary tree T in which the leaves {/a : a G A}
have initial costs (na : a £ A},

where the weight of T, denoted by W(T), is understood as the quantity
^ n „ x level(fa). The following algorithm builds a minimum weighted tree
in a bottom-up fashion, grouping together two subtrees under a new node.
In other words, at each stage the algorithm creates a new node that is made
a father of two existing nodes. There are several possible trees of minimum
weight, and all trees that can be created by Huffman algorithm are called
Huffman trees.

148 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

(y - - \

C*)
I

2

o/̂ v i—'
c 1 I d

Figure 10.3: Huffman tree for abracadabra.

Algorithm Huffman { minimum weighted tree construction }
for a in A do create a one-node tree fa with cost c(/a) = na

L :— queue of trees fa in increasing order of costs;
N := empty queue; { for internal nodes of the final tree }
while \L\ + \N\ > 1 do begin

let u and v be the elements of L U N with smallest costs;
{ u and v are found from heads of lists }
delete u and v from (heads of) queues;
create a tree x with a new node as root,

and u and v as left and right subtrees;
c(x) := c(u) + c(v);
add tree x at the end of queue N;

end;
return the remaining tree in L U N;

Example. Let text — abracadabra. The number of occurrences of letters are

na — 5,rib = 2,nc = l , n j = l,nr = 2.

The tree of a possible prefix code built by Huffman algorithm is shown in
Figure 10.3. The corresponding prefix code is:

h(a) = 0, h(b) = 10, h{c) = 1100, h(d) = 1101, h(r) = 111.

The coded text is then

01011101100011010101110

10.2. STATIC HUFFMAN CODING 149

that is a word of length 23. If the initial codewords of letters have length 5,
we get the compression ratio 55/23 sa 2.4. However, if the prefix code (or
its trie) has to be memorized, this additionally takes at least 9 bits, which
reduces the compression ratio to 55/32 « 1.7. If the initial coding of letters
also has to be stored (with at least 25 bits), the compression ratio is even
worse: 55/57 ss 0.96. In the latter case, the encoding leads to an expansion of
the source text.

As noted in the previous example, the header of the coded text must often
contain sufficient information on the coding to allow a later decoding of the
text. The information necessary is the prefix code (or information to recompute
it) computed by Huffman algorithm, and the initial codewords of letters.
Altogether, this takes approximately 2|yl| +fc|A| bits (if k is the length of initial
codewords), because the structure of the trie can be encoded with 2 |A| — 1 bits.

Theorem 10.2 Huffman algorithm produces a minimum weighted tree in time
0(\A\log\A\).

Proof. The correctness is based on several observations. First, a Huffman
tree is a binary complete tree, in the sense that all internal nodes have exactly
two sons. Otherwise, the weight of the tree could be decreased by replacing
a node having one child by the child itself. Second, there is a Huffman tree
T for {na : a € A} in which two leaves at the maximum level are siblings,
and have minimum weights among all leaves (and all nodes, as well). Possibly
exchanging leaves in a Huffman tree gives the conclusion. Third, let x be the
father of two leaves /;, and fc in a Huffman tree T. Consider a weighted tree
T' for {na : a G A} — {nb,nc} + {rib + nc}, assuming that x is a leaf of cost
rib + nc. Then,

W(T) = W{T') +nb + nc.

Thus, T is a Huffman tree iff T" is. This is the way the tree is built by the
algorithm, joining two trees of minimal weights into a new tree.

The sorting phase of the algorithm takes 0(|A| log \A\) time with any efficient
sorting method. The running time of the instructions inside the "while" loop
is constant because the minimal weighted nodes in L U N are at the beginning
of the lists. Therefore, the running time of the "while" loop is proportional
to the number of created nodes. Since exactly |A| — 1 nodes are created, this
takes 0(\A\) time. •

The performance of Huffman codes is related to a measure of information
of the source text, called the entropy of the alphabet. Let pa be na/\text\.
This quantity can be viewed as the probability that letter a occurs at a given
position in the text. This probability is assumed to be independent of the

150 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

position. Then, the entropy of the alphabet according to p a ' s is defined as

H{A) = - ^ Pa log Pa-
a€A

The entropy is expressed in bits (log is a base-two logarithm). It is a lower
bound of the average length of the codewords h(a),

m(A) = Y^,Pa-\h{a)\.
agA

Moreover, Huffman codes give the best possible approximation of the entropy
(among methods based on a recoding of the alphabet). This is summarized in
the following theorem whose proof relies on the Kraft-McMillan inequalities.

Theorem 10.3 The average length of any uniquely decipherable code on the
alphabet A is at least H(A). The average length m(A) of a Huffman code on
A satisfies H(A) < m{A) < H(A) + 1.

The average length of Huffman codes is exactly the entropy H(A) when,
for each letter a of A, pa = 2~\h(a^ (note that the sum of all p a ' s is 1).
The ratio H(X)/m(X) measures the efficiency of the code. In English, the
entropy of letters according to a common probability distribution of letters
is close to 4 bits. And the efficiency of a Huffman code is more than 99%.
This means that if the English source text is stored as a 8-bit ASCII file, the
Huffman compression method is likely to divide its size by two. The Morse
code (developed for telegraphic transmissions), which also takes into account
probabilities of letters, is not a Huffman code, and has an efficiency close to
66%. This not as good as any Huffman code, but Morse code incorporates
redundancies in order to make transmissions safer.

In practice, Huffman codes are built for ASCII letters of the source text,
but also for digrams (factors of length 2) occurring in the text instead of letters.
In the latter case, the source is factorized into blocks of length 16 bits (or 14
bits). On larger texts, the length of blocks chosen can be higher to capture
extra dependencies between consecutive letters, but the size of the alphabet
grows exponentially with the length of blocks.

Huffman algorithm generalizes to the construction of prefix codes on alpha
bet of size m larger than two. The trie of the code is then an almost ro-ary
tree. Internal nodes have m sons, except maybe one node which is a parent of
less than m leaves.

The main default of the entire Huffman compression algorithm is that the
source text must be read twice: the first time to compute the frequencies

10.3. DYNAMIC HUFFMAN CODING 151

of letters, and the second time to encode the text. Only one reading of the
text is possible if one uses known average frequencies of letters, but then,
the compression is not necessarily optimal on a given text. The next section
presents a solution for avoiding two readings of the source text.

There is another statistical encoding that produces a prefix code. It is
known as the Shannon-Fano coding. It builds a weighted tree, as Huffman's
method does, but the process works top-down. The tree and all its subtrees are
balanced according to their costs (sums of occurrences of characters associated
with leaves). The result of the method is not necessarily an optimal weighted
tree, so its performance is generally within that of Huffman coding.

10.3 Dynamic Huffman coding

The section describes an adaptive version of Huffman's method. With this
algorithm, the source text is read only once, which avoids the drawback of the
original method. Moreover, the memory space required by the algorithm is
proportional to the size of the current trie, that is, to the size of the alphabet.
The encoding of letters of the source text is realized while the text is scanned.
In some situations, the obtained compression ratio is even better that the
corresponding ratio of Huffman's method.

Assume that za (z a word, a a letter) is a prefix of text. We consider the
alphabet A of letters occurring in z, plus the extra symbol # that stands for
all letters not occurring in z but possibly appearing in text. Let us denote by
Tz any Huffman tree built on the alphabet A U {#} with the following costs:

{ na = number of occurrences of a in z,

n#- = 0.

We denote by hz(a) the codeword corresponding to a, and determined by the
treeT2 .

Note that the tree has only one leaf of null cost, namely, the leaf associate
with # .

The encoding of letters proceeds as follows. In the current situation, the
prefix z of text has already been coded, and we have the tree Tz together with
the corresponding encoding function hz. The next letter a is then encoded
by hz(a) (according the tree Tz). Afterward, the tree is transformed into Tza.
At decoding time the algorithm reproduces the same tree at the same time.
However, the letter a may not occur in z, in which case it cannot be translated
as any other letter. In this situation, the letter a is encoded by hz{4f)g{a),
that is, the codeword of the special symbol # according the tree Tz followed by

152 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

the initial code of letter a. This step is also reproduced without any problem
at decoding time.

The reason why this method is practically effective is due to an efficient
procedure updating the tree. The procedure UPDATE used in the following
algorithm can be implemented in time proportional to the height of the tree.
This means that the compression and decompression algorithms work in real
time for any fixed alphabet, as it is the case in practice. Moreover, the com
pression ratio obtained by the method is close to that of Huffman compression
algorithm.

Algorithm adaptive-Huffman-coding
T := TE;

while not end of text do begin
a := next letter of text; { h is implied by T }
if a is not a new letter then write(/i(a))
else write(/i(#)<?(a)); { g(a) = initial codeword of a }
T := UPDATE(T);

end

The key point of the adaptive compression algorithm is a fast implementa
tion of the procedure UPDATE. It is based on a characterization of Huffman
trees, known as the siblings property. This property does not hold in general
for minimum weighted trees.

Theorem 10.4 [siblings property] Let T be a complete binary weighted tree
(with n leaves) in which leaves have positive costs, and the cost of any internal
node is the sum of costs of its children. Then, T is a Huffman tree iff its nodes
can be arranged in a sequence (a;i,a;2,... ,£271-1) such that:

1. the sequence of costs (c(xi), c(x2), • • •, c(x2n-i)) is in increasing order,
and

2. for any i, 1 < i < n, the consecutive nodes x<n-\ and x^i are siblings
(they have the same parent).

Proof. If T is a tree built by Huffman algorithm, the ordering on nodes is
simply given by the order in which nodes are deleted from queues during the
run of the algorithm.

The "if" part of the proof is by induction on the number n of leaves.
Consider the two nodes x\ and X2 of the list. It is rather obvious that they
are leaves because their costs are strictly positive integers. The leaves x\ and

20.3. DYNAMIC HUFFMAN CODING 153

a

0

6 (2 J

3 Qu) 4

2 1 r

1

b

2 a 8 I 3

3

0

1

2 1

4

c

1

Figure 10.4: Transformation of Tabra into Tabrac- Marked nodes have been
exchanged. Number beside nodes give an ordering satisfying the sibling prop
erty.

X2 can be chosen first by the Huffman algorithm because they have minimum
costs. Let x be their parent. The rest of the construction is executed as if we
had only n — 1 leaves, x\ and X2 being substituted by x. By induction, the
existence of the ordering proves that the tree in which a; is a leaf is a Huffman
tree. Thus, the initial tree in which x is the parent of x\ and x2 is also a
Huffman tree (see the proof of Theorem 10.2). •

The characterization of Huffman trees by the siblings property remains
true if only one leaf has a null cost. During the sequential encoding, the
transformation of the current tree Tz into Tza starts by incrementing the cost
of the leaf Xi that corresponds to a. If point 1 of the siblings property is
no longer satisfied, node Xi is exchanged with the node Xj for which j is the
greatest integer such that C(XJ) < c(xi). If necessary, the same operation is
repeated on the father of Xi, and so on. The exchange of nodes is, in fact, the
exchange of the corresponding subtrees (see Figure 10.4). The tree structure
is not affected by exchanges because costs strictly increase from leaves to the
root (except maybe in the 3-node tree containing the leaf associated with #) ,
so that a node cannot be exchanged with any of its ancestors. This proves that
procedure UPDATE can be implemented in time proportional to the height of
the tree. Thus, we have the following statement.

154 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

Lemma 10.1 Procedure UPDATE can be implemented to work in time 0(\A\).

Example. Figure 10.5 shows the sequential encoding of abracadabra. Letters
are assumed to be initially encoded on 5 bits (a —¥ 00000, b -> 00001, c —•
00010, . . . , z —>• 11010). The entire translation of abracadabra is:

00000 000001 0010001 0 10000010 0 110000011 0 110 110 0
a b r a c a d a b r a

We get a word of length 45. These 45 bits are to be compared with the
57 bits obtained by the original Huffman algorithm. For this example, the
dynamic algorithm gives a better compression ratio, say 55/45 ~ 1.22.

The precise analysis of the adaptive Huffman compression algorithm has
led to an improved compression algorithm. The key for the improvement is to
choose a specific ordering for the nodes of the Huffman tree. Indeed, one may
note that in the ordering given by the siblings property, two nodes of same cost
are exchangeable. The improvement is based on a ordering that corresponds
to a width-first tree-traversal of the tree from leaves to the root. Moreover,
at each level in the tree, nodes are ordered from left to right, and leaves of
a given cost precede internal nodes having the same cost. The algorithm
derived from this idea is efficient for texts of just a few thousand characters.
The encoding of larger texts save almost one bit per character compared with
Huffman algorithm.

10.4 Factor encoding

Data compression methods with substitutions gain their full power when the
substitution applies to variable-length factors rather than blocks. The substi
tution is defined by a dictionary:

D = {(f,c):f&F,c€C},

where F is a (finite) set of factors of the source text s, and C is the set of their
corresponding codewords. The set F acts as the alphabet A of Section 10.1.
The source text is a concatenation of elements of F.

Example. Let text be a text composed of ordinary ASCII characters encoded
on 8 bits. For C, one may choose the 8-bit words, if any, that correspond to
no letter of text. Then, F can be a set of factors occurring frequently inside
the text text. Replacing factors of F in text by letters of C compresses the

10.4. FACTOR ENCODING 155

0 00000 000001
0,

0

y

,I

i

1

1

a

0010001

V

0J
T V

0 1

\

1

r

(T
o/"~V

0 1 r

1

10000010 etc.,

(l)

°/~~\1

0 1

1

c

Figure 10.5: Dynamic Huffman compression of abracadabra.

156 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

text. This result comes from an increase of the alphabet on which the source
text is written.

In the general case of factor encoding, a data compression scheme must
solve the three following points:

• find the set F of factors that are to be encoded,

• design an algorithm to factorize the source text according to F,

• compute a code C in one-to-one correspondence with F.

When the text is given, the computation of such an optimal encoding is a
NP-complete problem. The proof can be executed inside the following model
of encoding. Let A be the alphabet of text. The encoding of text is a word
in the form d#c where d (e A*) is supposed to represent the dictionary, #
is a new letter (not in A), and c is the compressed text. The part c of the
encoded string is written on the alphabet A U {1, 2 , . . . , n) x {1 ,2 , . . . , n}. A
pair (i, j) occurring in c means a reference to the factor of length j that occurs
at position i in d.

Example. On A = {a, b, c}, let text = aababbabbabbc. Its encoding can be
hhahh#aa(l,4)a(0,5)c. The explicit dictionary is then

D = {(babb, (1,4)), (bbabb, (0,5))} U A x A.

Within the above model, the length of d#c is the number of occurrences of
both letters and pairs of integers that appear in it. For example, this length is
12 in the previous example. The search for a shortest word d#c that encodes
a given text reduces to the SCS problem—the Shortest Common Superstring
problem for a finite set of words—which is a classical NP-complete problem.

When the set F of factors is known, the main problem is to factorize the
source s efficiently according to the elements of F, that is, to find factors
fi,f2,---,fk e F such tha t

s = / 1 / 2 • • • / / = •

The problem arises from the fact that F is not necessarily a unique decipherable
code, several factorizations are often possible. It is important that the integer k
be as small as possible, and a factorization is said to be an optimal factorization
when k is minimal.

The simplest strategy for factorizing s is to use a greedy algorithm. The
factorization is computed sequentially. Therefore, the first factor /1 is naturally

10.4. FACTOR ENCODING 157

chosen as the longest prefix of s that belongs to F. And the decomposition of
the remainder of the text is done iteratively in the same way.

Remark 1. If F is a set of letters or digrams (F C A U A x A), the greedy
algorithm computes an optimal factorization. The condition may seem quite
restrictive, but in French, for example, the most frequent factors ("er" and
"en") have length 2.

Remark 2. If F is a factor-closed set (all factors of words of F are in F),
the greedy algorithm also computes an optimal factorization.

Another factorization strategy, called semi-greedy here, leads to optimal
factorizations under broader conditions. Moreover, its time complexity is sim
ilar to the previous strategy.

Semi-greedy factorization strategy of s.

• let m = max{|uu| : u,v G F, and uv is a prefix of s};

• let / i be an element of F such that f\v is a prefix of s, and | / iv | = TO,
for some v € F;

• set / i as the next factor;

• setting s = f\s', iterate the same process on s'.

Example. Let F = {a,b,c,ab,ba,bb,bab,bba,babb,bbab}, and consider the
greedy algorithm applied to s = aababbabbabbc. It produces the factorization

s = a.ab.ab.babb.ab.b.c

that contains 7 factors. The semi-greedy algorithm gives

s = a.a.ba.bbab.babb.c

that is an optimal factorization. Note that F is prefix-closed (prefixes of words
of F are in F) after adding the empty word.

The interest in the semi-greedy factorization algorithm is due to the fol
lowing lemma for which the proof is left as an exercise. As we shall see later
in this section, the hypothesis of the set of factors F originates naturally for
some compression algorithms.

Lemma 10.2 / / the set F is prefix-closed, the semi-greedy factorization strat
egy produces an optimal factorization.

158 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

When the set F is finite, the semi-greedy algorithm may be realized with
the help of a string-matching automaton (see Chapter 7). This leads to a
linear-time algorithm to factorize a text.

Finally, if the set F is known, and if the factorization algorithm has been
designed, the next step to consider when performing a whole compression pro
cess is to determine the code C. As for the statistical encodings of Sections
10.2 and 10.3, the choice of codewords associated with factors of F can take
their frequencies into account. This choice can be made once for all, or in a
dynamic way during the factorization of s. Here is an example of a possible
strategy: the elements of F are put into a list and encoded by their position in
the list. A move-to-front procedure realized during the encoding phase tends
to attribute small positions, and thus short encodings, to frequent factors.
The idea of encoding a factor by its position in a list is applied in the next
compression method.

Factor encoding becomes even more powerful with an adaptive feature. It
is realized by the Ziv-Lempel method (ZL method, for short). The dictionary
is built during the compression process. The codewords of factors are their
positions in the dictionary. Therefore, we regard the dictionary D as a mere
sequence of words (/o, /i> • • •)• The algorithm encodes positions in the most
efficient way according to the present state of the dictionary, using the function
Ig defined by:

lg(l) = 1 and
lg(n) = riog2(n)] for n > 1.

Algorithm ZL; { Ziv-Lempel compression algorithm }
{ encodes source s on the binary alphabet }

D := {e}; x := s # ;
while x ^ £ do begin

fk = longest word of D such that x = fk&y,
for some a € A;

a :— letter following fk in a;;
write k on lg\D\ bits;
write the initial codeword of a on lg\A\ bits;
add /fca at the end of D;

x := y;
end

Example. Let A = {a,b, # } . Assume that the initial codewords of letters
are 00 for a, 01 for b, and 10 for # . Let s = aababbabbabb#. Then, the

10.4. FACTOR ENCODING 159

v l V2

U

V3 V4 V5

w a

V6 Vl

Figure 10.6: Efficient factorization of the source: v$ is the shortest factor not
occurring to its left.

decomposition of s is

that leads to

s = a.ab.abb.abba.b.b#

c = 000 101 1001 1100 00001 10110.

After that, the dictionary D contains seven words:

D = (e, a, ab, abb, abba, b, b-jf).

Intuitively, ZL algorithm compresses the source text because it is able to
discover some repeated factors within it. The second occurrence of such a
factor is encoded only by a pointer onto its first position, which can save a
large amount of space.

From the implementation point of view, the dictionary D in ZL algorithm
can be stored as a word trie. The addition of a new word in the dictionary
takes a constant amount of time and space.

There is a large number of possible variations on ZL algorithm. The study
of this algorithm has been stimulated by its high performance in practical
applications. Note, for example, that the dictionary built by ZL algorithm
is prefix-closed, so the semi-greedy factorization strategy above may help to
reduce the number of factors in the decomposition.

The model of encoding valid for that kind of compression method is a
bit more general than the model introduced previously. In this model, the
encoding c of the source text s is a word on the alphabet i U { l , 2 , . . . , n } x
{1 ,2 , . . . , n} . A pair (i, j) occurring in c references a factor of s itself: i is the
position of the factor, and j is its length.

Example. Again let s = aababbabbabb#. It can be encoded by the word

c = a(0,1)6(1,2)6(3,3)afc(ll, 1)#

of length 10, which corresponds to the factorization found by ZL algorithm.

The number of factors of the decomposition of the source text reduces if we
consider a decomposition of the text similar to the /-factorization of Section

160 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

8.2. The factorization of s is a sequence of words (/ i , /2, • • •, fm) such that
s = f\fi- • -fm and that is iteratively defined by (see Figure 10.6): / is the
shortest prefix of fif%+\ • • • fm which does not occurs before in s.

Example. The factorization of s — aababbabbabbjf- is

(a, ab, abb, abbabb#)

which accounts to encode s into

c = o(0,1)6(1,2)6(3,6)#,

word of length 7 only, to be compared with the previous factorization.

Theorem 10.5 The f-factorization of a string s can be computed in linear
time.

Proof. Use the directed acyclic word graph DAWG(s), or the suffix tree
T(s). a

The number of factors appearing in the /-factorization of a text measures,
in a certain sense, the complexity of the text. The complexity of sequences is
related to the notion of entropy of a set of strings as stated below. Assume
that the possible set of texts of length n (on the alphabet A) is of size \A\hn

(for all length n). Then h (< 1) is called the entropy of the set of texts. For
example, if the probability of appearance of a letter in a text does not depend
on its position, then h is the entropy H(A) considered in Section 10.2.

Theorem 10.6 The number m of elements of the f -factorization of long enough
texts is upper bounded by hn/ log n, for almost all texts.

We end this section by reporting some experiments on compression algo
rithms. Table 10.1 gives the results. Rows are indexed by algorithms, and
columns by types of text files. "Uniform" is a text on a 20-letter alphabet
generated with a uniform and independent distribution of letters. "Repeated
alphabet" is a repetition of the word a6c . . . zABC... Z. Compression of the
five files has been executed using the Huffman method, Ziv-Lempel algorithm
(more precisely, COMPRESS command of UNIX), and the compression al
gorithm, called FACT, based on the /-factorization. Huffman method is the
most efficient only for the file "Uniform", which is not surprising. For other
files, the results obtained with COMPRESS and FACT are similar.

10.4. FACTOR ENCODING 161

Sources

Initial length
Huffman
COMPRESS
FACT

French _ TT .„ Repeated
text C program Uniform a l o h a b e t

62816 684497 70000 530000
53.27 % 62.10 % 55.58 % 72.65 %

41.46 % 34.16 % 63.60 % 2.13 %
47.43 % 31.86 % 73.74 % 0.09 %

Table 10.1: Sizes of some compressed files (best scores in bold).

Bibliographic notes

An extensive exposition of the theory of codes is given in [BP 85].

Elementary methods of data compression may be found in [He 87]. Prac
tical programming aspects of data compression techniques are presented by
Nelson in [Ne 95] and by Witten, Moffat and Bell in [WMB 99].

The construction of a minimal weighted tree is from Huffman [Hu 51]. The
Shannon-Fano method is presented independently by Shannon (1948) and
Fano (1949), see [BCW 90].

In the seventies, Faller [Fa 73] and Gallager [Ga 78] independently de
signed a dynamic data compression algorithm based on Huffman's method.
Practical versions of dynamic Huffman coding have been designed by Cormack
and Horspool [CH 84], and Knuth [Kn 85]. The precise analysis of sequen
tial statistical data compression has been done by Vitter in [Vi 87], where an
improved version is given.

NP-completeness of various questions on data compression can be found in
the book of Storer [St 77]. The idea of the semi-greedy factorization strategy
is from Hartman and Rodeh [HR 84]. And the dynamic factor encoding using
the move-to-front strategy is by Bentley, Sleator, Tarjan, and Wei [BSTW 86].

This strategy is also used the method designed by Burrows and Wheeler
(1999) and implemented by bzip.

In 1977, Ziv and Lempel designed the main algorithm of Section 10.4 (see
[ZL 77] and also [ZL 88]). The notion of word complexity, and Theorem 10.6
appears in [LZ 76]. The corresponding linear-time computations are by Rodeh,
Pratt, and Even [RPE 81] (with suffix trees) and Crochemore [Cr 83] (with
suffix DAWG's). A large number of variants of Ziv-Lempel algorithm may be
found in [BCW 90] and [St 88]. An efficient implementation of a variant of
ZL algorithm is by Welch [We 84]. The experimental results of Section 10.4
are from Zipstein [Zi 92]. References and results relating compression ratios
and entropy may be found in [HPS 92].

162 CHAPTER 10. TEXT COMPRESSION TECHNIQUES

Considering words that do not occur in the source text instead of factors,
Crochemore, Mignosi, Restivo, and Salemi (1998) have designed the DCA
method that has good performance [CMRS 01].

Some data compression methods do not use substitutions. A typical exam
ple is given by the application of arithmetic coding that often leads to higher
efficiency because it can be combined with algorithms that evaluate or approx
imate the source probabilities. A software version of data compression based
on arithmetic coding is by Witten, Neal, and Cleary [WNC 87]. It is not clear
to whom application of arithmetic coding to compression should be attributed,
see [BCW 90] for historical remarks on this point.

Chapter 11

Automata-theoretic
approach

Finite automata can be considered both as simplified models of machines and
as mechanisms used to specify languages. As machines, their only memory is
composed of a finite set of states. In the present chapter, both aspects are
considered and lead to different approaches to pattern matching. Formally,
a (deterministic) automaton G is a sequence (A, Q, init,8, T) where A is an
input alphabet, Q is a finite set of states, init is the initial state (an element
of Q), and S is the transition function. For reasons of economy we allow 6 to
be a partial function. The value S(q, a) is the state reached from state q by the
transition labelled by input symbol a, if any. The transition function extends
in a natural way to all words, and, for the word x, S(q, x) denotes, if it exists,
the state reached after parsing the word x with the automaton from the state
q. The set T is the set of accepting states, or terminal states of the automaton.

The automaton G accepts the language:

L(G) = {x : 5(init,x) is defined and belongs to T}.

The size of G, denoted by size(G), is the number of transitions of G: number
of pairs (q, a) (q is a state, a is a single symbol) for which S(q, a) is defined.
Another example for a useful size of G is the number of states denoted by
statesize(G).

Probably the most fundamental problem in this chapter is to construct in
linear time a (deterministic) finite automaton G accepting the words ending
by one pattern among a finite set of patterns, and gives a representation of
G of linear size, independently on the size of the alphabet. The use of the
automaton leads to a linear-time searching algorithm.

163

164 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

The background of the previous question is the regular-expression match
ing, in which the finite set is extended into a regular expression e. It is still
possible to build a linear-size automaton equivalent to the expression, but it
is no longer deterministic. This yields a slower algorithm to localize patterns
as stated in the next theorem.

Theorem 11.1 The recognition of patterns specified by a regular expression e
in a text text can be realized in time 0{size(e) x |iea;i|) and space 0(size(e)).

If the automaton is made deterministic, its size may grow exponentially
but the searching time no longer depends on the expression as stated next.

Theorem 11.2 The recognition of patterns specified by a regular expression
e in a text text can be realized in time 0((\A\ x 2S2ze(e)) + |ieii|) and space
0(\A\ x 2size^), where A is the set of letters occurring effectively in e.

The proof of the two above theorem may be found in books on automata
and compiling (see bibliographic references).

11.1 Aho-Corasick automaton

We denote by SMA(pat), for String-Matching Automaton, a (deterministic)
finite automaton G accepting the set of all words containing pat as a suffix.
In similar way, we denote by SMA(U) an automaton accepting the set of all
words having a word of the finite set of words II as a suffix. In other words,
noting A* the set of all words on the alphabet A,

L(SMA{pat)) = A*pat and L{SMA(U)) = A*U.

In this section we present a construction of the minimal finite automaton G =
SMA(pat), where minimality is understood based on the number of states of
automata.

Unfortunately, the total size of G depends heavily upon the size of the
alphabet. We show how to construct these automata in linear time (with
respect to the output).

With these automata, the following real-time algorithm SMA can be ap
plied to solve the string-matching problem (for one or many patterns). The
algorithm outputs a string of O's and l's that locates all occurrences of the
pattern in the text (l 's mark the end position of occurrences of the pattern).
The algorithm does not use the same model of computation as the algorithms
of Chapters 3 and 4 do. There, the elementary operation used by algorithms

11.1. AHO-CORASICK AUTOMATON 165

Figure 11.1: One step in the construction of an SMA—from SMA(abaab) to
SMA(abaaba)—unfolding the a-transition from state 5. Terminal states are
black.

(MP, BM, and their variations) is letter comparison. Here, the basic operation
is branching (computation of a transition).

Algorithm SMA { real-time transducer for string-matching }
state := init; TeaA(symbol);

while symbol ^ end-marker do begin
state := S(state, symbol);
if state in T then

write(l); { it reports an occurrence
else write(O);
rea.d(symbol);

end

of the pattern }

We start with the case of only one pattern pat. We show how to build
the minimal automaton SMA(pat). The function buildSMA builds SMA(pat)
sequentially. The core of the construction consists, for each letter a of the
pattern, in unfolding the a-transition from the last created state t. This is
illustrated on pattern ababa in Figure 11.1.

166 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

Figure 11.2: The function Bord (dotted arrows) of pattern abaaba, and the
automaton SMA(abaaba).

function buildSMA(pat): automaton;
create a state init; terminal := init;

for all b in A do S(init, b) := init;
for a := first to last letter of pat do begin

temp := 5(terminal, a); 5{terminal,a) :=
for all b in A do 5(x, b) := 6(temp, b);
terminal := x;

end;

new state x;

return (A, set of created states, 6, init, {terminal});

Lemma 11.1 Algorithm buildSMA constructs the automaton SMA(pat) in
time 0(m.\A\). The (minimal) automaton SMA(pat) has (m + 1)\A\ tran
sitions, and m + 1 states.

Proof. The proof is left as an exercise. •

There is an alternative construction of the automaton SMA(pat) that shows
the relation between SMA's and the MP-like algorithm of Chapter 3. Once we
have computed the failure table Bord for pattern pat, the automaton SMA(pat)
can be constructed as follows. We first define Q = { 0 , 1 , . . . ,m}, T — {m},
init = 0. The transition function (table) S is computed by the algorithm below.
Figure 11.2 simultaneously displays the failure links (arrows going to the left)

11.1. AHO-CORASICK AUTOMATON 167

and SMA(abaaba).

In some sense, we can consider that table Bord represents the transition
function 5 of the automaton SMA(pat). Then, MP algorithm becomes a mere
simulation of algorithm SMA above. In the simulation, branching operations
are substituted by letter comparisons. This remark is indeed the basis of Si
mon's algorithm. The representation of SMA(pat) by a failure function makes
the size of the representation independent of the alphabet without increasing
the total time complexity of the search phase.

Algor i thm { computes the transition function of SMA(pat) }
{ assuming that table Bord

for all a in A do 6(0, a) := 0;
if m > 0 t h e n S(0,pat[l]) := 1;
for i := 1 to m do

for all a in A do
if i < m and a = pat[i + 1]
else 6(i,a) := 5(Bord[i],a);

is already computed }

t h e n S(i,a) := i + 1

The algorithm above shows that the transition function of SMA(pat) can
be computed from the failure table Bord.

We next apply the same strategy to the recognition of a finite set of pat
terns. Assume that we have a set II of r patterns. The i-th pattern is denoted
by pi. Let m be the sum of lengths of all patterns. We no longer try to build
the minimal string-matching automaton corresponding to the problem. There
fore, SMA(H) is not necessarily the minimal (deterministic) automaton of the
language A*T\., as it is when II contains only one pattern.

To construct SMA(H), we first consider a tree (a word trie) Tree(II) in
which the branches are labelled by elements of II. The nodes of Tree (II)
are identified with prefixes of words in II. The root is the empty word e.
The father of a non-empty prefix xa (a a letter) is the prefix x. We write
father(xa) = x, and child(x,a) = xa. Nodes of Tree(II) are considered as
states of an automaton, and they are marked terminal or non-terminal. A
node is marked terminal if the word it represents is in the set II. All leaves
are terminal states, but it may also occur that some internal node is also a
terminal state. This happens when a pattern is a proper prefix of another
pattern. Figure 11.3 displays Tree({ab,babb,bb}). When applied to a set of
string II, the algorithm buildSMA below builds an automaton SMA (II) from
the tree Tree (II). The states of the automaton are the nodes of the tree. The
algorithm essentially transforms and completes the relation child of Tree (II)
into the transition S of SMA (II). The algorithm is very similar to the case of a

168 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

Figure 11.3: The trie of set {ab,babb,bb}. Terminal nodes are black (3, 7, 8).

single word. Here, no state is created because states are taken from the input
tree.

There is, however, a delicate point involved in the computation of terminal
states. It may occur that some word of II is an internal factor of another word
of the set. This is the case for the set {ab, babb, bb} considered in Figure 11.3
because ab is an internal factor of babb. Node 6 of Tree({ab, babb, bb}) becomes
a terminal state in SMA({ab, babb, bb}), because bab ends with the word ab
that is in the set (see Figure 11.4). More generally, this happens during the
construction when the clone of node x, namely node temp in the algorithm, is
itself a terminal node.

L e m m a 11.2 The algorithm buildSMA applied to a set II of strings builds
a deterministic automaton SMA (II) having the same set of nodes as the trie
Tree(II). It runs in time O (state size (Tree (U)) x \A\).

11.1. AHO-CORASICK AUTOMATON 169

Figure 11.4: The automaton SMA(U) for II = {ab, babb, bb}. Note that node 6
is terminal.

function buildSMA(JT): automaton;
{ father and child links refer to the tree TVee(II) }

{ states of SMA(U) are the nodes of Tree(II) }
if root is a terminal node then T :— {root} else T := 0;
for all b in A do 5(root, b) := root;
for all non-root nodes x of Tree (II) in bfs order do begin

t:— father(x); a := the letter such that x — child(t, a);
temp := S(t,a); 6(t,a) := x;
if x or temp are terminal nodes then add x to T;
for all b in A do

if child(temp,b) is defined then <5(a:,&) := child(temp,b)
else (5(re, 6) := 6(temp, b);

end;
return(j4, nodes of Tree(II), (5, rooi, T);

The automaton 5MA (II) can also be built from scratch without a previous
computation of Tree (II). Branches are unfolded as in the case of one pattern.
Patterns are processed simultaneously, all prefixes of the same length at a
time, which correspond to the breath-first-search order applied on Tree(II) by
the algorithm buildSMA. Figure 11.5 illustrates this alternative strategy for

170 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

Figure 11.5: One step of another possible algorithm for the construction of
SMA({ab, babb, bb}). Node 6 is a clone of 6(5, b) = 3 (on the left). Transitions
on node 6 are the same as those on node 3.

building SMA(U).

With the automaton SMA(U) built by the previous algorithm, searching a
text for occurrences of patterns that are in IT can be realized by the algorithm
SMA. The search is then performed in real time, and the space required to store
the automaton is 0(statesize(Tree(H)) x |.A|). Again, it is possible to represent
the automaton SMA(H) with a failure function. The advantage in doing so is
to represent the automaton within space 0(statesize(Tree(II))), quantity that
is independent of the alphabet. The search then becomes analogous to MP
algorithm of Chapter 3.

Continuing the analogy, a function Bord related to IT can then be defined
as follows. For a non-empty word u,

Bord(u) = longest proper suffix of u that is a prefix of some pattern in II.

We also denote by Bord the failure table defined on nodes of Tree (IT) (except
on the root) (see Figure 11.6). The relation used by the next algorithm that
computes table Bord is

Bord[ta] = Bordk[t]a for the smallest k such that Bordh[t]a e TWe(II),

Bord[ta] — e otherwise,

where t is a node of Tree (IT) different from the root.

Note that the algorithm also marks nodes as terminal in the same situation
as that explained for the direct construction of SMA(Il).

11.1. AHO-CORASICK AUTOMATON 171

Figure 11.6: The tree Tree(II) with suffix links Bord (left), and the automaton
SMA(U) (right), for II = {ab,babb,bb}.

procedure compute-Bord; { failure table on Tree(II) }
{ father and child refer to the tree Tree (II) }

{ Bord is defined on nodes of Tree (II) }
set Bord[e] as undefined;
for all a in Tree(U) do Bord[a] := e;
for all nodes x of Tree (II), a; > 2, in bfs order do begin

£ := father(x); a := the letter such that x = child(t,
z := Bord[t];
while z is defined and za is not in Tree (II) do z :=
if za is in Tree (II) then 5ord[a;]
if Bord\u] is terminal then mark

end

= za else Bord[x]
x as terminal;

a);

Bord[z\;
: = £ ;

The time complexity of the above algorithm is proportional to m, the total
size of II. The analysis is similar to that of computing Bord for a single
pattern. It is sufficient to estimate the total number of all executed statements
z := Bord[z\. This statement can again be treated as deleting some items from
a store and z as the number of items. Let us fix a path 7r of length k from
the root to a leaf. Using the store principle it is easy to prove that the total
number of insertions (increases of z) into the store for nodes of n is bounded
by k, hence, the total number of deletions (executing z := Bord[z}) is also
bounded by k. If we sum this over all paths we then get the total length m of

172 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

all patterns in II.

We can again base the construction of an automaton SMA(H) on the failure
table of Tree (II). The transition function is defined on nodes of the tree as
shown by the following algorithm.

Algorithm { computes transition function for SMA (II) }
for all
for all

a not in Tree (II) do
nodes x of Tree (II),

for all a in A do
if xa is in Tree (II)

S(e,a) := e;
\u\ > 0, in bfs order do

then 6(x,
else S(x,a) := S(Bord[x],a);

a) := xa

function AC(Tree(J[); text): boolean;
{ Aho-Corasick multi-pattern matching }
{ uses the table Bord on Tree (II) }

state := root; rea,d(symbol);
while symbol ^ end-marker do begin

while state is defined and child(state, symbol) is undefined do
state := Bord[state];

if state is undefined then state := root
else state := child (state, symbol);
if state is terminal then return true;
read(symbol);

end;
return false;

Algorithm AC is the version of algorithm MP for several patterns. It is a
straightforward application of the notion of the failure table (namely Bord).
The preprocessing phase of A C algorithm is the procedure compute-Bord.

Terminal nodes of SMA(H) can be assigned numbers corresponding to pat
terns in II. Hence, the automaton can produce in real-time numbers that
correspond to those patterns ending at the last scanned position of the text.
If no pattern occurs, 0 is written. This proves the following statement.

Theorem 11.3 The string-matching problem for a finite number of patterns
can be solved in time 0(n + m). The additional memory is of size 0(m).

11.2. DETERMINIZING AUTOMATA 173

Figure 11.7: Optimized table Bord on Tree({ab, babb, bb}). Note that the table
is undefined on node 4.

The table Bord used in AC algorithm can be improved in the following
manner. Assume, for example, that during the search, node 6 of Figure 11.6
has been reached, and that the next letter is a. Since node 6 has no a-son
in the tree, AC algorithm iterates function Bord from node 6. It successively
finds nodes 3 and node 4 where the iteration stops. It is clear that the test
on node 3 is useless in any situation because this node has no son at all. On
the contrary, node 4 plays its role because it has an a-son. Some iterations
of the function Bord can be precomputed on the tree. Figure 11.7 shows the
result of the transformation. The optimization does not change the worst-case
behavior of AC algorithm.

11.2 Determinizing automata

We consider a certain set S of patterns represented in a succinct way by a
deterministic automaton G with n states. The set S is the language L(G)
accepted by G. Typical examples of sets of patterns are S = {pat}, a singleton,
and S = {pat1,pat2,... ,patr}, a finite set of words. In the first example, the
structure of G is mainly done by the line of consecutive positions in pat. The
rightmost state (position) is the only terminal state. In the second example,
the structure of G is the tree of prefixes of patterns. All leaves of the tree are
terminal states, and some internal nodes can also be terminal if a pattern is a

174 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

^e^^o-^H K)^K)-%C^>0^

Figure 11.8: The non-deterministic pattern-matching automaton for abaaba.
The powerset construction gives the automaton SMA(abaaba) of Figure 11.2.
An efficient case of the powerset construction.

Figure 11.9: The non-deterministic pattern-matching automaton for the
set {ab,babb,bb}. The powerset construction gives the automaton
SMA({ab, babb, bb}) of Figure 11.4. An efficient case of the powerset construc
tion.

prefix of another pattern of the set.

We can transform G into a non-deterministic pattern-matching automaton,
denoted by loop(G), that accepts the language of all words having a suffix in
L(G). The automaton loop(G) is obtained by adding a loop on the initial
state, for each letter of the alphabet. The automata loop(G) for the two
examples of cases mentioned above are presented in Figure 11.8 and Figure
11.9 respectively. The actual non-determinism of the automata appears only
on the initial state.

We can apply the classical powerset construction (see [HU 79], for example)
to a non-deterministic automaton loop(G) to get an equivalent deterministic
automaton. It appears that, in the two cases of one pattern and of a finite

11.2. DETERMINING AUTOMATA 175

Figure 11.10: A non-efficient case of the powerset construction. The displayed
automaton results by adding loops onto the initial state of the deterministic
automaton accepting words of length 7 that start with letter a. The smallest
equivalent deterministic automaton has 128 states.

set of patterns, by doing so we obtain efficiently deterministic string-matching
automata. In the powerset construction, only those subsets that are accessible
from the initial subset are considered.

However, the idea of using loop(G) and the powerset construction on it alto
gether is not always efficient. In Figure 11.10 a non-efficient case is presented.
It is not hard to become convinced that the deterministic version of loop(G),
which has a tree-like structure, cannot have less than 27 states. Extending the
example shows that there exists a non-deterministic automaton, even of the
form loop(G), with n + 1 states that is transformed into an equivalent deter
ministic automaton having 2™ states. And that is has no smaller equivalent
deterministic automaton.

Similarly we can transform the deterministic automaton G accepting one
word pat into a non-deterministic automaton FAC{G) accepting the set Fac(pat)
of factors of pat (see Figure 11.11). The transformation can be done simply
by making all states simultaneously initial and terminal states. But we prefer
modifying it by creating additional edges from the single initial state to all
other states, edges that are labelled by all letters. It happens again that we
find an efficient case of the powerset construction if we start with the deter
ministic automaton accepting just a single word. The powerset construction
gives the smallest deterministic automaton accepting the suffixes of pat.

The powerset construction applied on automata of the form FAC(G) is not
always efficient (see Figure 11.12). If we take as G the deterministic automaton
with 2n + 3 states accepting the set S = (a + b)na(a + b)nc, then the automaton
FAC(G) also has 2n + 3 states. But the smallest deterministic automaton
accepting the set of all factors of words in S has an exponential number of
states.

Combining loop and FAC sometimes yields an efficient powerset construc
tion. This is done implicitly in Section 6.2 or when a DAWG is used as a
pattern-matching machine. There, the failure function defined on the automa
ton DAWG(pat) serves to represent the automaton loop (DAWG (pat)). The

2

176 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

Figure 11.11: An efficient case of the powerset construction. Applied to
FAC(G) accepting Fac(text), it gives the smallest automaton accepting the
suffixes of pat; it has a linear number of states.

overall result is efficient because both steps—from pat to DAWG (pat) and
from DAWG(pat) to loop (DAWG (pat))—are. However, in general, the whole
determinization process is inefficient.

11.3 Two-way pushdown automata

The two-way deterministic pushdown automaton (2dpda) is an abstract model
of linear-time computations on texts. A 2dpda G is essentially a deterministic
pushdown finite-state machine (see [HU 79]) that differs from the standard
model in its ability to move the input head in two directions.

The possible actions of the automaton are: changing the current state of
the finite control, moving the head by one position, and locally changing the
contents of the stack "near" its top. For simplicity, we assume that each change
of the contents of the stack is of one of two types:

• push(a)—pushing a symbol a onto the stack;

• pop—popping one symbol off the stack.

The automaton has access to the top symbol of the stack and to the symbol in
front of the two-way head. We also assume that there are special left and right
end-markers on both ends of the input word. The output of such an abstract
algorithm is "true" iff the automaton stops in an accepting state. Otherwise,
the output is "false." Initially the stack contains a special "bottom" symbol,
and we assume that at the final moment of acceptance the stack also contains

11.3. TWO-WAY PUSHDOWN AUTOMATA 177

a,b.

a,b

O * -4-
a,b

a,b

'a,b
\a,b

a,b

Figure 11.12: A non-efficient case of the powerset construction. The automaton
G (on the left) accepts (a + b)na(a + b)nc, for n = 3. A deterministic version
of FAC(G) (on the right) has, in this case, an exponential number of states.

one element. When the stack is empty the automaton stops (the next move is
undefined).

A problem solved by a 2dpda can be treated abstractly as a formal language
L consisting of all words for which the answer of the automaton is "true" (G
stops in an accepting state). We say also that G accepts the language L. The
string-matching problem, for a fixed input alphabet, can be also interpreted
as the formal language:

Lsm = {pat&ctext : pat is a factor of text}.

This language is accepted by some 2dpda and this property gives an automata-
theoretic approach to linear-time string-matching, because, as we shall see
later, a 2dpda can be simulated in linear time. Historically, in fact, it was one
of the first methods used for the (theoretical) design of a linear-time string-
matching algorithm.

Lemma 11.3 There is a 2dpda accepting the language Lsm.

Proof. We define a 2dpda G for Lsm. It simulates the naive string-matching
algorithm brute-forcel (see Chapter 3). At a given stage of the algorithm, we
start at a position i in the text text, and at the position j = 1 in the pattern
pat. The pair (i,j) is replaced by the pair (stack, j), where j is the position of
the input head in the pattern (and has exactly the same role as j in algorithm
brute-forcel). The contents of the stack is text[i. .n] with texi[i + l] at the top.

178 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

The automaton tries to match the pattern starting from position i + 1 in the
text. It checks if the top of the stack equals the current symbol at position
j in the pattern; if so, then (j = j + l,pop). This action is repeated until
a mismatch is found, or until the input head points on the marker "&." In
the latter case, G accepts. Otherwise, it goes on to the next stage. The stack
should now correspond to text[i + 1. .n] and j — 1. It is not difficult to reach
such a configuration. The stack is reconstructed by shifting the input head back
while simultaneously pushing scanned symbols of pat (that have been matched
successfully against the pattern). This shows that the algorithm brute-forcel
can be simulated by a 2dpda, and completes the proof. •

Similarly to the previous simulation, the problem of finding the prefix palin
dromes of a string, and several other problems related to palindromes, can be
interpreted as formal languages. Here is a sample:

Lprefpal = {ww u : u,w G A*, w non-empty word},

LPrefpai3 = {wwRuuRvvRz : w, v G A*,w,u,v non-empty words},

Lpai2 = {ww uu : w, u, v G A*, w, u non-empty words}.

All these languages related to symmetries are accepted by 2dpda. We leave
it as an exercise to construct appropriate 2dpdas.

The main feature of 2dpdas is that they correspond to some simple linear-
time algorithms. Assume that we are given a 2dpda G and an input word w
of length n. The size of the problems is n (the static description of G has
constant size). Then, it is proven below that testing whether w is in L(G)
takes linear time. We present the concepts that lead to the proof of the result.

The key concept for 2dpda is the consideration of top configurations also
called surface configurations. The top configuration of a 2dpda retains its top
element from the stack only. The first basic property of top configurations is
that they contain sufficient information for the 2dpda to choose the next move.
The entire configuration consists of the current state, the present contents of
the stack, and the position of the two-way input head. Unfortunately, there
are too many such configurations (potentially infinite, as the automaton can
loop while making push operations). It is easy to see that in every accepting
computation the height of the stack is linearly bounded. But this does not
help very much because there is an exponential number of possible contents of
the stack of linear height. The second basic property of top configurations is
that their number is linear in the size of the problem n.

Formally, a top configuration is a tuple C = (state, top, symbol,position).
The linearity of the set of top configurations obviously follows from the fact

11.3. TWO-WAY PUSHDOWN AUTOMATA 179

that the number of states and the number of top symbols (elements of the
stack alphabet) are bounded by a constant: they do not depend on n.

We can classify top configurations according to the type of next move of the
2dpda as pop configurations and push configurations. For a top configuration
C, we define Term[C] as a pop configuration C" accessible from C after some
number (possibly zero) of moves that do not pop the top symbol C. If there is
no such C" then Term[C] is undefined. Assume w. 1. o. g. that the accepting
configuration is a pop configuration and that the stack is a simple element.

The theorem below is the main result related to 2dpdas. It is surprising in
view of the fact that the number of moves is usually bigger than that of top
configurations. In fact, a 2dpda can make an exponential number of moves
and halt. But the result simply shows that shortcuts are possible.

Theorem 11.4 If the language L is accepted by a 2dpda, then there is a linear-
time algorithm to test whether x belongs to L (for fixed-size alphabets).

Proof. Let G be a 2dpda, and let w b e a given input word of length n. Let
us introduce two functions acting on top configurations:

• Pl(C) = C', where C" results from C by a push move; this is defined
only for push configurations.

• P2(CI, C2) = C", where C" results from C2 by a pop move, and the top
symbol of C" is the same as in Cl (C2 determines only the state and the
position).

Let POP be the boolean function defined by: POP(C) = true iff C is a pop
configuration. All these functions can be evaluated in constant time by a ran
dom access machine using the (constant-sized) description of the automaton.

It is sufficient to compute in linear time the value of Term[C0] (or find
that it is undefined), where CO is an initial top configuration. According to
our assumptions simplifying 2dpdas, if G accepts, then Term[C0] is defined.
Assume that initially all entries of the table Term contain a special value "not
computed."

We start with the assumption that G never loops and ends with a one-
element stack. In fact, if the move of G is at some moment undefined we
can assume that it goes to a state in which all the symbols in the stack are
successively popped.

Algorithm { linear-time simulation of the halting 2dpda }
for all configuration C do onstack[C] :=false;
return Comp(C0);

180 CHAPTER 11. AUTOMATA-THEORETIC APPROACH

function Comp(C);
if Term[C] = "not computed" then

if POP(C) t h e n Term[C] := C
else Term[C] := Comp(P2{C, Comp{Pl{C))));

r e t u r n Term[C];

The correctness and time linearity of the algorithm above are obvious in
the case of a halting automaton. The statement uTerm[C] : = . . . " is executed
at most once for each C. Hence, only a linear number of push moves (using
function P I) are applied.

Algorithm Simulatel;
{ a version of the previous algorithm that detects loops }

for all configuration C do onstack[C] :=false;
r e t u r n Compl(C0);

function Compl(C);
{ returns Term[C] if defined, 'false' otherwise, C l is a local variable }

if Term[C] = "not computed" then begin
C l := P1(C);
if onstack[Cl] then return false { loop }
else onstack[Cl] :— true;
Cl := Comp(Cl); onstack[Cl] := false; { pop move };
C l : = P 2 (C , C l) ;
if onstack[Cl] then return false { loop } else begin

onstack[C] :=false; onstack[Cl] :=true
end;
Term[C] := Comp{Cl)

end;
r e t u r n Term[C]\

The algorithm Simulatel is for the general case: it also detects a possible
looping of G for a given input. We use the table onstack initially consisting
of "false" values. Whenever we make a push move we then set onstack[Cl] to
true for the current top configuration Cl , and whenever a pop move is made
we set onstack[Cl] to false. The looping is detected if the automaton tries to

11.3. TWO- WAY PUSHDOWN A UTOMATA 181

put a configuration that is already on the (virtual) stack of top configurations.
And if there is a loop, such a situation occurs.

The algorithm Simulate 1 has also a linear-time complexity by the same
argument as in the case of halting 2dpdas. This completes the proof. •

Sometimes it is quite difficult to design a 2dpda for a given language L,
even if we Know that such 2dpda exists. An example of such a language L is:

L = {1™ : n is the square of an integer}.

A 2dpda for this language can be constructed by a method presented in
[Mo 85]. It is much easier to construct 2dpdas for the following languages:

{anbm : m = 2"}, {anbm : m = n 4 } , {anbm : m = log*(n)}.

But it is not known whether there is a 2dpda accepting the set of even
palstars, or the set of all palstars. In general, there is no good technique for
proving that a specific language is not accepted by any 2dpda. In fact the
"P= NP?" problem can be reduced to the question: does a 2dpda exist for a
specific language LI There are several examples of such languages. Generally,
2dpdas are used to give alternative formulations of many important problems
in complexity theory.

Bibliographic notes

Two "simple" pattern-matching machines are discussed by Aho, Hopcroft, and
Ullman in [AHU 74] and, in the case of many patterns, by Aho and Corasick
in [AC 75]. The algorithms first compute failure functions, and then the
automata. The constructions given in Section 11.1 are direct constructions
of the pattern-matching machines. The algorithm of Aho and Corasick is
implemented by the command "fgrep" of UNIX system. A version of BM
algorithm adapted to the search for a finite set of patterns was first sketched
by Commentz-Walter [Co 79]. The algorithm was completed by Aho [Ah 90].
Another version of Commentz-Walter's algorithm is presented in [BR 90]. An
algorithm for multiple string searches is presented in Crochemore et al. [C-R
93], where experiments on the real behavior of the algorithm are presented.

The determinization of automata can be found in the standard textbook
of Hopcroft and Ullman [HU 79]. The question of efficient determinization of
automata is from Perrin [Pe 90]. This paper is a survey on the main properties
and discoveries about automata theory.

This page is intentionally left blank

Chapter 12

Approximate pat tern
matching

In practical pattern-matching applications, the exact matching is not always
pertinent. It is often more important to find objects that match a given pattern
in a reasonably approximate way. In this chapter, approximation is measured
mainly by the so-called edit distance: the minimal number of local edit oper
ations needed to transform one object into another. The analogue for DNA
sequences is called the alignment problem (see Figure 12.1). Algorithms are
mainly based on the algorithmic method called dynamic programming. We
also present problems strongly related to the notion of edit distance, namely,
the computation of longest common subsequences, string matching allowing
errors, and string matching with don't care symbols.

12.1 Edit distance

An immediate question arising in applications is how to test the equality of
two strings allowing some errors. The errors correspond to differences between

A T G A A - - T C T T A C C G C C T C G

I I I I I I I I I I I I I
A T G A G G C T C T G G C C - C C T - G

Figure 12.1: Alignment of two DNA sequences showing the operations of
changes, insertions ("-" in top line), and deletions ("-" in bottom line).

183

184 CHAPTER 12. APPROXIMATE PATTERN MATCHING

the two words. We consider in this section three types of differences between
two strings x and y:

change: symbols at corresponding positions are distinct,

insertion: a symbol of y is missing in a; at a corresponding position,

deletion: a symbol of x is missing in y at a corresponding position.

We require the minimum number of differences between x and y. We translate
this as the smallest possible number of operations (change, deletion, insertion)
to transform x into y. This is called the edit distance between x and y, and
denoted by edit(x,y). It is clear that it is a distance between words, in the
mathematical sense. This means that the following properties are satisfied:

• edit(x, y) > 0,

• edit(x, y) = 0 iff x = y,

• edit(x,y) = edit(y,x) (symmetry),

• edit(x,y) < edit(x,z) + edit(z,y) (triangle inequality).

The symmetry of edit comes from the duality between deletions and insertions:
a deletion of the letter a of a; in order to get y corresponds to an insertion of
a into y to get x.

Example. The text x = wojtk can be transformed into y = wjeek using one
deletion, one change and one insertion. This shows that edit(wojtk, wjeek) <
3, because it uses three operations. In fact, this is the minimum number of
edit operations to transform wojtk into wjeek.

From now on, we consider that words x and y are fixed. The length of x is
m, and the length of y is n, and we assume that n > m. We define the table
EDIT by:

EDIT[i,j] = edU{x[l. .i},y[l. .j})

for 0 < i < m and 0 < j < n. The boundary values are defined as follows (for
0 < i < m, 0 < j < n):

EDIT[0,j]=j, EDIT[i,0] = i.

There is a simple formula for computing other elements.

12.1. EDIT DISTANCE 185

source

X

1

c

b

a

b

a

\

\

\

\

\

b

\

\

\

\

c

\

\

\

a

\

\
_

\

b

\
\

* \

b

\

\
\

b

\

\

a

_

a

\

\ \ \
sink

\

delete letter of x

change letter of x
by letter of y

insert letter of v into x

no change

Figure 12.2: The path corresponds to the sequence of edit operations: insert(a),
insert(b), delete(b), insert(b), insert(b), change(c,a).

(*) Dynamic Programming Recurrence:

EDIT[i,j] = mm(EDIT[i - 1, j] + 1, EDIT[i,j - 1] + 1,
EDIT[i-l,j-l]+d(x\i],y\j]),

where d(a, b) = 0 if a — b, and d(a, b) = 1 otherwise.

The formula reflects the three operations, deletion, insertion, and change, in
that order.

There is a graph theoretical formulation of the editing problem. We consider
the grid graph also called the alignment graph, denoted by G. It is composed
of nodes (i, j) (for 0 < i < m , 0 < j < n).

The node (i — 1, j — 1) is connected to the three nodes (i — l,j), (i,j — 1), (i, j)
when they are defined (i.e., when i < m, or j < n).

Each edge of the grid graph has a weight corresponding to the recurrence (*).
The edges from (i — 1, j - 1) to (i — 1, j) and {i,j — 1) have weight 1, as they
correspond to the insertion and deletion of a single symbol, respectively. The
edge from (i — 1, j — 1) to (i, j) has weight 9(a:[i],j/[

Figure 12.2 shows an example of grid graph for words cbabac and abcabbbaa.

The edit distance between words x and y equals the length of a least weighted
path in this graph from the source (0,0), left upper corner, to the sink (m, n),
right bottom corner.

186 CHAPTER 12. APPROXIMATE PATTERN MATCHING

function
{ \x\ = m

for i :-
for j :
for i :•

edit(x, y) { computation of edit distance }
, |y| = n, EDIT is a matrix o
= 0 to TO do EDIT[i,0] := i\
= 1 to n do EDIT[0,j] := j ;
= 1 to TO do

for j := 1 to n do
EDIT[i,j] = mm{EDIT[i -

EDIT[i
return EDIT[m,n};

f integers }

l,j] + l,EDIT[i,j
-l,j-l]+d(x[t\,

- 1] + 1,
y[j});

The algorithm above computes the edit distance of strings x and y. It
stores and computes all values of the matrix EDIT, although only one entry,
EDIT[m,n], is required. This serves to save time, and this feature is called
the dynamic programming method. Another possible algorithm to compute
edit(x, y) could be to use the classical Dijkstra's algorithm for shortest paths
in the grid graph.

Theorem 12.1 Edit distance of two words of lengths TO andn can be computed
in 0(mn) time using 0(min{TO, n}) additional memory.

Proof. The time complexity of the algorithm above is obvious. The space
complexity results from the fact that we do not have to store the entire table.
The current and the previous columns (or lines) are sufficient for carrying out
computations. •

We can assign specific costs to edit operations, depending on the type
of operations and on the type of symbols involved. Such a generalized edit
distance can be computed using a formula analogous to equation (*).

As noted in the proof of the previous theorem, the whole matrix EDIT
does not need to be stored (only two columns are sufficient at a given step)
in order to compute only edit(x, y). However, we can keep it in memory if we
want to compute a shortest sequence of edit operations transforming x into y.
This is essentially done by tracing back in the matrix how each value has been
obtained.

12.2 Longest common subsequence problem

In this section, we consider a problem that illustrates a particular case of the
edit distance problem of the previous section. This is the example of computing

12.2. LONGEST COMMON SUBSEQUENCE PROBLEM 187

source

c

b

a

b

a

c

a

fill

b

mm

c a b b a

sink

Figure 12.3: The size of the longest subsequences is the maximal number of
shaded boxes (associated with matches) on a monotonically decreasing path
from source to sink. Compare with Figure 12.4.

source

c

b

a

b

a

c

a b c b b a

\

\

\

\

—<
sink

Figure 12.4: Assigning cost 2 diagonal edges, the length of the path is TO + n.
Diagonal edges correspond to equal letters, other edges to edit operations.

188 CHAPTER 12. APPROXIMATE PATTERN MATCHING

longest common subsequences (see Figure 12.3). We denote by lcs(x,y) the
maximal length of subsequences common to x and y. For fixed x and y, we
denote by LCS[i,j] the length of a longest common subsequence of x\l. .i] and

y[i.-j].
There is a strong relationship between the longest common subsequence

problem and a particular edit distance computation. Let editdi(x,y) be the
minimal number of operations delete and insert necessary to transform x into
y. This corresponds to a restricted edit distance where changes are not allowed.
A change in the edit distance can be replaced by a pair of operations, deletion
and insertion. The following lemma shows that the computation of lcs(x, y) is
equivalent to the evaluation of editdi(x, y). The statement is not true in general
for all edit operations, or for edit operations having distinct costs. However,
the restricted edit distance editdi remains to give weight 2 to changes, and
weight 1 to both deletions and insertions. Recall that x and y have respective
length m and n, and let EDITdi[i,j] be editdi(x[l. .i], [1. .j]).

Lemma 12.1 We have 2 • lcs(x, y) =m + n— editdi(x, y), and 2 • LCS[i, j] =
i+j — EDlTdi[i,j], for 0 <i <m and 0 < j <n.

Proof. The equation can be easily proved by induction on i and j . This is
also apparent on the graphical representation in Figure 12.4. Consider a path
from the source to the sink in which diagonal edges are only allowed when the
corresponding symbols are equal. The number of diagonal edges in the path is
the length of a subsequence common to x and y. Horizontal and vertical edges
correspond to a sequence of edit operations (delete, insert) to transform x into
y. If we assign cost 2 to the diagonal edges, the length of the path is exactly
the sum of the lengths of words, m + n. D

As a consequence of Lemma 12.1 computing lcs(x, y) takes the same amount
of time as computing the edit distance of the strings. A longest common subse
quence can even be found with linear extra space (see bibliographic references).

Theorem 12.2 A longest common subsequence of two strings of lengths m, n
can be computed in 0(mn) time using 0{mn) additional memory.

Proof. Assume that the table EDITdi is computed for zero-one costs of
edges. Table LCS can be precomputed from Lemma 12.1. After that, a longest
common subsequence can be constructed from the table LCS. •

Let r be the number of shaded boxes in Figure 12.3. More formally, it is the
number of pairs (i,j) such that x[i] = y[j]. If r is small (which happens often
in practice) compared to mn, then there is an algorithm to compute longest
common subsequence that is faster than the previous algorithm.

12.2. LONGEST COMMON SUBSEQUENCE PROBLEM 189

a b c a b b a b a

*<°Xi>-(IXI>©—©-©KzXD-®—•

a b c a b b a b a

»<M>-^XM^-(!><6Kz)-(!>0-

processing letter a

a b c a b b a b a

Figure 12.5: Hunt-Szymanski strategy on the word y = abcabbaba. Par t i t ions
of positions just before processing letter a of x = cba (top), and just after
(bot tom).

The algorithm is given below. It processes the word x sequentially from left
to right. Consider the situation in which x[l. A — 1] has jus t been processed.
The algorithm maintains a part i t ion of positions on the word y into intervals
Io, h, • • • , h, • • • tha t are defined by

Ik = {j:lcs{x{l..i-l],y[l..j])=k}.

In other words, positions in a class Ik correspond to prefixes of y having the
same maximal length of common subsequence with x[l. .i — 1]. Consider, for
instance, y = abcabbaba and x = cb.... Figure 12.5 (top) shows the part i t ion
{Io,h,l2} of positions on y. For the next symbol of x, letter a, the figure
(bot tom) displays the modified part i t ion {Io, h, I2, h}- The computat ion re
duces to shifting to the right, like bowls on a wire, positions corresponding to
occurrences of a inside y.

The algorithm les below implements this strategy. It makes use of opera
tions on intervals of positions: CLASS, SPLIT, and UNION. They are defined
as follows. For a position p on y, CLASS(p) is the index k of the interval 1^
to which it belongs. When p is in the interval [f,f + l,...,g], and p / / ,
then SPLIT(h,p) is the pair of intervals ([/ , f + 1,... ,p—l],\p,p+l,..., g]).
Finally, UNION is the union of two intervals; in the algorithm, only unions of
disjoint consecutive intervals are performed.

190 CHAPTER 12. APPROXIMATE PATTERN MATCHING

Theorem 12.3 Algorithm les computes the length of a longest common sub
sequence of words of length m and n (m < n) in 0((n + r) logn) time, where
r = \{{i,j) : x\i] = y[j]}\.

Proof. The correctness of the algorithm is left as an exercise. The time
complexity of the algorithm strongly relies on an efficient implementation of
intervals Ik's. Using an implementation with B-trees, it can be shown that each
operation CLASS, SPLIT, and UNION takes O(logn) time. Preprocessing lists
of occurrences of letters of the word y takes O(nlogn) time. The rest of the
algorithm takes 0{r\ogn) time. •

function lcs{x,y): integer; { Hunt-Szymanski algorithm }
{ m = |a:| and n = \y\ }

I0 := { 0 , 1 , . . . , n}; for k := 1 to n do Ik = 0;
for i := 1 to m do

for each p position of x[i] inside y
in decreasing order do begin

k := CLASS{p);
if k = CLASS(p - 1) then begin

(Ik,X):=SPLIT(Ik,p);
Ik+i:= UNION(X,Ik+1);

end;
end;

return CLASS(n);

According to Theorem 12.3, if r is small, the computation of les by the
last algorithm takes O(nlogn) time, which is faster than with the dynamic
programming algorithm. But, r can be of order mn (in the trivial case
where x = am,y = an, for example), and then the time complexity becomes
0(mnlogn), which is larger than the running time of the dynamic program
ming algorithm.

The problem of computing les can be reduced to the computation of the
longest increasing subsequence of a given string of elements belonging to a
linearly ordered set. Let us write the coordinates of shaded boxes (as in Fig
ure 12.3) from the first to the last row, and from left to right within rows. By
doing so, we get a string w. No matrix table is needed to build w, the words
x and y themselves suffice. For example, for the words of Figure 12.4 we get
the sequence

((1,3), (2,2), (2,5), (2,6), (3,1), (3,4), (3,7),
(4,2), (4,5), (4,6), (5,1), (5,4), (5,7), (6,3)).

12.3. STRING MATCHING WITH ERRORS 191

Define the following linear order on pairs of positions:

(i,j) < (M) iff ((* = *0 and (j > I)) or ((t < k) and (j < I)).

Then a longest increasing (according to <C) subsequence of the string w gives
a longest common subsequence of the words x and y. There is an elegant
algorithm to compute such increasing subsequences running is 0(r log r) time.
It presents an alternative to the above algorithm.

12.3 String matching with errors

String matching with errors differs only slightly from the edit distance prob
lem. Here, we are given pattern pat and text text and we want to compute
mm(edit(pat, y) : y £ !F(text)). Simultaneously, we want to find a factor y of
text realizing the minimum and the position of one of its occurrences on text.
We consider the table SE (that stands for String matching with Errors), of
the same type as table EDIT:

SE[i,j] = mm(edit(pat[l. .i],y) : y g T{text[l. .j))).

The computation of table SE can be executed with dynamic programming. It
is very similar to the computation of table EDIT.

Theorem 12.4 The problem of string matching with errors can be solved in
0(mn) time.

Proof. Surprisingly the algorithm is almost the same as that for computing
edit distances. The only difference is that we initialize SE[0,j] to 0, instead of
j for EDIT. This is because the empty prefix of pat matches an empty factor
of text (no error). The formula (*) also works for SE. Then, SE[rn,n] is the
distance between pat and one of its best matches y in the text. To find an
occurrence of y and its position in text, we can use the same graph-theoretic
approach as we used for the computation of longest common subsequences. It
is recovered by a trace back inside the computed table SE from an extremal
value. This completes the proof. D

One of the most interesting problems related to string matching with errors
concerns the case in which the allowed number of errors is bound by a constant
k. The number k is usually understood as a small fixed constant. We show
that this problem can be solved in 0(n) time, or more exactly in 0(kn) time,
if k is not fixed. For a fixed value of the parameter k, this gives an algorithm

192 CHAPTER 12. APPROXIMATE PATTERN MATCHING

diagonal p p p+1 p-l p

0 d-special nodes £ (rf-l)-nodes

Figure 12.6: The computation of d-special nodes: nodes reachable by one edge
of weight 1 from a (d — l)-node.

having an optimal asymptotic time complexity. Recall that the string edit
table SE is computed according to the recurrence:

(*) SE[iJ]=min(SE[i-l,j] + l,SE[i,j-l] + l,SE[i-l,j-l]+d(x\i],y\j])),

for words x and y.

Suppose that we have a fixed bound k on the number of errors. We re
quire that the complexity is 0(kn). Only 0{kn) entries of the table must be
considered. The basic algorithmic trick is to consider only so-called d-nodes,
which are entries of the table SE satisfying special conditions. The d-nodes
are defined in such a way that altogether we haveO(fcn) such nodes.

We consider diagonals of the table SE. Each diagonal is oriented top-down,
left-to-right. We define a d-node as the last pair (i, j) on a given diagonal
satisfying SE[i,j] = d. Note that it is possible that a diagonal has no d-node.
The approximate string-matching problem reduces to the computation of d-
nodes. And it is clear that there is an occurrence of the pattern with d errors
ending at position j on text iff (m,j) is a d-node.

Computation of d-nodes is executed for d = 0 , 1 , . . . , k in this order. Com
putation of 0-nodes is equivalent to string matching without errors. Assume
that we have already computed the (d— l)-nodes. To compute d-nodes we need
two auxiliary concepts: d-special nodes, and maximal subpaths of zero-weight
on a given diagonal. For a node (i, j), define the node NEXT(i, j) = (i+t, j+t)
as the lowest node on the same diagonal as (i,j), reachable from (i,j) by a
subpath of zero weight. The subpath can be of zero length, and in this case
NEXT(i,j) = (i, j). A d-special node is a node reachable from a (d — l)-node

12.3. STRING MATCHING WITH ERRORS 193

0'> J) Cl d-special node

maximal subpath
of zero weight

(i+t,j+t) |fc d-node

diagonal p

Figure 12.7: The computation of d-nodes from cZ-special nodes.

by one edge. Once (i-special nodes are computed, the d-nodes can be easily
found, as suggested in Figure 12.7. The structure of the algorithm is given
below.

Theorem 12.5 Assume that the alphabet is of a constant size. Approximate
string matching with k errors can be achieved in 0{kn) time.

Proof. It is sufficient to prove that we can run 0(kn) calls of the function
NEXT in 0{kn) time. The equation NEXT(i,j) = (i + t,j +1) means that
t is the size of the longest common prefix of pat[i. .m] and text[j. .n). Assume
that we have computed the common suffix tree for words pat and text. The
computation of the longest common prefix of two suffixes is equivalent to the
computation of their lowest common ancestor LCA in the tree. There is an
algorithm (mentioned in Chapter 5) that preprocesses any tree in linear time
in order to allow further LCA queries in constant time. This completes the
proof. •

194 CHAPTER 12. APPROXIMATE PATTERN MATCHING

Algorithm Approximate string-matching with at most k errors;
compute 0-nodes { exact string-matching }

for d := 1 to k do begin
compute d-special nodes; { see Figure 12.6 }
{ computation of d-nodes }
S = {NEXT(i,j) : (i,j) is a d-special node };
for each diagonal p do

select on p, the lowest node that is in the set S;
{ selected nodes form the set of d-nodes }

12.4 String matching with don't care symbols

In this section, we assume that pattern pat and text can contain occurrences of
the symbol 0 , called the don't care symbol. Several different don't care symbols
can be considered instead of only one, but the assumption is that they are all
indistinguishable from the point of view of string matching. These symbols
match any other symbol of the alphabet. We define an associated notion of
matching on words as follows. We say that two symbols a, b match if they are
equal, or if one of them is a don't care symbol (see Figure 12.8). We write
a « b in this case. We say that two strings u and v (of same length) match if
u[i] « v[i] for any position i. String matching with don't care symbols entails
the problem of finding a factor of text that matches the pattern pat according
to the present relation « .

a a a 0 b a b b 0 0 a a b 0

a 0 a b b 0 0 b b a a a b a

Figure 12.8: Two strings, with don't care symbols, that match.

String matching with don't care symbols does not use any of the techniques
developed for other string-matching questions. This is because the relation w
is not transitive. Moreover, if symbol comparisons (involving only the rela
tion f») are the only access to input texts, then there is a quadratic lower
bound for the problem, which additionally proves that the problem is quite
different from other string-matching problems. The algorithm presented later
is an interesting example of a reduction of a textual problem to a problem in
arithmetics.

12.4. STRING MATCHING WITH DON'T CARE SYMBOLS 195

Theorem 12.6 If symbol comparisons are the only access to input texts, then
f2(n2) such comparisons are necessary to solve the string-matching problem
with don't care symbols.

Proof. Consider a pattern of length m, and a text of length n = 2m, both
consisting entirely of don't care symbols 0 . Occurrences of the pattern start at
all positions 1 , . . . , m. If the comparison upat[j] « text[i}" for 1 < j < m and
1 < j < n, is not done, then we can replace pat[j] and text[i] by two distinct
symbols a,b (that are not don't care symbols). The output then remains
unchanged, but one of the occurrences is disqualified. Hence, the algorithm is
not correct. This proves that all comparisons upat[j) K, text[i\" for 1 < j < m
and m < i <n, must be executed. •

Contrary to what occurs elsewhere, we temporarily assume that positions
in pat and text are numbered from zero (and not from one). We start with
an algorithm that "multiplies" two words in a manner similar to how two
binary numbers are multiplied, but ignoring the carry. We define the product
operation • as the composition of w and the logical "and" in the following
sense. If x, y are two strings, then z = x • y is defined by

z[k] = AND(a;[i] w y[j] :i + j = k),

for k = 0 , 1 , . . . , m + n — 2. In other words, it is the logical "and" of all values
x[i] « y[j] taken over all i, j such that both i + j = k and x[i], y[j] are defined:
We can write symbolically • = (« , and).

Let p be the reverse of pattern pat, and consider z = p • text. Let us
examine the value of z[k]. We have z[k] = true iff (p[m — 1] « text[k — m + 1])
and p[m — 2] as text[k — m + 2] and . . . and p[0] « text[k]). Therefore, uz[k] =
true" exactly means that there is an occurrence of pat ending at position k
in text. Hence, the string matching with don't care symbols reduces to the
computation of the product •.

Let us define an operation on logical vectors similar to •. If x,y are two
logical vectors, then z = x§y is defined by

z[k] = OR(i[i] and y[j] : i+ j = k).

For a word x and a symbol a, denote by logical(a, x) the logical vector in which
the i-th component is true iff x[i] = a. Define also

LOGICALa^(x,y) = logical(a,x) 0 logical(b,y).

The following fact is now apparent: for two words x, y, the vector x • y equals
the negation of logical OR of all vectors LOGICALatb(x,y) over all distinct
symbols a, b that are not don't care symbols.

196 CHAPTER 12. APPROXIMATE PATTERN MATCHING

A consequence of the above fact is that, for a fixed-size alphabet, the com
plexity of evaluating the product • is of the same order as that of computing
the operation (}. Now, we show that the computation of the operation <) can
be reduced to the computation of the ordinary product * of two integers. Let
x, y be two logical vectors of size n. Let k = logn. Replace logical values true
and false by ones and zeros, respectively. Next, insert an additional group of
k zeros between each two consecutive digits. We obtain binary representations
of two numbers x', y'. Let z' be the integer x * y. The vector z = x 0 y can
be recovered from z' as follows. Take the first digit (starting at position 0),
and then each (k + l)-th digit of z'; convert one and zero into true and false,
respectively. In this way, we have proven the following statement.

Theorem 12.7 The string-matching problem with don't care symbols can be
solved IM(n\ogn) time, where IM(r) denotes the complexity of multiplying
two integers of size r.

The value IM(r) depends heavily on the model of computations considered.
If bit operations are counted, then the best known algorithm for the prob
lem is given by the Schonhage-Strassen multiplication, which works in time
only slightly larger than O(rlogr). No linear-time algorithm for the problem
is known. This gives an 0(nlog n)-time algorithm for the string-matching
problem with don't care symbols. String matching with don't care symbols
generates a methodological interest because of its relationship to arithmetics.
It would be also interesting to find relationship between some other typical
textual problems to arithmetics.

Bibliographic notes

The edit distance computation can be attributed to Needleman and Wunsch
[NW 70] and to Wagner and Fischer [WF 74]. Various applications of se

quence comparisons are presented in a book edited by Sankoff and Kruskal
[SK 83]. Approximate string-matching algorithms are widely used for molec
ular sequence comparisons, for which a large number of variants have been
developed (see, of example [GG 89]). Computation of a longest common sub
sequence (not only its length) in linear space is from Hirschberg [Hi 75]. The
last algorithm of Section 12.2 is from Hunt and Szymanski [HS 77]. It is the
base of the "diff" command of UNIX system. An improvement on it is due to
Apostolico and Guerra [AG 87].

An algorithm for the longest increasing subsequence can be found in [Ma
89].

12.4. STRING MATCHING WITH DON'T CARE SYMBOLS 197

There have been numerous substantial contributions to the problem, among
them are those by Hirschberg [Hi 77], Nakatsu, Kambayashi, and Yajima [NKY
82], Hsu and Du [HD 84], Ukkonen [Uk 85b], Apostolico [Ap 85] and [Ap 87],
Myers [My 86], Apostolico and Guerra [AG 87], Landau and Vishkin [LV 89],
Apostolico, Browne, and Guerra [ABG 92], Ukkonen and Wood [UW 93].

A subquadratic solution (in 0(n2/ log n) time) to the computation of edit
distances has been given by Masek and Paterson [MP 80] for fixed-size alpha
bets. A subquadratic solution for unrestricted cost functions may be found in
[CLU02].

The first efficient string matching with errors is by Landau and Vishkin
[LV 86b]. The computation of lowest common ancestors (LCA) is discussed
by Schieber and Vishkin in [SV 88] (see the bibliographic notes at the end
of Chapter 5). The best asymptotic time complexity of the string matching
with don't care symbols is achieved by the algorithm of Fischer and Paterson
[FP 74]. Practical approximate string matching is discussed by Baeza-Yates
and Gonnet [BG 92], and by Wu and Manber [WM 92]. These solutions are
close to each others. The second algorithm is implemented under UNIX as
command "agrep."

This page is intentionally left blank

Chapter 13

Matching by dueling and
sampling

In this chapter we present a non-classical string-matching algorithm in which
the preprocessing phase is closely related to borders of words and to KMP
algorithm. We also introduce an interesting new operation called the duel.
A more essential use of this operation can be seen in optimal parallel string
matching and two-dimensional pattern matching. Hence, this section can be
treated as a preparation for more advanced algorithms to be presented later.

13.1 String matching by duels

We assume in this section that the pattern pat is non-periodic, which means
that its smallest period is larger than \pat\/2. This assumption implies that
two consecutive occurrences of the pattern in a text (if any) are at a distance
greater than \pat\/2. However, it is not clear how to use this property for
searching the pattern. We proceed as follows: after a suitable preprocessing
phase, given too close positions in the text, we eliminate one of them as a
candidate for a match. This leads to the idea of a duel. The basic table which
enables us to search for the pattern created by a duel-based algorithm can be
computed either as a side effect of KMP algorithm, or by use of the table Bord.
Duels are performed at search phase. Finally we define the following witness
table WIT: for 0 < i < \m\,

WIT[i] = any k such that pat[i + k] =£ pat[k\, or
WiT[i] = 0, if there is no such k.

199

200 CHAPTER 13. MATCHING BY DUELING AND SAMPLING

pat
1

pat b
1 i+k

Figure 13.1: Witness of mismatch a ^ b, k = WIT[i]

text

pat]

pat ni
IE

i2

Figure 13.2: Duel between two inconsistent positions i\ and i2. One of them
is eliminated by comparing symbol "?" in the text with a and b.

This definition is illustrated in Figure 13.1. A position i\ on text is said to be in
the range of a position i2 if |ii — i2\ < m. We also say that two positions ix < i2

on the text are consistent if i2 is not in the range of i\, or if WIT[i2 — ii] = 0. If
the positions are not consistent, then we can remove one of them as a candidate
for the starting position of an occurrence of the pattern just by considering
position i2 + WIT[i2 — i{\ on the text. This is the operation called a duel (see
Figure 13.1). Let i = i2 — i\, and k = WIT[i]. Assume that we have k > 0,
that is, positions i\, i2 are not consistent. Let a = pat[k] and b = pat[i + k],
then a^b. Let c be the symbol in the text at position i2 + k; it is indicated by
"?" in Figure 13.1. We can eliminate at least one of the positions i\ or i2 as a
candidate for a match by comparing c with a and b. In some situations, both
positions can be eliminated, but, for simplicity, the algorithm below always
removes exactly one position. Let us define, with a = pat[WIT[i2 — ii]]:

duel{ii,i2) — (if a = c then i2 else i{).

The position that "survives" is the value of duel, the other position is elimi
nated.

Assume the witness table is computed. It is then possible to reduce the
search for pat in text to the search for pattern l m (repetition of m l's) in a
text of 0's and l's. This last problem is obviously simpler than the general
string-matching problem and can be solved in linear time (essentially with one

13.1. STRING MATCHING BY DUELS 201

counter). The following property of consistent positions (transitivity) is crucial
for the correctness of the algorithm. It is called the consistency property:

let i\ < 22 < 13; if i\, 12 are consistent and 12,13 are consistent

then 11,13 are also consistent.

Using this property we are able to eliminate a set of candidate positions from
the text in such a way that all remaining positions are pairwise consistent. This
can be done using the mechanism of stack (pushdown-store). Assume we have
a stack of positions satisfying the property: positions are pairwise consistent,
and in increasing order (from the top of the stack). Then, if we push onto the
stack a position that is both smaller than the top position and consistent with
it, the stack retains the property.

A set of consistent positions is complete if an occurrence of the pattern
cannot start at any position that is not in the set. We say that a position x in
the text agrees with a candidate position y if the symbol at position x agrees
with the corresponding symbol of the pattern when it is placed at position y
(that is, text[x] = pat[x — y]). Assume that S is a complete set of consistent
positions, x is any position in the text, and y is any candidate position in S
such that x is in the range of y with x > y. Then, as a consequence of the
consistency property, we have the following equivalence:

x agrees with y iff x agrees with all positions in S.

Hence, it is sufficient to check the agreement of each position with any position
from a set of consistent positions, see Figure 13.2. In this checking, we flag
x with the value 0 or 1 depending on the agreement. Using this feature, the
string matching reduces to the matching of unary patterns (patterns consisting
entirely of ones).

The duel-based algorithm uses an additional zero-one vector, called textl.
The value of the vector textl computed by the algorithm satisfies: pattern lm

occurs at position i in textl iff the original pattern occurs at i in the text.

The algorithm obviously has linear-time complexity. Moreover, this com
plexity does not depend on the size of the alphabet. The basic component
that remains to be shown is the computation of the witness table WIT on the
pattern.

Later we shall see, in the case of parallel computations, that the fact that
any position k for a witness is possible has a great importance. This is sufficient
to choose any position, which is easier to compute in parallel. However, in the
case of sequential computations, we can take the smallest such position as a
witness. This leads us to define W7T[i] as PREF[i], for each position i such
that i + WIT[i] < m and WIT[i) - 0 for others. Section 3.2 contains both the
definition of PREF, and a linear-time algorithm to compute it. The complexity

202 CHAPTER 13. MATCHING BY DUELING AND SAMPLING

of this latter algorithm is independent of the size of the alphabet, which shows
the following statement.

Theo rem 13.1 String matching by duels takes linear time (search phase and
pre-processing phase).

We believe that matching by duels is one of the basic algorithms, since
the idea of duels is the key to the optimal parallel string matching of Vishkin.
Historically, however, the first optimal (for fixed alphabets) parallel string-
matching algorithm uses another type of duels that we call expensive duels. Its
advantage is that no additional table, like the one of witnesses, is needed. Its
drawback is that the resulting algorithm is not optimal.

Let us observe the very parallel nature of this algorithm at a given stage
k: the actions on all fc-blocks can be performed simultaneously.

function expensive-duel(i, j) : integer;
k:=log2(j -i) + l;

if text[i + 1.A + 2k] = pat[l. .2k] then return i else return j ;

Theorem 13.2 Assume that all prefixes of pat in the form pat[l. .2fc] are
non-periodic. Then, the algorithm String-searching-by-expensive-duels takes
0(n log m) time.

Proof. At stage k we consider only 0(n/2k) survivals. Each expensive duel
at this stage takes 0(2k) time. There are m/2 stages. Together this gives
0(n log m) time. This completes the proof. •

The expensive duels are restricted in use. Historically, however, they ap
peared before the concept of duel appeared. This is the only reason why it
is reported here. The function expensive-duel is similar to the function duel,
but its computation is much more expensive. This is the reason for the name
"expensive duel." In the searching algorithm below, we partition the text into
disjoint blocks of size 2fc. We call them A;-blocks.

13.1. STRING MATCHING BY DUELS 203

function String-searching-by-duels: Boolean;
{ Let 5 be a stack of positions }

S := empty stack;
for i :— n down to 1 do begin

push i on the stack S;
while \S\ > 2 and

the top two elements i\, ii of S are inconsistent do
replace them in S by the single element duel{i\, 22);

end;
mark in the text all positions that are in S;
{ all marked positions are pairwise consistent }
for i := 1 to n do begin

k := first marked position to the left of i, including i;
if k undefined or pat[i — k + 1] ^ text[i] then £ex£l[i] := 0
else textl[i) := 1;

end;
if textl contains the pattern l m return true
else return false;

We only show the use of expensive duels for a special type of pattern.
Assume that the size of the pattern is a power of two. Assume also that
pat[1..2k] is non-periodic, for each 1 < k < logn. Here, such patterns are
called special patterns.

Algorithm String-searching-by-expensive-duels;
{ assume n — m + 1 and m are powers of two }

{ assume that the pattern is special }
initially all positions in [1. .n — m] are survivals;
for A; := 1 to logn do

for each fc-block do begin
let i and j be the only survivals in the fc-blocks;
make expensive-duel(i, j) a survival;

end;
{ there are 0(n/m) survivals }
for each survival position i do

check occurrence of pat at position i naively;

204 CHAPTER 13. MATCHING BY DUELING AND SAMPLING

the sample S

i I I I I
M t * t
I — V I • • V i V n — ; -v . > ,>'i ,i^,^^ l^|^^ l^ l

,iiwni —ii.n>m>«iii.i • « w i.

position i match at selected positions

Figure 13.3: An occurrence of the sample S in the text.

occurrence of the sample
at position i

. m/2-k _

~r the desert

the only candidate for the
pattern occurrence in this area

Figure 13.4: An occurrence of the sample, and the desert area.

13.2 String matching by sampling

Both KMP algorithm and BM algorithm (Chapter 2) scan symbols at con
secutive positions on the pattern. The first one scans a prefix of the pattern,
and the second one scans a suffix of the pattern. In this section, we show an
algorithm that first scans a sequence of not necessarily consecutive positions
on the pattern, and then, in case of success, completes the scan of the pattern.
The first scanning sequence is called a sample.

A sample S for the pattern pat is a set of positions on pat. A sample S
occurs at position i in the text if pat[j] = text[i +j] for each j in S (see Figure
13.3).

A sample S is called a good sample if it satisfies the two conditions (see
Figure 13.4):

13.2. STRING MATCHING BY SAMPLING 205

1. S is small: | 5 | = O(logm),

2. there is an integer k such that if 5 occurs at position i in the text then
no occurrence of the pattern starts in the segment [i — k..i + m/2 — k],
except perhaps at position i. The segment is called the desert.

If the pattern has period p, setting k = min(m, 2.p — 1), the prefix pat[l. .k] is
called the non-periodic part of the pattern.

Theorem 13.3 Assume we are given the period of the pattern pat, and a
good sample of its non-periodic part, then, the search for pat can be done in
O(nlogn) time with only O(logm) additional memory space.

Proof. Assume for a moment that the pattern itself is non-periodic. Let us
partition the input text into windows of size m/2. We consider each window
separately, and find the first and the last positions of occurrences of the sample
in the window (if there are at least two occurrences). These occurrences only
are possible candidates for an occurrence of the pattern. Each of these occur
rences is checked in a naive way (constant size additional memory is sufficient
for that). This proves that the non-periodic part of the pattern can be found in
the text with the required complexity. The general case of periodic patterns is
left as an exercise. One has to find sufficiently many consecutive occurrences
of the non-periodic part of the pattern. An additional counter is needed to
remember the number of consecutive occurrences. This completes the proof.
•

Theorem 13.4 If the pattern is non-periodic then it has a good sample S.
The sample can be constructed in linear time.

Proof. Assume we have computed the witness table WIT (see Section 13.1).
Let us consider potential occurrences of the pattern at positions 1,2,. . . , m/2
of some imaginary text. Let us identify these pattern occurrences with numbers
1,2,. . . , m/2. The occurrence corresponding to the i-th position is called the
i-th row. If we draw a vertical line at a position j , then it can intersect a
given i-th row or not. If it intersects, then there is a symbol at the point of
intersection (see Figure 13.5). Let us denote this symbol by symbol(i,j).

Claim 1. Let i\, i^ be two different elements of [1. .m/2]. Then, there is an
integer j such that the j-th. column intersects both rows i\ and if, Moreover,
symbol{i\, j) ^ symbol(i,2,j). The integer j can be found in constant time if
the witness table of the pattern is precomputed.

The claim is a reformulation of the property of non-periodicity. Due to non-
periodicity, for occurrences of the pattern placed at positions ii,i2 there is a

206 CHAPTER 13. MATCHING BY DUELING AND SAMPLING

column j t + 1 selected rows
setAt+j

Figure 13.5: The set At+i = {i 6 At : Symbol(i, jt+i) — a} is the smaller one.

mismatch position j given by j = i2+ WITfo - h] • This means that if we look
at the column placed at position j , then this column intersects occurrences of
the pattern with different symbols.

Claim 2. Let J be any set of rows. If a vertical column intersects the first
and the last row of J , then it intersects all the rows of J .

We now prove an equivalent geometrical formulation of the thesis of the theo-

Claim 3. There is a row i and a set J of O(logm) vertical columns placed
at positions ji,J2, • • • ,jk such that:

1. all columns in J intersect the row i,

2. if i ^ r (r e [1. .m/2]), then there is a column j in J intersecting rows i
and r such that symbol(i,j) ^ symbol(r,j).

Proof of the claim. We construct the set J and the row i by the algorithm
below, that ends the proof of the theorem. •

13.2. STRING MATCHING BY SAMPLING 207

Algorithm Find-good-sample;
J := empty set; AQ := [1. .ra/2]; t:— 0;

while | At | > 1 do begin
find any column jt+i that intersect all rows of At

with two different symbols at intersection points;
{ use Claim 1 and Claim 2 }
Let a, b be the two different symbols at intersections;
At+i := smaller of the two sets:

{ie At: symbol(i,jt+i) = a}
and {i G At : symbol(i,jt+i) = b};

add jt+i to J; t := t + 1;
end;
let i be the unique element of At;
return(J, i);

Bibliographic notes

The ideas of duels and samples can be attributed to Vishkin who applied it to
the design of parallel algorithms [Vi 85], [Vi 90] (see Chapter 16). Expensive

duels were implicitly considered by Galil in [Ga 85].

This page is intentionally left blank

Chapter 14

Two-dimensional pat tern
matching

The two-dimensional pattern matching is interesting due to its relationship to
image processing. The efficiency of algorithms is even more important in the
two-dimensional case because the size of the problem, the number of pixels of
images, is very large in practical situations.

We mainly consider rectangular images. The pattern-matching problem is
to locate an m x m' pattern array PAT inside an n x n' (text) array T. The
position of an occurrence of PAT in T, (see Figure 14.1), is a pair (i, j), such
that

PAT = T[i + 1.A + m,j + 1. .j + m'].

We present two different solutions to the two-dimensional pattern match
ing. The first reduces the problem to multi-pattern matching. The second is
based on two-dimensional periodicities and the notion of duels; it is presented
in the next chapter. The linear-time algorithms with constant coefficients in
dependent on the size of the alphabet are presented in Chapter 15. We also
consider non-rectangular patterns in relation to approximate matching.

The method of sampling is presented here for two-dimensional patterns and
appears to be very powerful for almost all patterns.

209

210 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING

w
Figure 14.1: The pattern PAT occurs at position (i,j) in T.

text array

occurrence

v3p §H

^

1 2 3 1 2 1
> '

pat

^
1 2

tern

3

array

1
1
1 2

»

1

Figure 14.2: Two-dimensional pattern matching by searching for columns of
the pattern.

14.1. MULTI-PATTERN APPROACH 211

a a a

b b a

a a b

Figure 14.3: A pattern array, and the SMA automaton of its columns. Columns
1 and 2 are identified with state 4, column with state 5.

a

a

b

a

b

a

b

a

b

a

b

a

a

a

b

a

a

b

b

a

a

b

a

a

a

b

a

b

a

a

b

b

a

a

b

a

b

b

b

a

b

a

1

3

5

4

2

4

0

1

2

4

2

4

1

3

5

4

3

5

0

1

3

5

4

3

1

2

4

2

4

3

0

0

1

3

5

4

0

0

0

1

2

4

Figure 14.4: A text array, and its associated array of states (according to the
SMA automaton of Figure 14.3).

14.1 Multi-pattern approach

The first solution to two-dimensional pattern matching is to translate it into a
string-matching problem. The pattern is viewed as a set of strings, its columns.
To locate columns of the pattern within columns of the text array requires
searching for several patterns (see Figure 14.2). Moreover, the occurrences of
patterns must be found in a particular configuration within rows: all columns
of the patterns are to be found in the order specified by the pattern, and all
ending on a same row of the text array. In this section, we use the Aho-Corasick
approach (see Chapter 11) to solve the multi-pattern matching problem.

The strategy for searching for PAT in the text array T is as follows. Let II
be the set of all (distinct) columns of PAT (treated as words). We first build the
string-matching automaton G = SMA(H) with terminal states (see Chapter

links

212 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING

1 0

3 1

5

4

2

2

4

2

4 4

1 0 1

3 1 2

5 3

4 5

3

5

4

2

4 4

3 3

0

0

1

3

5

4

0

0

0

1

2

4

a

a

b

a

b

a

b

a

b

a

b

a

a

a

b

a

a

b

b

a

a

b

a

a

a

b

a

b

a

a

b b

b

a

a

b

a

b

b

a

b

a

Figure 14.5: The pattern "445" corresponds to the pattern array of Figure 14.3
(left). Occurrences of "445" in the array of states give occurrences of the
pattern array in the original text array.

11). Each terminal state corresponds to a pattern of II. Therefore, columns
of the patterns are identified with states of the SMA automaton. There can
be less than m terminal states because of possible equalities between columns.
Then, the automaton is applied to each column of T. We generate an array T'
of the same size as T, and in which the entries are states of G. The pattern PAT
itself is replaced by a string pat drawn from the set of states: the i-th symbol
of pat is the state identified with the z'-th column of PAT. The remainder of
the procedure consists in locating pat inside the lines of T". The strategy is
illustrated by Figures 14.3, 14.4 and 14.5. This yields the subsequent result.

Theorem 14.1 The two-dimensional pattern matching can be solved in time
0{N\og\A\), where N — n • n' is the size of the text array, and A is the
alphabet.

Proof. The time to build the automaton SMA(U) is 0(Mlog \A\) where
M = m x m' is the size of the pattern PAT. The construction of the array
of column numbers T" takes 0(Nlog \A\) time. The final search phase, string
matching inside lines of T", takes O(N) time. •

The above algorithm seems to be inherently dependent upon the alphabet.
This is because of the automaton approach. The existence of a linear-time
alphabet-independent algorithm is discussed in the next chapter.

14.2 Don't cares and non-rectangular patterns

Assume that the two-dimensional pattern contains a certain number of holes.
Holes can be regarded as filled with a special symbol that matches any other
symbol. It is the don't care symbol 0 considered in Chapter 12 for approximate

14.2. DON'T CARES AND NON-RECTANGULAR PATTERNS 213

the pattern

Figure 14.6: Searching a non-rectangular mxm pattern within pieces of shape
2mx2m. Lin(PAT) (see proof of Theorem 14.2) is independent of the position
where PAT is placed inside shape S.

string matching. If the pattern is not rectangular, we can also complete it,
adding enough don't care symbols so that it fits into an mxm' rectangle. By
doing so, both questions become similar.

T h e o r e m 14.2 Two-dimensional pattern matching with don't care symbols,
and pattern matching of non-rectangular patterns can be done in 0(N log m)
time (with an mxm pattern, m>m, and annxn' text array, N = nn').

Proof. We linearize the problem. Let PAT be a non-rectangular pattern
that fits into an m x m rectangle, with m>m. We consider windows of shape
2m x 2m on the text array (see Figure 14.6). We first solve the problem as if
n = 2m. We define Lin(PAT) as a one-dimensional version of PAT. It is a
string with don't care symbols of 0(m) size constructed as follows: place PAT
inside a 2m x 2m shape S. All positions not occupied by PAT are filled with
the don't care symbol 0 ; then, concatenate the rows of S, starting from the
topmost row; within the string obtained in this way, remove the longest prefix
and the longest suffix containing only don't care symbols. The resulting string
is Lin(PAT).

The basic property of the transformation Lin is: Let T be an 2m x 2m text
array. Let Lin(T) be the string obtained by concatenating all rows of T,
starting from the topmost row; then, searching for PAT in T is equivalent to
searching for Lin(PAT) inside Lin(T). This can be executed using methods for
string matching with don't care symbols (see Chapter 12). Then it is proven
how to do it in 0(n log2 n) time, which here becomes 0(m2 log2 m). A text
array of size greater than 2m x 2m can be decomposed into such (overlapping)
sub-arrays on which the above procedure is applied. The total time becomes

2m

2m

1 L I

^

-.1 -b
r i I !

214 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING

then 0(N log m). This completes the proof. •

14.3 2D-Pattern matching with mismatches

The definition of a distance between two arrays is more complicated than
for (one-dimensional) strings. Insertions or deletions of a symbol can result
in an increase or decrease of the length of one row (column). Therefore, for
simplicity, we concentrate here on the approximate pattern matching with only
one edit operation: replacement of one symbol by another. This corresponds
to unit-cost mismatches.

For two strings x, y denote by MISMk(x, y, i) the set of A; first (left-to-right)
mismatch positions between y[i. .i + \x\ — 1] and x. We are not interested in
more than k mismatches.

Lemma 14.1 Assume we are given two strings x and y, and their suffix tree
processed for LCA queries. Then, the computation of MISMk(x,y,i) can be
executed in 0(k) time for each position i in the text y.

Proof. First we find the longest common prefix of y[i. .n] and x. This is
done using an LCA query for the leaves corresponding to y and x in the joint
suffix tree for these both texts. In this way, we obtain the first mismatch
position i\.

Then, we look for the longest common prefix of x[i\ —i + l. .m] and y[i\. .n].
This is again done by asking a suitable LCA query about leaves related to
x[i\ —i + l. .m] and y[ii. .n]. We obtain the next mismatch position (if its
exists). We continue in this way until k mismatch positions are found, or (in
the case where there are less than k mismatch positions) all mismatch positions
are found.

The time is proportional to the number of LCA queries, that is 0(k). This
completes the proof. D

Theorem 14.3 Assume the alphabet is of constant size. The problem of
matching with a fixed number k of mismatches a pattern within an n x n text
array can be solved in 0(kn2) time.

Proof. Let PAT be the mxm pattern, where m < n. The algorithm starts
as in the exact two-dimensional pattern matching, by a multi-pattern string
matching. The Aho-Corasick automaton for all columns of the pattern is
built. Then, the automaton is applied to all columns of the text T to obtain a
state array T". The pattern array is replaced by a string of states pat.

14.4. MULTI-PATTERN MATCHING 215

looking for bad columns

approximate matching
for bad columns

V

Figure 14.7: Approximate matching. There are at most k bad columns. If there
is a match with at most k mismatches, then the total number of mismatches
in all bad columns cannot exceed k.

Figure 14.7 illustrates how we check the approximate match at position (r, s)
with at most k mismatches. Let y be the r-th row of T". We compute
MISMk(pat,y,s). This produces all columns that contain at least one mis
match with the pattern PAT placed at (r,s). Let us call these columns the
bad columns.

We compute the total number of mismatch positions in bad columns with
respect to the corresponding columns of the pattern (assuming it is placed at
position (r, s)). We are only interested in a total of at most k mismatches. All
mismatches are found by using the function MISM. The total complexity is
proportional to the number of all LCA queries executed in the algorithm. We
make at most k such queries.

Hence, for a fixed position (r, s) after the preprocessing, the complexity is 0{k).
Since there is a quadratic number of positions, the total time complexity is as
required. •

14.4 Multi-pattern matching

In this section we consider a set of k square pattern arrays Xi,X2,. •• ,Xk-
For a given nxn text array T we want to check if any of these patterns occurs
in T. This is the multi-pattern matching in two dimensions. Assume, for
simplicity, that the size of the alphabet is constant. The strategy developed
for Karp-Miller-Rosenberg algorithm (see Chapter 7) yields a solution to the
general multi-pattern problem that works in 0(n2 log n) time. We omit the

bad columns

(r,s) /w
i 1

1
I
I i

216 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING

obvious proof.

Fact. Two-dimensional multi-pattern matching can be solved in 0(n2 logn)
time using the algorithm KMR.

Indeed, the above result can be improved to 0(n2 log k) time, where k is
the number of patterns. Of course, k can be of the same order as n, and
this does not provide a substantial improvement. But we are also interested
in alternative algorithms and some interesting new ideas behind them that
enrich the algorithmics of two-dimensional matching. The natural alternative
algorithm considered here is based on an extension of the Aho-Corasick string-
matching automaton to the two-dimensional case. By the way, this also shows
the important extension of the notion of border, suffix, and prefix to two-
dimensional arrays. It also provides another pattern-matching algorithm for
one pattern: it shows that searching the pattern along a fixed diagonal of
the text array is reducible to one-dimensional string matching. Again, LCA
preprocessing is crucial for the two-dimensional pattern-matching algorithm of
the section. First consider the simple case in which all the patterns are of the
same shape. Assume that they are mxm arrays. The method of Section 14.1
generally facilitates this situation. This gives a linear-time algorithm when all
patterns are of the same size.

Theo rem 14.4 Two-dimensional multi-pattern matching can be solved in time
O(N) when the alphabet is fixed and all patterns are of the same size (where
N is the total size of the problem).

Proof. The algorithm works as follows. The Aho-Corasick machine is con
structed for all columns of all patterns. Each pattern array is then transformed
into a string of states. We obtain a set of strings x i,a;2j •• • ,%k- The text array
T is replaced by the state array T" in the same way as in Section 14.1. Any
multi-pattern string-matching algorithm then gives a solution. This gives a
linear-time algorithm for this special case (fixed alphabet). •

Next, we consider the general case, in which the patterns are square arrays
of possibly different sizes. Again, the algorithm is an extension of the Aho-
Corasick multi-pattern matching.

A prefix (resp. suffix) of a square array is a square sub-array containing
the left top corner (resp. right bottom corner) of the array. We construct
a two-dimensional version of the Aho-Corasick multi-pattern automaton A
as follows. Each pattern is considered as a string: its i-th letter is the i-th
segment of the array. The i-th segment is composed of the upper part of
the i-th column, and the left part of the i-th row, beginning both at the i-th
position on the diagonal (see Figure 14.8). The states of A are prefixes of all

14.4, MULTI-PATTERN MATCHING

Figure 14.8: The z-th segment of a pattern array.

border of X

a pattern
array

Figure 14.9: A border of a sub-array X of a pattern.

the pattern arrays. The set of states is organized in a tree in which the nodes
correspond to the two-dimensional prefixes of the pattern.

The edges outgoing a node at depth i — 1 are labeled by the names of the
i-th segments of the patterns. We can give consistent names to j- th segments
of all patterns in time 0(k log k) for a given i, since there are at most k such
segments, one for each pattern. The equality of two segments can be checked
in constant time using an LCPref query (a longest common prefix query) after
a suitable preprocessing of the tree in which the edge labels are names of
segments.

After that, the failure table Bord on the tree is built. The notion corre
sponds to borders of square arrays as illustrated in Figure 14.9. They are the
largest proper sub-arrays that are both prefix and suffix of the given array.

We say that a segment TX\ is a part of a segment TT2 if the columns part of

218 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING

the i-th
diagonal

\ \
.:\

y

1^ '.'.'.'.'.'>.

k

\

Figure 14.10: Checking the occurrences of a pattern at position (r,s) in the
text array.

•E\ is a prefix of the column part of W2 and a similar relation holds between
rows of the segments. Define the following relation = = between two segments.
Let 7ri,7T2 be j-th and j'-th segments, respectively, with i < j . Then, we write
m = = 7T2 iff either, both i = j holds and the names of the segments are the
same, or, ni is a part of iT2. The table Bord for the two-dimensional case is
defined as for strings, except that relation = = is considered instead of equality.

T h e o r e m 14.5 Assume that the alphabet is fixed. Then the two-dimensional
multi-pattern matching can be solved in time 0(Nlogk) time, where k is the
number of patterns.

Proof. The two-dimensional pattern matching is essentially reduced to
one-dimensional multi-pattern matching (see Figure 14.10). The equality of
symbols is replaced by the relation = = , and the corresponding table Bord
works similarly. D

14.5 Matching by sampling

The concept of deterministic sample introduced in Chapter 13 for one-dimen
sional patterns is very powerful. Its wide applicability appears, for example, in

14.5. MATCHING BY SAMPLING 219

occurrence of
sample

potential occurrence
of the pattern

the sample

/ only match for these
4 ^ \ H ^ P ° s r a o n s *s checked

Figure 14.11: A deterministic sample S.

the domain of parallel computation, leading to a constant-time parallel string
matching. The aim of this section is to extend and use the concept of a deter
ministic sample to the two-dimensional case. Almost every non-periodic pat
tern has a deterministic sample for which the properties are analogous to those
of one-dimensional patterns. The use of 2-D sampling gives solutions both to
sequential computation requiring only small extra space, and to constant-time
parallel computation for the two-dimensional pattern-matching problem.

A deterministic sample S for PAT is a set of positions in the pattern PAT
satisfying certain conditions. The sample S occurs at position x = (i,j) in the
text array if PAT[y) = T[x + y] for each y in S (see Figure 14.11).

The central idea related to samples is the field of fire of the sample S similar
to the desert area for strings. Finding an occurrence of the sample in the text
assures us that there is an m/2 x m/2 square in the text, called the field of
fire of the occurrence of 5 , where there is only one possible matching position
of the entire pattern. This possible matching position is z = (k, I) relative to
the origin of the field of fire (see Figure 14.12). Let x be a position of S in
the text array. Let us denote by fofire(x, S) its corresponding field of fire: it
is the m/2 x TO/2 sub-square of the text array at position x - z. The field of
fire should satisfy the field of fire condition described below.

Whenever the sample S occurs at position x in the text array, then there
is no occurrence of the pattern within the area fofire(x, S) of the text array,
except maybe at position x. The size of a square S, denoted by | 5 | , is defined

220 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING

I

iiii

Figure 14.12: The field of fire of the sample S.

here as the length of its side. The deterministic sample S must be small but
effective in "killing" other positions. It must satisfy the following conditions:

(*) \S\=0(logm),

(**) \fofire(x,S)\>rn/4.

We consider only very particular samples. They are special segments: hori
zontal factor of length 4 log TO at position (TO/2, TO/2) in the pattern (see Fig
ure 14.13). Moreover, we say that the pattern PAT is good if its special segment
occurs only once in PAT. Note that any segment lying "far away enough" from
the boundaries of the array would work as well.

T h e o r e m 14.6 Assume that the alphabet contains at least two symbols. Then:

(a) almost all patterns are good,

(b) for almost all patterns there is a logarithmic-size sample for which the
field of fire is an TO/2 X TO/2 square,

(c) both, the sample can be found, and the goodness of the pattern can be
checked in constant extra space and linear time.

Proof. The first point follows by simple calculations. If the patterns is good
the special segment is the sample. It is of logarithmic size. Its field of fire is the
left upper TO/2 X TO/2 quadrant of the pattern. If the sample occurs at position
x in the text array, then no occurrence of the pattern in the text has position

k

occurrence of the
sample at point x

m

text array

"fofire(x, S)

14.6. AN ALGORITHM FAST ON THE AVERAGE 221

x + (k,l) for 0 < k < m/2, 0 < I < m/2, and (k,l) ^ (0,0). In that case
there would be two occurrences of the special segment in the pattern. The last
point follows from the fact that all occurrences of the special segment can be
found within claimed complexities using algorithms for string matching. This
completes the sketch of the proof. •

Theorem 14.7 Assume that the alphabet contains at least two symbols. Then
the two-dimensional pattern matching can be solved in constant extra space and
linear time, for almost all patterns,

Sketch of the proof. Only good patterns and considered, so results hold
only for them. The whole text array is partitioned into m/2 x m/2 windows.
Within each window, we search for occurrences of the special segment with a
serial algorithm working with the claimed complexities. This is done for all
windows independently, window after window.

14.6 An algorithm fast on the average

A natural problem related to pattern matching is designing algorithms that
are fast in practice. Since the notion of "practice" is not well denned, it is
often considered for algorithms that are fast on the average. In this section,
we design an algorithm making 0((N log M)/M) comparisons on the average
for the two-dimensional pattern matching (the pattern is an m x m array, the
text is an n x n array, N = n2, and M = m2). All symbols appear with the
same probability independently of each other in arrays. If M is of the same
order as N, the algorithm makes only 0(log N) comparisons on the average.
The method described here is similar to the use of special segments in Section
14.5.

For simplicity we assume that the alphabet has only two elements, and
that each of the two symbols of the text is chosen independently with the
same probability. Let r be equal to 4 log m.

The algorithm is similar to the algorithm fast-on-average presented at the
end of Chapter 2 as a variation of Boyer-Moore algorithm for string matching.

Informal description of the algorithm.

1. Partition the text array into windows of shape mxm; the sub-window of
a window consists of the last r positions of the lowest row of the window;

2. first check if the text contained in the sub-window is a factor of any row
of the pattern;

222 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING

window

m

m

T
small 0(logm)
subwindow

Figure 14.13: Searching for an occurrence of the pattern starting in the window;
checking the sub-window first.

3. if so, search for an occurrence of the pattern having its left upper corner
position in the window by any linear-time algorithm; apply the same
procedure to each window.

The suffix of length r of the last row of the pattern behaves like a fingerprint.
It has only logarithmic size, by definition. But it is unlikely to appear in sub-
windows. The test at line 2 above can be done with the help of a suffix tree
or a suffix DAWG. On fixed alphabets, this takes 0(r) time. There are N/M
windows, and a simple calculation shows the following (see also end of Chapter
2)-

Theo rem 14.8 The two-dimensional pattern matching can be solved by do
ing 0(n2 log(m)/m2) comparisons on the average, for fixed alphabets, after
preprocessing the pattern.

Bibliographic notes

The simple linear-time (on fixed alphabets) two-dimensional pattern-matching
algorithms of Section 14.1 have designed independently by Bird [Bi 77] and
Baker [Ba 78].

The algorithm to search for non-rectangular patterns is from Amir and
Farach [AF 91].

The powerful concept of a deterministic sample for strings was introduced
by Vishkin in [Vi 91]. The wide applicability of this concept was recently
shown by Galil [Ga 92] who designed a constant parallel-time string matching

14.6. AN ALGORITHM FAST ON THE AVERAGE 223

(with a linear number of processors). The 2D-sampling method is from [CGR
92]. The algorithm "fast on the average" is a simple application of the similar
algorithm described in Chapter 2. The idea comes from [KMP 77]; see also
[BR 90].

The notion of a suffix tree on arrays is discussed by Giancarlo in [Gi 93].

This page is intentionally left blank

Chapter 15

Two-dimensional
periodicities

Similarly as in the one-dimensional case, the most interesting algorithms for ex
act two-dimensional matching are related to periodicities. However the struc
ture of 2D-periodicities is much more complex, in particular the periodicity
lemma (Section 1.7) is no longer directly applicable. For simplicity we assume
that the pattern is an m x m square array of symbols.

A period of the pattern PAT is a non-null vector p = (r, s) such that
—m < r < m, 0 < s < m, and

PAT[i,j} = PAT[r + i,s + j]

whenever both sides of the equation are defined. Note that the second compo
nent of a period is assumed to be a non-negative integer, because we consider
that period vectors are always oriented from left to right. There are two cat
egories of periods, see Figure 15.1 and Figure 15.2, according to whether r is
negative or not.

If there are close occurrences of the pattern in a text array, then there is
an overlap of the pattern over itself, that is, a periodicity. If x and y are close
positions of two occurrences PAT in the array T, assuming that y is to the
right of x, the vector y — x is a period of the pattern.

15.1 Amir-Benson-Farach algorithm

The algorithm of the present section is based on the idea of duels. The string-
matching algorithm by duels presented in Chapter 13 for "one-dimensional"

225

226 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

vector (r, s)
a period of pattern

X

Figure 15.1: When (i,j) <t (k,l). If two occurrences of PAT overlap, PAT
has a period (r,s) = (k,l) - (i,j). Otherwise, a duel between (i,j) and (k,l)
can be applied, to eliminate one possibility.

15.1. AMIR-BENSON-FARACH ALGORITHM 227

vector (r, s)
a period of
second type

Figure 15.2: The second category of period, when (i, j) <b (k,l).

228 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

Figure 15.3: Ordering on positions: x <b y (left), x' <t y' (right).

strings extends to the two-dimensional case. The advantage of this approach is
to produce a two-dimensional pattern-matching algorithm in which the search
phase takes linear time, independently of the alphabet. The two-dimensional
settings for duels, witnesses, and consistency relation are necessary for adapting
the string-matching algorithm by duels. Positions in arrays are numbered
top-down (rows) and left-to-right (columns). We define two partial orderings
<b (for bottom) and <t(for top) on positions on the array T:

{i, j) <6 {k, I) iff i > k and j < I,
(i,j) <t (k,l) iff i < k and j < I.

The relation x <& y means that position x is to the left and at the bottom
of y. The relation x <t y means that position x is to the left and at the top
oty. For example, we have (i,j) <b (k,l) and (i',j') <t (k',V) in Figure 15.3.
Making duels during the searching phase of the pattern-matching algorithm
supposes, that we have an analogue to the witness table considered for strings.
For arrays, the two-dimensional witness table WIT is defined as follows:

WIT[r, s] = any position (p, q) such that PAT[p, q) ^ PAT\r + p, s + q],
WIT[r, s] = 0, if there is no such (p, q).

The definition is illustrated in Figure 15.2 for the two categories of vector (r, s)
(depending on whether r < 0 holds or not).

A duel is only performed on close positions according to the following no
tion. A position (k, I) is said to be in the range of the position (i,j) (according
to the size of PAT) if \k — i\ <m and \l — j \ < m. In addition, two positions x

15.1. AMIR-BENSON-FARACH ALGORITHM 229

and y such that y is to the right of x, are said to be consistent if y is not in the
range of a;, or if WIT[y — x] = 0 , which means that y — x is a period of PAT.
Let us recall the notion of duel. If the positions x and y are not consistent, the
pattern PAT cannot appear both at positions x and y inside the array T. In
constant time, we can remove one of them as a candidate for a position of an
occurrence of the pattern. Such an operation, called a duel, can be described as
follows. Assume that positions a; and y are not consistent, with y to the right
of x. Let z = WIT[y - x], a = PAT[z] and b = PAT[y - x + z\. By definition
of the witness table WIT, symbols a and b are distinct. Let c be the symbol
T[y + z]. This symbol cannot be both equal to a and to b, so at least one of the
positions x,y is not a matching position for PAT. lib ^ c, the pattern cannot
occur at position x. If a ^ c, the same holds for y. Therefore, comparing c
with a and b permits us to eliminate (at least) one of the positions. Note that
in some situations both positions could be eliminated, however, for simplicity
of the algorithm, only one position is always removed at a time. This is a mere
duplication of the strategy developed for "one-dimensional" string matching.
Let duel be defined by

duel{x, y) = (if b = c then x else y).

The value duel{x, y) is the position that "survives", the other position is elim
inated.

We now describe the two-dimensional pattern-matching based on duels.
Assume the witness table of the pattern PAT is computed. Its precomputation
is sketched at the end of this section. The first step of the searching phase
reduces the problem to a two-dimensional pattern matching for unary patterns,
as if all entries of PAT were the unique symbol a. We want to eliminate
a set of candidate positions from the text array T in such a way that all
remaining positions are pairwise consistent. Removed positions cannot be
matching positions of the pattern. Then, with each position x on the text
array we associate the value 1 iff, after duels, it corresponds to the symbol
compatible with occurrences of the pattern placed at any position in the range
of x. Otherwise, we associate 0 with position x. By doing so, we are left
with a new text array consisting only of zeros and ones. Finally, we look for
occurrences of an m x m array containing only Is. Therefore, the algorithm is
essentially the same as in the one-dimensional case. But here, the relationship
between positions is a bit more complicated. This is why relations <& and <t

have been introduced. The following property of consistent positions is crucial
for the correctness of the algorithm.

Consistency property (transitivity). Let x <t y <t z, or x <{, y <(, z. If
x,y are consistent and y,z are consistent, then x,z are also consistent.

230 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

1 >* witness

! •
1 (r+p, s+q)

Figure 15.4: The second category of witnesses. The vector (r, s) is not a period,
(p,q) = WIT[r, a], and PAT\p, q] ^ PAT[r +p,s + q}.

According to relations <;, and <t, consistency refines to bottom consistency
and top consistency. A set of positions is bottom consistent if for any two
positions x, y of the set, such that x <b y, the positions are consistent. Top
consistent positions are defined similarly. It is clear that two elements are
consistent iff they are top and bottom consistent. The same refers to sets of
(pairwise) consistent positions.

Let R be a sub-rectangle of the text array T. The set S of positions in R is
said to be good with respect to R if both positions in S are pairwise consistent,
and there is no matching position within R — S. Let k be a column of the text
array T. In the searching algorithm, we maintain the following invariant:

a good set of consistent positions in the columns k,k + l,... ,n' is known.

First, we construct good sets of consistent positions separately for each columns.
This gives the invariant for k = n'. Then we satisfy the invariant for k =
n' — 1, n' — 2 , . . . , 1 . At completion we have a good set of consistent positions
for the entire text array.

When processing the fc-th columns, we run through consistent positions
of this columns in a top-down fashion (see Figure 15.5). We maintain the
following invariant:

15.1. AMIR-BENSON-FARACH ALGORITHM 231

consistent elements
in current column

order of
processing
elements in
current column

>

\

•
•

•

•
•

f

•

• •
H D D

• • •
• D

O D D

•
• •

leftmost
elements
in rows

Figure 15.5: The situation when processing the next column. The current
columns contains positions mutually consistent within this columns. Then,
positions inconsistent with other columns are removed.

232 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

elements consistent elements consistent
column* withxl column £ with*2

' v

Qxl

Ux2

Figure 15.6: From inv(xl,zl,k) to inv(x2,z2, k).

inv(x,z,k): z is the leftmost consistent position in its own row;
let R be the rectangle composed of rows above z, and columns
k,... ,n'\ the set S of all remaining positions in R is a good set in
R.

Let xl, x2 be two consecutive (in the top-down order) consistent posi
tions in the fe-th columns. Figure 15.6 illustrates how the process goes from
mu(xl,zl,fc) to inv(x2, z2, k).

The set of consistent positions in columns k + 1,... , n' is maintained as a
set of stacks. These stacks correspond to rows. The positions in a given row,
from left to right, are on their stack from top to bottom: the leftmost position
in i-th row (in columns k + 1 , . . . ,n') is at the top of the i-th stack. The
duels of xl against elements of the i-th row are executed using the same stack
procedure as in the string-matching algorithm by duels (see Chapter 13).

Assume that we start a given phase with position xl in the fe-th columns,
and with position zl in the i l row (see Figure 15.6). The rows are processed
top-down and left-to-right, starting with z l , and ending before or at the row
containing xl. Initially z = z l . Then, assume that we consider a candidate
z in a column to the right of xl. The basic operation is the duel between xl
and z. Three cases are possible:

1. both xl and z survive (they are consistent); the crucial point is that
we know at this moment (due to transitivity of consistency) that all
candidates to the right of z and in the same row as z are consistent with

il

n

J2

15.1. AMIR-BENSON-FARACH ALGORITHM 233

xl; we do not need to process them; we just go to the next row, starting
with the leftmost candidate z (to the right of A;-th column) in this row;

2. z is "killed" by x\ in the duel; we process the next candidate in the same
row as z; if there is no such candidate we simply go on to the next row;

3. xl is "killed" and z survives; then, the processing of xl has been com
pleted; xl is removed as a candidate, zl = z, and we start the next phase
with the next candidate x2 below xl in the same column as xl; if there
is no such candidate, then the processing of the entire column has been
completed; take xl as the top most candidate in the (k — 1) column, and
start processing column k-1.

Through this process, we obtain a set of consistent positions in the sense
of the ordering <t. If x, y are in this order, and are in the set, then they are
consistent. After that, we again process the whole text array, but in a bottom-
up manner, essentially performing the same algorithm as described above for
the top-down ordering. The rows are again processed from left to right. The
remaining set of positions is guaranteed to be bottom consistent. Thus, the
final set S is a good consistent set.

The problem is reduced to "unary" pattern matching, in which the pattern
consists of only one symbol, as follows. For each position x in the text array,
find any position y in S such that x is in the range of y. Place the pattern
at position y on the text array, and check if the symbol at x matches the
corresponding symbol of the pattern. If "yes" associate "1" with position x.
If "no", or if there is no such position y, associate "0" with x. In this way,
we obtain a new array of zeros and ones. What remains is to search for a
rectangular shape of size mxm containing only l's inside the new array. This
is straightforward, and is left to the reader. The above discussion gives a proof
of the following statement.

Theorem 15.1 / / the witness table for the pattern array is computed, the
search phase for the two-dimensional pattern matching can be done in linear
time, independent of the size of the alphabet.

The computation of the witness table given in the following employs a suf
fix tree. It takes a time that depends on the size of the alphabet, though it is
linear with respect to the length of the pattern. This is due to the construction
of suffix trees. In the computation of the witness table, the basic operation
consists of checking the equality of two sub-rows of the pattern. This is ex
ecuted on the suffix tree of the set of rows of the pattern, after it has been
preprocessed for LCA queries.

234 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

length k
• #)

(r,s)

?

s

cf

Figure 15.7: Computing a witness for position (r, s) of PAT.

Theorem 15.2 The witness table for anm x m two-dimensional pattern on
the alphabet A can be computed in 0(m2 log \A\) time.

Proof. Let us examine the situation in which the witness for the position
(r, s) of PAT is to be computed. Let k — m — s + 1. Assume that elements
of the first and of the s-th columns are names of the rows of size k starting at
the positions of columns to the right. Denote the resulting columns by C['
and Cs (see Figure 15.7).

Let ST be the suffix tree of all rows of the pattern. It takes 0(m2 log \A\) time
to build this tree. Preprocess the tree in order to answer LCA queries (locating
Lowest Common Ancestors) in constant time. Also consider the table PREF
as defined in Chapter 3.

We show that the table PREF of the column Cg with respect to c | ^ can be
computed in 0(m) time, once the tree ST is given. The computation of this
table essentially reduces to the computation of the table of border lengths (see
Chapter 3). We don't need actually the names of entries of the columns
and These names represent sub-rows of length k. It is sufficient to make
comparisons in constant time, hence, it is also sufficient to be able to quickly
check the equality between two sub-rows of the same size k. This can be
executed using LCA queries about the rows of the pattern array. First assume

15.2. GEOMETRY OF TWO-DIMENSIONAL PERIODICITIES 235

that (r, s) is a period of the pattern. Then PREF[r] = m — r. Otherwise,
PREF[r] gives the index of the row where the witness position is. To find
the witness position it is sufficient to find the longest common prefix of two
sub-rows of length k. This can be done using ST and LCA queries. •

15.2 Geometry of two-dimensional periodicities

This section presents some theoretical tools for the Galil-Park 2D-pattern-
matching algorithm of Section 15.4. The proofs of several simple facts are
omitted. Let PAT be a two-dimensional pattern of shape mxm, with its rows
and columns numbered by 1, 2 , . . . ,ra. The vectors of PAT are denoted by
n and /3. We consider only two-dimensional vectors with integer components.
Recall that a vector TT is a period of PAT if PAT[x] = PAT[x + TT], whenever
both sides are defined. If both sides are defined for at least one point x, then
•K is a nontrivial period. We also write that 7r is a ID-period to emphasize
its one-dimensional status. The main difference between 1-dimensional and
2-dimensional pattern matching lies in the different structures of periods of
patterns. In two dimensions, some periods are inherently two-dimensional and
are called 2D-periods.

A pair /x = (7r, /?) of non-collinear vectors is a 2D-period of PAT iff n and (3
are nontrivial periods, and each linear combination of 7r and f3 is a ID-period
of PAT. An equivalent formulation is: PAT can be extended to an infinite
plane in which n and f3 are periods. By a linear combination we always mean
a combination with integer coefficients, i.e., a vector i.n + j./3, in which i, j are
integers. Two (or more) vectors are said to be collinear if they are in the same
direction, which, in this case, does not necessarily mean that one is an integer
combination of the other (others). Let us denote by Lattice(fi) the set of all
linear combinations of IT, (3. The elements of Lattice^) are called the lattice
points. Therefore, the pair /z is a 2D-period iff all elements of Lattice^) as
vectors, are periods.

A vectors ir = (r, c) is said to be small iff its components r, c satisfy \r\ <
d.m and \c\ < d.m, in which d = 1/16. That is, a 2D-period is small if
both its components are small vectors. The pattern PAT is called periodic
(lattice-periodic or 2D-periodic) if it has a small ID-period (2D-periods).

Remark. In one-dimensional string matching a linear combination of small
ID-periods is always a period. But this is not generally valid for two dimen
sions, even for non-negative combinations of collinear vectors (as well as for
non-collinear vectors, of course). If all elements of the array PAT are the same
letter except for a small number of elements closed to one fixed corner, then

236 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

there are many ID-periods, but there is no non-trivial 2D-period. The part
around the corners is responsible for the irregularities.

The 2D-period /x = (TT, /?) is said to be normal if n is a quad-I period as in
Figure 15.1 and (3 is a quad-II period as in Figure 15.4.

Lemma 15.1 [normalizing lemma] / / the pattern has a small 2D-period then
it has a small normal 2D-period.

A notion of divisibility for 2D-periods, /xl,/x2, is introduced as follows:

/xl | /x2 iff Lattice(til) includes Lattice{^2).

We also introduce the notion of a smallest 2D-period /x = period(PAT). It is a
fixed small 2D-period of PAT that divides each other small 2D-period: in other
words, /x | /x' for each small 2D-period /x'. There are several ways to decide
which /x is to be chosen, but any of them is good. Assume PAT is 2D-periodic.
We define period(PAT) as a small normal 2D-period (IT, (3), in which TT is a
quad-I small period of a minimal length (in case of ties the most horizontal
vector is chosen), and (3 is a quad-II small period of a minimal length (in case
of ties the most vertical vector is chosen). Lemma 15.1 guarantees that this
definition makes sense. It can be proven that any small ID-period corresponds
to a point in Lattice(PAT). This implies the following lemma.

Lemma 15.2 [2D-periodicity lemma] (a) Assume /xl, /x2 are small 2D-periods
of PAT. Then, there is a 2D-period /x such that fi \ fil and fi \ /x2.
(b) Assume PAT is lattice-periodic and TT is a small vector. Then TT is a ID-
period of PAT

iff TT is in Lattice(period(PAT)). Moreover, period(PAT) \ /t for all
small 2D-period fi.

Observation. Assume we know which points of PAT are small sources (see
below). Then, if it exists, period(PAT) can be computed in 0{M) time inde
pendently of the alphabet.

Lemma 15.3 [overlap lemma] Assume the patterns PATi and PAT2 are 2D-
periodic subsquares of the same rectangle, that we have period(PATi) = /xl
and period{PAT2) = / A in which |/xl|, |/x2| < m/2 < m. If PAT\ and PAT2

overlap on an m x m square, then /xl = /x2.

According to their periodicities, 2D-patterns are classified into four main
categories:

15.2. GEOMETRY OF TWO-DIMENSIONAL PERIODICITIES 237

Figure 15.8: The shaded areas correspond to Centera(PAT) (left) and
Cut-Cornerss(PAT) (right).

• non-periodic: no small period at all,

• lattice-periodic (or 2D-periodic): at least one small 2D-period,

• radiant-periodic: at least two non-collinear small ID-periods, but not
lattice-periodic,

• line-periodic: all periods in the same direction.

We have already defined quad-I periods and quad-II periods. We recall
these definitions and introduce similar categories for so-called sources. The
pattern is divided into four m/2 x ra/2 disjoint squares, called quads, and
named quad I, quad II, quad III, and quad IV, according to the counter
clockwise ordering, and starting at the upper left corner. Therefore, quad I
corresponds to the upper left square corner, and quad II corresponds to the
lower left square corner.

For technical reasons it is convenient for these categories to be disjoint. So
we assume that horizontal vectors are not quad II vectors, and vertical vectors
are not quad-I vectors. As per this assumption, each ID-period oriented from
left to right is exactly of one type: a quad-I period or a quad-II period.

Let Centers(PAT) — PAT' be the central sub-array of PAT that results
after "peeling off" the s boundary columns and rows (from top, down, right,
and left). The shape of such a sub-array is (m — 2s) x (TO — 2s).

We state the following lemma without proof.

L e m m a 15.4 [radiant-periodicity lemma] Assume that PAT is radiant-periodic.
Then the array C'enter2d.m{PAT) is not radiant-periodic.

238 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

A vector TT can be identified as the point 7r of PAT, extremity of TT, when
its origin is at the quad-I top left corner (point(0,0)) or at the quad-II corner
(point (TO, 0)) of the pattern. The point TT_ is called the quad-I beginning point,
or the quad-II beginning point, respectively, corresponding to TT. If TT is a
period and the quad-I beginning point 7r is in PAT, then TT is called a quad-I
period, and TT_ is called a quad-I source. Quad-II periods and sources are denned
analogously. Using the terminology of sources, the periodicity type of pattern
PAT can be characterized equivalently as follows:

• non-periodic: no small source;

• lattice-periodic (or 2D-periodic): at least one quad-I source and one quad-
II source;

• radiant-periodic: not lattice-periodic and at least two non-collinear small
sources;

• line-periodic: all sources on the same line.

Let /* = (TT, f3) be a 2D-vectors. We say that two points x, y are //-equivalent if
x — y is in Lattice(n). A /x-path is a path consisting of edges that are vectors
TT, —TT, f3 or —f3. The processing of certain difficult patterns is executed by
exploring some simple geometry of paths on a lattice generated by two vectors
TT, ft belonging to the same quadrant. If we have two points x, y containing
distinct symbols and we have a (7r,/3)-path from x to y within the pattern,
then one of the edges of the path gives a witness of non-periodicity to one of
the vectors TT or /3. This is due to the fact that the initial and terminating
positions do not match, so there should be a mismatch "on the way" from x
to y. The length of the path is the number of edges it contains.

Observation. The basic difficulty with such an approach is the length of the
path. It may be that /z is a small 2D-period, but the length of a shortest /x-path
between two /t-connected points of an TO x TO square is quadratic. Consider,
for example, /t = ((TO/2, 1), (1,0)), x = (TO/2, 0) and y = (m/2, m — 1).

Despite the previous observation, we can find useful short paths in some
situations, as shown in the next lemma. Let Cut-Cornerss(R) be the part of
array R without top-right and bottom-left corner squares of shape s x s, see
Figure 15.8.

Lemma 15.5 [linear-path lemma] Assume TT,/3 are quad-I vectors of size at
most k. Let S be a subsquare of size k x k of a large square R, and let x be
the point that is the bottom-left corner or top-right corner of S. Assume x is
inside Cut-CornerS2k(R)• Then, there is a linear-length fi-path inside R from

15.2. GEOMETRY OF TWO-DIMENSIONAL PERIODICITIES 239

Figure 15.9: Illustration of Lemma 15.5: a short path from x to y G S.

x to a point y ^ x in S, see Fig 15.9. Such a path can be computed in 0(k)
time.

Proof. We can assume, without loss of generality, that x is the quad-II
corner of S, and that n and /3 are quad-I vectors of size at most k. Moreover,
we can assume that the array R is of shape 3fc x 3k, and S is the square of size
k x k at the top-left corner of R. Then, x is the point of R at position (k, 0).
Assume that (3 is a more horizontal vector than n. We find a path and a point
y by the algorithm GREEDY presented below.

Algorithm GREEDY
y:=x;

repeat
if y — it is outside the area R then y
else y :=y — n;

until y is in S;

= y + P

We prove that the algorithm GREEDY terminates successfully after a lin
ear number of iterations and generates the required path. Consider the lines
Lo, L\,L2,... , in which L^ is the line parallel to 7r and that contains the points
x + hp. Then, points x + i(3 + JTT (i, j integers) belong to the line Li. If some
line Li cuts the two horizontal borders of S, or its two vertical borders, then

240 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

the segment of the line tha t is inside S is longer than n. Thus, x + i/3 + jn
belongs to S for some (negative) integer j . If each line Li cuts bo th a horizon
tal and vertical border of S then let i be such tha t lines Li and Lj+i surround
the diagonal segment of S; it can then be proven tha t , either there is a point
x + ij3 + jir in S or a point x + (i + 1)(3 + j'n in S. Values of variable y in the
algorithm are points of a /x-path inside R because if uy — n not in i?," y + /3
is in R. We have yet to explain why the pa th has linear length, which at the
same time proves that the algorithm works in O(k) t ime. Let n = (r, c) and
(3 — (r ' , c'). The point x + r(3 — r'ir is on the same column as x, and can be
the point y if it is in S. It is clear tha t the / i-path followed by the algorithm is
entirely (except maybe its last edge) inside the triangle (x,x+r(3,x + r(3 — r'n).
Thus, the length of the /x-path followed by the algorithm is no longer than r+r'
which is 0(k). •

We introduce a special type of duels called here long-duels. Assume we have
small quad-I vectors n, f3 and a point x at distance at least 2k from quad-II and
quad-IV corners. Assume also tha t if y is any point such tha t y — x is a small
quad-II vectors, then PilTfa;] ^ PAT[y]. The procedure long- duels (TT, (3, x)
"kills" one of the vectors -K, (3 and finds its witness. It works as follows: a
(-7r,/3)-path from a given point x to some point y in the pa t t e rn is found by
the algorithm of the linear-path lemma. The pa th consists of a linear number
of edges. End points x and y contain distinct symbols. Therefore, one of the
edges on the pa th consists of a linear number of edges. End points x and
y contain distinct symbols. Therefore, one of the edges on the pa th gives a
witness for n or (3. In doing so, one of the potential small periods 7r or (3 is
"eliminated" in linear time.

T h e o r e m 15 .3 [long-duel theorem] Assume we have a set X of small quad-
I vectors, in which \X\ = 0(m), and that we are given a position x inside
Cut-CornerS2d.m(PAT). Assume also that if y is any point such that y — x is
a small quad-II vector, then PAT[x] ^ PAT[y\. Then, in linear time, by using
long duels, we can find witnesses for all small quad-I vectors (except maybe for
a set of vectors on a same line L).

Proof. We run the following instruction.

w h i l e X is non-empty d o b e g i n
take any element (3 from X; add (3 to Y, and delete (3 from X;
wh i l e there are two non-collinear vectors TT, (3 in Y d o

execute long-duel{~K, j3, x) and delete the "loser" from Y;
end;

15.2. GEOMETRY OF TWO-DIMENSIONAL PERIODICITIES 241

We keep the elements of X that have not been eliminated so far in the set Y.
Initially Y is empty. The invariant of the loop is: non-null witnesses for all
elements not in the current sets X or Y are computed, and all elements of Y
are on the same line L. Altogether, the execution time is 0(m) and alphabet
independent. At the end, all remaining vectors (with non-null witnesses up to
now) are on a same line L. This completes the proof. •

Let us call the algorithm of the long-duel theorem the long-duel algorithm.
There is a natural analogue of the theorem for quad-II small vectors, and for
quad-I and quad-Ill corners. The crucial point is played by the following suffix-
testing problem: given m strings x\,... , xm of total size 0(m), compute the
m x m table Suf-Test defined as follows:

Suf-Test[i, j] — nil if the i-th string is a suffix of the j-th string,
Suf-Test[i,j] = positions of the rightmost mismatch otherwise.

The algorithm is given below as Algorithm Suffix- Testing. We sketch its rough
structure to show that it runs in linear time independently of the alphabet. It
is sufficient to compute for each pair (i,j) the length SUF[i,j] of the longest
common suffix of Xi and Xj. The algorithm can be easily implemented to work
in 0{m2) time. The main point in the evaluation of the time complexity is that
if a position participates in a positive comparison (when two symbols match),
then this position is never inspected again. When we process a given word
Xk and compute SUF[k,j] for j > k, then we first look at SUF[i,j], in which
i = MAX[j, k — 1], 1 < i < k, is the index that maximizes SUF[i,j], and then
at SUF[i,k]. These data are available at this moment, due to invariant. The
word Xj is scanned backward starting from position SUF[i,j]. The pointers
only go backward. This proves the following.

Theorem 15.4 [suffix-testing theorem] The suffix-testing problem related to
m strings of total size 0(m2) can be solved in Oim1) time, independently of
the alphabet.

Algorithm Suffix-Testing
assume strings x\,...

{ invariant(k): for all i
xm in increasing order of their lengths;
,j, 1 < i < k, 1 < j

SUF[i, j] is computed, and, for each j ,
< m,
1 < j <

i — MAX[j, k] the index i < k that maximizes
make invariant(l) ;
for k := 2 t o m do

make invariant(k) using invariant (k — i) ;

m, we
SUF[i,

know

j]}

242 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

b

a defect

Figure 15.10: A mono-central pattern.

15.3 * Patterns with large monochromatic cen
ters

The alphabet-independent linear-time computation of 2D-witness tables is
quite technical, hence the present and following sections may be considered
as optional. In this section, we present an alphabet-independent linear-time
computation of witnesses for special patterns, the "large" central part of which
is "monochromatic." The pattern PAT is called mono-central if all symbols
lying in Center^, are equal to the same letter a of the alphabet, for k < 3m/8.
Then, the central sub-array of PAT of size at least TO/4 X TO/4 is monochro
matic. A position containing a letter different from letter a is called a defect,
see Figure 15.10

Assume the existence of at least one defect (otherwise the preprocessing is
trivial). Opposite corners of PAT are the corners lying on the same forward
or backward diagonal of PAT (quad-I and quad-III, or quad-II and quad-IV
corners). A mono-central pattern PAT is called a corner if there is a pair of
opposite corners x, y of PAT such that each defect can be reached by at most
two small vectors from x or y. The corner patterns are the most difficult with
respect to their witness computation, because they can be radiant-periodic.
The non-corner patterns are simpler to deal with, due to the following obser
vation.

Observation. If PAT is a periodic non-corner mono-central pattern, then,
PAT is non-periodic or line-periodic (therefore, PAT is not radiant-periodic).

Lemma 15.6 [subsquare lemma] Let us assume that PAT is mono-central,
and that there is a defect inside the area R = Cut-Corners2k(PAT). Then
there is a defect position x within R satisfying one of the following conditions:

15.3. * PATTERNS WITH LARGE MONOCHROMATIC CENTERS 243

(1) x is a quad-I or is a quad-Ill corner of a k x k subsquare S containing no
defect position strictly within S;
(2) x is a quad-II or is a quad-IV corner of a k x k subsquare S containing
no defect position at all, except x.

Proof. Take a defect point in R closest to the center of PAT. •

Theorem 15.5 [non-corner theorem] The witness table for all small vectors
of mono-central non-corner pattern PAT can be computed in 0(m2) time.

Proof. Consider the defect z closest to the center of PAT. Assume with
out loss of generality that z is in quadrant II. The position z is the witness
(of non-periodicity) for all small quad-II vectors, except perhaps for vertical
vectors. The case of vertical and horizontal periodicities is very easy to pro
cess, therefore, we assume that all witnesses for vertical and horizontal vectors
are computed and PAT is not vertically nor horizontally periodic. The set
of potential small quad-I periods is sparsified using vertical duels in columns.
Afterward, in quadrant I we have only a linear number of candidates for small
periods. Denote by X the set of these candidates. To compute witnesses
for quad-I small vectors it is sufficient to find a point x implied by the sub-
square lemma. If condition (1) of this lemma holds, then x itself is the witness
for all quad-I vectors that are not vertical nor horizontal vectors. Otherwise,
x is "good" to apply the long-duel theorem. The case of a horizontally- or
vertically-periodic pattern can be easily processed. This completes the proof.
•

Theorem 15.6 [corner theorem] Consider an m x m array PAT that is a
mono-central corner pattern. Then, witnesses for all vectors of size at most
m/8 can be computed in 0(m?) time.

Proof. Assume that opposite corners from the definition of corner patterns
are quad-II and quad-IV corners. Then, all defects are closed to quad-II and
quad-IV corners. These corners are separated by a large area of non-defects.
Therefore, we can compute periods and witnesses separately with respect to
each corner. Hence, without loss of generally, we can assume that all defect
are close to the quad-II corner, and, in particular, that there is no defect that
contains the same symbol a in quadrants I, III, and IV. Assume PAT contains
at least one defect in quadrant II. PAT obviously has no small quad-II periods,
since the rightmost defect gives witnesses against all quad-II vectors. We show
how to compute witnesses for small quad-I vectors.

Let PAT1 be the following transformation of the pattern. In each row replace
all symbols by a, except the rightmost non-a symbol of each row. Replace

244 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

these rightmost non-a symbols by a special symbol $. Let X be the set of
positions containing the symbol $; call them special positions.

For x i n X denote by string(x) the word in PAT consisting of the part of the
row containing x from the left side up to x (including x). Let ir be a vector of
size at most m/4. Then, it is easy to see the following:

Claim. 7r is not a period iff (1) ir is not a period in PAT1, or (2) for two
positions w, y in X we have: y — x = n and string(x) is not a suffix of string(y)
(then, a witness for ir is given by a mismatch between string(x) and string(y)).

The computation of all witness for vectors of size at most k in PATl is rather
simple. Only quad-I vectors are to be processed. Assume there is no small
vertical period. Then, the set of potential small quad-I periods is sparsified
using duels in columns. Afterward a linear number of candidates remains. Each
of them is checked against all (linear number) symbols at special positions in
a naive way. The witnesses arising from condition (2) are computed directly
using the Suffix-Testing algorithm. This completes the proof. •

We extend the definition of defects. Assume a mono-central pattern PAT
has a lattice-periodic central sub-array C of size at least m/4. We say that x is
a lattice-defect if x does not agree with (contains a symbol different from) any
point y in C that is lattice-equivalent to x. Let Mono(PAT) be the pattern in
which all positions that are not lattice-defects are replaced by the same special
symbol. We omit the proof of the following simple lemma.

Lemma 15.7 [mono lemma] If a small vector n is in the lattice generated
by the smallest period of C, then it is a period of PAT iff TT is a period of
Mono(PAT).

15.4 * A version of the Galil-Park algorithm

Recall that the periodicity type of a sub-array depends on its size. When we
say that the witnesses for a given array or sub-array are computed we mean
the witnesses, if any, for all vectors that are small according to the size of the
presently considered array.

Lemma 15.8 [line lemma] Assume we have a set S of points, in a fixed quad
rant of PAT, such that they are all on the same line L. Then, we can check
which of them correspond to periods, and compute witnesses, wherever they
are, in 0(m?) time independently of the alphabet.

25.4. * A VERSION OF THE GALIL-PARK ALGORITHM 245

Figure 15.11: The graphical illustration of the performance of Galil-Park al
gorithm, the witnesses are computed for small vectors in a central sub-pattern,
then they are iteratively computed (using procedures Extend) to geometrically
larger sub-arrays (resulting from the Large-Extend operation).

Proof. The proof reduces to the computation of witness tables for m one
dimensional strings of size 2m each. Let Li be all lines parallel to L; take m
pairs of lines (Li,Ki), in which Ki is parallel to Li and the distance between
Ki and Li equals the distance between the point (0,0) and L. Each line is
taken as a string of symbols. For each i, lines Li and Ki are concatenated,
and witnesses for these strings are computed using a one-dimensional classical
algorithm. •

Assume C is a central sub-array of shape s x s, in which s <m. Denote by
Large-Extend(C) = D, in which I? is a twice larger central sub-array of shape
2s x 2s. If ever 2s > m, we define Large-Extend(G) = PAT. Observe that
a small period with respect to Large-Extend(C), in case Large-Extend(C) ^
PAT, means a vector of size at most 2d.s (recall that d = 1/16). Large-
extend^) is twice as large as C except maybe at the last iteration of the
algorithm. The reason for such irregularity is that while making duels for
small vectors in D we use mismatches in C, and we should guarantee that
D is large enough with respect to C, and that vectors (taking part in a duel)
starting in C do not go outside the pattern PAT. Also define Small~Extend(C)
as a central sub-array of shape 3s/2 x 3s/2, Due to Lemma 15.4, if Large-
Extend^) ^ PAT and if it is radiant-periodic, then Small-Exiend(C) is not
radiant-periodic. This saves one case (radiant-periodic) in the algorithm: C is
never radiant-periodic.

Before each iteration in GP algorithm witnesses and periods are already
known for a central sub-array C, which shape is s x s. The witnesses for
a larger central sub-array D are computed, in which D = Large-Extend(C),
or D = Small-Extend(C) in the case Large-extend(C) is radiant-periodic and
Large-Extend(C) ^ PAT. In the latter case, D has shape 3s/2 x 3s/2, and

i

246 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

Lemma 15.4 guarantees that D is not radiant-periodic. Then C is set to D
and the next iteration starts. We first describe three procedures that compute
witnesses for small vectors in D = Larg e-Extend (C), depending on what type
of periodicity is in C. In Figure 15.11 the sub-array C is shaded. At the next
stage of Galil-Park algorithm we will have {C,D) := (D, Large-Extend(D)).

procedure Nonperiodic-Extend(C);
the witness table of C is used to make duels between

candidates for small periods in D;
after dueling, only a constant number of candidates remains,

their witnesses are computed in a naive way;

p rocedure Lattice-Periodic-Extend (C);
consider the areas Ql, Q2 of candidates of small

(with respect to D) periods in, respectively, quad I and
quad II of D; divide each area into d.s x d.s subsquares;
in each smaller subsquare do begin

make duels between candidates using witnesses from C;
{ only candidates on the same line survive }
apply the algorithm from the Line Lemma;

end

Three disjoint cases are considered in the Galil-Park algorithm depending
on whether C is non-periodic, lattice-periodic, or line-periodic. The first case
(non-periodic) is very simple.

At each iteration we spend 0(r2) time, in which r is the size of the actual
array D; this size grows at least by a factor 3/2 at each iteration. Altogether,
the time is linear with respect to the total size of the pattern, as the sum of a
geometric progression.

15.4. * A VERSION OF THE GALIL-PARK ALGORITHM 247

procedure Line-Periodic-Extend(C);
{ C is lattice-periodic }

let fi = period (C);
for each small candidate period n £ Lattice(n) do

find a /i-equivalent point y in quad I or quad II of C,
then the witness corresponding to y gives a witness for x;

for each small candidate period 7r € Lattice(fi) do
compute witness of TT in Mono(PAT); { Mono Lemma }
{ use algorithms from Non-corner or Corner Theorem }

When the witness table is eventually computed, the Amir-Benson-Farach
searching phase can be applied. Altogether we have proven the following
result.

Theorem 15.7 There is a 2D-pattern-matching algorithm which time com
plexity is linear in the size of the input, and independent of the alphabet (in
cluding the preprocessing).

Algorithm GP; { modified Galil-Park algorithm; }
{ computes witnesses for all small vectors of PAT }

C :=an initial constant-size non radiant-periodic
central sub-array of PAT;

compute the witness table of C in 0(1) time;
D := Large-Extend(C);
while C ^ PAT do begin { main iteration }

if C is non-periodic then Nonperiodic-Extend(C)
else if C is line-periodic then Line-Periodic-Extend(C)
else Lattice-Periodic-Extend (C);
if D ^ PAT and D is radiant-periodic then

D := Small-Extend(C)
else begin C :— D; D := Large-Extend(C) end;

end { of main iteration }

Bibliographic notes

The linear-time searching algorithm of Section 15.1 is from Amir, Benson,
and Farach [ABF 92a]. It is quite surprising that this is the first alphabet-
independent linear-time algorithm, because, in the case of strings, the first

248 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES

algorithm satisfying the same requirements is the algorithm of Morris and Pratt
[MP 70], The gap between these is more than twenty years! Furthermore, the
preprocessing phase of the algorithm in [ABF 92a] is not alphabet-independent.
The rest of the chapter is an adaptation of the results of Galil and Park in [GP
92b], it is a version of Galil-Park algorithm presented in [CR95].

The question of periodicities for two-dimensional patterns is discussed in
several papers, particularly in [AB 92], [GP 92], and [GP 93]. A constant-space
2-dimensional pattern-searching algorithm has been designed in [CGPR95],
using properties of periodicities.

Chapter 16

Parallel text algorithms

We present several poly logarithmic-time parallel algorithms using a high level
description of the Parallel Random Access Machine (PRAM). A lot of research
has been done on the so-called optimal parallel algorithms, the ones that achieve
linear total work (the product of the number of processors by the parallel time).
Optimal parallel text algorithms are Vishkin's algorithm and algorithms using
the splitting technique (also known as pseudoperiod technique). In practice
the polylogarithmic factors for the total work are not so important, especially if
the total work is 0(n1+a) for a > 0. Example of such algorithms are parallel
construction of Huffman trees and computation of edit distance. For these
problems the total work of known polylogarithmic-time algorithms is far from
linear. But the reduction below cubic work provides beautiful algorithms.

16.1 The abstract model of parallel computing

Concerning parallel computations, a very general model is assumed, since we
are interested mainly in exposing the parallel nature of some problems without
going into the details of the parallel hardware. The parallel random access
machine (PRAM), a parallel version of the random access machine, is used as
a standard model for presentation of parallel algorithms.

The PRAM consists of a number of processors working synchronously and
communicating through a common random access memory. Each processor is a
random access machine with the usual operations. The processors are indexed
by consecutive natural numbers, and synchronously execute the same central
program; but, the action of a given processor also depends on its number
(known to the processor). In one step, a processor can access one memory

249

250 CHAPTER 16. PARALLEL TEXT ALGORITHMS

location. The models differ with respect to simultaneous access to the same
memory location by more than one processor. For the CREW (concurrent
read, exclusive write) variety of PRAM machine, any number of processors
can read from the same memory location simultaneously, but write conflicts are
not allowed: no two processors can attempt to write simultaneously into the
same location. CRCW (concurrent read, concurrent write) denotes the PRAM
model in which, in addition to concurrent read, write conflicts are allowed:
many processors can attempt to write into the same location simultaneously
but only if they all attempt to write the same value.

There is no generally accepted universal language for the presentation of
parallel algorithms. The PRAM is a rather idealized model. We have chosen
this model as the best one suitable for the presentation of algorithms, and
especially for the presentation of the inherent parallelism of some problems.
It would be difficult to adequately present these algorithms with languages
oriented toward concrete existing hardware of parallel computers. Moreover,
the PRAM model is widely accepted in the literature on parallel computation
on texts.

Parallelism will be expressed by the following type of parallel statement:

for all i € X do in parallel action(i).

The execution of this statement consists in

• assigning a processor to each element of X,

• executing in parallel by assigned processors the operations specified by
action(i).

Usually the part "x e X" looks like "1 < i < n" if X is an interval of integers.

Methodologically one can apply two different approaches for constructing
efficient parallel algorithms:

(1) translation into a parallel version of a known sequential algorithm,

(2) design of a new algorithm with a good parallel structure.

Method (1) works well in the case of almost optimal parallel string-matching
algorithms, and square finding. The known KMR algorithm, and the Main-
Lorentz algorithm (for squares) already have a good parallel algorithmic struc
ture. However method (1) works poorly in the case of edit distance and Huff
man coding, for example.

The PRAM model is best suited to work with tree-structured objects or
tree-like (recursive) structured computations. As an introduction we show such

16.1. THE ABSTRACT MODEL OF PARALLEL COMPUTING 251

a type of computation on one of the basic parallel operations known as prefix
computation.

Given a vector x of n values the problem is to compute all prefix products:

y[l] = x[l], y{2] = x[l] ® x[2], y[3] = x[l] ® x[2] ® x[3], ...

Let us denote by prefprod(x) the function that returns the vector y as value.
We assume that ® is an associative operation computable on a RAM machine
in 0(1) time. We also assume for simplicity that n is a power of two. The
typical instances of <g> are arithmetic operations +, min and max. The parallel
implementation of prefprod works as follows.

Lemma 16.1 Parallel prefix computation can be accomplished in O(logn) time
with nj log n processors.

Proof. The algorithm above computes prefprod(x) in O(logn) time and
uses n processors. The reduction of the number of processors by a factor
logn is technical. We partition the vector x into segments of length logn.
A processor is assigned to each segment. All these processors simultaneously
compute all prefix computations locally for their segments. Each processor
does so using a sequential process. We then compress the vector by taking
a representative (say the first element) from each segment. A vector x' of
size n/ log n is obtained. The function prefprod is applied to x' (now n/ log n
processors suffice because of the size of a;'). Finally, all processors assigned to
segments update values for all entries of their own segments using a (globally)
correct value of the segment representative. This takes again 0(log n) time,
but uses only n/ log n processors. •

function prefprod(x); { the size of a; is a power of two }
n := size{x);

if n = 1 then return x else begin
xi := first half of x\ X2 := second half of x;
for each i e {1, 2} do in parallel

yi := prefprod(xi);
midval := yi[n/2];
for each j , 1 < j < n/2, do in parallel

2/2[j] := midval ® y2[j];
return concatenation of vectors yi and y2;

end

252 CHAPTER 16. PARALLEL TEXT ALGORITHMS

16.2 Parallel string-matching algorithms

Suppose that v is the shortest prefix of the pattern that is a period of the
pattern. If the pattern is periodic (vv is a prefix of the pattern) then vv~ is
called the non-periodic part of the pattern (v~ denotes the word v with the last
symbol removed). We omit the proof of the following lemma, which justifies
the name "non-periodic part" of the pattern.

Lemma 16.2 / / the pattern is periodic (it is twice as long as its period) then
its non-periodic part is non-periodic.

The witness table (see Chapter 13) is relevant only for the non-periodic
pattern. So, it is easier to deal with non-periodic patterns. We prove that
such assumption can be done without loss of generality, by ruling out the case
of periodic patterns.

Lemma 16.3 Assume that the pattern is periodic, and that all occurrences (in
the text) of its non-periodic part are known. Then, we can find all occurrences
of the whole pattern in the text
(i) in 0(1) time with n processors in the CRCW PRAM model, (ii) in 0(log m)
time with nj logm processors in the CREW PRAM model.

Proof. We reduce the general problem to unary string matching. Let
w = vv~ be the non-periodic part of the pattern. Assume that w starts at
position i on the text. By a segment containing position i we mean the largest
segment of the text containing position i and having a period of size \v\. We
assign a processor to each position. All these processors simultaneously write
1 into their positions if the symbol at distance \v\ to the left contains the same
symbol. The last position containing 1 to the right of i (all positions between
them also contain ones) is the end of the segment containing i. Similarly,
we can compute the first position of the segment containing i. It is easy to
compute it optimally for all positions i in O(logm) time by a parallel prefix
computation. The constant-time computation on a CRCW PRAM is more
advanced; we refer the reader to [BG 90]. Some tricks are used by applying
the power of concurrent writes. •

Now we can assume that the pattern is non-periodic. We consider the wit
ness table used in Chapter 13 for two sequential string-matching algorithms:
by duels and by sampling. The parallel counterparts of these algorithms are
presented. We skip the complicated proof of the preprocessing part of Vishkin
algorithm.

16.2. PARALLEL STRING-MATCHING ALGORITHMS 253

L e m m a 16 .4 The witness table can be computed in 0 (log n) time on a CREW

PRAM using 0(n/ log2 n) processors.

Recall tha t a position I on the text is said to be in the range of a position
k if k < I < k + m. We say tha t two positions k < I on the text are consistent
if I is not in the range of k, or if WIT[l — k] — 0. If the positions are not
consistent, then, in constant t ime we can remove one of them as a candidate
for a start ing position of the pa t te rn using the operation duel (see Chapter
13).

Let us part i t ion the input text into windows of size m/2. Then, the duel
between two positions in the same window eliminates at least one of them.
The position tha t "survives" is the value of the duel. Define the operation ®

by

i® j = duel(i,j).

The operation ® is "practically" associative. This means tha t the value of
i\ ® ii ® «3 ® . • • ® im/2 depends on the order of multiplications, but all values
(for all possible orders) are good for our purpose. We need any of the possible
values.

Once the witness table is computed, the string-matching problem reduces
to instances of the parallel prefix computat ion problem. We have the following
algorithm.

A l g o r i t h m Vishkin-string-matching-by-duels;
consider windows of size m / 2 on text;

{ sieve phase }
for each window d o in paral le l

{ ® can be t reated as if it were associative }
compute the surviving position i\ ® ii ® is ® • • • ® im/2
where ii,t2,h,--- , i m / 2 a r e consecutive positions
in the window;

{ naive phase }
for each surviving position i d o in paral le l

check naively an occurrence of pat at position i
using m processors;

T h e o r e m 16 .1 Assume we know the witness table and the period of the pat
tern. Then, the string-matching problem can be solved optimally in O(logm)
time with 0(n/ log m) processors of a CREW PRAM.

254 CHAPTER 16. PARALLEL TEXT ALGORITHMS

Proof. Let i\, 12, 13, • • • , im/2 be the sequence of positions in a given
window. We can compute i\ ® 12 <8> 13 ® • • • ® im/2 using an optimal parallel
algorithm for the parallel prefix computation. Then, in a given window, only
one position survives; this position is the value of i\ ® i^ ® 13 (g) • • • ® im/2-
This operation can be executed simultaneously for all windows of size m/2.
For all windows, this takes O (log TO) time with 0{n/ log m) processors of a
CREW PRAM. Afterward, we have 0(n/m) surviving positions altogether.
For each of them we can check the match using m / log TO processors. Again, a
parallel prefix computation is used to collect the result, that is, to compute the
conjunction of TO Boolean values (match or mismatch, for a given position).
This takes again 0(log TO) time with 0(n/ log TO) processors. Finally, we collect
the 0{n/m) Boolean values using a similar process. •

Corollary 16.1 There is an 0(log n) time parallel algorithm that solves the
string-matching problem (including preprocessing) with 0(n/ log n) processors
of a CREW PRAM.

Algorithm Vishkin-string-matching-by-sampling;
consider windows of size m/2 on text;

{ sieve phase }
for each window do in parallel begin

for each position i in the window do in parallel
kill i if the sample does not occur at i;

kill all surviving positions in the window,
except the first and the last;
eliminate one of them in the field of fire of the other;

end;
{ naive phase }
for each surviving position i do in parallel

check naively an occurrence of pat starting at i
using TO processors;

The idea of deterministic sampling was originally developed for parallel
string matching. In Chapter 13, a sequential use of sampling is shown. Let us
recall the definition of the good sample. A sample S is a set of positions on
the pattern. A sample S occurs at position i in the text if pat[j] = text[i + j]
for each j in S. A sample S is called a deterministic sample if it is small
(\S\ — O(logm)), and if it has a large field of fire (a segment [i — k. .i+m/2 — k]).
If the sample occurs at i in the text, then positions in the field of fire of i, except
i, cannot be matching positions. The important property of samples is that if

16.3. * SPLITTING TECHNIQUE 255

we have two positions of occurrences of the sample in a window of size m/2.
Then one "kills" the other: only one can possibly be a matching position.

In the sieve phase of the algorithm, we use n log m processors to check a
sample match at each position. In the naive phase, we have 0{n/m) windows,
and, in each window, m processors are used. This proves the following.

Theorem 16.2 Assume we know the deterministic sample and the period of
the pattern. Then, the string-matching problem can be solved in O(l) time with
0(n log m) processors in the CRCW PRAM model.

The deterministic sample can be computed in 0(log m) time with n pro
cessors using a direct parallel implementation of the sequential construction of
deterministic samples.

16.3 * Splitting technique

Several open problems have been cracked using the approach of splitting a
string into disjoint subsequences. The technique was originally known as the
pseudoperiod technique for certain reasons. A small sample string z is selected
and a binary string occur(z,pat) representing all occurrences of z in pat is
produced (string occurrences are ones, other positions are zeros). The smallest
period of occur(z,pat) is a pseudoperiod of pat. As a side effect, witnesses are
computed for all relevant positions which are not multiples of the pseudoperiod.
The elegancy of the method is obscured by many technical details. We only
sketch some main ideas. The advantage is the (small) reduction of parallel time.
We list the four most interesting problems that have been solved positively with
this approach:

1. existence of a deterministic optimal string-matching algorithm working
in O(logm) time on a CREW PRAM,

2. existence of a randomized string-matching algorithm working in constant
time with a linear number of processors on a CRCW PRAM,

3. existence of an 0(logn)-time string-matching algorithm working on a
hypercube computer with a linear number of processors,

4. existence of an 0(n1/2)-time string-matching algorithm running on a
mesh-connected array of processors.

All above problems can be solved using the pseudoperiod technique.

Theorem 16.3 There exist efficient parallel algorithms for each of the four
problems listed above.

256 CHAPTER 16. PARALLEL TEXT ALGORITHMS

The technique also provides a new optimal string-matching algorithm work
ing in O(loglogn) time on a CRCW PRAM. Recall that the CRCW PRAM is
the weakest model of the PRAM with concurrent writes (whenever such writes
occur the same value is written by each processor), and the CREW PRAM is
the PRAM without concurrent writes. Vishkin algorithm works in C(log2 n)
time if implemented on a CREW PRAM. An optimal O(lognloglogn) time
algorithm for the CREW PRAM model was presented earlier by Breslauer
and Galil. The full proof of Theorem 16.3 is beyond the scope of the book,
we only point the most crucial features in the algorithms. The power of the
splitting technique is related to the following recurrence relations:

(*) time(n) = O(logn) + iime(n1/2),

(**) time(n) = (9(1) + izme(n1//2).

Claim 1. The solutions of recurrence relations (*) and (**) satisfy, respec
tively:

time(n) = O(logn) and time(n) = O(loglogn).

Let P be a pattern of length m. Its witness table WIT is computed only for
the positions inside the interval FirstHalf — [1. .m/2]. We say that a set S of
positions is fc-regularly sparse if S is the set of positions i inside FirstHalf such
that i mod k = 1. If 5 is regularly sparse then let sparsity(S) be the minimal
integer k for which S is fc-regularly sparse. For 1 < q < k let us note:

p(i) = P{q)P{k + q)P(2k + q)P(3k + q)...

and
SPLIT(P, k) = {PW : 1 < q < k}.

Example.

SPLIT(a bacbdabadaa, 3) = {a c a d, b b b a, a d a a}.

Assume S is a fc-regularly sparse set of positions. Denote by COLLECT(P, k)
the procedure that computes values of the witness table for all positions in S,
assuming that the witness tables for all strings in SPLIT'(P, k) are known.

Claim 2. Assume the witness tables for all strings in SPLIT(P, k) are known.
Then, COLLECT(P, k) can be implemented by an optimal parallel algorithm
running in 0(log m) time on a CREW PRAM, and in O(l) on a CRCW PRAM.

16.3. * SPLITTING TECHNIQUE 257

The next fact is more technical. Denote by SPARSIFY(P) the function that
computes the witness table at all positions in FirstHalf except at a set S that
is /c-regularly sparse. The value returned by the function is the sparsity of
5; when k > m/2, S is empty. In fact, the main role of the function is the
sparsification of non-computed entries of the witness table.

Claim 3. SPARSIFY(P) can be computed by an optimal parallel algorithm
in O(logm) time on a CREW PRAM, and in O(l) on a CRCW PRAM. The
value k of SPARSIFY{P) satisfies k > m1/2.

The basic component of the function SPARSIFY is the function FINDSUB(P)
that finds a non-periodic subword z of P of size m1 /2 , or reports that there
is no such subword. It is easy to check whether the prefix z' of size m1 /2 is
non-periodic or not (we have a quadratic number of processors with respect to
m1 /2); if z' is periodic we find the continuation of the periodicity and take the
last subword of size m1 /2 . The computed segment z can be preprocessed (its
witness table is computed). Then, all occurrences of z are found, and, based
on these, the sparsification is performed.

We only present how to compute witness tables in O(logm) time using
0(m log m) processors. The number of processors can be further reduced by
a logarithmic factor, which makes the algorithm optimal. The algorithm is
illustrated by the following procedure Compute-by-Splitting.

procedure Compute-by-Splitting(P);
k :=1;

while k < m/2 do begin
k := SPARSIFY{P);
(P W . P W , . . . , P (' ') := SPLIT'(P,fc);
for each q, 1 < q < k, do in parallel

Compute-by-Splitting(p(q});
COLLECT (P,k);

end

According to the recurrence relations (*) and (**), the time for computing
the witness table using the procedure Compute-by-Splitting is O(logm) on a
CREW PRAM, and O(loglogm) on a CRCW PRAM. Implementations of the
sub-procedures SPARSIFY and COLLECT on a hypercube and on a mesh-
connected computer give the results stated in points 3 and 4 above. The
constant-time randomized algorithm (point 2) is much more complicated to
design. After achieving a large sparsification, the algorithm stops further calls,
and begins a special randomized iteration. At this stage, it is more convenient

258 CHAPTER 16. PARALLEL TEXT ALGORITHMS

to consider an iterative algorithm. The definition of SPARSIFY(P) needs
to be slightly changed: the new version sparsifies the set S of non-computed
entries of the witness table assuming that S is already sparse. The basic point
is that the sparsity grows according to the inequality:

k' > k.{m/k)1^2,

in which k is the old sparsity, and k' is the new sparsity of the set S of non-
computed entries. The randomization occurs when sparsity > m7 /8 . This is
achieved after at most three deterministic iterations.

The constant-time string matching also requires a quite technical (though
very interesting) construction of several deterministic samples in constant time.
But this is outside the scope of this book. We refer the reader to the biblio
graphic notes for details.

16.4 Parallel KMR algorithm and application

The doubling technique is the crucial feature of the structure of the Karp-
Miller-Rosenberg algorithm. It is so again in a parallel setting. At one stage,
the algorithm computes the names for all words of size k. At the next stage,
using these names, it computes names of words having a size twice as large.
We now explain how the algorithm KMR of Chapter 7 can be parallelized.

To make a parallel version of KMR algorithm, it is sufficient to design an
efficient parallel version of one stage of the computation, and this essentially
reduces to the parallel computation of Sort-Rename(x). If this procedure is
implemented in T{n) parallel time with n processors, we then have a parallel
version of KMR algorithm working in T(n) log n time also with n processors.
This is due to the doubling technique, and the fact that there are only logn
stages. Essentially, the same problems that are solved by a sequential algorithm
can be solved by its parallel version in T{n) log n time.

The time complexity of computing Sort-Rename(x) depends heavily on the
model of parallel computation used. It is T(n) = O(logn) without concurrent
writes, and it is T(n) = 0(1) with concurrent writes. In the latter case, one
needs a memory larger than the total number of operations used by what
is called a bulletin board (auxiliary table with n2 entries; or, by using some
arithmetic tricks, with n1+£ entries). This looks slightly artificial, but entries
of auxiliary memory do not have to be initialized. The details related to the
distribution of processors are also very technical in the case of concurrent
writes models. Therefore, we present the algorithms of this section using the
PRAM model without concurrent writes. This generally increases the time
by a logarithmic factor. This logarithmic factor also allows more time for

16.4. PARALLEL KMR ALGORITHM AND APPLICATION 259

solving technical problems related to the assignment of processors to elements
to be processed. The operation Sort-Rename(x) basically reduces to sorting,
and running it in O(logn) with 0(n) processors is possible. Both in KMR
algorithm and in the suffix tree construction we have a logarithmic number of
phases, each one using Sort-Rename. This implies directly the following fact.

Theorem 16.4 The dictionary of basic factors and the suffix tree of a text of
length n can be constructed in log2(n) time with 0(n) processors of a CREW
PRAM.

The theorem has many corollaries, since using the dictionary of basic factors
and suffix trees we can solve many other problems in log (n) time with 0(n)
processors, e.g., square testing, construction of string-matching automata, and
searching for symmetries. The dictionary of basic factors leads to another
efficient construction of suffix trees, though that is not optimal.

Theorem 16.5 The algorithm Suffix-Trees-by-Refining can be implemented to
work in 0(log2 n) time with 0(n) processors of a CREW PRAM.

To build the suffix tree of a text, a coarse approximation of it is first built.
Afterward the tree is refined step by step. We build a series of a logarithmic
number of trees Tn,Tn/2,... ,T\\ each successive tree is an approximation of
the suffix tree of the text; the key invariant is:

inv(k): for each internal node v of Tk there are no two distinct outgoing
edges for which the labels have the same prefix of the length k; the label of
the path from the root to leaf i is text[i. A + n]; there is no internal node of
outdegree one.

Remark. If inv(l) holds, then, the tree T\ is essentially the suffix tree
ST(text). Just a trivial modification may be needed to delete all # ' s padded
for technical reasons, but one. Note that the parameter A; is always a power of
two. This gives the logarithmic number of iterations.

The core of the construction is the procedure REFINE(k) that transforms
T-2k into Tfc. The procedure maintains the invariant: if inv(2k) is satisfied
for T2fc, then inv(k) holds for Tk after running REFINE{k) on T2fc. The
correctness (preservation of invariant) of the construction is based on the trivial
fact expressed graphically in Figure 16.1. The procedure REFINE(k) consists
of two stages:

(1) insertion of new nodes, one per each non-singleton fc-equivalence class,

(2) deletion of nodes of outdegree one.

260 CHAPTER 16. PARALLEL TEXT ALGORITHMS

Figure 16.1: If x ^ y and x\ = yi, then x2 ^ yv. After insertion of a new node,
if inv(2k) is locally satisfied on the left, inv(k) holds locally on the right.

We need the following procedure.

procedure REFINE(k);
for each internal node v of T do LocalRefine(k,v);

delete all nodes of outdegree one;

The informal description of the construction of the suffix tree ST {text) is
summarized by the algorithm below.

Algorithm Suffix-Tree-by-Refining;
let T be the tree of height 1 which leaves are 1,2, . . . ,n,

the label of the i-th edge is text[i. .n] encoded as [i, *];
k := n;
repeat { T satisfies inv(k) }

k := Jb/2; REFINE(k);
until k = 1;

In the first stage the operation LocalRefine(k,v) is applied to all internal
nodes v of the current tree. This local operation is graphically presented in Fig
ures 16.1 and 16.2. The fc-equivalence classes, labels of edges outgoing a given
node, are computed. For each non-singleton class, we insert a new (internal)
node. The algorithm is informally presented on the example text abaabbaa#,

16.4. PARALLEL KMR ALGORITHM AND APPLICATION 261

fc-name edge

.'1 v2 v3 v4 v5 v6 v7 v8

3^^«^^S
vl v2 v3 v4 v5 v6 v7 v8

-̂equivalence classes

Figure 16.2: Local refinement. The sons of node v for which the edge labels
have the same fc-prefixes are fc-equivalent.

toot hare [i,*] * [i,i+7]

Figure 16.3: The tree T8 for text = abaabbaaft. The 8-equivalence is the
4-equivalence, hence T% = T4. But the 2-equivalence classes of nodes are
{2,6}, {3,7}, {1,4}, {8}, {5}. We apply REFINE(2) to get T2 (Figure 16.4).

262 CHAPTER 16. PARALLEL TEXT ALGORITHMS

S 0 H H B

Figure 16.4: The tree T2. Three new nodes have to be created to obtain T\.
Now the 1-equivalence classes are: {3}, {7}, {4}, {1}, {v\, V2, 8}, {6,2}, {1*3, 5}.

Figure 16.5: Tree 7\ after the first stage of REFINE(l): insertion of new nodes
v4,v5,v6.

16.5. PARALLEL HUFFMAN CODING 263

Figure 16.6: Tree T\ after the second stage of REFINE{1): deletion of node
of out-degree one.

see Figure 16.3. We start with the tree T% of all factors of length 8 starting at
positions 1,2,... ,8 . The tree is almost a suffix tree: the only condition that is
violated is that the root has two distinct outgoing edges in which labels have a
common non-empty prefix. We attempt to satisfy the condition by successive
refinements: the prefixes violating the condition become smaller and smaller,
divided by two at each stage, until they become empty. This is illustrated in
the series of Figures 16.4, 16.5, and 16.6.

16.5 Parallel Huffman coding

The sequential algorithm for Huffman coding is quite simple, but unfortunately
it appears to be inherently sequential (see Chapter 10). Its parallel counterpart
is much more complicated, and requires a new approach. The global structure
of Huffman trees must be explored in depth. In this section, we give a poly-
logarithmic parallel-time algorithm to compute a Huffman code. The number
of processors is M(n), where M(n) is the number of processors needed for a
(min, +) multiplication of two nxn real matrices in logarithmic parallel time.
We assume, for simplicity, that the alphabet is binary.

A binary tree T is said to be left-justified if it satisfies the following prop
erties:

264 CHAPTER 16. PARALLEL TEXT ALGORITHMS

Figure 16.7: A left-justified Huffman tree. The hanging subtrees are of loga
rithmic height.

1. the depths of the leaves are in non-increasing order from left to right,

2. if a node v has only one son, then it is a left son,

3. let u be a left brother of v, and assume that the height of the subtree
rooted at v is at least I. Then the tree rooted at u is full at level Z, which
means that u has 2l descendants at distance I.

Most important for the present problem is the following property of left-
adjusted trees.

Basic property. Let T be a left-justified binary tree. Then, it has a structure
as illustrated in Figure 16.7. All hanging subtrees have height at most logn.

Lemma 16.5 Assume that the weights p\, pi, ... , pn are pairwise distinct
and in increasing order. Then, there is Huffman tree for (pi,P2, • • • ,pn) that
is left-justified.

Proof. We first show the following claim:

For each tree T we can find a tree T' satisfying properties (1), (2), (3),
in which the leaves are a permutation of leaves of T, and such that
the depths of corresponding leaves in the trees T and T" are the

same.

16.5. PARALLEL HUFFMAN CODING 265

The claim can be proven by induction with respect to the height h of the tree
T. Let Ti be derived from T by the following transformation: cut all leaves
of T at maximal level; the fathers of these leaves become new leaves, called
special leaves in Ti. The tree T\ has height h — 1. It can be transformed into
a tree T[satisfying (1), by applying the inductive assumption. The leaves of
height h — 1 of T{ form a segment of consecutive leaves from left to right. It
contains all special leaves. We can permute the leaves at height h — 1 in such a
way that special leaves are at the left. Then, we insert the deleted leaves back
as sons of their original fathers (special leaves in T\ and T[). The resulting
tree T' satisfies the claim.

Let us consider a Huffman tree T. It can be transformed into a tree satisfying
conditions (1) to (3), with the weight of the tree left unchanged. Hence, after
the transformation, the tree is also of minimal weight. Therefore, we can
consider that our tree T is optimal and is left-justified. It is sufficient to prove
that leaves are in increasing order of their weights pi, from left to right. But
this is straightforward since the deepest leaf has the smallest weight. Hence,
the tree T satisfies all requirements. •

Theorem 16.6 The weight of a Huffman tree can be computed in 0(log n)
time with n3 processors. The corresponding tree can be constructed within the
same complexity bounds.

Proof. Let weight[i,j] = pi+\ + Pi+2 + ••• + Pj- Let cost[i,j] be the
weight of a Huffman tree for (pi+i,pi+2, • • • ,Pj) in which the leaves are keys
Ki+i,Ki+2, • • • , Kj. Then, for i + 1 < j , we have:

(*)cost[i,j] = min{cost[i,k] + cost[k,j] + weight[i,j] : i < k < j}.

Let us use the structure of T illustrated in Figure 16.7. All hanging subtrees
are shallow; they are of height at most log n. Therefore, we first compute the
weights of such shallow subtrees.

Let cost-low[i,j] be the weight of the Huffman tree of logarithmic height, in
which the leaves are keys Ki+i,Ki+2, • • • ,Kj- The table cost-low can be easily
computed in parallel by applying (*). We initialize cost-low[i,i + 1] to pi, and
cost-low[i,j] to oo, for all other entries. Then, we repeat logn times the same
parallel-do statement:

for each i and j , i < j' — 1, do in parallel
cost-low[i,j] := min{cost-low[i, k] + cost-low[k,j] : i < k < j}

+weight[i,j}.

We need n processors for each operation "min" concerning a fixed pair (i,j).
Since there are n2 pairs (i,j), globally we use a cubic number of processors to
compute cost-low's. Now, we have to find the weight of an optimal decompo
sition of the entire tree T into a leftmost branch, and hanging subtrees. The

266 CHAPTER 16. PARALLEL TEXT ALGORITHMS

Figure 16.8: edge-cost[i,j] = cost-low[i,j] + weight[i,j]

consecutive points of this branch correspond to points (1, i). Consider the edge
from (l , i) to (l , j) , and identify it with the edge (i,j). The contribution of
this edge to the total weight is illustrated in Figure 16.8.

We assign to the edge (i,j) the cost given by the formula:

edge-cost(i,j) = cost-low[i,j) + weight])., j].

It is easy to deduce the following fact: the total weight of T is the sum of costs
of edges corresponding to the leftmost branch.

Once we have computed all cost-low's we can assign the weights to the edges
according to the formula, and we have an acyclic directed graph with weighted
edges. The cost of the Huffman tree is reduced to the computation of the
minimal cost from 1 to n in this graph. This can be executed by log n squaring
of the weight matrix of the graph. Each squaring corresponds to a (min, +)
multiplication of n x n matrices, and, therefore, can be executed in logn time
with n3 processors. Hence log2 n time is sufficient for the entire process. This
completes the proof of the first part of the theorem. Given costs, the Huffman
tree can be constructed within the same complexity bounds. We refer the
reader to [AKLMT 89]. a

In fact matrices that occur in the algorithm have a special property called
the quadrangle inequality (see Figure 16.9) or Monge property. This property
allows the number of processors to be reduced to a quadratic number. A matrix
C satisfies the quadrangle inequality if for each i < j < k < I we have:

C[i,k] + C[j,l]<C[i,l] + C[j,k}.

Let us consider matrices that are strictly upper triangular (elements below
the main diagonal and on the main diagonal are null). Such matrices corre
spond to weights of edges in acyclic directed graphs. Denote by © the (min, +)
multiplication of matrices:

F©G = CiKC[i,j} = mm{F[i,k] + G[k,j] : i < k < j}.

16.5. PARALLEL HUFFMAN CODING 267

k

I

Figure 16.9: The quadrangle inequality: (cost of plain lines) < (cost of dashed
lines).

The proof of the following fact is left to the reader.

Lemma 16.6 / / matrices F and G satisfy the quadrangle inequality, then
F©G also satisfies this property.

For matrices occurring in the Huffman tree algorithm, the (min, +) multi
plication is simple in parallel, and the number of processors is reduced by a
linear factor, due to the following lemma.

Lemma 16.7 If matrices F and G satisfy the quadrangle inequality, then
F©G can be computed in 0(log n) time with 0(n2) processors.

Proof. Let us fix j , and denote by CUT[i] the smallest integer k for which
the value of F[i, k] + G[k,j] is minimal. The computation of F©G reduces to
the computation of vectors CUT for each j . It is sufficient to show that, for j
fixed, this vector can be computed in 0(log2 n) time with n processors. The
structure of the algorithm to do it is the following:

let imid be the middle of interval [1,2, . . . , n]; compute CUT[imid]
in O(logn) time with n processors assuming that the value of CUT
is in the whole interval [1 ,2 , . . . , n].

Afterward, it is easy to see, due to the quadrangle inequality, that

CUT[i] < CUT[imid] for all i < imid,
CUT[i] > CUT[imid] for all i > imid.

268 CHAPTER 16. PARALLEL TEXT ALGORITHMS

Using this information we compute CUT[i] for all i < imid, knowing that its
value is above CUT\imid\- Simultaneously we compute CUT[i] for all i > imid,
knowing that its value is not above CUT[imid]. Let m be the size of the interval
in which we expect to find the value of CUT[i] (for i in the interval of size n).
We have the following equation for the number P(n, m) of processors:

P(n, m) < max{m, P(n, mi) + P(n,mj)}, where mi + m-i = m.

Obviously P(n,n) = 0(n). The depth of the recursion is logarithmic. Each
evaluation of a minimum also takes logarithmic time. Hence, we get the re
quired total time. For a fixed j , P(n,n) processors are adequate. Altogether,
for all j , we need only a quadratic number of processors. •

The lemma implies that the parallel Huffman coding problem can indeed
be solved in polylogarithmic time with only a quadratic number of proces
sors. This is not optimal, since the sequential algorithm makes only 0(n log n)
operations. We refer the reader to [AKLMT 89] for an optimal algorithm.

16.6 Edit distance — efficient parallel
computation

The edit distance can be viewed as a shortest path problem on a grid graph
G (see Chapter 12. For simplicity assume that words x and y are of the same
length n. Then, G has (n + l) 2 nodes. Let W be the matrix of weights
associated to edges of G. We can use (min, +) matrix multiplication to obtain
the required value of the edit distance. Assume that the weight from the sink
node to itself is zero. Then edit(x,y) = Wn[0,n].

The matrix Wn can be computed using successive squaring (or an adapta
tion of it, if n is not a power of 2):

repeat logn times W := W2.

Obviously, k3 processors are sufficient for multiplying two k x k matrices in
0(log k) time on a CREW PRAM. In our case k = (n+1) 2 , so, this proves that
n6 processors suffice to compute the edit distance. The time of computation
is 0(log2n). However, there is a more efficient algorithm, due to the special
structure of the grid graph G. The grid graph can be decomposed into four
grid graphs of the same type (see Figure 16.10). The partition of G leads to a
kind of parallel divide-and-conquer computation.

Theorem 16.7 The edit distance can be computed in log n time with r? pro
cessors.

16.6. EDIT DISTANCE — EFFICIENT PARALLEL COMPUTATION 269

A

C

B

^ \ z

D \

sink
sink

Figure 16.10: Decomposition of the shortest path problem into sub-problems.

Proof. The edit distance problem reduces to the computation of a shortest
path from the source (left upper corner) to the sink (right lower corner) on the
weighted grid graph G. We compute (recursively) the matrix W of all costs of
paths, from positions x on the left or top boundary to any position y on the
right or bottom boundary of G. Let us partition the grid into four identical
sub-grids, as in Figure 16.10. If we know the matrices of costs between bound
ary points for all sub-grids, then all costs of paths between boundary positions
of the whole grid can be computed with 0(M(n)) processors in 0(log n) time,
using a constant number of matrix multiplications. Here, M(n) denotes the
number of processors needed to multiply, in 0(log n) time, two matrices sat
isfying the quadrangle inequality. We have M(n) — 0(n2). For n/2 x n/2
sub-grids we need M(n/2) processors at one level of recursion. Altogether
M(n) processors suffice, since we have the inequality AM(n/2) < M(n) (be
cause M(n) = en2). •

Bibliographic notes

The first optimal parallel algorithm for string matching was presented by Galil
in [Ga 85]. The algorithm was optimal only for alphabets of constant size.
Vishkin improved on the notion of the slow duels of Galil, and described
the more powerful concept of (fast) duels that leads to an optimal algorithm
independently of the size of the alphabet [Vi 85]. The optimal parallel string-
matching algorithm working in 0(log n) time on a CREW PRAM is also from

270 CHAPTER 16. PARALLEL TEXT ALGORITHMS

Vishkin [Vi 85]. The idea of witnesses and duels is used by Vishkin in [Vi 91]
in the string matching by sampling. The concept of deterministic sampling is
very powerful. It has been used by Galil to design a constant-time optimal
parallel searching algorithm (the preprocessing is not included). This result
was an improvement upon the 0(log* n) result of Vishkin, though <9(log* n)
time can also be treated practically as a constant time. The construction
of suffix tree by refining was presented originally in [AILSV 88]. The parallel
algorithm computing the edit distance is from [AALF 88]. It was also observed
independently by Rytter [Ry 88].

Chapter 17

Miscellaneous

This chapter addresses several interesting questions about strings that have not
been considered yet in previous chapters: string-matching by hashing, shortest
common superstrings, unique decipherability problem of codes, parameterized
pattern-matching and breaking paragraphs into lines. The treatment of prob
lems is not always handled in full details.

17.1 Karp-Rabin string matching by hashing

When we need to compare two objects x and y, we can look at their "finger
prints" given by hash(x), hash(y). If the fingerprints of two objects are equal,
there is a strong likelihood that they are really the same object, and we can
then apply a more thorough test of equality (if necessary). The two basic
properties of fingerprints are:

• efficiently computable

• highly discriminating: it is unlikely to have both x ^ y and hash(x) =
hash(y).

The idea of hashing is utilized in the Karp-Rabin string-matching algo
rithm. The fingerprint FP of the pattern (of length m) is computed first.
Then, for each position i on the text, the fingerprint FT of text[i + 1.A + m]
is computed. If ever FT = FP, we check directly to see if the equation
pat = text[i + 1. .i + m] really holds.

Going efficiently from a position i on the text to the next position i + 1
requires another property of hashing functions for this specific problem (see
Figure 17.1):

271

272 CHAPTER 17. MISCELLANEOUS

hl= hash(ax)

text

hi = hashQcb)

Figure 17.1: /i2 = f(a,h,hl), where / is easy to compute.

hash(text[i + l. A + m]) should be easily computable from hash(text[i. A-

m

Assume for simplicity that the alphabet is {0,1}. Then each string x of length
TO can be treated as the binary representation of an integer. If TO is large, the
number becomes too large to fit into a unique memory cell. It is convenient
then to take as a fingerprint the value x modulo Q, in which Q is a prime
number as large as possible (for example, the largest prime number that fits
into a memory cell). The fingerprint function is then

hash(x) = [x]2 mod Q

where [14)2 is the number which binary representation is the string u of length
TO. All string arguments of hash are of length TO. Let g = 2 m _ 1 mod Q.
Then, the function / (see Figure 17.1) can be computed by the formula:

f(a, b, h) = 2(h — ag) + b.

Proceeding in this way, the third basic property of fingerprints is satisfied: /
is easily computable.

Algor i thm Karp-Rahin;
{ string-matching by hashing }

FP := [pat[l. .m]]2 mod Q; g := 2m~1 mod Q;
FT := [text[l. .TO]]2 mod Q;
for i := 0 t o n — TO do begin

if FT = FP { small probability } then
check equality pat = text[i + 1. A + TO]
applying symbol by symbol comparisons
and report a possible match;

FT := f(text[i + 1], text[i + TO + 1], FT);
end

17.1. KARP-RABIN STRING MATCHING BY HASHING 273

The worst-case time complexity of the algorithm is quadratic. But it could
be difficult to find interesting input data causing the algorithm to make ef
fectively a quadratic number of comparisons (the non-interesting example is
that in which pat and text consist only of repetitions of the same symbol). On
the average the algorithm is fast, but the best time complexity is still linear.
This is to be compared with the lower bound of string matching on the av
erage (which is 0{nlogm/m)), and the best time complexity of Boyer-Moore
type algorithms (which is 0{n/m)). String matching by hashing produces a
straightforward O(logn) randomized optimal parallel algorithm because the
process reduces to prefix computations.

One can also apply other hashing functions that satisfy the three basic prop
erties above. The original Karp-Rabin algorithm chooses the prime number
randomly.

Essentially, the idea of hashing can also be used to solve the problem
of finding repetitions in strings and arrays (looking for repetitions of finger
prints). The algorithm below is an extension of Karp-Rabin algorithm to two-
dimensional pattern matching. Let m be the number of rows of the pattern
array. Fingerprints are computed for columns of the pattern, and for factors of
length m of columns of the text array. The problem then reduces to ordinary
string matching on the alphabet of fingerprints. Since this alphabet is large, an
algorithm in which the performance is independent of the alphabet is actually
required.

Algorithm 2D-pattern matching by hashing;
{ PAT is an m x m' array, T is an n x n' array }

pat := hash(Pi)... hash(Pm>),
where Pj is the j - t h column of PAT;

text :— hash(T\)... hash(Tni),
where Tj is the prefix of length m of the j - t h column of T;

for i := 0 to n — m do begin
if pat occurs in text at position j then

check if PAT occurs in T at position (i, j)
applying symbol by symbol comparisons, { cost 0(rnm') }
and report a possible match;

if i =£ n — m then { shift one row down }
for j :— 1 to n' do

text[j] := f(T[i + l,j],T[i + m + 1, j], text[j\);
end

274 CHAPTER 17. MISCELLANEOUS

17.2 Shortest common superstrings

The shortest common superstring problem (SCS) is defined as follows: given a
finite set of strings R find a shortest text w such that R C ^(w). The size of
the problem is the total size of all words in R. The superstring w represents
in a certain sense all subwords of R.

The problem is known to be NP-complete. So the natural question is to
find a polynomial-time approximation for it. The aim of Gallant's method is
to compute an approximate solution. The resulting algorithm is called here
Greedy-SCS. Without loss of generality, we assume (throughout this section)
that R is a factor-free set, which means that no word in R is a factor of another
word in R. Otherwise, if u is a factor of v (u, v £ R), a solution for R — {u}
is a solution for R. For two words x and y let us define Overlap(x,y) as the
longest prefix of y which is a suffix of x. liv— Overlap(x, y), then x, y are in
the form

x = u\v and y = vu?-

Let us define x©y as the word Uivv,2 (= u\y = xu^). Observe that the
shortest superstring of two words u, v is either u©v or v©u. Since the set R
is factor-free, the operation © has the following properties:

(*) operation © is associative (on R),

(**) the shortest superstring for R is of the form x\©X2©X3© . . . ©Xk, where
x\, X2, X3,..., Xk is a permutation of all words of the set R.

function Greedy-SCS (R);
{ Gallant's algorithm, greedy approach to SCS }

if R consists of one word w then return w
else begin

find two words x, y such that Overlap(x, y)\ is
return Greedy-SCS(R - {x, y} U {x©y});

end

maximal;

The above algorithm is quite effective in term of compression. Let n be the
sum of lengths of all words in R. Let wmin be a shortest common superstring,
and let WQ be the output of Gallant algorithm. Note that |iz;mj„| < \WQ\ < n.
The difference n — |wmm| is the size of compression. The smaller the shortest
superstring, the better the compression. The following lemma states that the
compression reached by Gallant algorithm is at least half the optimal value
(see bibliographic notes).

17.2. SHORTEST COMMON SUPERSTRINGS 275

Lemma 17.1 n - \WQ\ > (n — |u>min|)/2.

If we take wi = abn, W2 = bna, W3 = bn+1 then the size of the compression
is approximately twice the optimal one, if the algorithm first merges w\ and
W2- Hence the order is essential, unfortunately there generally exponentially
many different orderings possible.

i a c b d

e g i a k h

h b g e g i

b d i a c h

11 U d l a c | r e s u l t o f GREEDY

[f b d i a c h b g e g i a k h i a c b d |

Figure 17.2: The action of the algorithm Greedy-SCS on the example strings.

Example. Take the following example set R = {w\,W2, u>3,1^4, iv&}, in which

w\ = egiakh, u>2 = fbdiac, w3 = hbgegi, Wi — iacbd, w^ = bdiach.

Gallant algorithm produces the following string, see Figure 17.2.

WG = Greedy-SCS{w11 W2©ws, w3, W4)
= Greedy-SCS(u>3©wi, W2©'w5, W4)
= Greedy-SCS{w2©W5©W3©wi, w±)
= W2©W5©W3©Wi©W4.

Its size £ is

i = n— Overlap (w2,W5) — Overlap (ws,w3)
— Overlap(w3,wi) — Overlap(w\, W4)

= 2 9 - 5 - 1 - 3 - 0
= 20.

In this case, n — \WG\ = 9.
An alternative approach to Greedy-SCS algorithm is to find a permutation

Xi, X2, X3, . . . , Xk

276 CHAPTER 17. MISCELLANEOUS

of all words of R, such that xi©X2©x3©... ©Xk is of minimal size. This
produces exactly a shortest superstring (property **). Translated into graph
notation (with nodes aij's, linked by edges weighted by lengths of overlaps)
the problem reduces to the Traveling Salesman Problem, which is also NP-
complete. Heuristics for this latter problem can be used for the shortest su
perstring problem.

The complexity of Gallant algorithm depends on its implementation. Ob
viously the basic operation is computing overlaps. It is easy to see that for
two given strings u and v the overlap is the size of the border of the word
v#u. Hence, methods from Chapter 3 (to compute the border table) can be
used here. This leads to an 0(nk) implementation of Gallant method. The
best known implementations of the method work in O(nlogn) time, using
sophisticated data structures.

17.3 Unique-decipherability problem

A set of words H, is said to be a uniquely-decipherable code if words that
are compositions of words of H have only one factorization according to H.
The unique decipherability problem consists in testing whether a set of words
satisfies the condition. The size n of the problem, when H is a finite set, is
the total length of all elements of H; in particular, the cardinality of H is also
bounded by n. Note that we can consider that H does not contain the empty
word, because otherwise H is not uniquely decipherable and the problem is
solved.

Another way to set up the problem is to consider a coding function h,
or substitution, from B* to A* (B and A are two finite alphabets). The

function is a morphism (i.e., it satisfies both properties h(s) = e and h(uv) =
h(u)h(v) for all u,v), and the set H, called the code, is {h(a) : a e B}. The
elements of H are called codewords. Then, asking whether h is a one-to-one
function is equivalent to the unique decipherability for H provided all h(a)'s
are pairwise distinct. Coding functions related to data compression algorithms
are considered in Chapter 10. We can assume that all codewords h(a) are
non-empty and pairwise distinct. If not, then obviously the function is not
one-to-one and the problem is solved.

We translate the unique decipherability condition for H into a problem on
a graph G that is now denned. The nodes of G are suffixes of the codewords
(including the empty word). There is an edge in G from u to v iff v = u//x
or v — xj/u for some codeword x. The operation y//z is denned only if z is a
prefix of y, that is, if y = zw for some word w, and the result is precisely this
word w.

17.3. UNIQUE-DECIPHERABILITY PROBLEM 277

(dba)

Figure 17.3: Graph G for the example code.

A set of initial nodes, Init, is denned for the graph G. Initial nodes are
those of the form xjjy in which x, y are two distinct codewords. Let us call
the empty word the sink. Then, it is easy to prove the following fact:

the code H is uniquely decipherable iff there is no path in G from
an initial node to the sink.

Example. Let H = {ab, abba, baaabad, aa, badcc, cc, dccbad, badba}. The cor
responding graph G is displayed in Figure 17.3. The set is not a uniquely
decipherable code because there is a path from ba to the sink. The word ba is
an initial node because ba = abba/ jab. The path is:

ba —>• aabad —> bad —»• ce —> e

associated with the four equalities baaabad//ba = aabad, aabad//aa = bad,
badcc//bad = cc, cc//cc = e. The path corresponds to two factorizations of
the word abbaaabadcc:

ab.baaabad.cc and abba.aa.badcc.

The size of graph G is 0(n2), and we can search a path from an initial
node to the sink in time proportional to the size of the graph by any standard
algorithm. We show that the construction of G can also be accomplished within
the same time bound. If we can answer questions like "is y//x defined?" in
constant time, then, there is at most a quadratic number of such questions,
and we are done. The question "is y//x denned?" is equivalent to "is the x a
prefix of y." For a fixed codeword y this takes 0(n + \y\) time, since n is the
total size of all codewords. Altogether this takes 0{n2) time if we sum over all
y's. This proves the following.

278 CHAPTER 17. MISCELLANEOUS

Theorem 17.1 The unique decipherability problem can be solved in 0{n*)
time.

A more precise estimation of the same algorithm shows that it works in
0{nk) time, where k is the number of codewords. By applying some data
structures, the space complexity can also be improved for some instances of
the problem. The close relationship between the unique decipherability prob
lem and accessibility problem in graphs is quite inherent, particularly if space
complexity is considered. Indeed, the problems are mutually reducible using
additional constant-space memory of a random access machine (or log n deter
ministic space of a Turing machine).

17.4 Parameterized pat tern matching

Assume we search for a pattern P e SJ of length m in a text T G Ej of
length n and the same symbol can be written differently in P and T but the
full correspondence between symbols can be unknown in advance. For some
symbols of Si we know their equivalent symbols in £2 via an injective partial
naming function

Ninit : Si —>• S2.

We are to check if there is an injective full naming function Af defined for
all symbols of S i , which is an extension of Afinit, and such that the coded
pattern Af(P) occurs in T. We ask for all occurrences for which there exists a
corresponding function Af; the naming function may differ for each occurrence.
The symbols for which Afinit is not denned are called unknown symbols, so
the problem is to check how to name them consistently in such a way that
the pattern occurs in T. We assume that the alphabets are enumerated, i.e.
identified with intervals on natural numbers starting at 1.

Example. Assume that initially Afinit{a) = b and Af is not defined for other
symbols, consider the following text and pattern:

T — abcabbbbac, P = a b c.

Then, there are two occurrences of P in T which start at positions 2 and 8.
In the first occurrence abc corresponds to bca and in the second one to bac.
Hence the naming function for the first occurrence is

Af : a^>b, b-+c, c—ta
and for the second occurrence it is:

Af : a -¥ b, b —> a, c—tc.
In both correspondences it should be a —> b.

17.4. PARAMETERIZED PATTERN MATCHING 279

We say that u agrees with w and write u « w if there is an injective naming
function N such that Af(u) = w. Using this terminology we have

P occurs at position i in T iff P w T[i. .i + m — 1].

Let So be the set of symbols for which the initial partial naming function
is defined. So So is the set of known symbols and A \ So is the set of unknown
symbols. For two strings u,w built over the alphabet Si containing So we
define the equivalence relation u = w as follows:
(1) u and w have the same length, (2) there is a bijection / : Si -> Si such
that f(u) = w and / is the identity on So-

Lemma 17.2
(1) If u = w and w w v then u « v.
(2) If P[l. .j] « T[i + l..i+ j] andl<t<j then

P[l. .t] « T[i + j - t. .i + j] => P[l. .t] = P[j -t + 1. .j}.

We introduce a new version of the border table which is suitable to using
the same strategy for pattern matching with unknown symbols.

For 0 < j < m, define

ModBord[j] = max{0 < t < j : P[l. .t] = P[j -t + l. .j}}.

In other words, the entry ModBord[j] is equal to the length of a longest proper
suffix of P[l. .j] which agrees (with respect to =) with a prefix of P of the same
length. The entry is null if no non-empty proper suffix satisfy the condition,
e.g., it always holds ModBord[l] = 0.

In the algorithm we need one table more, called PRED. For a string X it
is defined by

PREDx[i) = max{i < i : X[i] = X[t] or t = 0}

for all position i on X. For example, if X = abcaabac we have: PREDx =
[0,0,0,1,4,2,5,3].

Lemma 17.3 The table PRED can be computed in linear time.

Proof. We scan the string X from left to right and use an auxiliary table
LAST, which records the position of the last occurrence of each symbol before
the currently visited position i. Initially LAST contains only zeros. And at
the i-th iteration we execute the instruction:

280 CHAPTER 17. MISCELLANEOUS

PREDx[i\ •= LAST[X[i]] ; LAST[X[i]] := i;

The computation takes linear time if the alphabet is enumerated. D

function MATCH-EXTENDS {ij);
{ input: P[l. .j] « T[i + 1.A+ j] and 0 < j < m }

{ output: true iff P[l . .j + 1] « T[i + 1..
u : = P [j + l] ; t ; : = r [i + i + l];
if it G So or v G Mmt(So) then

return (Afinit(u) = v)
else if PREDP[j + 1] > 0 then

; + i + i] }

return (T[i + j + 1] = T[i + PREDP[j + 1])
else

return (PREDT[i + j + 1] < i);

The crucial part of the modified KMP algorithm is an auxiliary function
MATCH-EXTENDS, which checks whether a partial match of P[l . .j] against
T[i. .i + j] extends by one symbol to the right.

Theorem 17.2 [Modified-KMP: searching] Assume the table ModBord for
pattern P is precomputed. Then we can search for P with unknown symbols in
a text of length n in time 0{n).

Proof. Algorithm Modified-KMP is presented below. It works essentially in
the same manner as KMP algorithm does; but, instead of making simple sym
bols comparisons, it uses the special boolean function MATCH-EXTENDS(i,j).
Since running the function MATCH-EXTENDS takes only constant time, the
algorithm works in linear time. The proof of correctness of the algorithm is
less trivial but it follows essentially from Lemma 17.2. •

Algorithm Modified-KMP;
i := 0; j := 0;

compute tables PREDp and PREDT;

compute table ModifiedFailureTable;
while i < n — m do begin

while j < m and MATCH-EXTENDS(i,
j := i + 1;
if j = m then REPORT MATCH at
i := i + max(l, j — ModBord\j]);
j := ModBord[j];

j) do

i + 1;

17.5. BREAKING PARAGRAPHS INTO LINES 281

Theorem 17.3 [Modified-KMP: preprocessing] The table ModBord for a pat
tern of length m can be computed in 0(m) time.

Proof. We use the algorithm Computation-of-ModifiedFailureTable, which
is given below. The algorithm mimics a standard algorithm. The function
MATCH-EXTENDS'(t, k) is a slight modification of MATCH-EXTENDS. It
checks whether a partial match of P[l . .t] against P[j — t. .j] extends by one
position in the pattern in the sense of relation =. The function is designed as
a straightforward modification of MATCH-EXTENDS. The time complexity
of the algorithm Computation-of-ModifiedFailureTable is linear due to the fact
that MATCH-EXTENDS' is computed in constant time. •

Algorithm Computation-of-ModifiedFailureTable;
compute the table PREDp;

ModifiedFailureTable[Q] := - 1 ; t := - 1 ;
for j := 1 to m do begin

while t > 0 and not MATCH-EXTENDS1 {t,j - t) do
t := ModifiedFailureTable[t};

t := t + 1; ModifiedFailureTable[j] := t;

17.5 Breaking paragraphs into lines

In this section, we describe an application of text manipulation to text editing.
It is the problem of breaking a paragraph optimally into lines. The algorithm
may be seen as another application of the notion of failure function, introduced
in Chapter 2 for the KMP string-matching algorithm.

The problem of breaking a paragraph is defined as follows. We are given
a paragraph (a sequence) of n words (in the usual sense) x\, x^, . . . , xn, and
bounds Imin, Imax on lengths of lines. The i-th word of the paragraph has
length wi. A line is an interval [i. .j] of consecutive words x'ks (i < k < j).
The length of line [i. .j], denoted by line(i,j), is the total length of its words,
that is, Wi + u>i+i + • • - + Wj. Bounds Imin and Imax are related to the smallest
and largest lengths of lines respectively. The optimal length of a line is Imax.
Moreover, the length of the line [i. .j] is said to be legal if Imin < line(i,j) <
Imax. Let us denote the corresponding predicate by legal(i,j).

For a legal line, its penalty is defined as penalty(i,j) = C.(lmax — line(i,j)),
for some constant C. The problem of breaking a paragraph consists in finding
a sequence of integers

h{= 1), h, ••• , ik(=n)

282 CHAPTER 17. MISCELLANEOUS

such that both, lines [ii. .i2], [h + 1- -*3], • • • , [h-i + 1- -h] have legal lengths,
and the total penalty (sum of penalties of lines) is minimum. Integers i\, i2,
i3, ... , ik are called the breaking points of the paragraph. We assume that
there is no penalty (or zero penalty) for the first line, if its length does not
exceed Imax. It is as if we treated the paragraph starting from the end. In the
common definition of the problem the last line is not penalized for being too
short. Reversing the order of words in paragraphs leads to an algorithm that
is even more similar to KMP algorithm, since indices are processed from left
to right.

Let break[i] be the rightmost breaking point preceding i in an optimal
breaking of the subparagraph [1. .i]. When break [i] is computed for all values
of i (from 1 to n), the problem is solved: the sequence of breaking points can
be recovered by iterating break from n.

We first design a brute-force breaking algorithm that runs in quadratic
time. The informal scheme of such a naive algorithm is given below. It uses
the table / : f[i] is the total penalty of breaking into lines the subparagraph
[1. .i\. The scheme assumes that f[i] is initialized to 0 for all integers i such
that line(l,i) < Imax, and is initialized to infinity for all other values of i.

for i :— 1 to n do begin
j := an integer which minimizes
break[i) :— j ;
/[*] : = f[J] + penalty(j + l,i);

end

f[j] + penalty(j + 1, 0;

The value of the variable j at the second line is computed by scanning the
interval [first[i],... , last[i]], in which first[i] is the smallest integer k for which
legal(k,i) holds, and, similarly, /osi[i] is the largest such k less than i. The
interval [/irs£[i],... , Zas£[i]] is called the legal interval of i. All values first[i],
last[i], line(l,i) can be precomputed. Therefore, the above scheme yields an
0(n2) time algorithm. The next theorem shows that this can be improved
upon considerably.

procedure Update-table-Next,
repeat

pop the top index j of the stack S;
until g[j] < g[i];
push i onto S;

Next[j] := i;

17.5. BREAKING PARAGRAPHS INTO LINES 283

Algorithm HL; { breaking a paragraph of n words into lines }
precompute values first[i], last[i], line(l, i) for all i < n;

let k be the maximal index such that line[l, k] < Imax;
initialize f[i\ to 0 and break[i] to 0 for alii < k

and compute the corresponding values g[i] and Next[i};

j •= 0;
for i := k + 1 to n do begin

{ invariant: break[i] < i, first[i] < last[i] < i }
{ legal interval is [/jrs£[i]. ./asi[i]] }
if j < first[i] then j := first[i};
while Next[j] denned and Next[j] < last[i] do

{j is not rightmost minimal } j := Next[j];
break[i] := j ; f[i] := f[j] + penalty (j + 1, i);
g[i] := f[i] + C.line(l,i);
Update-table-next,

end;
return table break, which gives an optimal breaking;

Theorem 17.4 The problem of optimally breaking a paragraph ofn words can
be solved in 0(n) time.

Proof. Let us define the function g by g[j] = f[j] + C.line(j, n). The crucial
point is the following property: a value of j that minimizes f[j]+penalty(j+l,i)
also minimizes g[j] in the legal interval of j .

That the difference between expressions depends only on i can be checked
using simple arithmetics. Another important property is the monotonicity of
breaking points:

i' < i => break[i'\ < break[i\.

Hence, the value of j is to be found in the interval [max(first[i], break[i —
1]). .Zas£[i]]. Define Next[j] to be the first position k < i to the right of j such
that g[k] < g[j}. When looking for the minimal value of g[j] in a legal interval,
we can initialize j to the beginning of the interval, and compute successive
positions by iterating Next:

J! = Next[j], j 2 = Next[ji], ...

until the value is undefined, or until it goes outside the interval. Doing so, Next
works as the failure table of KMP algorithm. This produces the algorithm
presented below. It works in linear time, as per a similar argument as that
used in the analysis of KMP algorithm, if the total cost of updating the table

284 CHAPTER 17. MISCELLANEOUS

Next is linear. Let ji, J2, • • • , j r be the increasing sequence of values of j for
which Next[j] is not denned at a given stage of the algorithm. Then the values
of g[j] are strictly increasing for this sequence. We keep the sequence j l t j 2 ,
. . . , j r on a stack S, the last element at the top. The procedure Update-table-
Next is then applied. The total complexity of computing the table Next is
linear, since each position is popped from stack S at most once. •

Bibliographic notes

String matching by hashing was first considered by Harrison [Ha 71]. A
complete analysis is presented by Karp and Rabin in [KR 87]. The same idea
(using hashing) is applied to finding repetitions in [Ra 85]. An adaptation of

Karp-Rabin algorithm to two-dimensional pattern matching has been designed
by Feng and Takaoka [FT 89]. The approximation of the SCS is from [GMS
80]. An efficient implementation has been designed by Tarhio and Ukkonen
[TU 88]. Stronger methods are developed in [Tu 89], providing an 0(n log n)-
time algorithm, there are plenty of other algorithms for the problem. The
algorithm for testing unique decipherability of a code is usually attributed to
Sardinas and Paterson (see [Lo 83]). The problem is complete in the class of
non-deterministic logn-space computations (see [Ry 86]). The parameterized
pattern matching was introduced by Baker [Ba 93]. It has also been considered
by Amir, Farach, Muthukrishnan [AFM 94]. We present here our own version.
The application of failure functions to the problem of breaking a paragraph into
lines is from Hirschberg and Larmore [HL 87a]. There are many stringology
subjects which are not covered in the book, one of them is recently developed
algorithmics on compressed strings, see [Ry 00], [KS 99], [Ry 02a]. Another
problem is the solvability of word equations, the main jewel in this area is
the algorithm of Plandowski [PI 99]. However this problem is almost certainly
beyond the class of polynomially solvable problems (the best algorithm works
in a polynomial space). There are many iVP-hard stringology problems, for
example word equations and the superstring problem. However our book was
mostly devoted to (deterministic) polynomial-time algorithms.

Bibliography

[Ab 89] Abrahamson, D.M., Generalized string-matching, SIAM J. Comput.
16 (1989): 77-83.

[Ah 80] Aho, A.V., Pattern matching in strings, in (Book, editor, Formal
Language Theory — Perspectives and Open Problems, Academic Press,
Orlando, Florida 1980): 325-347.

[Ah 90] Aho, A.V., Algorithms for finding patterns in strings, in (J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol A, Al
gorithms and complexity, Elsevier, Amsterdam, 1990): 255-300.

[AC 75] Aho, A.V., and Corasick, M., Efficient string matching: An aid to
bibliographic search, Comm. ACM 18 (1975): 333-340.

[AHU 76] Aho, A.V., Hirschberg, D.S., and Ullman, J.D., Bounds on the
complexity of the longest common subsequence problem, J. ACM 23
(1976): 1-12.

[AHU 74] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[AHU 83] Aho, A.V., Hopcroft, J. E., and Ullman, J.D., Data Structures
and Algorithms, Addison-Wesley, Reading, Mass., 1983.

[AKW 88] Aho, A.V., Kernighan, B.W. and Weinberger, P.J., The AWK
Programming Language, Addison-Wesley, Reading, Mass., 1988.

[ASU 86] Aho, A.V., Sethi, R., and Ullman, J.D., Compilers-Principles,
Techniques and Tools, Addison-Wesley, Reading, Mass., 1986.

[AD 86] Allison, L., and Dix, T.I., A bit string longest common subsequence
algorithm, Inf. Process. Lett. 23 (1986): 305-310.

[ABF 92a] Amir, A., Benson, G., Two-dimensional periodicity and its ap
plication, in (Proc. Symp. On Discrete Algorithms, 1992): 440-452.

285

286 BIBLIOGRAPHY

[ABF 92b] Amir, A., Benson, G., and Farach, M., Optimal parallel two-
dimensional pattern matching, in (5th Annual ACM Symposium on Par
allel Algorithms and Architectures, ACM Press, 1993) 79-85.

[ACH 01] Amir, A., Cole, R., Hariharan, R., Lewenstein, M., and Porat,
E., Overlap matching, in: (Twelfth Annual ACM-SIAM Symposium on
Data Structures (SODA), 2001).

[AF 91] Amir, A., and Farach M., Efficient two-dimensional approximate
matching of non-rectangular figures, in (Proc. Symp. On Discrete Algo
rithm, 1991): 212-223.

[AFM 94] Amir, A., Farach, M., and Muthukrishnan, S., Alphabet Depen
dence in Parameterized Matching, Inf. Process. Lett. 49(1994)111-115.

[AL 91] Amir, A., and Landau, G.M., Fast parallel and serial multidimen
sional approximate array matching, Theoret. Comput. Sci. 81 (1991):
97-115.

[ALV 92] Amir, A., Landau, G.M., and Vishkin, U., Efficient pattern match
ing with scaling, J. Algorithms 13 (1992): 2-32.

[Ap 85] Apostolico, A., The myriad virtues of suffix trees, in: [AG 85]: 85-96.

[Ap 86] Apostolico, A., Improving the worst-case performance of the Hunt
Szymanski strategy for the longest common subsequence of two strings,
Inf. Process. Lett. 23 (1986): 63-69.

[Ap 87] Apostolico, A., Remark on the Hsu-Du new algorithm for the longest
common subsequence problem, Inf. Process. Lett. 25 (1987): 235-236.

[Ap 92] Apostolico, A., Fast parallel detection of squares in strings, Algo-
rithmica 8 (1992): 285-319.

[AALF 88] Apostolico, A., Atallah, M.J., Larmore, L.L., and McFaddin,
H.S., Efficient parallel algorithms for string editing and related problems,
SIAM J. Comput. 19,5 (1990): 968-988.

[ABG 92] Apostolico, A., Breslauer, D., and Galil, Z., Optimal parallel al
gorithms for periods, palindromes and squares, in: (3rd proceedings of
SWAT, LNCS 621, Springer-Verlag, 1992): 296-307.

[ABG 92] Apostolico, A., Browne, S., and Guerra, C , Fast linear-space
computations of longest common subsequences, Theoret. Comput. Sci.
92 (1992): 3-17.

[AC 91] Apostolico, A., and Crochemore, M., Optimal canonization of all
substrings of a string, Information and Computation 95, 1 (1991): 76-
95.

[AC 90] Apostolico, A., and Crochemore, M., Fast parallel Lyndon factor
ization and applications, Math. Syst. Theory 28,2 (1995): 89-108.

BIBLIOGRAPHY 287

[AG 85] Apostolico, A., and Galil, Z., editors, Combinatorial Algorithms on
Words, NATO Advanced Science Institutes, Series F, vol 12, Springer-
Verlag, Berlin, 1985.

[AG 97] Apostolico, A., and Galil, Z., editors, Pattern matching algorithms,
Oxford University Press (1997)

[AG 84] Apostolico, A., and Giancarlo, R., Pattern-matching machine im
plementation of a fast test for unique decipherability, Inf. Process. Lett.
18 (1984): 155-158.

[AG 86] Apostolico, A., and Giancarlo, R., The Boyer-Moore-Galil string-
searching strategies revisited, SIAM J.Comput. 15 (1986): 98-105.

[AG 87] Apostolico, A., and Guerra, C., The longest common subsequence
problem revisited, J. Algorithms 2 (1987): 315-336.

[AILSV 88] Apostolico, A., Iliopoulos, C., Landau, G.M., Schieber, B., and
Vishkin, U., Parallel construction of a suffix tree with applications, Al-
gorithmica 3 (1988): 347-365.

[AP 83] Apostolico, A., and Preparata, F.P., Optimal off-line detection of
repetitions in a string, Theoret. Comput. Sci. 22 (1983): 297-315.

[AP 85] Apostolico, A., and Preparata, F.P., Structural properties of the
string statistics problem, J. Comput. Syst. Sci. 31 (1985): 394-411.

[AKLMT 89] Atallah, M.J., Kosaraju, S.R., Larmore, L.L., Miller, G.L.,
and Teng, S-H., Constructing trees in parallel, Report CSD-TR-883, Pur
due University, 1989.

[Ba 88] Baase, S., Computer Algorithms-Introduction to Design and Analy
sis, Addison-Wesley, Reading, Mass., 1988, 2nd edition.

[Ba 89] Baeza-Yates, R.A., Improved string searching, Software Practice and
Experience 19 (1989) 257-271.

[BCG 93] Baeza-Yates, R.A., Choffrut, C , and Gonnet, G.H., On Boyer-
Moore automata, Algorithmica 12,4/5 (1994): 268-292.

[BG 89] Baeza-Yates, R.A., and Gonnet, G.H., Efficient text searching of
regular expressions, in: (Automata, Languages and Programming, LNCS
372, Springer-Verlag, Berlin, 1989): 46-62.

[BG 92] Baeza-Yates, R.A., and Gonnet, G.H., A new approach to text
searching, Coram. ACM 35, 10 (1992): 74-82.

[BGR 90] Baeza-Yates, R.A., Gonnet, G.H., and Regnier, M., Analysis of
Boyer-Moore type string searching algorithms, in: (Proc. of 1st ACM-
SIAM Symposium on Discrete Algorithms, American Mathematical So
ciety, Providence, 1990): 328-343.

288 BIBLIOGRAPHY

[BR 90] Baeza-Yates, R.A., and Regnier, M., Fast algorithms for two-dimen
sional and multiple pattern matching, in (Proc. 2nd Scandinavian Work
shop in Algorithms Theory, LNCS 447, Springer-Verlag, Berlin, 1990):
332-347.

[BR 92] Baeza-Yates, R.A., and Regnier, M., Average running time of the
Boyer-Moore-Horspool algorithm, Theoret. Comput. Sci. 92 (1992):
19-31.

[Ba 93] Baker, B., A theory of parameterized pattern matching: Algorithms
and applications, in: (STOC'93, 1993): 71-80.

[Ba 78] Baker, T.P., A technique for extending rapid exact-match string
matching to arrays of more than one dimension, SIAM J.Comput. 7
(1978): 533-541.

[Ba 81] Barth, G., An alternative for the implementation of the Knuth-
Morris-Pratt algorithm, Inf. Process. Lett. 13 (1981): 134-137.

[Ba 84] Barth, G., An analytical comparison of two string-searching algo
rithms, Inf. Process. Lett. 18 (1984): 249-256.

[Ba 85] Barth, G , Relating the average-case cost of the brute-force and the
Knuth-Morris-Pratt string-matching algorithm, in [AG 85]: 45-58.

[BEM 79] Bean, D., Ehrenfeucht, A., and Mc Nully, G., Avoidable patterns
in strings of symbols, Pacific Journal of Math. 85 (1979): 261-294.

[BBC 92] Beauquier, D., Berstel, J., and Chretienne, P., Elements d'Algorith-
mique, Masson, Paris, 1992.

[BCW 90] Bell, T.C., Cleary, J.G., and Witten, I.H., Text Compression,
Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[BSTW 86] Bentley, J.L., Sleator, D.D., Tarjan, R.E., and Wei V.K., A
locally adaptive data compression scheme, Commun. ACM 29, 4 (1986):
320-330.

[BBGSV 89] Berkman, O., Breslauer, D., Galil, Z., Schieber, B., and Vishkin,
U., Highly parallelizable problems, in: (Proc. 21st ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York,
1989): 309-319.

[BP 85] Berstel, J., and Perrin, D., Theory of Codes, Academic Press, Or
lando, Florida, 1985.

[Bi 77] Bird, R.S., Two-dimensional pattern matching, Inf. Process. Lett. 6
(1977) 168-170.

[BR 87] Bishop, M.J., and Rawling, C.J., Nucleic Acid and Protein Sequence
Analysis: A Practical Approach, IRL Press Limited, Oxford, England,
1987.

BIBLIOGRAPHY 289

[BBEHM 83] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., and
McConnell, R., Linear size finite automata for the set of all subwords of
a word an outline of results, Bull. Europ. Assoc. Theoret. Comput. Sci.
21 (1983): 12-20.

[BBEHCS 85] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussier, Chen,
M.T., and Seiferas, J., The smallest automaton recognizing the subwords
of a text, Theoret. Comput. Sci. 40 (1985): 31-55.

[BBEHM 87] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussier, D., and
Mc Connell, R., Complete inverted files for efficient text retrieval and
analysis, J. ACM 34 (1987): 578-595.

[BI 87] Blumer, J.A., How much is that dawg in the window? A moving
window algorithm for the directed acyclic word graph, J. Algorithms 8
(1987): 451-469.

[Bo 80] Booth. K., Lexicographically least circular strings, Inf. Process.
Lett. 10 (1980): 240-242.

[BM 77] Boyer, R.S., and Moore, J.S., A fast string-searching algorithm,
Comm. ACM 20 (1977): 762-772.

[BG 90] Breslauer, D., and Gall, Z., An optimal 0(loglogn)-time parallel
string-matching, SIAM J. Comput 19,6 (1990): 1051-1058.

[BCT 93] Breslauer, D., Colussi, L., and Toniolo, L., Tight comparison
bounds for the string prefix-matching problem, Inf. Process. Lett. 47
(1993): 51-57.

[Ca 90] Capocelli, R., editor, Sequences: Combinatorics, Compression, Se
curity and Transmission, Springer-Verlag, New-York, 1990.

[CSV 93] Capocelli, R., and de Santis, A., Vaccaro, U., editors, Sequences
II, Springer-Verlag, New-York, 1993.

[CL 90] Chang, W.I., and Lawler, E.L., Approximate string matching in
sublinear expected time, in: (FOCS'90): 116-124.

[CL 97] Charras, C , and Lecroq, T., Exact String Matching Algorithms,
ht tp: / /www-igm.univ-mlv.fr / l ec roq / s t r ing / ,1997 .

[CL 98] Charras, C , and Lecroq, T., Sequence Comparison,
http:/ /www-igm.univ-mlv.fr/ lecroq/seqcomp/,1998.

[CS 85] Chen, M.T., and Seiferas, J., Efficient and elegant subword tree
construction, in: [AG 85]: 97-107.

[Ch 90] Choffrut, C , An optimal algorithm for building the Boyer-Moore
automaton, Bull. Europ. Assoc. Theoret. Comput. Sci 40 (1990):
217-225.

http://www-igm.univ-mlv.fr/
http://www-igm.univ-mlv.fr/

290 BIBLIOGRAPHY

[CR 87a] Chrobak, M., and Rytter, W., Remarks on string matching and
one-way multi-head automata, Inf. Process. Lett. 24 (1987): 325-329.

[CR 87b] Chrobak, M., and Rytter, W., Unique decipherability for partially
commutative alphabets, Fundamenta Informaticae (1987): 323-336.

[CS 75] Chvatal, V., and Sankoff, D., Longest common subsequence of two
random sequences, J. Appl. Prob. 12 (1975): 306-315.

[Co 88] Cole, R., Parallel merge sort, S1AM J.Comput. 17 (1988): 770-785.

[Co 91] Cole, R., Tight bounds on the complexity of the Boyer-Moore algo
rithm, in: (Proceedings of the Second Annual ACM-SIAM Symposium
on Discrete Algorithms, 1991): 224-233.

[Co 94] Cole, R., Tight bounds on the complexity of the Boyer-Moore string-
matching algorithm, SIAM J. Comput. 23,5 (1994): 1075-1091.

[CHI 99] Cole, R., Hariharan, R., and Indyk, P., Tree pattern matching and
subset matching in deterministic 0(nlog3m) time, Proceedings of the
Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
1999, 245-254.

[C-R 93b] Cole, R., Crochemore, M., Galil, Z., Gasieniec, L., Hariharan,
R., Muthakrishnan, S., Park, K., and Rytter, W., Optimally fast par
allel algorithms for preprocessing and pattern matching in one and two
dimensions, in: (FOCS'93, 1993): 248-258.

[CH 92] Cole, R., and Hariharan, R., Tighter bound on the exact complexity
of string matching, in: (FOCS'92): 600-609.

[CH99] Cole, R., and Hariharan, R., Faster suffix tree construction with
missing suffix links, FOCS 1999.

[CGG 90] Colussi, L., Galil, Z., and Giancarlo, R., On the exact complex
ity of string matching, in (Proc. 31st Symposium on Foundations of
Computer Science, IEEE, 1990): 135-143.

[Co 79] Commentz-Walter, B., A string-matching algorithm fast on the av
erage, in: (Automata, Languages and Programming, Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 1979): 118-132.

[CD 89] Consel, C , and Danvy, O., Partial evaluation of pattern matching
in strings, Inf. Process. Lett. 30 (1989): 79-86.

[Co 72] Cook, S.A., Linear-time simulation of deterministic two-way push
down automata, Inf. Process. Lett. 71 (1972): 75-80.

[CH 84] Cormack, G.V., and Horspool, R.N.S., Algorithms for adaptive Huff
man codes, Inf. Process. Lett. 18 (1984): 159-165.

[CLR 89] Cormen, T.H., Leirserson, C.E., and Rivest, R.L., Introduction to
Algorithms, The MIT Press, Cambridge, Mass., 1989.

BIBLIOGRAPHY 291

[Cr 81] Crochemore, M., An optimal algorithm for computing the repetitions
in a word, Inf. Process. Lett. 12 (1981): 244-250.

[Cr 83] Crochemore, M., Recherche lineaire d'un carre dans un mot, C. R.
Acad. Sc. Paris, t. 296 (1983) Serie 1, 781-784.

[Cr 85] Crochemore, M., Optimal factor transducers, in: [AG 85]: 31-43.

[Cr 86] Crochemore, M., Transducers and repetitions, Theoret. Comput.
Sci. 45, (1986) 63-86.

[Cr 87] Crochemore, M., Longest common factor of two words, in: (TAP-
SOFT'87, vol 1, Springer-Verlag, Berlin, 1987): 26-36.

[Cr 92] Crochemore, M., String matching on ordered alphabets, Theoret.
Comput. Sci. 92 (1992): 33-47.

[C-R 92] Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq,
T., Plandowski, W., and Rytter, W., Speeding up two string-matching
algorithms, in: (9th Annual Symposium on Theoretical Aspects of Com
puter Science, Springer-Verlag, Berlin, 1992): 589-600.

[C-R 93a] Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq,
T., Plandowski, W., and Rytter, W., Fast multi-pattern matching, Inf.
Process. Lett. 71,3-4 (1999) 107-113.

[CGPR93] Crochemore, M., Gasieniec, L., and Rytter, W., Two-dimensional
pattern matching by sampling, Inf. Process. Lett. 96 (1993): 159-162.

[CGPR95] Crochemore, M., Gasieniec, L., Plandowski., W., and Rytter,
W. Two dimensional pattern matching in linear time and small space,
STACS'95.

[CHL 01] Crochemore, M., Hancart, C , and Lecroq, T., Algorithmique du
texte, Vuibert Informatique, Paris, 2001.

[CLU 02] Crochemore, M., Landau, G., and Ziv-Ukelson, M., A sub-quadratic
sequence alignment algorithm for unrestricted cost matrices, In (Pro
ceedings of the Thirteen Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM-SIAM, 2002): 679-688.

[CL 97] Crochemore, M., and Lecroq, T., Tight bounds on the complexity
of the Apostolico-Giancarlo algorithm, Information Processing Letters,
63 (1997): 195-203.

[CMRS 00] Crochemore, M., Mignosi, F., Restivo, A., and Salemi, S., Data
compression using antidictonaries, Proceedings of the I.E.E.E., 88
(2000):1756-1768.

[CP 91] Crochemore, M., and Perrin, D., Two-way string matching, J. ACM
38, 3 (1991): 651-675.

292 BIBLIOGRAPHY

[CR 90] Crochemore, M., and Rytter, W., Parallel construction of minimal
suffix and factor automata, Inf. Process. Lett. 35 (1990): 121-128.

[CR 91a] Crochemore, M., and Rytter, W., Efficient parallel algorithms to
test square-freeness and factorize strings, Inf. Process. Lett. 38 (1991):
57-60.

[CR 91c] Crochemore, M., and Rytter, W., Usefulness of the Karp Miller
Rosenberg algorithm in parallel computations on strings and arrays, The-
oret. Comput. Sci. 88 (1991): 59-82.

[CR 92] Crochemore, M., and Rytter, W., Note on two-dimensional pattern
matching by optimal parallel algorithms, in: (Parallel Image Analysis,
LNCS 654, Springer-Verlag, 1992): 100-112.

[CR 94] Crochemore, M., and Rytter, W., Text algorithms, Oxford Univer
sity Press (1994).

[CR95a] Crochemore, M., and Rytter, W. On alphabet-independent linear
time algorithms for two-dimensional pattern-matching, in: (LATIN'95,
LNCS 911, Springer-Verlag, 1995) 220-229.

[CR 95b] Crochemore, M., and Rytter, W., Squares, cubes and time-space
efficient string searching, Algorithmica 13,5 (1995): 405-425.

[De 79] Deken, J., Some limit results for longest common subsequences, Dis
crete Math. 26 (1979): 17-31.

[DGM 90] Dubiner, M., Galil, Z., and Magen, E., Faster tree-pattern match
ing, in: (Proceedings of 31st FOCS, 1990): 145-150.

[Du 79] Duval, J.-P., Periodes et repetitions des mots du monoide libre,
Theoret. Comput. Sci. 9 (1979): 17-26.

[Du 82] Duval, J.-P., Relationship between the period of a finite word and
the length of its unbordered segments, Discrete Math. 40 (1982): 31-44.

[Du 83] Duval, J.-P., Factorizing words over an ordered alphabet, J. Algo
rithms 4 (1983): 363-381.

[EV 88] Eilam-Tzoreff, T., and Vishkin, U., Matching patterns in strings
subject to multi-linear transformations, Theoret. Comput. Sci. 60,3
(1988): 231-254.

[EGGI 92] Eppstein, D., Galil, Z., Giancarlo, R., and Italiano, G., Sparse
dynamic programming I, J. ACM 39 (1990): 519-545.

[Fa 73] Faller, N., An adaptive system for data compression, in: (Record
of the 7th Asilomar Conference on Cincuits, Systems, and Computers,
1973): 593-597.

[Fa 97] Farach, M., Optimal suffix tree construction with large alphabets,
FOCS 1997.

BIBLIOGRAPHY 293

[FFM 00] Farach, M. , Ferragina, P., and Muthukrishnan, S. On the sorting
complexity of suffix tree construction, Journal of the ACM, vol. 47(6),
987-1011, 2000.

[FT 87] Feng, Z.R., and Takaoka, T., On improving the average case of the
Boyer-Moore string-matching algorithm, J. Inf. Process. 10, 3 (1987):
173-177.

[FT 89] Feng, Z.R., and Takaoka, T., A technique for two-dimensional pat
tern matching, Comm. ACM 32 (1989): 1110-1120.

[Fe97] Ferragina, P., Dynamic text indexing under string updates, Journal
of Algorithms, 22(2):296-328, 1997.

[FG98] Ferragina, P., and Grossi, R., Optimal On-Line Search and Sublin-
ear Time Update in String Matching, SIAM Journal on Computing 27
(1998).

[FW 65] Fine, N.J., and Wilf, H.S., Uniqueness theorems for periodic func
tions, Proc. Amer. Math. Soc. 16 (1965): 109-114.

[FP 74] Fischer, M.J., and Paterson, M.S., String matching and other prod
ucts, in:(Proc. of SIAM-AMS Conference on Complexity of Computa
tion, American Mathematical Society, Providence, R.I., 1974) 113-125.

[Fr 75] Fredman, M.L., On computing the length of longest increasing subse
quences, Discrete Math. 11 (1975): 29-35.

[Ga 76] Galil, Z., Two fast simulations which imply fast string-matching
and palindrome-recognition algorithms, Inf. Process. Lett. 4,4 (1976):
85-87.

[Ga 77] Galil, Z., Some open problems in the theory of computations as
questions about two-way deterministic pushdown automaton languages,
Math. Syst. Theory 10 (1977): 211-228.

[Ga 78] Galil, Z., Palindrome recognition in real time by a multitape Turing
machine, J. Comput. Syst. Sci 16 (1978): 140-157.

[Ga 79] Galil, Z., On improving the worst case-running time of the Boyer-
Moore string-searching algorithm, Comm. ACM 22 (1979): 505-508.

[Ga 81] Galil, Z., String matching in real time, J. ACM 28 (1981): 134-149.

[Ga 85a] Galil, Z., Open problems in stringology, in: [AG 85]: 1-12.

[Ga 85b] Galil, Z., Optimal parallel algorithm for string matching, Informa
tion and Control 67 (1985): 144-157.

[Ga 92] Galil, Z., A constant-time optimal parallel string-matching algo
rithm, in: (Proc. 24th ACM Symp. on Theory Of Computing, 1992):
69-76.

294 BIBLIOGRAPHY

[GG 87] Galil, Z., and Giancarlo, R., Parallel string matching with k mis
matches, Theoret Comput. Sci. 51 (1987) 341-348.

[GG 88] Galil, Z., and Giancarlo, R., Data structures and algorithms for
approximate string matching, J. Complexity 4 (1988): 33-72.

[GG 89] Galil, Z., and Giancarlo, R., Speeding up dynamic programming
with applications to molecular biology, Theoret. Comput. Sci. 64(1989):
107-118.

[GP 89] Galil, Z., and Park, K., An improved algorithm for approximate
string matching, in: (Automata, Languages and Programming, Lecture
Notes in Computer Science 372, Springer-Verlag, Berlin, 1989): 394-404.

[GP 92a] Galil, Z., and Park, K., Dynamic programming with convexity,
concavity and sparsity, Theoret. Comput. Sci. 92 (1992): 49-76.

[GP 92b] Galil, Z., and Park, K., Truly alphabet-independent two-dimen
sional matching, in: (Proc. 33rd Annual IEEE Symposium on the Foun
dations of Computer Science, 1992): 247-256.

[GR 92] Galil, Z., and Rabani, Y., On the sparse complexity of some algo
rithms for sequence comparison, Theoret. Comput. Sci. 95, 2 (1992):
231-244.

[GS 78] Galil, Z., and Seiferas, J., A linear-time on-line recognition algorithm
for 'Palstars, J. ACM 25 (1978): 102-111.

[GS 80] Galil, Z., and Seiferas, J., Saving space in fast string matching, S1AM
J. Comput. 9 (1980): 417-438.

[GS 81] Galil, Z., and Seiferas, J., Linear-time string matching using only
a fixed number of local storage locations, Theoret. Comput. Sci. 13
(1981): 331-336.

[GS 83] Galil, Z., and Seiferas, J., Time-space optimal string matching, J.
Comput. Syst. Sci. 26 (1983): 280-294.

[Ga 78] Gallager, R. G. , Variations on a theme by Huffman, I. E. E. E.
Trans. Inform. Theory IT 24,6 (1978): 668-674.

[GMS 80] Gallant, J., Maier, D., and Storer, J.A., On finding minimal length
superstrings, J. Comput. SYSL Sci. 20 (1980): 50-58.

[GJ 79] Garey, M.R., and Johnson, D.S., Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, New York,
1979.

[Gi 93] Giancarlo, R., The suffix tree of a square matrix, with applications,
in: (Proc. Symp. On Discrete Algorithms, 1993): 402-411.

BIBLIOGRAPHY 295

[GR 86] Gibbons, A., and Rytter, W., On the decidability of some problems
about rational subsets of free partially commutative monoids , Theoret.
Comput. Sci. 48 (1986): 329-337.

[GR 88] Gibbons, A., and Rytter, W., Efficient Parallel Algorithms, Cam
bridge University Press, Cambridge, U.K., 1988.

[GR 89] Gibbons, A., and Rytter, W., Optimal parallel algorithm for dy
namic expression evaluation and application to context-free recognition,
Information and Computation 81, 1 (1989): 32-45.

[GB 91] Gonnet, G.H., and Baeza-Yates, R., Handbook of Algorithms and
Data Structures, Addison-Wesley, Reading, Mass., 1991.

[Gr 91] Gross, M., Constructing lexicon-grammars, in: (Computational Ap
proaches to the Lexicon, Oxford University Press, 1991).

[GP 89] Gross, M., and Perrin, D., editors, Electronic Dictionaries and Au
tomata in Computational Linguistics, Lecture Notes in Computer Science
377, Springer-Verlag, Berlin, 1989.

[GV 00] Grossi, R., and Vitter, J. S., Compressed Suffix Arrays and Suffix
Trees with Applications to Text Indexing and String Matching, ACM
Symposium on the Theory of Computing (2000).

[GO 80] Guibas, L.J., and Odlyzko, A.M., A new proof of the linearity of
the Boyer-Moore string-searching algorithm, S1AM J. Comput. 9 (1980):
672-682.

[GO 81a] Guibas, L.J., and Odlyzko. A.M Periods in strings, J. Comb. Th.
A 30 (1981): 19-42.

[GO 81b] Guibas, L.J., and Odlyzko, A.M., String overlaps, pattern match
ing and non-transitive games, J. Comb. Th. A 30 (1981): 183-208.

[Gu 97] Gusfield, D., Algorithms on strings, trees and sequences, computer
science and computational biology, Cambridge University Press (1997).

[HD 80] Hall, P.A.V., and Dowling, G.R., Approximate string matching,
ACM Comput. Surv. 12 (1980): 381-402.

[Ha 93] Hancart, C , On Simon's string-searching algorithm, Inf Process.
Lett. 47 (1993): 95-99.

[HPS 92] Hansel, G., Perrin, D., and Simon, I., Compression and entropy,
in: (STACS 92, LNCS 577, Springer-Verlag, Berlin, 1992): 515-528.

[HT 84] Harel, D., and Tarjan, R.E., Fast algorithms for finding nearest
common ancestors, S1AM J. Comput. 13 (1984): 338-355.

[Ha 71] Harrison, M.C., Implementation of the substring test by hashing,
Comm. ACM 14, 12 (1971): 777-779.

296 BIBLIOGRAPHY

[HR 85] Hartman, A., and Rodeh, M., Optimal parsing of strings, in: [AG
85]: 155-167.

[HY 92] Hashiguchi, K., and Yamada, K., Two recognizable string-matching
problems over free partially commutative monoids, Theoret. Comput.
Sci. 92 (1992): 77-86.

[HC 86] Hebrard, J-J., and Crochemore, M., Calcul de la distance par les
sous-mots, R.A.I.R.O. Informatique Theorique 20 (1986): 441-456.

[He 87] Held, G., Data Compression Techniques and Applications, Hardware
and Software Considerations, John Wiley and Sons, New York, NY, 1987.
2nd edition.

[Hi 77] Hirschberg, D.S., Algorithms for the longest common subsequence
problem, J. ACM 24 (1977): 664-675.

[Hi 78] Hirschberg, D.S., An information theoretic lower bound for the longest
common subsequence problem, Inf. Process. Lett. 7 (1978): 40^41.

[HL 87a] Hirschberg, D.S., and Larmore, L.L., New applications of failure
functions, J. ACM 34 (1987): 616-625.

[HL 87b] Hirschberg, D.S., and Larmore, L.L., The set LCS problem, Algo-
rithmica 2 (1987): 91-95.

[HO 82] Hoffman, CM., and O'Donnell. M.J Pattern matching in trees, J.
ACM 29,1 (1982): 68-95.

[HU 79] Hopcroft, J.E., and Ullman, J.D., Introduction to Automata, Lan
guages and Computations, Addison-Wesley, Reading, Mass., 1979.

[Ho 80] Horspool, R.N., Practical fast searching in strings, Software-Practice
and Experience 10 (1980): 501-506.

[HD 84] Hsu, W.J., and Du, M. W., New algorithms for the LCS problem,
J. Comput. Syst. Sci. 29 (1984): 133-152.

[Hu51] Huffman, D.A., A method for the construction of minimum redun
dancy codes, Proceedings of the I.R.E. 40 (1951): 1098-1101.

[Hu 88] Hume, A., A tale of two greps, Software—Practice and Experience
18 (1988): 1063-1072.

[HS 91] Hume, A., and Sunday, D.M., Fast string searching, Software—
Practice and Experience 21, 11 (1991): 1221-1248.

[HS 77] Hunt, J.W., and Szymanski, T.G., A fast algorithm for computing
longest common subsequences, Comm. ACM 20 (1977): 350-353.

[IS 93] Idury, R., and Schaffer, A., Multiple matching of rectangular patterns,
in: (STOC'93, 1993): 81-90.

BIBLIOGRAPHY 297

[IS 92] Iliopoulos, C.S., and Smyth, W.F., Optimal algorithms for computing
the anonical form of a circular string, Theoret. Comput. Sci. 92 (1992):
87-05.

[Ja 92] Jaja, J., An Introduction to Parallel Algorithms, Addison-Wesley,
Reading, Mass., 1992.

[Ja 92] Jantke, K., Polynomial time inference of general pattern languages,
in: (STACS'92, Lecture Notes in Computer Science 166, 1992): 314-325.

[Jo 77] Jones, N.D., A note on linear-time simulation of deterministic two-
way pushdown automata, Inf. Process. Lett. 6,4 (1977): 110-112.

[KMR 72] Karp, R.M., Miller, R.E., and Rosenberg, A.L., Rapid identifi
cation of repeated patterns in strings, arrays and trees, in: (Proc. 4th
ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1972): 125-136.

[KR 87] Karp, R.M., and Rabin, M.O., Efficient randomized pattern-match
ing algorithms, IBM J. Res. Dev. 31 (1987): 249-260.

[K-P 01] Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K., Linear-
time longest-common-prefix computation in suffix arrays and its appli
cations, in: (Proc. 12th Combinatorial Pattern Matching, LNCS 2089,
Springer-Verlag, 2001) 181-192.

[KLP 89] Kedem, Z.M., Landau, G.M., and Palem, K.V., Optimal parallel
suffix-prefix matching algorithm and applications, in: (Proc. ACM Sym
posium on Parallel Algorithms, Association for Computing Machinery.
New York, 1989): 388-398.

[KP 89] Kedem, Z.M., and Palem, K.V., Optimal parallel algorithms for
forest and term matching, Theoret. Comput Sci 93,2 (1989): 245-264.

[Kf 88] Kfoury, A.J., A linear-time algorithm to decide whether a word is
overlap-free, RAIRO Inform. Theor. Appl. 22 (1988): 135-145.

[KS 99] Kida, T., Shibata, Y., Takeda, M., Shinohara, A., and Arikawa,
S., A Unifying Framework for Compressed Pattern Matching, Proc. 6th
International Symposium on String Processing and Information Retrieval
(SPIRE'99), IEEE Computer Society, pp. 89-96, September 1999.

[KS 92] Kim, J.Y., and Shawe-Taylor, J., An approximate string-matching
algorithm, Theoret. Comput. Sci. 92 (1992): 107-117.

[Kl 56] Kleene, S.C., Representation of events in nerve nets and finite au
tomata, in: (Shannon and McCarthy editors, Automata studies, Prince
ton University Press, 1956): 3-40.

[Kn 85] Knuth, D.E., Dynamic Huffman coding, J. Algorithms 6 (1985):
163-180.

298 BIBLIOGRAPHY

[KP71] Knuth, D.E., and Pratt, V.R., Automata theory can be useful, Re
port, Stanford University, 1971.

[KMP 77] Knuth, D.E., Morris Jr, J.H., and Pratt, V.R., Fast pattern
matching in strings, S1AM J. Comput. 6 (1977): 323-350.

[KH 87] Ko, Ker-I, and Hua, Chin-Ming, A note on the two-variable pattern-
finding problem, J. Comput. Syst. Sci 34 (1987): 75-86.

[Ko 89] Kosaraju, S.R., Efficient tree-pattern matching, in (FOCS'89, 1989):
178-183.

[LSV 87] Landau, G.M., Schieber, B., and Vishkin, U., Parallel construction
of a suffix tree, in: (Automata, Languages and Programming, Lecture
Notes in Computer Science 267, Springer-Verlag, Berlin, 1987): 314-325.

[LV 86a] Landau, G.M., and Vishkin, U., Introducing efficient parallelism
into approximate string matching, in (STOC, 1986): 220-230.

[LV 86b] Landau, G.M., and Vishkin, U., Efficient string matching with k
mismatches, Theoret. Comput Sci 43 (1986): 239-249.

[LV 88] Landau, G.M., and Vishkin, U., Fast string matching with k differ
ences, J. Comput. Syst. Sci 37 (1988): 63-78.

[LV 89] Landau, G.M., and Vishkin, U., Fast parallel and serial approximate
string matching, J. Algorithms 10 (1989): 158-169.

[Le 92] Lecroq, T., A variation on the Boyer-Moore algorithm, Theoret.
Comput. Sci. 92 (1992): 119-144.

[LZ 76] Lempel, A., and Ziv, J., On the complexity of finite sequences, IEEE
Trans. Inform. Theory IT 22, 1 (1976): 75-81.

[Li 81] Liu, L., On string pattern matching: A new model with a polynomial
time algorithm, S1AM J.Comput. 10 (1981): 118-139.

[Lo 83] Lothaire, M., Combinatorics on Words, Addison-Wesley, Reading,
Mass., 1983. Reprinted by Cambridge University Press, 1997.

[LW 75] Lowrance, R., and Wagner, R.A., An extension of the string-to-
string correction problem, J. ACM 25 (1975): 177-183.

[LS 62] Lyndon, R.C., and Schiitzenberger, M.P., The equation am = bncP
in a free group, Michigan Math. J. 9 (1962): 422-432.

[Ma 77] Maier, D., The complexity of some problems on subsequences and
supersequences, J. ACM 25 (1977): 322-336.

[MS 77] Maier, D., and Storer, J.A., A note on the complexity of super-
string problem, Report 233, Computer Science Lab., Princeton Univer
sity, 1977.

BIBLIOGRAPHY 299

[Ma 89] Main, M.G., Detecting leftmost maximal periodicities, Discrete Ap
plied Math. 25 (1989): 145-153.

[ML 79] Main, M.G., and Lorentz, R.J., An O(nlogn) algorithm for find
ing repetition in a string, TR CS-79-056, Washington State University,
Pullman, 1979.

[ML 84] Main, M.G., and Lorentz, R.J., An 0(n log n) algorithm for finding
all repetitions in a string, J. Algorithms (1984): 422-432.

[ML 85] Main, M.G., and Lorentz, R.J., Linear-time recognition of square-
free strings, in: [AG 85]: 271-278.

[MR 80] Majster, M.E., and Ryser, A., Efficient on-line construction and
correction of position trees, SIAM J. Comput. 9,4 (1980): 785-807.

[Ma 75] Manacher, G., A new linear-time on-line algorithm for finding the
smallest initial palindrome of the string, J. ACM 22 (1975): 346-351.

[Ma 76] Manacher, G., An application of pattern matching to a problem in
geometrical complexity, Inf. Process. Lett. 5 (1976): 6-7.

[Ma 89] Manber, U., Introduction to Algorithms, Addison-Wesley, Reading,
Mass., 1989.

[MM 90] Manber, U., and Myers, E., Suffix arrays: A new method for on
line string searches, in: (Proc. of 1st ACM-SIAM Symposium on Discrete
Algorithms, American Mathematical Society, Providence, R.I., 1990):
319-327.

[MP 80] Masek, W.J., and Paterson, M.S., A faster algorithm computing
string edit distances, J. Comput. Syst. Sci. 20,1 (1980): 18-31.

[McC 76] McCreight, E.M., A space-economical suffix tree construction al
gorithm, J. ACM 23, 2 (1976): 262-272.

[Mo 84] Monien, B., Deterministic two-way one-head pushdown automata
are very powerful, Inf Process. Lett. 18,3(1984): 239-242.

[MP 70] Morris Jr, J.H., and Pratt, V.R., A linear pattern-matching algo
rithm, Report 40, University of California, Berkeley, 1970.

[Mo 68] Morrison, D.R., PATRICIA-practical algorithm to retrieve informa
tion coded in alphanumeric, J. ACM 15 (1968): 514-534.

[My 86] Myers, E.W., An O(ND) difference algorithm and its variations,
Algorithmica 1 (1986): 251-266.

[MM 89] Myers, E.W., and Miller, W., Approximate matching of regular
expressions, Bull. Math. Biol. 51 (1989): 5-37.

[NKY 82] Nakatsu, N., Kambayashi, Y., and Yajima, S., A longest common
subsequence algorithm suitable for similar text strings, Acta Informatica
18 (1982): 171-179.

300 BIBLIOGRAPHY

[NW 70] Needleman, S.B., and Wunsch, CD. , A general method applicable
to the search for similarities in the aminoacid sequence of two proteins,
Journal of Molecular Biology 48 (1970): 443-453.

[Ne 95] Nelson, M., and Gailly, J.-L., The Data Compression Book, M&T
Books, New York, 1995.

[NC 92] Neraud, J., and Crochemore, M., A string matching interpretation
of the equation xmyn = zp, Theoret. Comput. Sci. 92 (1992): 145-164.

[Pe 85] Perrin, D., Words over a partially commutative alphabet, in: [AG
85]: 329-340.

[Pe 90] Perrin, D., Finite automata, in: (Handbook of Theoretical Com
puter Science, vol B. Formal Models and Semantics, Elsevier, Amster
dam, 1990): 1-57.

[PI 99] Plandowski, W., Satisfiability of Word Equations with Constants is
in PSPACE, in (FOCS 1999): 495-500.

[Qu 92] Quong, R.W., Fast average-case pattern matching by multiplexing
sparse tables, Theoret. Comput. Sci. 92 (1992): 165-179.

[RS 59] Rabin, M.O., and Scott, D., Finite automata and their decision prob
lems, IBM J. Research and Development 3 (1959): 114-125. Reprinted
in: (Sequential Machines : Selected Papers, Addison-Wesley, Reading,
Mass., 1964): 63-91.

[Ra 85] Rabin, M.O., Discovering repetitions in strings, in: [AG 85]: 279-
288.

[Re 89] Regnier, M., Knuth-Morris-Pratt algorithm: An analysis, in: (MFCS'89,
Lecture Notes in Computer Science 379, Springer-Verlag, Berlin, 1989):
431-444.

[RR 93] Regnier, M., and Rostami, L., A unifying look at d-dimensional
periodicities and space coverings, in: (Combinatorial Pattern Matching,
Lecture Notes in Computer Science 684, Springer-Verlag, Berlin, 1993):
215-227.

[RS 85] Restivo, A., and Salemi, S., Some decision results on nonrepetitive
words, in: [AG 85]: 289-295.

[Re 92] Revuz, D., Minimization of acyclic deterministic automata in linear
time, Theoret. Comput. Sci. 92 (1992): 181-189.

[Ri 77] Rivest, R.L., On the worst-case behavior of string-searching algo
rithms, S1AM J. Comput. 6, 4 (1977): 669-674.

[RT 85] Robert, Y., and Tchuente, M., A systolic array for the longest com
mon subsequence problem, Inf. Process. Lett. 21 (1885): 191-198.

BIBLIOGRAPHY 301

[RPE 81] Rodeh, M., Pratt, V.R., and Even, S., Linear algorithm for data
compression via string matching, J. ACM 28 (1981): 16-24.

[Ry 80] Rytter, W., A correct preprocessing algorithm for Boyer-Moore
string searching, S1AM J.Comput. 10 (1980): 509-512.

[Ry 85] Rytter, W., The complexity of two-way pushdown automata and
recursive programs, in: [AG 85]: 341-356.

[Ry 86] Rytter, W., The space complexity of the unique decipherability prob
lem, Inf. Process. Lett. 23 (1986): 1-3.

[Ry 88] Rytter, W., On efficient computations of costs of paths of a grid
graph, Inf Process. Lett. 29 (1988): 71-74.

[Ry 89] Rytter, W., On the parallel transformations of regular expressions
to non-deterministic finite automata, Inf. Process. Lett. 31 (1989):
103-109.

[Ry 00] Rytter, W., Compressed and fully compressed one and two-dimen
sional pattern matching, proceedings of IEEE, November 2000, Volume
88, Number 11, pp. 1769-1778.

[Ry 02] Rytter, W., On maximal suffixes and constant-space versions of KMP
algorithm, in: (LATIN 2002).

[Ry 02a] Rytter, W., Application of Lempel-Ziv factorization to the approx
imation of grammar-based compression, in: (CPM 2002).

[RD 90] Rytter, W., and Diks, K., On optimal parallel computations for
sequences of brackets, in: [Ca 90]: 92-105.

[Sa89] Salton, G., Automatic Text Processing, Addison-Wesley, Reading,
Mass., 1989.

[SK 83] Sankoff, D., and Kruskal, J.B., Time Warps, String Edits and Macro-
molecules: The Theory and Practice of Sequence Comparison, Addison-
Wesley, Reading, Mass., 1983. Reprinted by Cambridge University Press,
1999.

[Sc 88] Schaback, R., On the expected sublinearity of the Boyer-Moore string-
searching algorithm, S1AM J. Comput. 17 (1988): 648-658.

[SV 88] Schieber, B., and Vishkin, U., On finding lowest common ancestors:
simplification and parallelization, S1AM J. Comput. 17 (1988): 1253-
1262.

[Se 88] Sedgewick, R., Algorithms, Addison-Wesley, Reading, Mass., 1988.
2nd edition.

[SG 77] Seiferas, J., and Galil, Z., Real-time recognition of substring repeti
tion and reversal, Math. Syst. Theory 11 (1977): 111-146.

302 BIBLIOGRAPHY

[Se 74a] Sellers, P.H., An algorithm for the distance between two finite se
quences, J. Comb. Th A 16 (1974): 253-258.

[Se 74b] Sellers, P.H., On the theory and computation of evolutionary dis
tances, SIAM J. Appl Math. 26 (1974): 787-793.

[Se 80] Sellers, RH., The theory and computation of evolutionary distances:
Pattern recognition, J. Algorithms 1 (1980): 359-373.

[Se 85] Semba, I., An efficient string-searching algorithm, J. Inform. Process.
8 (1985): 101-109.

[Sh 81] Shiloach, Y., Fast canonization of circular strings, J. Algorithms 2
(1981): 107-121.

[SV 81] Shiloach, Y., and Vishkin, U., Finding a maximum, merging and
sorting in parallel computation model, J. Algorithms 2 (1981): 88-102.

[SI 83] Slisenko, A.O., Detection of periodicities and string matching in real
time, J. Sov. Math. 22, 3 (1983): 1326-1387.

[Sm 82] Smit, G. de V., A comparison of three string-matching algorithms,
Software-Practice and Experience 12 (1982): 57-66.

[Sm.90] Smith, R.D., An Introduction to Text Processing, The MIT Press,
Cambridge, Mass., 1990.

[Sm.02] Smyth W.F., Computing patterns in strings, Addison-Wesley Long
man, 2002, to appear.

[Sp 86] Spehner, J . -C, La reconaissance des facteurs d'un mot dans un texte,
Theoret. Comput. Sci. 48 (1986): 35-52.

[St 94] Stephen G.A., String searching algorithms, World Scientific Press
(1994).

[St 77] Storer, J.A., NP-completeness results concerning data compression,
Report 234, Princeton University, 1977.

[SS 78] Storer, J.A. , and Szymanski, T. G. , The macro model for data
compression, in: (Proc. 10th ACM Symposium on Theory of Computing,
Association for Computing Machinery, New York, 1978): 30-39.

[St 88] Storer, J.A., Data Compression: Methods and Theory, Computer
Science Press, Rockville, MD, 1988.

[SG 98] Stoye, J., and Gusfield, D., Simple and Flexible Detection of Con
tiguous Repeats Using a Suffix Tree, in: (Proc. 9th Combinatorial Pat
tern Matching, 1998) 140-152.

[Su 90] Sunday, D.M., A very fast substring search algorithm, Comm. ACM
33, 8 (1990): 132-142.

BIBLIOGRAPHY 303

[Tu 88] Tarhio, J., and Ukkonen, E., A greedy approximation algorithm for
constructing shortest common superstrings, Theoret. Comput. Sci. 57
(1988): 131-146.

[TU 90] Tarhio, J., and Ukkonen, E., Boyer-Moore approach to approximate
string matching, in: (Proc. 2nd Scandinavian Workshop in Algorithmic
Theory, Lecture Notes in Computer Science 447, Springer-Verlag, Berlin,
1990): 348-359.

[Th68] Thompson, K., Regular expression search algorithm, Comm. ACM
11 (1968): 419-422.

[Ti 84] Tichy, W.F., The string-to-string correction problem with block mov
es, ACM Trans. Comput. Syst. 2 (1984): 309-321.

[Uk 85a] Ukkonen, E., Finding approximate patterns in strings, J. Algo
rithms 6 (1985): 132-137.

[Uk 85b] Ukkonen, E., Algorithms for approximate string matching, Infor
mation and Control 64 (1985) 100-118.

[Uk 92] Ukkonen, E., Approximate string matching with q-grams and max
imal matches, Theoret. Comput. Sci. 92 (1992): 191-211.

[Uk 92] Ukkonen, E., Constructing suffix trees on-line in linear time, in:
(IFIP'92): 484-492.

[UW 93] Ukkonen, E., and Wood, D., Approximate string matching with
suffix automata, Algorithmica 10,5 (1993): 353-364.

[Vi 85] Vishkin, U., Optimal parallel pattern matching in strings, Informa
tion and Control 67 (1985): 91-113.

[Vi 91] Vishkin, U., Deterministic sampling, a new technique for fast pattern
matching, S1AM J. Comput. 20, 1 (1991): 22-40.

[Vi 87] Vitter, J.S., Design and analysis of dynamic Huffman codes, J. ACM
34 (1987): 825-845.

[Wa 74] Wagner, R.A., Order-n correction for regular languages, Comm.
ACM 17, 6 (1974): 265-268.

[Wa 75] Wagner, R.A., On the complexity of extended string-to-string cor
rection problem, in: (Proc. 7th ACM Symposium on Theory of Comput
ing. Association for Computing Machinery, New York, 1975): 218-223.

[WF 74] Wagner, R. A. , and Fischer, M.J., The string-to-string correction
problem, J. ACM 21 (1974): 168-178.

[Wa 89] Waterman, M.S., Mathematical Methods for DNA Sequences, CRC
Press, Boca Raton, Fla., 1989.

304 BIBLIOGRAPHY

[We 73] Weiner, P., Linear pattern matching algorithms, in: (Proc. 14th
IEEE Annual Symposium on Switching and Automata Theory, Wash
ington, DC, 1973): 1-11.

[We 84] Welch, T.A., A technique for high-performance data compression,
IEEE Computer 17,6 (1984): 8-19.

[WMB 99] Witten, Ian H., Moffat, Alistair, and Bell, Timothy C , Managing
Gigabytes: Compressing and Indexing Documents and Images, Morgan
Kaufmann Publishing, 1999.

[WNC 87] Witten, I.H., Neal, R.M., and Cleary, J.G., Arithmetic coding
for data compression, Commun. ACM 30, 6 (1987): 520-540.

[WC 76] Wong, C.K. , and Chandra, A. K., Bounds for the string-editing
problem, J. ACM 23 (1976): 13-16.

[WM 92] Wu, S., and Manber, U., Fast text searching allowing errors,
Comm. ACM 35,10 (1992): 83-91.

[Ya 79] Yao, A.C., The complexity of pattern matching for a random string,
SIAM J. Comput. 8 (1979): 368-387.

[Zi 92] Zipstein, M., Data compression with factor automata, Theoret. Com
put. Sci. 92 (1992): 213-221.

[ZC 89] Zipstein, M., and Crochemore, M., Transducteurs arithmetiques,
Rapport L.I.T.P 89-12, Universite Paris 7, 1989.

[ZL 77] Ziv, J., and Lempel, A., A universal algorithm for sequential data
compression, IEEE Trans. Inform. Theory 23 (1977): 337-343.

[ZL 78] Ziv, J., and Lempel, A., Compression of individual sequences via
variable length coding, IEEE Trans. Inform. Theory 24 (1978): 530-
536.

[ZP92] Zwick, U., and Paterson, M.S., Lower bounds for string-matching in
the sequential comparison model, manuscript, 1992.

Index

2D-pattern matching by hashing al
gorithm, 273

AC function, 172
adaptive-Huffman-coding algorithm,

152
agrep, 197
Aho, 3, 164, 172, 181, 211, 214, 216
Aho-Corasick automaton, 164, 172,

214, 216
alignment, 7, 8, 183
alignment graph, 185
alphabet, 10
alphabetical ordering, 86, 93, 98,

101, 133, 134
Alternative-Compute-PREF proce

dure, 39
Amir, 222, 225, 247, 284
Apostolico, 32, 68, 196
approximate algorithm, 274
approximate matching, 4, 8, 183,

192, 193, 196, 209, 212,
214, 215

Approximate string-matching with
at most k errors algorithm,
193

Baeza-Yates, 109, 196
Baker, 222, 284
Bell, 161
Benson, 225, 247
Bentley, 161
Bird, 222

Blumer, 84
BM algorithm, 28
BMG algorithm, 30
border, 11, 12, 17, 21-23, 33-36,

38, 40, 127, 130, 199, 216,
217, 234, 276, 279

Boyer, 19, 26, 29, 32, 33, 39, 41, 43,
221, 273

Breslauer, 256
Browne, 196
brute-forcel algorithm, 20
brute-force2 algorithm, 27
brute-force algorithm, 112
buildSMA function, 166, 169
bulletin board, 258
Burrows, 161

character, 10
Chen, 68
Cleary, 162
code, 4, 142, 145-147,150, 156,158,

271, 276, 277, 284
codeword, 143, 145, 147, 149-152,

154, 158, 276-278
coding function, 276
Cole, 44
Commentz-Walter, 181
Compl function, 180
Comp function, 180
Computation- of-ModifiedFailure Table

algorithm, 281
compute-BM-Shifts procedure, 40
compute-Borders 1 procedure, 34

305

306 INDEX

compute-Borders2 procedure, 34
compute-BordersS procedure, 38
compute-Bord procedure, 171
Compute-by-Splitting procedure, 257
Construct-Oracle algorithm, 106
Compute-Prefixes procedure, 38
compute-strong-borders procedure,

35
compute-table-of-suffixes procedure,

40
Corasick, 164, 172, 181, 211, 214,

216
Cormack, 161
CRCW PRAM, 250, 252, 255-257
CREW PRAM, 250, 252-257, 259,

268, 269
critical factorization, 136, 140
critical position, 42, 43
Crochemore, 32, 84, 123, 140, 161,

162, 181
cyclic equivalence, 139, 140
Cyclic-Equivalence algorithm, 140
cyclic shifts, 16, 17

desert area, 204, 205, 219
deterministic sample, 218-220, 223,

254, 255, 258
deterministic sampling, 254, 270
dictionary of basic factors, 6, 85,

86, 88, 90, 92, 95,101,104,
109, 259

dictionary of coding, 142, 143, 154,
156, 158, 159

directed acyclic word graph (DAWG),
5, 45, 46, 69, 122, 160

doubling technique, 258
Du, 196
duel, 199-203, 207, 209, 252, 253,

269
Duval, 140
dynamic programming, 8, 183,184,

186, 190, 191

edit distance, 4, 7, 183-186, 188,
191, 196, 249, 250, 268-
270

edit function, 185
efficiency of algorithms, 8, 209
entropy, 149, 150, 160, 161
EREW PRAM, 62
Even, 161
expensive duel, 202, 203, 207
expensive-duel function, 202

f-factorization, 122, 123, 160
factor, 10
factor automaton, 5, 69, 175
factorization, 6, 121, 122, 156, 158,

159, 277
failure function, 21, 111, 119, 167,

170, 175, 181, 281, 284
failure link, 166
failure table, 34, 119, 120, 166,167,

170-172, 217, 283
Faller, 161
Fano, 161
Farach, 96, 104, 109, 222, 225, 247,

284
fast-on-average algorithm, 31
Feng, 284
Fibonacci word, 13, 14, 46, 47, 121,

128
field of fire, 219, 220, 254
Find-good-sample algorithm, 207
Fischer, 196

Galil, 31, 32, 123, 136, 138-140,
207, 223, 235, 244-248, 256,
269, 270

Gallager, 161
Giancarlo, 32, 223
Gonnet, 109, 196
GP algorithm, 247
greedy, 115, 156, 157
GREEDY algorithm, 239

INDEX 307

Greedy-SCS function, 274
grid graph, 268
GS algorithm, 139
Guerra, 196
Gusfield, 123

Harrison, 284
Hartman, 161
hashing, 271-273, 284
Hirschberg, 196, 284
EL algorithm, 283
Hopcroft, 107, 181
Horspool, 161
Hsu,196
Huffman, 147-155, 160, 161
Huffman algorithm, 148
Huffman code, 145, 146, 149, 150,

263
Huffman coding, 6, 141, 143, 145,

146, 151, 152, 161, 250,
263, 268

Huffman tree, 147-149,151-154, 249,
263-267

Hunt, 196

identifier, 59
index, 5, 59
Informal-MaxSuffix-Matching algo

rithm, 128

Kambayashi, 196
Karp, 85, 89, 107, 215, 258, 271-

273, 284
Karp-Rabin algorithm, 272
Kasai, 109
Kernighan, 3
KMP algorithm, 24
KMR algorithm, 89
Knuth, 19, 20, 23, 24, 31, 33, 44,

68, 161
Kraft's inequality, 146
Kruskal, 196

Landau, 196
Larmore, 284
Lattice-Periodic-Extend procedure,

246
LCA dictionary, 101, 106, 107
les function, 190
Lecroq, 32
legal interval, 282
Lempel, 123, 142, 143, 158, 160,

161
letter, 10
lexicographic ordering, 86, 93, 98,

101, 133, 134
linear-SQUARE function, 122
Line-Periodic-Extend procedure, 247
local period, 136
longest common factor, 60-62, 68,

84
longest common subsequence, 4, 8,

183, 186-191, 196
longest increasing subsequence, 190,

196
longest repeated factor, 62, 89, 90
Longest-Self-Maximal-Prefix function,

129
Lorentz, 123
lowest common ancestor, 62

Main, 123
Manacher, 123
Manacher algorithm, 114
Manber, 109, 196
Masek, 196
match, 10
MATCH-EXTENDS function, 280
matching with don't cares, 183,193-

196, 212, 213
matching with errors, 191-193, 196
maximal suffix, 125, 128-134, 136,

139, 140
MaxSuf-and-PeriodO function, 130
Maxsuf-and-Period function, 131

308 INDEX

MaxSuffix-Matching algorithm, 129
McCreight, 59, 63-68, 104
McCreight algorithm, 67
McMillan's inequality, 146
Mignosi, 162
Miller, 85, 89, 107, 215, 258
minimization, 69
mismatch, 23, 214
model of machine, 9, 26, 163, 176,

249, 278
Modified-KMP algorithm, 280
Moffat, 161
Monge property, 266
Moore, 19, 26, 29, 32, 33, 39, 41,

43, 221, 273
Morris, 19-24, 31, 33, 44, 127, 248
Morse, 150
MP algorithm, 23
multi-pattern matching, 3,172, 209,

211, 214-216, 218
Muthukrishnan, 284
Myers, 109, 196

Naive-Period function, 126
Naive-Scan function, 37
Nakatsu, 196
naming, 85, 87, 90
naming function, 278, 279
naming table, 85, 87
Neal, 162
Needleman, 196
Nelson, 161
Nonperiodic-Extend procedure, 246
numbering, 85

occur, 10
occurrence shift, 29
on-line-DAWG algorithm, 74
on-line-KMP algorithm, 25
on-line-trie algorithm, 51
optimal algorithm, 8, 10, 85, 121,

191, 202

optimal factorization, 156, 157
optimal parallel algorithm, 2, 9, 199,

202, 249, 250, 254-257, 268-
270, 273

overlap-free, 14

palindrome, 8, 13, 111-115, 117-
119, 123

palstar, 111, 112, 115-119, 181
PALSTAR function, 118
paragraph, 281
parallel random access machine (PRAM^

249, 250
Park, 235, 244-248
Paterson, 196, 284
pattern, 1
pattern matching, 1
pattern-matching automaton, 4, 71,

164, 175, 181, 259
pattern-matching machine, 175,181
period, 11, 225
periodic, 11, 136
periodicity, 11
Perrin, 140, 181
Plandowski, 284
position, 10
Pratt, 19-24, 31, 33, 44, 127, 161,

248
prefix code, 145-149, 151
prefix computation, 251-254, 273
prefix memorization, 30
prefprod function, 251
primitive, 16, 138
pseudoperiod, 249, 255
PSTAR function, 115

quadrangle inequality, 266

Rabin, 271-273, 284
random access machine (RAM), 26,

179, 249, 251, 278
REFINE procedure, 260
regular pair, 92

INDEX 309

repeating prefix, 138
Restivo, 162
Rodeh, 161
Rosenberg, 85, 89, 107, 215, 258
rotation, 139
Rytter, 140, 270

safe shift, 21, 27
Salemi, 162
sampling, 136, 137, 199, 204, 209,

218, 219, 223, 252, 254
Sankoff, 196
Sardinas, 284
Scheme of McCreight algorithm al

gorithm, 64
Schieber, 196
Search algorithm, 96
Seiferas, 68, 123, 136, 138-140
self-maximal, 125
semi-greedy factorization, 157, 159,

161
Sequential-Sampling algorithm, 137
Shannon,161
shortest common superstring, 7, 271,

274, 276
Simulatel algorithm, 180
sink, 73
Sleator, 161
slow duel, 269
SMA algorithm, 165
source, 142
SpecialCase-MP algorithm, 127
splitting, 73, 75, 98, 99, 249, 255,

256
square-free, 14
SQUARE function, 121
Storer, 161
Stoye, 123
String-searching-by-duels function,

203
String-searching-by-expensive-duels

algorithm, 203

strong border, 24, 33, 35
subsequence, 10
substitution, 276
subword, 10
subword trie, 46
suffix array, 5, 91, 92, 109
suffix link, 49, 70, 72
Suffix-Merge-Sort algorithm, 104
suffix tree, 5, 46-48
Suffix-Testing algorithm, 241
suffix-testing problem, 241
Suffix-Tree-by-Refining algorithm, 260
symbol, 10
Szymanski, 196

table of borders, 21
Takaoka, 284
Tarhio, 284
Tarjan, 161
text, 1
time-space optimal algorithm, 2,8,

127, 140
Turbo-BM, 32
two-way automaton, 176
Two-way Pattern-Matching algorithm,

133

Ukkonen, 49, 51-53, 55, 56, 79, 84,
104, 196, 284

Ukkonen algorithm, 53
Ullman, 181
unique factorization, 276
Update-table-Next procedure, 282

Vishkin, 196, 202, 207, 223, 249,
252-254, 256, 269, 270

Vishkin-string-matching-by-duels al
gorithm, 253

Vishkin-string-matching-by-sampling
algorithm, 254

Vitter, 161

Wagner, 196

310

Wei, 161
Weinberger, 3
Weiner, 68
Welch, 161
Wheeler, 161
witness table, 199, 228
Witten, 161, 162
Wood, 196
work, 249
Wu, 196
Wunsch, 196

Yajima, 196

Zipstein, 161
Ziv, 123, 142, 143, 158, 160, 161
ZL algorithm, 158

ewels
Strin?olo\

The term "stringology" is a popular
nickname for text algorithms, or algorithms
on strings. This book deals with the most basic
algorithms in the area. Most of them can be viewed as "algorithmic
jewels" and deserve reader-friendly presentation. One of the main
aims of the book is to present several of the most celebrated
algorithms in a simple way by omitting obscuring details and
separating algorithmic structure from combinatorial theoretical
background. The book reflects the relationships between
applications of text-algorithmic techniques and the classification
of algorithms according to the measures of complexity considered.
The text can be viewed as a parade of algorithms in which the
main purpose is to discuss the foundations of the algorithms and
their interconnections. One can partition algorithmic problems
the discussed into practical and theoretical problems. Certainly,
string matching and data compression are in the former class,
while most problems related to symmetries and repetitions in texts
are in the latter. However, all the problems are interesting from
an algorithmic point of view and enable the reader to appreciate
the importance of combinatorics on words as a tool in the design
of efficient text algorithms.

In most textbooks on algorithms and data structures, the presentation
of efficient algorithms on words is quite short as compared to
issues in graph theory, sorting, searching, and some other areas.
At the same time, there are many presentations of interesting
algorithms on words accessible only in journals and in a form
directed mainly at specialists. This book fills the gap in the book
literature on algorithms on words, and brings together the many
results presently dispersed in the masses of journal articles. The
presentation is reader-friendly; many examples and about two
hundred figures illustrate nicely the behaviour of otherwise very
complex algorithms.

World Scientific
www. worldscientific.com
4838 he

ISBN 981-02-4782-6

http://worldscientific.com

