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Preface 

The term stringology is a popular nickname for string algorithms as well as 
for text algorithms. Usually text and string have the same meaning. More 
formally, a text is a sequence of symbols. Text is one of the basic data types to 
carry information. This book is a collection of the most beautiful and at the 
same time very classical algorithms on strings. The selection has been done by 
the authors, and is rather personal, among so many famous algorithms that 
were natural candidates to be included and that belong to a field that has 
become now fairly popular. 

One can partition algorithmic problems discussed in this book into practical 
and theoretical problems. Certainly string matching and data compression are 
in the first class, while most problems related to symmetries and repetitions 
are in the second. However, we believe that all the problems are interesting 
from an algorithmic point of view and enable the reader to appreciate the 
importance of combinatorics on words. 

In most textbooks on algorithms and data structures the presentation of ef
ficient algorithms on words is quite short as compared to issues in graph theory, 
sorting, searching, and some other areas. At the same time, there are many 
presentations of interesting algorithms on words accessible only in journals and 
in a form directed mainly at specialists. There are still not many books on 
text algorithms, especially the books which are oriented toward undergraduate 
and graduate students. In the book the difficult parts are indicated by a star, 
so the basic text becomes painless for undergraduate students. We hope that 
this book will cover a gap on algorithms on words in book literature for the 
broader audience, and bring together the many results presently dispersed in 
the masses of journal articles. 

March 2002 

M. Crochemore, W. Rytter 
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Chapter 1 

Stringology 

One of the simplest and natura l types of information representation is by means 
of wri t ten texts . This type of da ta is characterized by the fact tha t it can 
be wri t ten down as a long sequence of characters. Such linear a sequence 
is called a text. The texts are central in "word processing" systems, which 
provide facilities for the manipulation of texts. Such systems usually process 
objects tha t are quite large. For example, this book probably contains more 
than a million characters. Text algorithms occur in many areas of science and 
information processing. Many text editors and programming languages have 
facilities for processing texts . In biology, text algorithms arise in the s tudy 
of molecular sequences. The complexity of text algorithms is also one of the 
central and most studied problems in theoretical computer science. It could 
be said tha t it is the domain in which practice and theory are very close to 
each other. 

The basic textual problem in stringology is called pattern matching. It is 
used to access information and, no doubt, at this moment many computers 
are solving this problem as a frequently used operation in some application 
system. Pa t t e rn matching is comparable in this sense to sorting, or to basic 
ari thmetic operations. 

Consider the problem of a reader of the French dictionary "Grand Larousse," 
who wants all entries related to the name "Marie-Curie-Sklodowska." This is 
an example of a pa t t e rn matching problem, or string matching. In this case, 
the name "Marie-Curie-Sklodowska" is the pat tern . Generally we may want to 
find a string called a pattern of length m inside a text of length n, where n is 
greater than m. The pa t t e rn can be described in a more complex way to denote 
a set of strings and not just a single word. In many cases n is very large. In 
genetics the pa t t e rn can correspond to a gene tha t can be very long; in image 
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2 CHAPTER 1. STRINGOLOGY 

processing, digitized images sent serially contain millions of characters each. 
The string-matching problem is the basic question considered in this book, 
together with its variations. String matching is also the basic subproblem in 
other algorithmic problems on texts. Following is a (not exclusive) list of basic 
groups of problems discussed in this book: 

• variations on the string-matching problem 

• problem related to the structures of the segments of a text 

• data compression 

• approximation problems 

• finding regularities 

• extensions to two-dimensional images 

• extensions to trees 

• optimal time-space implementations 

• optimal parallel implementations. 

The formal definition of string matching and many other problems is given 
in the next chapter. We now introduce some of them informally in the context 
of applications. 

1.1 Text file facilities 

The UNIX system uses text files for exchanging information as a main fea
ture. The user can get information from the files and transform them through 
different existing commands. The tools often behave as filters that read their 
input once and produce the output simultaneously. These tools can easily be 
connected with each other, particularly through the pipelining facility. This 
often reduces the creation of new commands to a few lines of already existing 
commands. 

One of these useful commands is grep, acronym of "general regular expres
sion print." An example of the format of grep is 

grep Marie-Curie-Sklodowska Grand-Larousse 

provided "Grand-Larousse" is a file on your computer. The output of this 
command is the list of lines from the file that contains an occurrence of the 
name "Marie-Curie-Sklodowska." This is an instance of the string-matching 
problem. Another example with a more complex pattern can be 
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grep '"Chapter [ 0 - 9 ] ' Book 

to list the titles of a book assuming titles begin with "Chapter" followed by a 
number. In this case the pattern denotes a set of strings (even potentially infi
nite), and not simply one string. The notation to specify patterns is known as 
regular expressions. This is an instance of the regular-expression-matching 
problem. 

The indispensable complement of grep is sed (stream editor). It is designed 
to transform its input. It can replace patterns of the input with specific strings. 
Regular expressions are also available with sed. But the editor contains an 
even more powerful notation. This allows, for example, the action on a line 
of the input text containing the same word twice. It can be applied to delete 
two consecutive occurrences of a same word in a text. This is simultaneously 
an example of the repetition-finding problem, pattern-matching problem 
and, more generally, the problem of finding regularities in strings. 

The very helpful matching device based on regular expressions is om
nipresent in the UNIX system. It can be used inside text editors such as 
ed and vi, and generally in almost all UNIX commands. The above tools, grep 
and sed, are based on this mechanism. There is even a programming language 
based on pattern-matching actions. It is the awk language, where the name 
awk comes from the initials of the authors, Aho, Weinberger, and Kernighan. 
A simple awk program is a sequence of pattern-action statements: 

p a t t e r n l {act ion 1} 
pa t t e rn2 {act ion 2} 
pa t t e rn3 {act ion 3} 

The basic components of this program are patterns to be found inside the 
lines of the current file. When a pattern is found, the corresponding action is 
applied to the line. Therefore, several actions may be applied sequentially to 
a same line. This is an example of the multi-pattern matching problem. 
The language awk is meant for converting data from one form to another 
form, counting things, adding up numbers, and extracting information for 
reports. It contains an implicit input loop, and the pattern-action paradigm 
often eliminates control flow. This also frequently reduces the size of a program 
to a few statements. For instance, the following awk program prints the number 
of lines of the input that contain the word "abracadabra": 

abracadabra {count++} 
END {pr in t count} 

The pattern "END" matches the end of input file, so that the result is printed 
after the input has been entirely processed. The language contains attractive 
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features that strengthen the simplicity of the pattern-matching mechanism, 
such as default initialization for variables, implicit declarations, and associa
tive arrays providing arbitrary kinds of subscripts. All this makes awk a con
venient tool for rapid prototyping. The awk language can be considered as a 
generalization of another UNIX tool, lex, aimed at producing lexical analyzers. 
The input of a lex program is the specification of a lexical analyzer by means of 
regular expressions (and a few other possibilities). The output is the source of 
the specified lexical analyzer in the C programming language. A specification 
in lex is mainly a sequence of pattern-action statement as in awk. Actions 
are pieces of C code to be inserted in the lexical analyzer. At run time, these 
pieces of code execute the action corresponding to the associated pattern, when 
found. The following line is a typical statement of a lex program: 

[A-Za-z]+([A-Za-zO-9])* { yyval = Install(); return(ID);} 

The pattern specifies identifiers, that is, strings of characters starting with one 
letter and containing only letters and digits. This action leads the generated 
lexical analyzer to store the identifier and to return the string type "ID" to 
the calling parser. It is another instance of the regular expression-matching 
problem. The question of constructing pattern-matching automata is an 
important component having a practical application in the lex software. 

Texts such as books or programs are likely to be changed during elabora
tion. Even after their completion they often support periodic upgrades. These 
questions are related to text comparisons. Sometimes we also wish to find 
a string, and do not completely remember it. The search has to be performed 
with an entirely non-specified pattern. This is an instance of the approxi
mate pattern matching. Keeping track of all consecutive versions of a text 
may not be helpful because the text can be very long and changes may be hard 
to find. The reasonable way to control the process is to have an easy access 
to differences between the various versions. There is no universal notion as to 
what the differences are, or conversely, what the similarities are, between two 
texts. However, it can be agreed that the intersection of the two texts is the 
longest common subtext of both. In our book this is called the longest com
mon subsequence problem, so that the differences between the two texts are 
the respective complements of the common part. The UNIX command diff 
builds on this notion. An option of the command diff produces a sequence of 
ed instructions to transform one text into the other. The similarity of texts 
can be measured as the minimal number of edit operations to transform one 
text into the other. The computation of such a measure is an instance of the 
edit distance problem. 
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1.2 Dictionaries 

The search of words or pat terns in static texts is quite a different question 
than the previous pat tern-matching mechanism. Dictionaries, for example, 
are organized in order to speed up the access to entries. Another example 
of the same question is given by indexes. Technical books often contain an 
index of chosen terms tha t gives pointers to par ts of the text related to words 
in the index. The algorithms involved in the creation of an index form a 
specific group. The use of dictionaries or lexicons is often related to na tura l 
language processing. Lexicons of programming languages are small, and their 
representation is not a difficult problem during the development of a compiler. 
To the contrary, English contains approximately 100,000 words, and even twice 
tha t if inflected forms are considered. In French, inflected forms produce more 
than 700,000 words. The representation of lexicons of this size makes the 
problem a bit more challenging. 

A simple use of dictionaries is illustrated by spelling checkers. The UNIX 
command, spell, reports the words in its input t ha t are not s tored in the lexi
con. This rough approach does not yield a pertinent checker, but , practically, 
it helps to find typing errors. The lexicon used by spell contains approxi
mately 70,000 entries stored within less than 60 kilobytes of random-access 
memory. Quick access to lexicons is a necessary condition for producing good 
parsers. The da ta s tructure useful for such access is called an index. In our 
book indexes correspond to da ta structures representing all factors of a given 
(presumably long) text. We consider problems related to the construction of 
such structures: suffix t r e e s , d i rec ted acycl ic w o r d graphs , factor au
t o m a t a , suffix arrays. The PAT tool developed at the N O E D Center 
(Waterloo, Canada) is an implementation of one of these s tructures tailored 
to work on large texts . There are several applications tha t effectively require 
some understanding of phrases in natural languages, such as da t a retrieval 
systems, interactive software, and character recognition. 

An image scanner is a kind of photocopier. It is used to give a digitized 
version of an image. When the image is a page of text, the na tura l output of the 
scanner must be in a digital form available to a text editor. The transformation 
of a digitized image of a text into a usual computer representation of the text 
is realized by an Optical Character Recognition (OCR). Scanning a text with 
an OCR can be 50 times faster than retyping the text on a keyboard. Thus, 
OCR softwares are likely to become more common. But they still suffer from 
a high degree of imprecision. The average rate of error in the recognition of 
characters is approximately one percent. Even if this may happen to be rather 
small, this means tha t scanning a book produces approximately one error per 
line. This is compared with the usually very high quality of texts checked 
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by specialists. Technical improvements on the hardware can help eliminate 
certain kinds of errors occurring on scanned texts in printed forms. But this 
cannot alleviate the problem associated with recognizing texts in printed forms. 
Reduction of the number of errors can thus only be achieved by considering the 
context of the characters, which assumes some understanding of the structure 
of the text. Image processing is related to the problem of two-dimensional 
pattern matching. Another related problem is the data structure for all 
subimages, which is discussed in this book in the context of the dictionary 
of basic factors. 

The theoretical approach to the representation of lexicons is either by means 
of trees or finite state automata. It appears that both approaches are equally 
efficient. This shows the practical importance of the automata theoretic 
approach to text problems. At LITP (Paris) and IGM (Marne-la-Vallee) 
we have shown that the use of automata to represent lexicons is particularly 
efficient. Experiments have been done on a 700,000 word lexicon of LADL 
(Paris). The representation supports direct access to any word of the lexicon 
and takes only 300 kilobytes of random-access memory. 

1.3 Data compression 

One of the basic problems in storing a large amount of textual information 
is the text compression problem. Text compression means reducing the 
representation of a text. It is assumed that the original text can be recovered 
from its compressed from. No loss of information is allowed. Text compression 
is related to the Huffman coding problem and the factorization problem. 
This kind of compression contrast with other kinds of compression techniques 
applied to sounds or images, in which approximation is acceptable. Availability 
of large mass storage does not decrease the interest for compressing data. 
Indeed, users always take advantage of extra available space to store more 
data or new kinds of data. Moreover, the question remains important for 
storing data on secondary storage devices. Examples of implementations of 
dictionaries reported above show that data compression is important in 
several domains related to natural language analysis. Text compression is 
also useful for telecommunications. It actually reduces the time to transmit 
documents via telephone network, for example. The success of Facsimile is 
perhaps to be credited to compression techniques. 

General compression methods often adapt themselves to the data. This 
phenomenon is central in achieving high compression ratios. However, it ap
pears, in practice, that methods tailored for specific data lead to the best 
results. We have experimented with this fact on data sent by geostationary 
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satellites. The data have been compressed to seven percent of their original 
size without any loss of information. 

The compression is very successful if there are redundancies and regularities 
in the information message. The analysis of data is related to the problem of 
detecting regularities in texts. Efficient algorithms are particularly useful 
to expertise the data. 

1.4 Applications of text algorithms in genetics 

Molecules of nucleic acids carry a large segment of information about the fun
damental determinants of life, and, in particular, about the reproduction of 
cells. There are two types of nucleic acids known as desoxyribonucleic acid 
(DNA) and ribonucleic acid (RNA). DNA is usually found as double-stranded 
molecules. In vivo, the molecule is folded up like a ball of string. The skeleton 
of a DNA molecule is a sequence on the four-letter alphabet of nucleotides: 
adenine (A), guanine (G), cytosine (C), and thymine (T). RNA molecules are 
usually single-stranded molecules composed of ribonucleotides: A, G, C, and 
uracil (U). 

Processus of "transcription" and "translation" lead to the production of 
proteins, which also have a string composed of 20 amino acids as a primary 
structure. In a first approach all these molecules can be viewed as texts. The 
discovery twenty years ago of powerful sequencing techniques has led to a rapid 
accumulation of sequence data. Prom the collection of sequences up to their 
analysis many algorithms on texts are implied. Moreover, only fast algorithms 
are often feasible because of the huge amount of data involved. 

Collecting sequences can be accomplished through audioradiography gels. 
The automatic transcription of these gels into sequences is a typical two di
mensional pattern-matching problem in two dimensions. The reconstruc
tion of a whole sequence from small segments, used for instance in the shotgun 
sequencing method, is another example of a problem that occurs during this 
step. This problem is called the shortest common superstring problem: 
construction of the shortest text containing several given smaller texts. 

Once a new sequence is obtained, the first important question to ask is 
whether it resembles any other sequence already stored in data banks. Before 
adding a new molecular sequence into an existing data base one needs to know 
whether or not the sequence is already present. The comparison of several 
sequences is usually realized by writing one over another. The result is know 
as an alignment of the set of nucleotides. Alignment of two sequences is the 
edit distance problem: compute the minimal number of edit operations to 
transform one string into another. It is realized by algorithms based on dy-
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namic programming techniques similar to the one used by the UNIX command 
diff. 

The problem of the longest common subsequence is a variation of the 
alignment of sequences. A tool, called agrep, developed at the University 
of Arizona, is devoted to these questions, related to approximate string 
matching. 

Further questions about molecular sequences are related to their analysis. 
The aim is to discover the functions of all parts of the sequence. For example, 
DNA sequences contain important regions (coding sequences) for the produc
tion of proteins inside the cell. However, no good answer is presently known 
for finding all coding sequences of a DNA sequence. Another question about 
sequences is the reconstruction of their three-dimensional structure. It seems 
that a part of the information resides in the sequence itself. This is because, 
during the folding process of DNA, for example, nucleotides match pairwise 
(A with T, and C with G). This produces approximate palindromic symme
tries (as TTAGCGGCTAA). Involved in all these questions are approximate 
searches for specific patterns, for repetitions, for palindromes, or other 
regularities. 

1.5 Efficiency of algorithms 

Efficient algorithms can be classified according to what is meant by efficiency. 
There exist different notions of efficiency depending on the complexity measure 
involved. Several such measures are discussed in this book: sequential time, 
memory space, parallel time, and number of processors. 

This book deals with "feasible" problems. We can define them as problems 
having efficient algorithms, or as solvable in time bounded by a small-degree 
polynomial. In the case of sequential computations we are interested in lower
ing the degree of the polynomial corresponding to time complexity. The most 
efficient algorithms usually solve a problem in linear-time complexity. We are 
also interested in space complexity. Optimal space complexity often means a 
constant number of (small integer) registers in addition to input data. There
fore, we say that an algorithm is time-space optimal if it works simultaneously 
in linear time and in constant extra space. These are the most advanced se
quential algorithms, and also the most interesting, both from a practical and 
theoretical point of view. 

In the case of parallel computations we are generally interested in the par
allel time T(n) as well as in the number of processors P(n) required for the 
executions of the parallel algorithm on data of size n. The total number of 
elementary operations performed by the parallel algorithm is not greater than 
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the product T(n)P{n). 

Efficient parallel algorithms are those that operate in no more than poly-
logarithmic (a polynomial of logs of input size) time with a polynomial number 
of processors. The class of problems solvable by such algorithms is denoted by 
NC and hence we call the related algorithms NC-algorithms. An NC-algorithm 
is optimal if the total number of operations T(n)P(n) is linear. Another possi
ble definition is that this number is essentially the same as the time complexity 
of the best known sequential algorithm solving the given problem. However, 
we adopt the first option here because algorithms on strings usually have a 
time complexity which is at least linear. 

Precisely evaluating the complexity of an algorithm according to some mea
sure is often difficult, and, moreover, it is unlikely to be of much use. The "big 
O" notation clarifies what the important terms of a complexity expression are. 
It estimates the asymptotic order of the complexity of an algorithm and helps 
compare algorithms between each others. Recall that if / and g are two func
tions from and to integers, then we say that / = 0(g) if / (n ) < C.g(n) when 
n > N, for some constants C and N. We write / = @(g) when the functions 
/ and g are of the same order, which means that both equalities / = 0(g) and 
g = O(f) hold. 

Comparing functions through their asymptotic orders leads to these kinds of 
inequalities: 0(n°-7) < 0(n) < O(nlogn), or O(n l o g n) < 0(logn") < 0(n\). 

Within sequential models of machines one can distinguish further types 
of computations: off-line, on-line and real-time. These computations are also 
related to efficiency. It is understood that real-time computations are more 
efficient than general on-line, and that on-line computations are more efficient 
than off-line. Each algorithm is an off-line algorithm: "off-line" conceptually 
means that the whole input data can be put into the memory before the actual 
computation starts. We are not interested then in the intermediate results 
computed by the algorithm, but only in the final result (though this final result 
can be a sequence or a vector). The time complexity is measured by the total 
time from the moment the computation starts (with all input data previously 
memorized) up to the final termination. In contrast, an on-line algorithm is 
like a sequential transducer. The portions of the input data are "swallowed" 
by the algorithm step after step, and after each step an intermediate result is 
expected (related to the input data read so far). It then reads the next portion 
of the input, and so on. In on-line algorithms the input can be treated as 
an infinite stream of data, consequently we are not interested mainly in the 
termination of the algorithm for all such data. The main interest for us is 
the total time T(n) for which we have to wait to get the n-th first outputs. 
The time T(n) is measured starting at the beginning of the whole computation 
(activation of the transducer). Suppose that the input data is a sequence and 
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that after reading the n-th symbol we want to print "1" if the text read to this 
moment contains a given pattern as a suffix, otherwise we print "0". Hence 
we have two streams of data: the stream of input symbols and an output 
stream of answers "1" or "0". The main feature of the on-line algorithm is 
that it has to give an output value before reading the next input symbol. The 
real-time computations are those on-line algorithms that are in a certain sense 
optimal; the elapsing time between reading two consecutive input symbols (the 
time spent for computing only the last output value) should be bounded by a 
constant. Most linear on-line algorithms are in fact real-time algorithms. 

We are primarily interested in off-line computations in which the worst-
case running time is linear, but on-line and real-time computations, as well as 
average complexities are also discussed in this book. 

1.6 Some notation and formal definitions 

Let A be an input alphabet-a, finite set of symbols. Elements of A are called 
the letters, the characters, or the symbols. Typical examples of alphabets 
are: the set of all ordinary letters, the set of binary digits, or the set of 256 
8-bit ASCII symbols. Texts (also called words or strings) over A are finite 
sequences of elements of A. The length (size) of a text is the number of its 
elements (with repetitions). Therefore, the length of aba is 3. The length of a 
word x is denoted by \x\. The input data for our problems will be words, and 
the size n of the input problem will usually be the length of the input word. 
In some situations, n will denote the maximum length or the total length of 
several words if the input of the problem consists of several words. 

The i-th element of the word x is denoted by x[i] and i is its position on x. 
We denote by x[i. .j] the factor x[i]x[i + 1 ] . . . x[j] of x. If i > j , by convention, 
the word x[i. .j] is the empty word (the sequence of length zero), which is 
denoted by e. 

We say that the word x of length m is a factor (also called a subword) of 
the word y if x = y[i + 1. .i + n] for some integer i. We also say that x occurs 
in y at position i, or that the position i is a match for x in y. 

We define the notion of subsequence (sometimes called a subword). The 
word a; is a subsequence of y if x can be obtained from y by removing zero or 
more (not necessarily adjacent) letters from it. Likewise, a; is a subsequence 
of y if x = y[ii}y[i2\ • • • y[im], where z i , i 2 , . . . , im is an increasing sequence of 
indices on y. 

Next we define formally the basic problem covered in this book. We often 
consider two texts pat (the pattern) and text of respective lengths m and n. 
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Figure 1.1: Duality between periods and borders of texts. 

String matching (the basic problem). Given texts pat and text, verify if 
pat occurs in text. This is a decision problem: the output is a Boolean value. 
It is usually assumed that m <n. Therefore, the size of the problem is n. A 
slightly advanced version entails searching for all occurrences of pat in text, 
that is, computing the set of positions of pat in text. Let us denote this set by 
MATCH(pat, text). In most cases an algorithm computing MATCH(pat, text) 
is a trivial modification of a decision algorithm, this is the reason why we 
sometimes present only decision algorithms for string matching. 

Instead of just one pattern, one can consider a finite set of patterns and 
ask if a given text contains a pattern from the set. The size of the problem is 
now the total length of all patterns plus the length of the text. 

1.7 Some simple combinatorics of strings 

The main theoretical tools in string-matching algorithms are related to math
ematical properties of periodicities in strings. We define the notion of period 
of a word, which is central in almost all strings matching algorithms. A period 
of a word x is an integer p, 0 < p < \x\, such that 

x[i] = x[i + p] 

for a l i i G { 1 , . . . , \x\ - p}. When there is no ambiguity, we also say that the 
word x[l. .p] is a period of x. This is the usual definition of a period for a 
function denned on integers, as x can be viewed. Note that the length of a 
word is always a period of it, so that any word has at least one period. We 
denote by period(x) the smallest period of x. We additionally say that x is 
periodic if period(x) < \x\/2. 

The notion of border of a text is a dual notion to that of period, see Fig
ure 1.1. A border of x is any word that is simultaneously a prefix and a suffix 
of x. Observe that x and the empty string e are borders of x. 

Let us denote by Border (x) the longest nontrivial border (not the whole 
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a b c 

i i +(p-q) i +p 
p-q 

Figure 1.2: Quantity p — q is also a period because letters a and b are both 
equal to letter c. 

word) of x. Note that 

{\x\ - \Border(x)\, \x\ - \Border2(x)\,..., |a:| - \Borderk(x)\) 

is the sequence of all periods of x in increasing order (k is the smallest integer 
for which Borderk(x) is the empty word). 

Example. The periods of aabaaabaa (of length 9) are 4, 7, 8 and 9. Its 
corresponding proper borders are aabaa, aa, a, e. 

Periodicity Lemma 

Let a; be a non-empty word and p be an integer such that 0 < p < \x\. Then 
each of the following conditions equally defines p as a period of x: 

1. a; is a factor of some word yk with \y\ = p and k > 0, 

2. x may be written (uv)k with \uv\ = p, v a non-empty word, and k > 0, 

3. for some words y, z and w, x = yw = wz and \y\ = \z\ = p. 

Lemma 1.1 [Periodicity Lemma] Letp and q be two periods of the word x. If 
p + q < \x\, then gcd(p, q) is also a period of x. 

Proof. The conclusion trivially holds if p = q. Assume now that p > q. 
First we show that the condition p + q < |a;| implies that p - q is a period of x. 
Let x = x[l]o;[2]... x[n\ {x[i\s are letters). Given x[i) the i-th letter of x, the 
condition implies that either i - q > 1 or i + p < n. In the first case, q and p 
being periods of a;, x[i] = x[i — q] = x[i~q+p\. In the second case, for the same 
reason, x[i] = x[i+p] = x[i+p — q\. Thus p — q is a period of x. This situation 
is shown in Figure 1.2. The rest of the proof, left to the reader, is by induction 
on the integer max(p, q), after noting that gcd(p, q) equals gcd(p - q,q). • 
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Figure 1.3: After cutting off its last two letters, Fibs is a symmetric word, a 
palindrome. This is not accidental. 

There is a stronger version of the periodicity lemma for which we omit the 
proof. 

Lemma 1.2 [Strong Periodicity Lemma] If p and q are two periods of a word 
x such that p + q — gcd(p, q) < \x\, then gcd(p, q) is also a period of x. 

An interesting family: Fibonacci words 

Fibonacci words form an interesting family of words (from the point of view of 
periodicities). In sone sense, the inequality that appears in Strong Periodicity 
Lemma is optimal. The example supporting this claim is given by the Fibonacci 
words with the last two letters deleted. 

Let Fibn be the n-th Fibonacci word (n > 0). It is denned by 

Fibo = £, Fib\ = b, Fib-i = a, and Fibn = Fibn-iFibn-2, for n > 2. 

Fibonacci words satisfy a large number of interesting properties related to 
periods and repetitions. Note that Fibonacci words (except the first two words 
of the sequence) are prefixes of their successors. Indeed, there is an even 
stronger property: the square of any Fibonacci word of high enough rank is a 
prefix of its succeeding Fibonacci words. Among other properties of Fibonacci 
words, it must be noted that they have no factor in the form u4 (u non empty 
word) and they are almost symmetric, see Figure 1.3. Therefore, Fibonacci 
words contain a large number of periodicities, but none with an exponent 
higher than 3. 

The lengths of Fibonacci words are the well-known Fibonacci numbers, 
/ 0 = 0, / i = 1, /2 = 1, /3 = 2, f4 = 3, . . . . The first Fibonacci words of the 
sequence (Fibn,n > 2) are 
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Fib3=ab, \Fib3\ = 2, 
FibA = aba, |Fi&4| = 3, 
Fibr, = abaab, \Fib5\ = 5, 
Fibe = abaababa, \Fibe\ = 8, 
Fib-j = abaababaabaab, \Fibr\ = 13, 
Fibs = abaababaabaababaababa, \Fib$\ = 21, 
Fibg = abaababaabaababaababaabaababaabaab, \Fibg\ = 34. 

1.8 Some other interesting strings 

Fibonacci words of rank greater than 1 can be treated as prefixes of a single 
infinite Fibonacci string Fib^. Similarly we can define the words of Thue-
Morse T(n) as prefixes of a single infinite word Too. Assume we count positions 
on this word starting from 0. Denote by g{k) the number of " 1 " in the binary 
representation of the number k. Then 

T (k) = \ a i f 9 ^ iS e V e n ' 
16 otherwise. 

The Thue-Morse words Tn are the prefixes of Too of length 2™. We list several 
of them below. 

Ti = ab, 
Ti = abba, 
Tz = abbabaab, 
TA = abbabaabbaababba, 
Tg = abbabaabbaababbabaababbaabbabaab. 

These words have the remarkable property of being overlap-free, which means 
that there is no nonempty word x that occurs in them at two positions which 
distance is smaller than |a;|. However these words are mostly known for the 
following square-free property: they contain no nonempty word in the form xx 
(nor, indeed, in the form axaxa, a £ A). 

Let us define the following invertible encoding: 

P(a) = a, /3(b) = ab, and /3(c) = abb. 

Lemma 1.3 For each integer n the word /3_1(Tn) is square free. 

The lemma says in particular that there are infinitely many "square-free" 
words. Let T^ be the word over the alphabet {0,1,2} which symbols are the 
number of occurrences of letter "b" between two consecutive occurrences of 
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letter "a" in Too • Then such an infinite word is also "square-free". We have 

T4, = 2 1 0 2 0 1 2 . . . 

Other interesting words are sequences of moves in the Hanoi towers game. 
There are six possible moves depending from which stack to which other stack 
an disk is moved. If we have n disks then the optimal sequence consists of 
2™ — 1 moves and forms a word Hn. The interesting property of these words 
is that all of them are "square-free". 

Yet another family of words that has a strange relation to numbers g{k) is 
given by the binary words Pn, where Pn is the n-th row of the Pascal triangle 
modulo 2. In other words: 

Pn(i) = ( " ) m o d 2. 

We list below some of these words. 
Po = 1 
Pi = 1 1 
Pi = 1 0 1 
p 3 = 1 1 1 1 
Pi = 1 0 0 0 1 
Ps = 1 1 0 0 1 1 

The word Pn has the following remarkable property: the number of " 1 " in Pn 

equals 2 » K 

Let us consider the infinite string W which symbols are digits and which 
results from concatenating all consecutive natural numbers written in decimal. 
Hence, 

W = 01234567891011121314151617181920212223242526272829303132... 

Denote by Wn the prefix of W of size n. For a word x, let us denote by occn(x) 
the number of occurrences of x in Wn. The words Wn have the following 
interesting property: for every two nonempty words x and y of a same length 

occn(x) 
lim y—r = 1. 

n->oo OCCn{y) 

This means, in a certain sense, that the sequence W is quite random. 

An interesting property of strings is how many factors of a given length 
k they contain. Assume the alphabet is {a, b} . For a given k we have 2k 

different words of length k. A natural question is: 

what is the minimal length ^(k) of a word containing each subword of 
length k. 
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Obviously 7(fc) > 2k + k-l, since any shorter word has less than 2k factors. It 
happens that 7(/c) = 2k + k — 1. The corresponding words are called de Bruijn 
words. In these strings each word of length k occurs exactly once. For a given 
A; there are exponentially many de Bruijn words. For example for k = 1 we 
can take ab, for k = 2 we take aabba or abaab and for k = 3 we can take de 
Bruijn word aaababbbaa. 

There is an interesting relation of de Bruijn words to Euler cycles in special 
graphs Gfc. The nodes of Gk are all words of length k — 1 and for any word 
x = a\ai... a/t_i of length k — 1 we have two directed edges 

aia2.--dk-i —> <Z2...afc_i-a, aia2...afc_i —> a,2---ak-i-b 

The graph has a directed Euler cycle (containing each edge exactly once). Let 
a\a,2 ... O-N be the sequence of labels of edges in a Euler cycle. Observe that 
N — 2fc. As de Bruijn word we can take the word: 

a\CL2 • •. aNdiCi2 • • • flfc-i-

1.9 Cyclic shifts and primitive words 

A cyclic shift of x is any word vu, when x can be written in the form uv. Let 
us consider how many different cyclic shifts a word can have. 

Example. Consider the cyclic shifts of the word abaaaba of length 7. There 
are exactly 7 different cyclic shifts of abaaaba, the 8-th shift goes back to the 
initial word. 

b 
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a 
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a 
a 
a 
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a 
a 
a 
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b 
b 
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a 
a 
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a 
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b 
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b 
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a 
a 
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a 
a 
a 
a 

a 
a 
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b 
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A word w is a said to be primitive if it is not of the form w = vk, for a 
natural number k > 2. As a consequence of the periodicity lemma we show 
the following fact. 

Lemma 1.4 Assume the word x is primitive. Then x has exactly \x\ different 
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cyclic shifts. In other words: 

\{vu : u and v words such that x = uv and u ^ s}\ = \x\. 

Proof. Assume x of length p has two cyclic shifts that are equal. Hence 
x = uv = u'v', and vu = v'u', where u 7̂  u'. 

Assume without loss of generality that |u'| < \u\. Then u = u'a, v' = a • v 
and vu'a — avu'. Hence the text a • v • u' • a has borders a • v • u' and 
a. Consequently, the text a • v • u' • a has two periods of size r = \a\ and 
p = \vu'a\. At the same time r + p = \a • v • u' • a\. 

The periodicity lemma implies that the text has period gcd(r,p). Since 
r < p this shows that p is divisible by the length of the smaller period. This 
implies that a; is a power of a smaller word, which contradicts the assumption. 
Consequently x cannot have two identical cyclic shifts. • 

We show a simple number-theoretic application of primitive words and 
cyclic shifts. In 1640 the great French number theorist Pierre de Fermat stated 
the following theorem. 

Theorem 1.1 [Fermat's Simple Theorem] If p is a prime number and n is 
any natural number then p divides np — n. 

Proof. Define the equivalence relation = on words by x = y if x is a cyclic 
shift of y. A word is said to be unary if it is in a form ap, for a letter a. Take 
the set S of all non-unary words of length p over the alphabet {1 ,2 , . . . , n}. 
All these words are primitive since their length is a prime number and they 
are non-unary. According to Lemma 1.4 each equivalence class has exactly p 
elements. The cardinality of S is np — n and S can be partitioned into disjoint 
subsets of the same cardinality p. Hence the cardinality of S is divisible by p, 
consequently nP — n also is. This completes the proof. • 
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Chapter 2 

Basic string searching 
algorithms 

The string-matching problem is the most studied problem in algorithmics on 
words, and there are many algorithms for solving this problem efficiently. We 
assume that the pattern pat is of length m, and that the text text has length 
n, both are given as read-only arrays. Two basic string-matching algorithms 
are Knuth-Morris-Pratt (KMP) algorithm and Boyer-Moore (BM) algorithm. 
Each of them consists of two phases: 

pattern-preprocessing phase: computing certain tables related to the pattern: 
Bord, Strong.Bord, BM Shift, 

searching phase: finding the first one or all occurrences of pat in text. 

In this chapter we present the searching phases of both algorithms together 
with searching phases of their variations. The preprocessing phases are more 
technical; they are included in the next chapter. We begin with a scheme of a 
brute-force algorithm that uses quadratic time. Such a naive algorithm is, in 
fact, an origin of KMP and BM algorithms. The informal scheme of such a 
naive algorithm is: 

(*) for i := 0 to n — m do 
check if pat — text[i + 1. A + m]. 

19 
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2.1 Knuth-Morris-Pratt algorithm 

The actual implementation of (*) differs with respect to how we implement the 
checking operation: scanning the pattern from the left or scanning the pattern 
from the right (or otherwise). We then get two brute-force algorithms. Both 
algorithms have quadratic worst-case complexity. In this section we discuss 
the first of them (left-to-right scanning of the pattern). 

To shorten the presentation of some algorithms we assume that the state
ment return(:r) outputs the value of x and stops the whole algorithm. 

If pat = an/2b and text = an~lb then in the algorithm brute-forcel a 
quadratic number of symbol comparisons takes place. However, the average 
complexity is not so high. 

Algorithm brute-forcel; 
i :=0 ; 

while i < n — m do begin 
j := 0; { left-to-right scan of pat } 
while j < m and pat[j + 1] = text[i + j + 1] do 

i •= j +1; 
if j = m then return(true); 
{ invl(i, j) } i :— i+1; { length of shift = 1 } 

end; 
return(false) { there was no return earlier } 

Our first linear-time algorithm is a natural, improved version of the naive 
algorithm brute-forcel. We present a constructive proof of the following. 

Theorem 2.1 The string-matching problem can be solved in 0(\text\ + \pat\) 
time using 0(\pat\) space. The constants involved in "O" notation are inde
pendent of the size of the alphabet. 

Remark. We are disappointed with this theorem on one point. The size of 
additional memory is rather large though linear in the size of the pattern. We 
show later that a constant number of registers suffices to achieve linear-time 
complexity (again the size of the alphabet does not intervene). 

Let us look more closely at the algorithm brute-forcel and at its main 
invariant 

invl(i,j): pat[l. .j] = text[i + 1. A + j] and (j = m or 
pat[j + l] ^text[i+j + l}). 
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Figure 2.1: Shifting the pattern to the next safe position. 

In fact, we first use the slightly weaker invariant 

invl'(i,j): pat[l. .j] = text[i + 1. .i+j]. 

The invariant essentially says that the value of j gives us a lot of information 
about the last part of the text scanned up to this point. 

Morris-Pratt algorithm 

Using the invariant invl'(i, j), we are able to make longer shifts of the pattern. 
Present shifts in algorithm brute-forcel always have length 1, Let s denote (the 
length of) a safe shift, where "safe shift s" means that, based on the invariant, 
we know that there is no occurrence of the pattern at positions between i and 
i + s, but there may be one at position i + s. 

Assume j > 0, let k = j — s, and suppose an occurrence of the pattern 
starts at position i + s. Then, pat[1. .k] and pat[l. .j] are suffixes of the same 
text text[l. .i + j], see Figure 2.1. Hence, the following condition is implied by 
invl': 

cond(j, k): pat[l. .k] is a proper suffix of pat[l. .j]. 

Therefore the shift is safe if k is the largest position satisfying cond(j,k). 
Denote this position by Bord[j]. Hence the smallest positive safe shift is 

MP.Shift\j]=j-Bord[j]. 

The function (table) Bord is called a failure function because it helps us at the 
time of a failure (mismatch). It is the crucial function. It is stored in a table 
with the same name. We also call this table the table of borders. The failure 
function allows us to compute the length of the smallest safe shift, which is 
s = j — Bord[j]. 
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Figure 2.2: The history of algorithm MP on an example of text and pattern. 

Note that Bord[j] is precisely the length of the largest proper border of 
pat[l. .j], Border(pat[l. .j]), as defined in Chapter 1. The longest proper border 
of a word x is the longest (non trivial) overlap when we try to match x with 
itself. 

Example. For pat = abababababb we have: 

Bord = [0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0]. 

The same pattern is used in Figure 2.2. 

In the case j = 0, that is, when pat[\. .j] is the empty word, we have a 
special situation. Since, in this situation, the length of the shift must be 1, we 
then define Bord[0] = —1. An improved version of algorithm brute-forcel is 
the Morris-Pratt algorithm (MP) below. 

Lemma 2.1 The time complexity of the algorithm MP is linear in the length 
of the text. The maximal number of character comparisons executed is 2n — m. 

Proof. Let T(n) be the maximal number of symbol comparisons "pat[j + 
1] = text[i+j + l]V executed by the algorithm MP. There are at most n—m+1 
unsuccessful comparisons (at most one for any given i). Consider the sum 
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i + j . Its maximal value is n and minimal value is 0. Each time a successful 
comparison is made the value of i + j increases by one unit. This value, 
observed at the time of comparing symbols, never decreases. Hence, there are 
at most n successful comparisons. If the first comparison is successful then 
we have no unsuccessful comparison for position i = 0. We conclude that: 
T(n) < n + n — m = 2n — m. For pat = ab and text = aaaa... a we have 
T(n) = 2n-m D 

Algorithm MP; { algorithm of Morris and Pratt } 
i := 0; j := 0; 

while i < n — m do begin 
while j < m and pat[j + 1] = 

J '=J ' + 1; 
if j = m then return(true); 

= text[i + j + 1] do 

i := i + MP-Shift[j}; j := max(0, j - MP.Shift\j]); 
end; 
return(false) 

Knuth-Morris-Pratt algorithm 

We have not yet taken into account the full invariant invl of algorithm brute-
forcel, but only its weaker version invl'. We have left the mismatch property 
apart. We now develop a new version of algorithm MP that incorporates the 
mismatch propertyr 

pat[j + 1} ^ text[i+j + 1]. 

The resulting algorithm, called KMP, improves the number of comparisons 
performed on a given letter of the text. The clue for improvement is the 
following: assume that a mismatch in algorithm MP occurs on the letter pat[j+ 
1] of the pattern. The next comparison is between the same letter of the text 
and pat [k +1] if k = Bord [j]. But if pat [k + 1] = pat [j +1], the same mismatch 
appears. Therefore, we can avoid considering the border of pat[l. .j] of length 
k in this situation. 

For m > j > 0 consider a condition stronger than cond(j, k) by a one-
comparison information: 

strong-Cond(j, k): (pat[l. .k] is a proper suffix of pat[l. .j] and 
pat[k + l] y£pat[j + l}). 
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Figure 2.3: Functions Bord and Strong.Bord for pattern abaab. 

We then define Strong.Bord[j] as k, where k is the smallest integer satisfy
ing strong.cond(j, k), and as —1 otherwise. Moreover, we define Strong.Bord[m] 
as Bord[m\. We say that Strong.Bord[i] is the length of the longest strong bor
der of pat[l. .j}. Figure 2.3 illustrates the difference between functions Bord 
and Strong.Bord on pattern abaab. 

Algorithm KMP; { algorithm of Knuth, 
i := 0; j := 0; 

while i < n — m do begin 
while j <m and pat[j + 1] = text 

j = j + i; 
if j = m then return(true); 
i:=i + KMP.Shift[j\; 
j := max(0, j - KMP.Shift[j}); 

end; 
return(false) 

Morris and Pratt } 

[i+j + 1] do 

The algorithm KMP is the algorithm MP in which table 5ord is replaced 
by table Strong.Bord and MP.Shift is replaced by: 

KMP-Shift[j} Strong. Bord[j]. 

The history of the algorithm is shown in Figure 2.4. The table Strong.Bord is 
more effective in the on-line version of algorithm KMP below (on-line-KMP). 
Assume that the text ends with the special end-marker end-of-text. Each time 
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Figure 2.4: The history of algorithm KMP on example strings. 

we process the current input symbol, we then output 1 if the part of the text 
read so far ends with the pattern pat; otherwise we output 0. 

Denote by delay (m) the maximal time, measured as the number of state
ments 

j := Strong-Bord[j] 

elapsed between two consecutive reads, for patterns of length m. By delay'(m), 
we denote the time corresponding to the use of Bord instead of Strong^Bord. 

Algorithm on-line-KMP; 
{ on-line linear version of KMP search } 

iea,d(symbol); j := 0; 
while symbol ^ end-of-text do begin 

while j < m and pat[j + 1] = symbol do begin 
j := j + 1; if j = m then write(l) else write(O); 
rea.d(symbol); 

end; 
if Strong-Bord[j] = — 1 then begin 

write(O); rea,d(symbol); j := 0; 
end else 

j :— Strong-Bord[j]; 
end 

The large gap between delay (m) and delay'(m) can be seen on the following 
example: pat = aaaa... a and text — am~1b. In this case, delay (m) = 1 while 
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delay'(m) is the length of pat. The value of delay(m) is generally small. 

Using properties of text periodicities presented in the next chapter the 
following lemma can be deduced (see also [KMP 77]). 

Lemma 2.2 For KMP algorithm delay(m) = O(logm), and the bound is 
tight. 

Observe that for texts on binary alphabets delay(m) is constant. This 
means that in this case, the algorithm is real-time. However, if patterns are 
over the alphabet {a,b} and texts over {a,b,c}, then the delay can be loga
rithmic. 

It is an interesting exercise to program transformations that modify the al
gorithm on-line-KMP to achieve a real-time computation independently of the 
size of the alphabet. This means that the time between two consecutive reads 
must be bounded by a constant. The crucial observation is that if we execute 
uj := Strong _Bord[j]" then we know that for the next j — Strong _Bord[j] in
put symbols the output value will be 0 ("no match"). This allows for dispersal 
of output actions between input actions (reading symbol) in such a way that 
the time between consecutive writes-reads is bounded by a constant. To do 
so, we can maintain up to m last symbols of the text text in a table. We leave 
details to the reader. It is interesting to observe that the real-time condition 
can be achieved by using any of the tables Bord, Strong.Bord. In this way, we 
sketched the proof of the following result (which becomes much more difficult 
if the model of computation is a Turing Machine). 

Theo rem 2.2 There is a real-time algorithm for string matching on a Ran
dom Access Machine. 

2.2 Boyer-Moore algorithm and its variations 

In this section we describe yet another basic approach to string matching. We 
can get another naive string-matching algorithm, similar to brute-force 1, if the 
scan of the pattern is done from right to left. This algorithm has quadratic 
worst-case behavior, but (similarly to algorithm brute-force 1) its average-time 
complexity is linear. In this section we discuss a derivative of brute-forced: 
the Boyer-Moore algorithm. The main feature of this algorithm is that it is 
efficient in the sense of worst-case (for most variants) as well as average-case 
complexity. For most texts and patterns the algorithm scans only a small part 
of the text because it performs "jumps" on the text. The algorithm brute-force2 
wastes information related to the invariant: 
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Figure 2.5: The case s < j : s = BM.Shift\j). 

inv2 : pat[i + 1. .m] = text[i + J + 1.A + m) and pat[i] =£ text[i + j] 

Algorithm brute-force2; 
i : = 0 ; 

while i < n — m do begin 
j :— m; { right-to-left scan of pat } 
while j > 0 and pat\j] = text[i + j] do 

j" := j - 1; 
if j = 0 then return true; 
{ inv2(i,j) } i :—i + l; { length of shift = 1 } 

end; 
r e t u r n false; 

The information gathered by the algorithm is "stored" at the value of j . 
Suppose that we want to make better shifts using the invariant. A shift s is said 
to be safe if we are certain that between i and i+s there is no starting position 
of the pattern in the text. Suppose that the pattern appears at position i + s 
(see figure 2.5), where the case s < j is presented). Then, the following 
conditions hold: 

condl(j, s) : for each k such that j < k < m, s > k or pat[k — s] = pat[k], 
amd2(j, s): if s < j then pat\j — s] ^ pat[j) { mismatch property }. 

We define two kinds of shifts, each associated with a suffix of the pattern 
represented by a position j < m, and defined by its length: 

Weak„BM-Shift[j] = min{s > 0 : amdl(j,s) holds}, 
BM.Shift\j] = min{s > 0 : condl(j, s) and cond2(j, s) hold}. 

We also define 
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text 

Figure 2.6: The history of algorithm BM on example strings. 

Weak.BMShift[rn) = BM.Shift\m] =m— Bord[m] = period(pat). 

BM algorithm is a version of brute-forceS in which, in a mismatch situation, a 
shift of length BMShift[j] is executed instead of only a one-position shift (see 
Figure 2.6). 

Algorithm BM; 
{ improved version of hrute-force2 } 

i:=0; 
while i < n — m do begin 

j := m; 
while j > 0 and pat[j] = text[i+j] do 

if j = 0 then return true; 
{ inv2(i,j) }i:=i + BMShift[j}; 

end; 
return false; 

Compare a run of this algorithm with a run of the similar algorithm that 
uses Weak-BM Shift instead of BM Shift. Take as an example the strings 

pat = eababababa and text = aaaaaaaaaababababa. 

For strings of similar structure the algorithm BM makes 0(n) comparisons 
while its weaker version (when the table Weak.BM Shift is used instead of 
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BMShift), makes 0(n2) comparisons. This shows that, contrary to the be
havior of MP and KMP algorithms, the utilization of the mismatch property 
is here crucial to achieve linear-time complexity. In the next chapter we prove 
the following nontrivial fact. 

Theo rem 2.3 . Algorithm BM makes 0(n) comparisons to find the first oc
currence of a pattern in a text of length n. 

Boyer and Moore introduced also another "heuristic" useful in increasing 
lengths of shifts. Suppose that we have a situation, where symb = text[i+j] (for 
j > 0), and symb does not occur at all in the pattern. Then, in the mismatch 
situation, we can make a shift of length s = j . For example, if pat = a100 and 
t = (a"b)10, then we can always shift 100 positions, and eventually make only 
10 symbol comparisons. For the same input words, algorithm BM makes 901 
comparisons. 
If we take pat = bam~l and text = a 2 m _ 1 , the heuristic used alone (with
out using table BM.Shift) leads to a quadratic number of comparisons. Let 
LAST(symb) be the last position of an occurrence of symbol symb in pat. If 
there is no occurrence, LAST(symb) is set to zero. Then, we can define a 
new shift, replacing instruction "i := i + BMShift[j]" of BM algorithm by 
"i := i + max{BM-Shift\j\,j - LAST(text[i + j]))." 

The shift of length j — LAST(text[i + j]) is called an occurrence shift. 
In practice, it may improve the time of the search for some inputs, though 
theoretically it is not entirely analyzed. If the alphabet is binary, and more 
generally for small alphabets, the occurrence heuristic has little effect. 

BM algorithm is a simple as well as a very efficient algorithm. Its beauty 
relies upon its simplicity, and this is somehow partially lost when we optimize 
this algorithm. On the other hand the efficiency can be improved. We describe 
two algorithms in which inspection of the pattern starts from the right end of 
the pattern (the main feature of BM). 

If we wish to find all occurrences of pat in text with algorithm BM (trivially 
modified to report all occurrences), then the complexity can become quadratic. 
The simplest example is given by a text and a pattern over a one-letter alpha
bet. Observe a characteristic feature of this example: high periodicity of the 
pattern. Let p be the period of the pattern. If we discover an occurrence of 
pat at some position in text, then the next shift must naturally be equal to p. 
Afterward, we have only to check the last p symbols of pat. If they match with 
the text, then we can report a complete match without inspecting all other 
m — p symbols of pat. This simple idea is embodied in the algorithm below. 
The variable named memory "remembers" the number of symbols that we do 
not have to inspect (memory = 0 or memory = m — p). In fact, it remembers 
the prefix of the pattern that matches the text at the current position. This 
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technique is called prefix memorization. The correctness of the following algo
rithm is straightforward. The period of pat can be precomputed once for all 
searches for pat. 

Algorithm BMG; 
{ BM algorithm with prefix memorization } 

p = period(pat) = BM.Shift[0} } 
i := 0; memory := 0; 
while i < n — m do begin 

j :=m 
while j > memory and pat[j] = text[i + j] do 

3 : = j - 1 ; 
if j = memory then begin 

write(i); memory :=m—p; 
end else memory := 0; 
{ inv2(i,j) } i:=i + BMShift[j}; 

end; 

Theorem 2.4 Algorithm BMG makes 0(n) comparisons. 

Proof. We shall prove in Chapter 3 (by a complicated argument) that the 
number of comparisons to find the first occurrence is 0(n' + m), where n' is 
the position of the first occurrence. This implies that the complexity to find all 
occurrences is 0(n + r.m), where r is the number of occurrences of pat in text. 
This is because between any two consecutive occurrences of pat in text, BMG 
does not make more comparisons than the original BM algorithm. Hence, if 
p > 2m/2, since r < n/p, n + r.m is 0(n). We have yet to consider the case 
p < m/2. In this case, we can group occurrences of the pattern into chains of 
positions distant only by p (for two consecutive positions in a group). 
Within each such chain every text symbol is inspected at most only once. The 
gaps between chains are larger than m/2, and, inside each such gap, BMG 
does not work slower than BM algorithm. An argument similar to that used 
in the case of large periods can now be applied. • 

BM algorithm is particularly fast for alphabets that are large relatively 
to the length of the pattern, because shifts are likely to be long. For small 
alphabets, the average number of symbol comparisons is linear. We design 
next an algorithm making Ofo1-2^) comparisons on the average. Hence, if 771 
is of the same order as n, the algorithm makes only O(logn) comparisons. It 
is essentially based on the same strategy as BM algorithm, and can be treated 
as another variation of it. 
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For simplicity, we assume that the alphabet has only two elements, and that 
each symbol of the text is chosen independently with the same probability. Let 
r = 2 [log m] . 

Theorem 2.5 The algorithm fast-on-average runs in 0(n log m/m) expected 
time and (simultaneously) in 0(n) worst-case time if the pattern is prepro-
cessed. The preprocessing of the pattern takes 0{m) time. 

Proof. A preprocessing phase is needed to efficiently check if text[i — r. A] is 
a factor of pat in 0{r) time. Any of the data structures developed in Chapters 
4, 5 and 6 (a suffix tree or a DAWG) can be used. Assume that text is a random 
string. There are 2 r + 1 > m2 possible segments of text, and less than m factors 
of pat of length r. Hence, the probability that the suffix of length r of text is a 
factor of pat is not greater than 1/m. The expected time spent in each of the 
subintervals [1. .m], [m - r. .2.m - r — 1], . . . is 0{m.l/m + r) = 0(r) (these 
are consecutive subintervals of size m that have overlap of size r). There are 
0(n/m) such intervals. Thus, the total expected time of the algorithm is of 
order (r + l ) n / m = n(logm + l ) /m. • 

Algorithm fast-on-average; 
i := m; 

while i < n do begin 
if text[i — r. A] is a factor of pat then 

compute all occurrences of pat which starting 
positions are in [i — m. A — r] applying KMP algorithm 

else { pattern does not start in [i — m. A — r] } 
i := i + m — r; 

end 

Bibliographic notes 

MP algorithm is from Morris and Pratt [MP 70]. The fundamental algorithm 
considered in this chapter (KMP algorithm) has been designed by Knuth, 
Morris, and Pratt [KMP 77]. Our exposition is slightly different than in this 
paper. A criterion that says whether an on-line algorithm can be transformed 
into a real-time algorithm has been shown by Galil in [Ga 81]. The principle 
applies to MP and KMP algorithms. 

Algorithm BM is originally from Boyer and Moore [BM 77]. The variant 
BMG is from Galil [Ga 79]. Another interesting variation of Boyer-Moore al
gorithm is the algorithm Turbo-BM, see [C-R 92]. The additional memory is 
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only increased by two integer variables storing the last shift and the size of the 
last matched part. The algorithm makes at most 2n letter comparisons. Apos-
tolico and Giancarlo [AG 86] designed a variant using an additional memory 
of size proportional to the pattern length and that makes no more than 2n/3 
symbol comparisons (see [CL 97]). 



Chapter 3 

Preprocessing for basic 
searchings 

In this chapter we discuss the preprocessing phases for the algorithms Knuth-
Morris-Pratt, Boyer-Moore and their variations. Some combinatorics of words 
is needed for the analysis of Boyer-Moore algorithm. This analysis is rather 
sophisticated and can be omitted in the first reading. 

3.1 Preprocessing patterns for MP and KMP 
algorithms 

The preprocessing for the algorithms MP and KMP consists in the compu
tation of the tables of borders and strong borders. We start with the com
putation of the table Bord, and our aim is to derive a linear-time algorithm. 
We present in this subsection two solutions. The first approach is to use algo
rithm MP to compute Bord. This, at first instance, can appear contradictory 
because Bord is needed inside the algorithm. However, we compute Bord in 
parts. 

Whenever a value Bord[j] is needed in the computation of Bord[i] for i > 
j then Bord[j] is already computed. Suppose that text = pat (or indeed 
text = pat[2. .m]. We apply algorithm MP starting with i = 1 (for i = 0 
nothing interesting happens) and continue with i = 2 , 3 , . . . ,m — 1. Then 
Bord[r] = j > 0 whenever i + j = r is a successful comparison for the first 
time. If Bord[r] > 0 then such a comparison will take place. Assume that 
initially Bord[i] = - 1 for all j > 0. Our interest here is only a side effect of the 

33 
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algorithm MP (computation of the border table). The complexity of algorithm 
compute-Borders 1 is linear. The argument is the same as for algorithm MP. 

procedure compute-Bordersl; 
{ a version of algorithm MP with text = 

i := 1; j := 0; 
while i < m + 1 do begin 

while i + j < m and pat[j + 1] = 

J ' :=J' + 1; 

= pat } 

= pat[i + j + 1] do begin 

if Bord[i + j] = —1 then Bord[i + j] := j ; 
end; 
i := i + j — Bord[j}; j := max(0, Bord[j}); 

end 

Next, we present the most classical linear-time algorithm computing table 
Bord. 

procedure compute-Borders2; 
{ computes the failure table Bord for pat, 

Bord[0] := - 1 ; t := - 1 ; 
for j := 1 to m do begin 

while t > 0 and pat[t + 
t:=t + l; Bord[j] := t; 

end 

I ] ^ M J ] 

second 

do t := 

version } 

= Bord[t]; 

The history of the algorithm is illustrated on an example string in Fig
ure 3.1. 

Lemma 3.1 The maximum number of character comparisons executed by al
gorithm compute-B'orders2 is 2.m — 3. 

Proof. The complexity can be analyzed using a so-called "store principle." 
Interpret t as the number of items in a store. Note that when t < 0, no 
comparison is done, and t becomes null. Therefore, we can consider that the 
store is initially empty. For each j running from 2 to m, we add at most one 
item (at statement t := t + 1). However, whenever we execute the statement 
ut := Bord[t]," the value of t strictly decreases, which can be interpreted as 
deleting a nonzero number of items from the store. The total number of items 
inserted does not exceed m — 2. Hence, the total number of executions of 
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Bord[ll]=6 

a b a a b a [ b ] — - m a t c h 

a b a a b a b a a b a | ~ a j ^ 
, , , , mismatch 

a b a a b a b a a b a 
a b a a b a b a a b a a b a b a a b a b a 

Bordf201 =11 

Figure 3.1: Computation of Bord[20] = Bord[Bord[19]] + l = 7 using procedure 
computeJborders2. The iteration for j — 20 starts with t = Bord[l9] = 11. 

statement "t := 5oni[t]" for unsuccessful comparisons "pat[t 4- 1] ^= pat[j]" 
does not exceed m — 2. For each j running from 2 to m, there is at most one 
successful comparison. The total number of successful comparisons then does 
not exceed m — 1. Hence, the total number of comparisons does not exceed 
2 . m - 3 . D 

The computation of strong borders of prefixes of the pattern pat relies 
on the following observation. Let t = Bord[j]. Then, Strong-Bord[j] — t if 
pat[t + 1] ^ pat[j + 1]. Otherwise, the value of Strong-Bord[j] is the same 
as the value of Strong-Bord[t] because pat[t + 1] = pat[j + 1]. Note that the 
strong border of pat itself is its border, as if pat were followed by a marker. 

procedure compute-strong-borders; 
{ computes table Strong -Bord for pattern pat } 

Strong-Bord[0] := —1; t := —1; 
for j := 1 to m do begin { t equals Bord[j -

while t > 0 and pat[t + 1] ^ pat[j] do t: 
t:=t + l; 

-1]} 
= 5tron5_Bord[t]; 

if j = m or pat[t + 1] =£ pat[j + 1] then Strong-Bord[j] := t 
else 5iron5_5ord[j] := Strong-Bord[t}; 

end 

Example. Consider the pattern abam 2. Strong borders computed by the 
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PREF[s] 

table PREF already computed for this part 

PREFQ] 
newly computed 

Figure 3.2: The typical situation when executing the procedure 
Compute-Prefixes. 

procedure compute-strong-borders are given by the following table Strong .Bord: 

Strong.Bord[0] = —1, Strong.Bord[l] = 0, Strong.Bord[2] = —1, and 
Strong.Bord[j] = 1, for 3 < j < m. 

This is a worst case for which exactly 3m—5 symbol comparisons are performed 
by the algorithm. 

3.2 Table of prefixes 

We introduce another useful table, denoted by PREF, related to the border 
table and BM.Shift table. It is defined by 

PREF[i] = max{j : pat[i. .i + j - 1] is a prefix of pat }. 

In the first algorithm we compute PREF scanning the pattern left-to-right. 
Assume we scan the j - t h (j > 1) position and the following invariant is pre
served (see Figure 3.2): 

the values of PREF[t] for t < j are already computed, and 
s < j is a position such that s + PREF[s] - 1 is maximum. 

We add a special end-marker at position m+1 on pat to simplify the description 
of the algorithm. We use an auxiliary function Naive-Scan{p, q), such that 

Naive-Scanip, q) = max{fc > 1 such that pat\p. .p + k — 1] = pat[q, .q + k — 1]}. 

If there is no such k > 0 then Naive-Scan(p, q) = 0. Obviously the time 
complexity of Naive-Scan(p, q), measured as number of comparisons, is at most 
k + 1, where k is the value returned by the function. 
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Figure 3.3: The behavior of the procedure Compute-Prefixes on an example 
string. 

function Naive-Scan(p, q) 
result := 0; 

while (p < n) and (q < n) do begin 
if (t\p\ ^ t[q\) then break; 
p:=p+l; q:=q+l; 

end; 
r e t u r n result; 

result := result + 1; 

Figure 3.3 illustrates the behavior of algorithm Compute-Prefixes. We have 
PREF[U] = 11, and s = 14, for the positions 15, 16, 17, . . . , 25; for each such 
position j the corresponding PREF[j] value is copied from the initial segment 
of the PREF table as PREF[j - 1 4 + 1]. 
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For example PREF[17] = PREF[17 - 1 4 + 1 ] = PREF[4] = 3. This 
means that we do not need any new comparison for some values which are just 
duplicated. 

procedure Compute-
PREF[1] := 0; s 

Prefixes; 

= i; 
for j :— 2 to m do begin 

k:=j-s + l 
if r < j then 

PREF[j] 

r := s + PREF[s] -
begin 
:= Naive-Scan(j, 1); 

- i ; 

if PREF[j] > 0 then s :=j; 
end else if PREF[k] + k< PREF[s] 

PREF[J\ • 
else begin 

x := Naivi 
PREF[j] : 

end 
end; 

PREF[1] := n; 

= PREF[k] 

i-Scan(r + 1, r — j + 
= r — j + 1 + x; s :-

2); 
= 3\ 

then 

Relation between tables of prefixes and of borders 

Using the precomputed table PREF we can easily construct the tables of bor
ders and strong borders in the procedure compute-Borders3. 

procedure compute-Borders3; 
for k := 0 to m do Strong-.Bord[k\ := —1; 

for j := m down to 1 do begin 
i:=j + PREF[j] - 1; Strong.Bord[i) := PREF[j}; 

end; 
Bord[l] := 0; Bord[m] := Strong-Bord[m}; 
for j := m— 1 down to 2 do 

Bord[i] := mm{Bord[i + 1] — 1, Strong.Bord[i}}; 

A reverse computation is also possible: compute PREF knowing the table 
Bord. It is based on the following observation: 

if Bord[i] = j then pat[i — j + 1. A] is a prefix of pat. 
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This leads to the following (almost correct) algorithm. Though useful, this 
algorithm is not entirely correct. In the case of one-letter alphabets only one 
entry of table PREF will be accurately computed. But its incorrectness is 
quite "weak." If PREF[k] > 0 after the execution of the algorithm then it 
is accurately computed. Moreover, PREF is computed for "essential" entries. 
The entry i is essential iff PREF[i\ > 0 after applying this algorithm. These 
entries partition interval [1. .m] into subintervals for which further computation 
is relatively simple. 

The computation of the table for nonessential entries is executed as follows: 
traverse the interval left-to-right and update PREF[i] for each entry i. Take 
the first (to the left of i, including i) essential entry k with PREF[k] > i — k+1, 
then set 

PREF\i] = min{PREF[i -k + 1], PREF[k] - (t - jfe)}. 

If there is no such essential entry, then PREF[i] = 0. 

procedure Alternative-Compute-PREF; 
{ correct for essential entries } 

for i := 1 to n do PREF[i] := 0; 
for i := 1 to n do begin 

j := Bord[i}; PREF[i -j + 1] := max(PREF[i -
end 

-j + l],j)\ 

Remark. Apply this for an example pattern over a one-letter alphabet to see 
how it works. 

3.3 Preprocessing for Boyer-Moore algorithm 

We show that the time complexity of computing the table BMShift is lin-
ear.First, using the table PREF, it is very easy to construct a linear-time 
algorithm for the computation of the table S of suffixes: S[j] is the length of 
the largest suffix of the whole pattern ending at j . This table is used in the 
Apostolico-Giancarlo algorithm, and will be used in the precomputation of the 
table BMShift. It is easy to see that the computation of S is reducible to the 
computation of the table PREF for the reverse of the pattern. 
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Figure 3.4: The case when BMJ3hift\j] < j . For j = 22, and an example string 
of size m = 25, we have BMShift[22] = min{m -k : j = m- S[k] = 22}. 
We have here m - S[k] = 22, so S[k] = 3. For k = 9, 14, 22, we have 
S[9] = 5[14] = 5[22] = 3, hence BMShift[22] = m - 22 = 25 - 22 = 3. 

p rocedure compute-table-of-suffixes(P); 
PR := reverse(P); 

compute table of prefixes PREFR for the word PR; 
for each i do S[i] := PREFR[m - » + 1 ] ; 

Observe that if BMShift[j] = m-~k<j, then S[k] =m-j. For example, 
for j = 22 and example pattern in Figure 3.4, BM.Shift\j] = 3, and 5[25-3] = 
TO- j = 3. Using this observation and the table S, the shifts for BM algorithm 
are computed now as follows. 

p rocedure compute-BMShifts; 
for k := 1 t o n - 1 do begin 

j :=m — S[k}; BM-Shift[j] :=m-k; 
end 

The correct values of BMJ5hift\j] are not computed here for the case when 
BMJShift[j] > j . In this case the mismatch property is ignored and the com
putation is reducible to computing borders of the whole pattern. We leave the 
consideration of this special (easy) case and the completion of the procedure 
compute-BMShifts to the reader. 
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current match of the pattern 

Figure 3.5: The part text[i + J — 1.A + m] of the text is the current match; v 
denotes the shortest full period of the suffix of the pattern, v is a period of the 
current match. Shaded area is the "forbidden" part of the text. 

3.4 * Analysis of Boyer-Moore algorithm 

Now we analyze the Boyer-Moore algorithm. The tight upper bound for 
the number of comparisons done by BM algorithm is approximately 3.n. The 
proof of this is rather difficult but it yields a fairly simple proof of a 4.n bound. 
The fact that the bound is linear is completely non trivial, and surprising in 
view of the quadratic behavior of BM algorithm when modified to search for 
all occurrences of the pattern. The algorithm uses variable j to enlarge shifts, 
but afterwards "forgets" about the checked portion of the text. In fact, the 
same symbol in text can be checked a logarithmic number of times. 

If we replace BM-Shift by Weak.BM.Shift then the time complexity be
comes quadratic (a counterexample is given by text and patterns with the 
structure 

pat = ca(ba)k and text = a2k+2(ba)k. 

Hence, one small piece of information (the "one bit" difference between in
variants inv2, inv2') considerably reduces the time complexity in the worst 
case. This contrasts with improved versions of algorithm brute-forcel, where 
invl and invl' present similar complexities (see Chapter 2). The difference 
between the usefulness of information with one mismatched symbol gives evi
dence of the great importance of a (seemingly) technical difference in scanning 
the pattern left-to-right versus right-to-left. 

Assume that, in a given non-terminating iteration, BM algorithm scans 
the part text[i + j — 1. A + m] of the text and then makes the shift of length 
s = BM.Shift[j], where j > 0 and s > (mj)/3. By current match, we mean 
the scanned part of text without the mismatched letter (see Figure 3.5). 
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Lemma 3.2 Let s be the value of the shift made in a given non-terminating 
iteration of BM algorithm. Then, at most 3.s positions of the text scanned at 
this iteration have been scanned in previous iterations. 

Proof. It is easier to prove a stronger claim: 

(*): positions in the segment [i + j + k. A + m — 2.k] on text are 
scanned for the first time during this iteration, where k is the size 
of the shortest full period v of pat[m — s + 1. .m]. 

In other words: only the first k and the last 2.k positions of the current match 
could have been scanned previously. Denote by v the shortest full period v of 
pat[m — s + 1. .m]. The following property of the current match result from 
the definition of the shift: 

(Basic property) v is a period of the current match, and v is a suffix of 
the pattern. 

We introduce the notion of critical position in the current match. This is 
an internal position in this match in which the distance from the end of the 
match is a nonzero multiple of fc, (see Figure 3.5). We say that a previous 
match ends at a position q in the text, if, in some previous iteration, the end 
of the pattern was positioned at q. 

Claim 1. No previous match ends at a critical position of the current match. 
Proof, (of the claim) The position i + m is the end position of the current 

match. It is easy to see that if a critical point of the current match is the end 
of the match in a previous iteration i, then, in the iteration immediate after i, 
the end of the pattern is at position i + m + shift. Hence, the current match 
under consideration would not exist—a contradiction. This ends the proof of 
the claim. • 

Claim 2. The length of the overlap of the current match and the previous 
match is smaller than k. 

Proof, (of the claim) Recall that by a match we mean a scanned part of the 
text without the mismatch position. The period v is a suffix of the pattern. We 
already know, from Claim 1, that the end of the previous match cannot end at 
a critical position. Hence, if the overlap is at least k long, then v occurs inside 
the current match with the end position not placed at a critical position. The 
primitive word v then properly overlaps itself in a text in which the periodicity 
is v. But, this is impossible for primitive words (due to periodicity lemma). 
This proves the claim. • 
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Claim 3. Assume that a previous match ends at position q inside a forbidden 
area, and is completely contained in the current match. Then, there is no 
critical point (in the current match) to the right of q. 

Proof, (of the claim) Suppose there is a critical position r to the right 
of q. It is then easy to see that r — q is a good candidate for the shift in 
the BM algorithm. The algorithm takes the smallest such candidate as an 
actual shift. If the shift is smaller than r — q, we have a new position q\ < r. 
Then, we will have a sequence of previous matches with end positions ql, q2, 
q3, . . . . This sequence terminates in r, otherwise we would have an infinite 
increasing sequence of natural numbers smaller than r, which is impossible. 
This contradicts Claim 1, since we have a previous match ending at a critical 
position in the current match. This completes the proof of the claim. • 

Proof of lemma. Now we are ready to show that (*) holds. The proof is by 
contradiction. Assume that in some earlier iteration we scan the "forbidden" 
part of the text (shaded in Figure 3.5). Let q be the end position of the match 
in this iteration. Then q is not a critical position, and this match is contained 
completely in the current match (its overlap with the current match is shorter 
than k and q lies too far from the beginning of the current match). By the same 
argument, the rightmost critical position in the current match is to the right 
of q. Hence, we have found a previous match that is completely contained in 
the current match and in which the end position lies to the left of some critical 
position. This is impossible, however, due to Claim 3. This completes the 
proof of the lemma. • 

Theorem 3.1 The Boyer-Moore algorithm makes at most An symbol com
parisons to find the first occurrence of the pattern (or to report no matches). 
The linear-time complexity of the algorithm does not depend on the size of the 
alphabet. 

Proof. The cost of each non-terminating iteration can be split into two 
parts: 

1. the cost of scanning some positions of the text for the first time, 

2. three times the length of the shift. 

The total cost of all non-terminating iterations can be estimated by separately 
totaling all costs of type (1), this gives at most n, and all costs of type (2), 
which gives at most 3.(n — m). The cost of a terminating iteration is at most 
m. Hence, the total cost of all iterations is upper bounded by: 

n + 3(n — m) +m < 4.n, 
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which completes the proof. • 

Bibliographic notes 

The analysis of KMP algorithms is from Knuth, Morris, and Pratt [KMP 77]. 
The analysis of BM algorithm is from Cole [Co 91 ] [Co 77]. 



Chapter 4 

On-line construction of 
suffix trees 

We present here the first basic data structure representing the set J-{text) of all 
factors (subwords) of a given word. Their importance derives from a multitude 
of applications. For simplicity we assume throughout this chapter that the 
alphabet A is of constant size (otherwise, the complexity of algorithms should 
be multiplied by log \A\). Since J7(text) is a set, the most typical problem 
related to such data structures is the Membership Problem: 

test if a; £ T(text). 

The data structure D representing the set J-(text) is said to be good if: 

(1) D has linear size, 

(2) D can be constructed in linear time, 

(3) D enables to test the membership problem in 0(|a;|) time after prepro
cessing text. 

4.1 Tries and their compact versions 

Our approach to represent the set of factors of a text is graph theoretical. Let 
G be an acyclic rooted directed graph in which the edges are labeled with 
symbols or with words: label(e) denotes the label of edge e. The label of a 
path IT (denoted by label(-K)) is the composition of labels of its consecutive 
edges. The edge-labeled graph G represents the set: 
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Labels(G) = {label(-7r) : 7r is a directed path in G starting at the root }. 

We also say that G represents the set of factors of text if Labels(G) = J7(text). 

The first naive approach to represent T(text) is to consider graphs that 
are trees in which edges are labeled by single symbols. These trees are called 
subword tries. Figure 4.1 shows the trie associated with the 6-th Fibonacci 
word Fibe = abaababa. In these trees, the links from a node to its children 
are labeled by letters. In the tree associated with text, a path down the tree 
spells a factor of text. All paths from the root to leafs spell suffixes of text. 
And all suffixes of text are labels of paths from the root. In general, these 
paths do not necessarily end in a leaf. The nodes correspond to subwords of 
the given text, each node can be identified with the word "spelled" by the path 
from the root to this node. In tries and suffix trees we distinguish nodes which 
correspond to suffixes of the given text, we call them essential nodes. Essential 
nodes are shaded in black in Figure 4.1. 

Observation. The tries are not "good" representations of !F(text), because 
they can be too large. If text = anbnanbnd, then Trie(text) has a quadratic 
number of nodes. We define a chain in a trie as a longest path consisting 
of non-essential nodes with outdegree one, except possibly the extremities of 
the chain. Two subtrees of a trie are isomorphic iff they have the same sets of 
paths leading from their roots to their essential nodes. We consider two kinds of 
succinct representations of the set J-(text). They both result from compacting 
the tree Trie(text). Two types of compaction can be applied, separately or 
simultaneously: 

compacting chains, which produces the suffix tree of the text, 

merging isomorphic subtrees (e.g., all leaves are to be identified), which 
leads to the directed acyclic word graph (DAWG) of the text, discussed in 
Chapter 6. 

The suffix tree ST(text) is the compacted version of Trie(text) when using 
the first method of compaction, see Figure 4.1 and Figure 4.2. Each chain ir 
(path consisting of nodes of out-degree one) is compacted into a single edge 
e with label(e) = [i,j], where text[i. .j] = label(n) (observe that a compact 
representation of labels is also used). Note a certain nondeterminism here, 
because there can be several possibilities of choosing i and j representing the 
same factor text[i. .j] of text. Any such choice is acceptable. In this context 
we identify the label [i,j] with the word text[i. .j}. The tree ST (text) is called 
the suffix tree of the word text. 

For a node v of ST(text), let val(v) be label(n), where TT is the path from 
the root to v. Whenever it is unambiguous we identify nodes with their values, 
and paths with their labels. Note that the suffix tree obtained by compacting 
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Figure 4.1: The tree Trie(text) and its compacted version, the suffix tree 
ST(text), for the 6-th Fibonacci word: abaababa. The essential nodes are 
black. The numbers at these nodes indicate starting positions of the suffixes 
corresponding to the paths leading to these nodes. It is possible that the suffix 
tree contains some internal nodes with only one son since essential nodes are 
not deleted when compacting the trie. 
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Figure 4.2: The suffix tree for the word of Figure 4.1 with end-marker: 
ST{abaababa4f)- There are no internal nodes of out-degree one. 

root 

path n 

path 7t 

suffix link suf 

Figure 4.3: A suffix link suf points to the node representing the factor with 
the first letter removed, if such node exists. 
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chains has the following property: the labels of edges starting at a given node 
are words having different first letters. Therefore, the branching operation 
performed to visit the tree is reduced to comparisons on the first letters of 
the labels of outgoing edges. If we assume that no suffix of text is a proper 
prefix of another suffix (this is satisfied with a right end-marker), the leaves 
of Trie(text) are in one-to-one correspondence with the non-empty suffixes of 
text. The following fact about suffix trees is trivial, though a crucial one. 

Lemma 4.1 The size of the suffix tree ST(text) is linear (0(\text\)). 

The crucial concept in efficient construction of tries and suffix trees is the table 
of suffix links: if x is the string corresponding to the node u then suf[u] is a 
node which represents the string x with the first letter cut off, see Figure 4.3. 
If there is no such node then suf[u] = nil. By convention, we define suf[root] — 
root. 

4.2 Prelude to Ukkonen algorithm 

We denote the prefix of length i of the text by p%. We add a constraint on 
the suffix trie construction: not only do we want to build Trie(p), but we also 
want to build on-line intermediate trees (see Figure 4.5) 

Trie{pl), Trie(p2),..., Trieip71'1). 

However, we do not keep all these intermediate suffix tries in memory, because 
overall it would take a quadratic time. Rather, we transform the current tree, 
and its successive values are exactly Trie(p1), Trie(p2),..., Trie(pn). Doing so 
we also require that the construction takes linear time (on fixed alphabets). 

Let us examine closely how the sequence of uncompacted trees is con
structed in Figure 4.5. The nodes corresponding to suffixes of the current 
text pz are shaded. Let Vk be the suffix of length k of the current prefix p% 

of the text. Identify Vk with its corresponding node in the tree. The nodes 
Vk are the essential nodes. In fact, additions to the tree (to make it grow 
up) are "essentially" created at such essential nodes. Consider the sequence 
Vi, Uj - i , . . . , vo of suffixes of p1 in decreasing order of their length. Compare 
such sequences in trees for the prefixes of the word abaabb, see Figure 4.5. 

The basic property of the sequence of trees TWe(pl) is related to the way 
they grow. It is easily described with the sequence of essential nodes. Let 
ai = text[i] and let Vj be the first node in the sequence Ui_i, Vi-2, • • • ,vo of 
essential nodes, such that child(vj,ai) exists. Then, the tree Trie(pl) result 
from Trie{pl~l) by adding a new outgoing edge labeled ai, to each of the 
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existing suffix links 

Before 

new suffix links created 

new nodes 

Figure 4.4: One iteration in the construction of Trie(text). Thick edges are 
created at this step as well as new links for the corresponding new sons. 
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nodes i>i_i, Uj_2, • • • , vj-i simultaneously creating a new son (see Figure 4.4). 
If there is no such node Vj, then a new outgoing edge labeled â  is added to 
each of the nodes t>i_i, Vj-2) • • •, VQ. 

The sequence of essential nodes can be generated by iteratively taking suffix 
links from its first element, the leaf for which the value is the prefix read so 
far. The sequence of essential nodes is given by: 

(vi,Vi-i,...,v0) = (vi,sw/[vi],su/2[-i;j],...,su/l[vi)]. 

Using this observation we obtain the algorithm on-line-trie. 

Theorem 4.1 The algorithm on-line-trie builds the tree Trie(p) of suffixes of 
text on-line in time proportional to the size of Trie(j>). 

Proof. The complexity results from the fact that the work performed in 
one iteration is proportional to the number of created edges. • 

Algorithm on-line-trie; 
create the two-node tree Trie(text 

for i := 
at := 
Vi-l 

k:= 

2 to n do begin 
= £ex£[z]; 
:= deepest leaf of Trie(pl~ 
min{fe : son(suf [vi-\],a 

create dj-sons for i>i_i, SU/[VJ_ 

and 
end 

new suffix links for them ( 

[1]) with suffix links; 

-1); 
i) ^ nil }; 
i], . . . , SM/fc-1[ui_i], 
see Figure 4.4); 

4.3 Ukkonen algorithm 

Ukkonen algorithm can be viewed as a "compacted version" of the algorithm 
on-line-trie. The basic point is that certain nodes of the trie do not exist 
explicitly in the suffix tree (after chain compaction). Indeed every node of 
the trie can be treated as an implicit node in the suffix tree. If this node 
corresponds to a node of the suffix tree then we say that such an implicit node 
is real. More formally: a pair (v,a) is an implicit node in T if v is a node of 
T and a is a (proper) prefix of the label of an edge from v to a son of it. The 
implicit node (v, a) is said to be a "real" node if a is the empty word. 

Observation. The sequence of suffix trees produced by Ukkonen algorithm 
will differ slightly from our definition. We keep in the tree only the deepest 
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internal essential node. Other essential nodes of out-degree one are not kept 
explicitly. However at the end of the algorithm we can add a special end-
marker and this automatically will create all internal essential nodes. There 
is another important implementation detail. If the node v is a leaf, then there 
is no need to extend the edge coming from its father by a single symbol. If 
the label of the edge is a pair of positions (l,r), then, after updating it, it 
should be (I, r + 1). We can omit such updates by setting r to * for all leaves. 
This *-symbol is automatically understood as the last scanned position i of 
the pattern. Doing so reduces the amount of work involved at each iteration 
of the algorithm. 

The i-th iteration executed in the previous algorithm can be adapted to 
work on a compact suffix tree ST{pl~l). Each node of Trie(pl~1) is treated as 
an implicit node. The new algorithm simulates the version on-line-trie. 

If Vi,Vi-i,... ,vo is the sequence of essential nodes, and if we know that 
Vi, i>i_i,.. . , Vk are leaves, then we can skip processing them because this is done 
automatically by the * trick. We thus start processing essential nodes from 
Vk-i- In the algorithm we call it v, the working node. This node is indicated 
in Figure 4.8. In other words the working node is the deepest internal essential 
node (corresponding to one suffix of the actual text). We do not maintain the 
set of essential nodes at lower levels. Another crucial concept is that of implicit 
suffix links, denoted by imsuf. If u is an implicit node then its suffix link can 
point to a non-real implicit node w, see Figure 4.6. 

The computation of such a link is done by following the suffix link of the 
real-node father of u, then following down by the path having the same label 
as from father(u) to u, see Figure 4.6. Creation of new edges is illustrated in 
Figure 4.9 and 4.10. 

Theo rem 4.2 Ukkonen algorithm builds the compressed tree ST{text) in an 
on-line manner. It works in linear time (on a fixed alphabet). 

Proof. The correctness follows from the correctness of the version working 
on an uncompacted tree. The new algorithm is just a simulation of it. To 
prove the 0(\text\) time bound, it is sufficient to prove that the total work 
is proportional to the size of ST {text), which is linear. The work is propor
tional to the work performed by processing all working paths (paths of implicit 
suffix links needed to go from one working node to the working node of the 
next iteration). The cost of processing one working path is proportional to 
the decrease of distance between the working node and its father, plus some 
additional additive constant, see Figure 4.7. This distance is defined in terms 
of number of symbols from the implicit node (v, a) to its real father. If the 
working node is real itself then this distance is zero. On the other hand, the 
length of a is increased by at most one per iteration. Hence, the total increase 
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of a is linear and, consequently, the total number of length reductions of a's 
is linear. • 

Algorithm Ukkonen; 
create the two-node tree Trie(text[l]) with suffix links; 

{ v is the working node } 
v := root; 
for i := 2 to m do begin 

a, := text[i\; 
if son(v, ai) ^ nil then v := son(v, aj) 
else begin 

k := min{fc : son(imsuf [v],a,i) •=£ nil }; 
create arsons for v, imsuf[v],..., imsuf ~1[v], 
and new imsuf links for new internal nodes; 
v := son(imsuf ~ (v),a,i); 
{ v is the deepest internal essential node of Trie(p1' 

end 
-1)} 

Remark. If we want, at the end of the execution, to have a leaf corresponding 
to each suffix, then one extra stage of Ukkonen algorithm to manage an end-
marker can do it, see Figure 4.10. 

Bibliographic notes 

The on-line algorithm that builds a compact suffix tree presented in the chap
ter has been discovered by Ukkonen [U 92]. The method is similar to the 
construction of suffix DAWG's presented in Section 6.2. 
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Figure 4.5: The history of the computation of the algorithm on-line-trie. The 
sequence of suffix tries Trie(p1), Trie(p2),..., Trie(p6) for the text p — abaabb. 
Essential nodes are shaded. Edges created at the current step are thick. At 
each step i of the algorithm on-line-trie we follow a path of suffix links from 
the deepest node to the first node having an Oj-son. 
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Figure 4.6: Computation of the implicit suffix link for an implicit node u, see 
also Figure 4.8. 

father(v) 

old suffix link I 

son-father link 

v w *- 9 
new suffix link new suffix link new suffix link 

Figure 4.7: The working path in Ukkonen algorithm. Its cost can be charged 
to the decrease of the distance (measured in symbols) between the working 
node and its explicit father (the quantity p — q), plus an additive constant. 
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working path of suffix links 5 new edges to be created 

Figure 4.8: The tree during one stage of Ukkonen algorithm, the working node 
is shaded. The path of implicit suffix links is indicated by arrows. When letter 
b is added to the text, five new edges labelled by b are to be created. 
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extending by the letter b ST(abaababaabaabaabab) 

0 

b 6 ° 
/ 

11 

a 12 

O. 

working node j , _ 

9 ° 
3 1 

new nodes 

new edges 

Figure 4.9: After extending the text by the letter b, several new edges, indicated 
by thick lines, are created. 

extending by the letter # 

I ST(abaababaabaabaabab#) 

Figure 4.10: After extending the previous text by the end-marker # several new 
nodes (thick circles) are added to the tree. In this tree, each suffix corresponds 
to exactly one leaf. 
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Chapter 5 

More on suffix trees 

We present a few out of multitude of applications of suffix trees. In this 
chapter we sketch yet another renown algorithm for the suffix tree construction: 
McCreight algorithm. Assume the alphabet is of a constant size. 

5.1 Several applications of suffix trees 

There is a data structure slightly different from the suffix tree, known as the 
position tree. It is the tree of position identifiers. The identifier of position i 
on the text is the shortest prefix of text[i. .n] that does not occur elsewhere in 
text. Identifiers are well-defined when the last letter of text is a marker. Once 
we have the suffix tree of text, computing its position tree is fairly obvious (see 
Figure 5.1). Moreover, this shows that the construction works in linear time. 

Theorem 5.1 The position tree can be computed in linear time. 

One of the main applications of suffix trees is evident in the situation in 
which the text text is like a dictionary. In this situation, the suffix tree or the 
position tree acts as an index on the text. The index contains virtually all the 
factors of the text. With the data structure, the problem of locating a word 
w in the dictionary can be solved efficiently. But we can also perform other 
operations rapidly, such as computing the number of occurrences of w in text. 

Theorem 5.2 The suffix tree of text can be preprocessed in linear time so that, 
for a given wordw, the following queries can be executed on-line in 0(\w\) time: 

• find the first occurrence of w in text; 
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• starting position of abbe 

Figure 5.1: The position tree of text = aabbabbc. 

• find the last occurrence of w in text; 

• compute the number of occurrences of w in text. 

We can list all occurrences of w in text in time 0{\w\ + k), where k is the 
number of occurrences. 

Proof. We can preprocess the tree, computing bottom-up, for each node, 
values first, last and number, corresponding respectively to the first position 
in the subtree, the last position in the subtree, and the number of positions 
in the subtree. Then, for a given word w, we can (top-down) retrieve this 
information in 0(|u>|) time (see Figure 5.2). This gives the answer to the first 
three queries of the statement. 

To list all occurrences, we first access the node corresponding to the word w 
in 0(|w|) time. Then, we traverse all leaves of the subtree to collect the list 
of positions of w in text. Let k be the number of leaves of the subtree. Since 
all internal nodes of the subtree have at least two sons, the total size of the 
subtree is less than 2.k, and the traversal takes 0(k) time. This completes the 
proof. • 

The longest common factor problem is a natural example of a problem easily 
solvable in linear time using suffix trees, and very difficult to solve without any 
essential use of "good" representation of the set of factors. In fact, it has long 
been believed that no linear-time solution to the problem is possible, even if 
the alphabet is fixed. 
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Bottom-up pre-computation 
of first, last, number 

Top-down retrieval 
path of w 

first(v) = first occurrence of w 
t(v) = last occurrence of w 

number(v) = number of occurrences of w 

subtree rooted at v 

Figure 5.2: We can preprocess the tree to compute (bottom-up), for each node, 
its corresponding values first, last, and number. Then, for a given word w, we 
can retrieve this information in 0(|w|) time. 

longest path extensible 
into* and y 

longest common 
factor of x and y 

special symbol 

Figure 5.3: Finding longest common factors with suffix tree. 
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T h e o r e m 5.3 The longest common factor of k words can be found in linear 
time in the size of the problem, i.e., the total length of words (k is a constant, 
alphabet is fixed). 

Proof. The proof for case k = 2 is illustrated by Figure 5.3. The general 
case, with k fixed, is solved similarly. We compute the suffix tree of the text 
consisting of the given words separated by distinct markers. Then, exploring 
the tree bot tom-up, we compute a vector informing for each node whether a 
leaf corresponding to a position inside the i-th subword is in the subtree of 
this node. The deepest node with positive information of this type for each i 
(1 < i < k) corresponds to a longest common factor. The total t ime is linear. 
This completes the proof. Q 

Suffix trees can be similarly applied to the problem of finding the longest 
repeated factor inside a given text. The solution is analogous to the solution of 
the longest common factor problem, considering tha t k = 1 and searching for a 
deepest internal node. Problems of this type (related to regularities in strings) 
is t reated in more details in Chapter 8, where we show an algorithm having 
the running t ime 0(n log n) . This latter algorithm is simpler and does not use 
suffix trees or equivalent da ta structures. It also covers the two-dimensional 
case, where our "good" representations (considered in the present chapter) are 
not well suited. 

Let LCPref(i,j) denote the length of the longest common prefix start ing 
at positions i and j in a given text of size n. In Chapter 14 on two-dimensional 
pa t t e rn matching we frequently use the following fact. 

T h e o r e m 5.4 It is possible to preprocess a given text in linear time so that 
each query LCPref(i,j) can be answered in constant time, for any positions 
i,j. A parallel preprocessing in O( logn) time with 0(nj log n) processors of 
an EREW PRAM is also possible (on a fixed alphabet). 

Let LCA(u, v) denote the lowest common ancestor of nodes u, v in a given 
tree T. The proof of Theorem 5.4 easily reduces to preprocessing the suffix 
tree tha t enables LCA queries in constant t ime. The value LCPref(i,j) can 
be computed as the size of the string corresponding to the node LCA(vi,Vj), 
where Vi,Vj are leaves of the suffix tree corresponding to suffixes start ing at 
positions i and j . In Chapter 7 we show (quite sofisticated) proof of the 
following thorem. 

T h e o r e m 5.5 It is possible to preprocess a given tree T in linear time in such 
a way that each query LCA{u, v) can be answered in constant time. A parallel 
preprocessing in 0 ( log n) time with 0(n/ log n) processors of an EREW PRAM 
is also possible (on a fixed alphabet). 
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root 

inserted suffix 

new edge labelled 
by an interval 

new leaf 

Figure 5.4: Insertion of a suffix into the tree. 

We present also how to use suffix trees on the next problem: compute the 
number of distinct factors of text (cardinality of the set F(text)). 

Lemma 5.1 We can compute the cardinality of the set !F(text) in linear time. 

Proof. The weight of an edge in the suffix tree T is defined as the length of 
its label. Then, the required number is the sum of weights of all labels in the 
suffix tree. D 

5.2 McCreight algorithm 

We present an optional construction of suffix trees. McCreight algorithm is an 
incremental algorithm. A tree is computed for a subset of consecutive suffixes 
consisting of all suffixes longer than some value. The next suffix is then inserted 
into the tree, and this continues until all (non-empty) suffixes are included in 
the tree. 

Consider the structure of the path corresponding to a new suffix p inserted 
into the tree T. Such a path is indicated by the thick line in Figure 5.4. Denote 
by insert(p, T) the tree obtained from T after insertion of the string p. The 
path corresponding to p in insert(p,T) ends in the most recently created leaf 
of the tree. Denote the father of this leaf by head. It may be that the node 
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head does not exist yet in the initial tree T (it is only an implicit node at the 
time of construction), and has to be created during the insert operation. 

Let (w, a) be an implicit node of the tree T (w is a node of T, a is a 
word). The operation break(w, a) on the tree T is defined only if there is an 
edge outgoing node w in which the label 6 has a as a prefix. Let (3 be such 
that 5 = a(3. The (side) effect of the operation break(w, a) is to break the 
corresponding edge; a new node is inserted at the breaking point, and the edge 
is split into two edges of respective labels a and f3. The value of break(w, a) 
is the node created at the breaking point. 

Let v be a node of the tree T, and let q be a subword of the input word text 
represented by a pair of integers l,r where q = text[l. .r]. The basic function 
used in the suffix tree construction is the function find. The value find(v,q) 
is the last implicit node along the path starting at v and labeled by q. If this 
implicit node is not real, it is (w, a) for some non-empty a, and the function 
find converts it into the "real" node break(w,a). 

Algorithm Scheme of McCreight algorithm; 
T := two-node tree with one edge labeled by pi = 

for i := 2 to n do begin 
{ insert next suffix pi = text[i. .n] } 
localize headi as head(pi,T), 

starting the search from suf [father(headl
and using fastfind whenever possible; 

T:= insert(pi,T); 
end 

= text; 

-l)] 

The important aspect of the algorithm is the use of two different imple
mentations of the function find. The first one, called fastfind, deals with the 
situation when we know in advance that the searching path labeled by q is 
fully contained in some existing path starting at v. This knowledge allows us 
to find the searched node much faster using the compressed edges of the tree 
as shortcuts. If we are at a given node u, and if the next letter of the path 
is a, then we look for the edge outgoing u for which the label starts with a. 
Only one such edge exists due to the definition of suffix trees. This edge leads 
to another node u'. We jump in our searching path at a distance equal to 
the length of the label of edge (u,u'). The second implementation of find is 
the function slowfind that follows its path letter by letter. The application of 
fastfind is a main feature of McCreight algorithm, and plays a central part in 
its performance (together with links). 

McCreight algorithm builds a sequence of compacted trees Tj in the order 
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fastfind(u, /3) 

slowfind(v, y) 

Figure 5.5: McCreight algorithm: the case where v = headi is a newly created 
node. 

i = 1,2,. . . , n. The tree T, contains the i-th longest suffixes of text. Note that 
Tn is the suffix tree T(text), but that intermediate trees are not strictly suffix 
trees. 

At a given stage of McCreight algorithm, we have T — Tk-i and we attempt 
to build 7fc. The table of suffix links plays a crucial role in the reduction of 
the complexity. In the algorithm, the table suf is computed at a given stage 
for all nodes, except for leaves and maybe for the present head. The algorithm 
is based on the following two obvious properties: 

1. headi is a descendant of the node suf[headj_i], 

2. suf[v] is a descendant of suf [father (v)} for any v. 

The basic work performed by McCreight algorithm involves localizing heads. 
If it is executed in a rough way (top-down search from the root), then the time 
is quadratic. The key to the improvement is the relation between headi and 
headi-i, (Property 1). Hence, the search for the next head can start from 
some node deep in the tree, instead of from the root. This saves some work 
and the amortized complexity is linear. The behavior of McCreight algorithm 
is illustrated in Figures 5.5, 5.6, 5.7 and 5.8. 
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. , , suffix link 
father /-\^.-' 

i-\ 

suffix link 

leaf^Q 

fastfind(u, P) 

Figure 5.6: McCreight algorithm: the case where v is an existing node. 

6 1 

Figure 5.7: The tree of string abaababaabaababaababa$, after inserting the first 
six suffixes, and the insertion of the 7-th suffix. The head in the left tree is 
abaaba and, in the right one, it is baaba. The heads are indicated as black 
circles. In this case, v = baaba is a newly created node, a = ba, 0 = aba. 
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Figure 5.8: The tree of string abaababaabaababaababa%, after inserting the first 
eight suffixes, and the insertion of the 9-th suffix. In this case, v = aaba is a 
newly created node, a = e, (3 = aba, and we perform a fastfind on the string 
aba and a slowfind on the string ababaaba. 

Algorithm McCreight; 
T := two-node tree with one edge labeled by p\ 

for i := 2 to n do begin 
{ insert next suffix pi = text[i. .n] } 
let (3 be the label of the edge (father[headi-i 
let 7 be the label of the edge (headi-i, leaf\_ 
u := suf\father[headi_i]]; 
v := fastfind(u, f3); 
suf[headi_i] := v; 
if v has only one son then 

{ v is a newly inserted node } headi := v 
else headi '•= slowfind(v,7); 

= text; 

, headi-i); 

1); 

create a new leaf leaf^, make leaf\ a son of headi; 
label the edge (headi, leafi) accordingly; 

end 

Theorem 5.6 McCreight algorithm runs in time 0(n) for constant alphabets. 

Proof. The total complexity of all executions of fastfind and slowfind is 
estimated separately. Let father i = father (headi). The complexity of one run 
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of slowfind at stage i is proportional to the difference \father^ — \fatheri_1\, 
plus some constant. Therefore, the total time complexity of all runs of slowfind 
is bounded by J^d father J — Ifather^^) + 0(n). This is obviously linear. 
Similarly, the time complexity of one call to fastfind at stage i is proportional 
to the difference \headi\ — \headi-i\, plus some constant. Therefore, the total 
complexity of all runs of fastfind is also linear. CI 

Bibliographic notes 

The two basic algorithms for suffix tree construction are from Weiner [We 73] 
and McCreight [McC 76]. Chen and Seiferas [CS 85] described the relation 
between DAWG's (Chapter 6) and suffix trees. An excellent survey on appli
cations of suffix trees has been shown by Apostolico in [Ap 85]. As reported 
in [KMP 77], Knuth conjectured in 1970 that a linear-time computation of 
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uncompacted position trees, without the use of suffix trees, is given is [AHU 
74]. The algorithm is quadratic because uncompacted suffix trees can have 
quadratic size. The incremental algorithm for the suffix tree construction is 
from McCreight [McC 76]. 



Chapter 6 

Sub word graphs 

The graph DAWG(text), called the suffix DAWG of text, is obtained by iden
tifying isomorphic subtrees of the uncompacted tree Trie(text) representing 
J-(text). We call this process minimization. In fact it corresponds to the min
imization of finite deterministic automata. Observe that in the trie the nodes 
are classified as essential (corresponding to suffixes) and non-essential. This 
affects the minimization (see Figure 6.1). The reason to deal with DAWG's 
instead of minimal subword automata is that DAWG's are easier to construct 
on-line and their relation to suffix trees is more evident. Applications of suffix 
DAWG's are essentially the same as applications of suffix trees. We assume 
again in this chapter that the alphabet is of constant size. 

6.1 Directed acyclic graph 

Let re be a factor of text. We denote by end-pos(x) (end positions) the set of 
all positions on text where an occurrence of x ends. Let y be another factor 
of text. Then, the subtrees of Trie(text) rooted at x and y (recall that we 
identify the nodes of Trie(text) with their labels) are isomorphic if and only if 
end-pos(x) = end-pos(y). In the graph DAWG(text), paths having the same 
set of end positions lead to the same node. Hence, the nodes of G correspond to 
non-empty sets in the form end-pos(x). The root of the DAWG corresponds to 
the whole set of positions {0 ,1 ,2 , . . . , n} on the text. From a theoretical point 
of view, nodes of G can be identified with such sets (especially when analyzing 
the construction algorithm). But, from a practical point of view, the sets are 
never maintained explicitly. The end-pos sets, usually large, cannot directly 
name nodes of G, because the sum of the sizes of all such sets happens to be 

69 
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non linear. 

The small size of DAWG's is due to the special structure of the family $ 
of sets end-pos. We associate with each node v of the DAWG its value val(v) 
equals to the longest word leading to it from the root. The nodes of the DAWG 
are, in fact, equivalence classes of nodes of the uncompacted tree Trie(text), 
where the equivalence means subtree isomorphism. In this sense, val(v) is the 
longest representative of its equivalence class. 

Let u b e a node of DAWG(text) distinct from the root. We define suf[v] 
as the node w such that val(w) is the longest suffix of val(v) not equivalent 
to it. In other words, val(w) is the longest suffix of val(v) corresponding to a 
node different from v. Note that the definition implies that val(w) is a proper 
suffix of val(v). By convention, we define suf [root] = root. We also call the 
table suf the table of suffix links, and edges (v, suf[v]) suffix links. The suffix 
links on DAWG(dababd) are presented in Figure 6.2. Since the value of suf[v] 
is a word strictly shorter than val(v), suf induces a tree structure on the set 
of nodes. The node su/[i>] is interpreted as the father of v in the tree. The 
tree of suffix links is the same as the tree structure of sets in $ induced by the 
inclusion relation. 

Theorem 6.1 The number of nodes of DAWG (text) is smaller than 2n. 

Proof. Any two subsets of $ are either disjoint or one is contained in the 
other. Thus, $ has a tree structure (see Figure 6.2). Since the value of suf[v] 
is a word strictly shorter than val(v), the function suf induces a tree structure 
on the set of nodes. All leaves are pairwise disjoint subsets of {1,2, . . . , n } 
(we do not count position 0 that is associated with the root, because it is not 
contained in any other end-pos set). Hence, there are at most n leaves. This 
does not directly imply the thesis because it can occur that some internal nodes 
have only one son (as in the example of Figure 6.2). 

We partition nodes into two (disjoint) subsets according to the fact that val{y) 
is a prefix of text or not. The number of nodes in the first subset is exactly 
n + 1 (number of prefixes of text). We now count the number of nodes in the 
other subset of the partition. Let t i b e a node such that val(y) is not a prefix 
of text. Then val(v) is a non-empty word that occurs in at least two different 
right contexts in text. But we can then deduce that at least two different 
nodes p and q (corresponding to two different factors of text) are such that 
suf[p] = suf[q] = v. 

This shows that nodes like v have at least two sons in the tree inferred by suf. 
Since the tree has at most n leaves (corresponding to non-empty prefixes), the 
number of such nodes is less than n. Additionally note that if text contains 
two different letters, the root has at least two sons but cannot be counted in 
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smallest subword 

automaton 

© 

Figure 6.1: Representing the factors of abcbc. The minimization of the trie 
depends on whether we consider essential nodes or not. For example in the 
first case vl and vl are roots of non-isomorphic subtrees, while in the second 
case they are roots of isomorphic trees. Nodes v-j and VQ are roots of isomorphic 
subtrees in both cases. The roots of isomorphic subtrees are glued together. 
Usually DAWG's and smallest subword automata do not differ too much. 
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Figure 6.2: DAWG{dababd) and its suffix links. The tree of suffix links shows 
the structure of the family $ of end-pos sets. The structure of suffix links 
of dababd is the same as the structure of the suffix tree of the reversed text 
dbabad. 

the second subset because val(root) = e is prefix of text. If text is of the form 
a", the second subset is empty. Therefore, the cardinality of the class is indeed 
less than n — 1. 

This finally shows that there are less than (n + 1) + (n — 1) = 2n nodes. • 

Theorem 6.2 DAWG(text) has less than N + n — 1 edges, where N is the 
number of its nodes. This is independent of the size of the alphabet. 

Proof. We consider a spanning tree T over DAWG(text), and count sepa
rately the edges belonging to the tree and the edges outside the tree. The tree 
T is chosen to contain the branch labeled by the whole text. Since there are 
N nodes in the tree, there are N — 1 edges in the tree. Let us count the other 
edges of DAWG(text). Let (v,w) be such an edge. We associate with it the 
suffix xay of text defined by: x is the label of the path in T going from the 
root to v, a is the label of the edge (v, w), y is any factor of text extending xa 
into a suffix of text for x, y € A*, a £ A. 

The correspondence is one-to-one. The empty suffix is not considered, nor is 
text itself because it is in the tree. 

It remains n — 1 suffixes, which is the maximum number of edges outside 
T. Hence the number of edges in DAWG(text) is less than N + n—l. • 
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suf / 

0 
0 

suf 

suf * 

suf 

0 >0 
4 newnode 

suf 

^ ^ ^ newsink 

suf 

Q^sink / 
^ ^ ^ ' newsink 

0 
Figure 6.3: One iteration in the on-line construction of DAWG's. newnode is 
a clone of v. 

The DAWG is not always strictly minimal. If minimality is understood in 
terms of finite au tomata (number of nodes, for short) , then DAWG(text) is the 
minimal au tomaton for the set of suffixes of text. Accepting states correspond 
to the essential s tates of the DAWG (nodes corresponding to suffixes). 

6.2 On-line construction of subword graphs 

An on-line linear-time algorithm for suffix DAWG computat ion can be viewed 
as a simulation of the algorithm on-line-trie from Chapter 4, in which isomor
phic subtrees are identified. When the text is extended by the letter a to the 
right then the algorithm on-line-trie follows the working path: the sequence of 
suffix links until an edge labeled a is found if ever. Then the algorithm creates 
new vertices and updates suffix links. We describe a similar algorithm, but all 
leaves of the trie are now identified as a special node called sink. In addit ion 
the set of other nodes is parti t ioned into equivalent classes. 

The peculiar feature of the on-line algorithm is tha t instead of gluing nodes 
together it either creates single new nodes from scratch or creates clones of 
existing nodes, so it makes a kind of s ta te splitting tha t is opposite to gluing. 
This can be understood by the fact tha t there is a lot of gluing because all 
leaves are glued together, but later some of these leaves do not correspond 
to suffixes and should be split. State splitting is the basic operation of the 
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algorithm. 

Algorithm on-line-DAWG; 
create the one-node graph G — DAWG(s); 

root := sink; suf[root] := nil; 
for i := 1 to n do begin 

a := text[i]; create a new node newsink; 
make a solid a-edge (sink, newsink); w := suf[sink]; 
while (w ^ nil) and (son(w, a) — nil) do begin 

make a non-solid a-edge (w, newsink); w := suf[w]; 
end; 
v := son(w,a); 
if w = nil then suf [newsink] := root 
else if (w,v) is a solid edge then suf [newsink] := v 
else begin { split the node v } 

create a node newnode with the same outgoing edges as v, 
except that they are all non-solid; 
change (w, v) into a solid edge (w, newnode); 
suf[newsink] := newnode; suf[newnode] := suf[v]; 
suf[v] := newnode; w := suf[w]; 
while w ^ nil and (w, v) is a non-solid a — edge do begin 

{*} redirect this edge to newnode; w := suf[w[; 
end; 

end; 
sink := newsink; 

end 

The algorithm processes the text from left to right. At each (Figure 6.4) 
step, it reads the next letter of the text and updates the DAWG built so far. In 
the course of the algorithm, two types of edges in the DAWG are considered: 
solid edges (thick in Figure 6.6) and non-solid edges. The solid edges are those 
contained in longest paths from the root. In other words, non-solid edges 
are those creating shortcuts in the DAWG. The adjective solid means that 
once these edges are created, they are not modified during the rest of the 
construction. On the contrary, the target of non-solid edges may change after 
a while. Figures 6.5, 6.8 and 6.7 show a run of the algorithm on text — aabbab. 
The schema of one stage of the algorithm is graphically presented in Figure 6.3. 

The transformation of DAWG(aabba) into DAWG(aabbab) points out a 
crucial operation of the algorithm. The addition of letter b to aabba intro
duces new factors to the set J-'(aabba). They are all suffixes of aabbab. In 
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Splitting node 

Figure 6.4: Iterative computation of DAWG(aabb). Solid edges are thick. 

DAWG(aabba), nodes corresponding to suffixes of aabba, namely, vi, V2,v-j in 
Figure 6.7 and 6.8, will now have an out-going 6-edge. Consider node v<i in 
DAWG(aabba). It has an outgoing non-solid 6-edge. The edge is a shortcut 
between V2 and V4, compared to the longest path from V2 to V4 which is labeled 
by ab. The two factors ab and aab are associated with the node V4. But in 
aabbab, only ab becomes a suffix, not aab. This is the reason why the node U4 
is split into u4 and VQ in DAWG(aabbab). 

When splitting a node, it may also occur that some edges need to be redi
rected to the created node. This situation is illustrated in Figure 6.5 by 
DAWG(aabbabb) (see also Figure 6.6). In DAWG(aabbab) (Figure 6.5), the 
node V5 corresponds to factors bb, abb, and aabb. In aabbabb, only bb and abb are 
suffixes. Hence, in DAWG{aabbabb), paths labeled by bb and abb should reach 
the node v\\, a clone of node v& obtained by the splitting operation. In the al
gorithm, we denote the son v of node w by son{w, a) such that label(w, v) = a. 
We assume that son(w, a) = nil if there is no such node v. For each node 
of DAWG{text) a suffix link named suf is defined. It creates lists of working 
paths as shown in Figure 6.3. There, the working path is w\ = suf [sink], 
u>2 — suf[wi], w — suflwz]. Generally, the node w is the first node on the path 
having an outgoing edge (w, v) labeled by letter a. If this edge is non-solid, 
then v is split into two nodes: v itself, and newnode. The latter is a clone of 
node v, in the sense that out-going edges and the suffix-pointer for newnode 
are the same as for v. The suffix link of newsink is set to newnode. Otherwise, 
if edge (w, v) is solid, the only action performed at this step is to set the suffix 
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Figure 6.5: Transformation of DAWG(aabba) into DAWG(aabbab). The node 
vg is a clone of V4. 
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Figure 6.6: The suffix DAWG's of aabbabb and aabbabbb. The working path 
in the first graph consists of nodes vu and v@, since suf[sink] = i>n and 
suf [vu] = VQ. There is no edge labeled by b from vu so a 6-edge is added to 
vu. The non-solid edge labeled by b points from VQ to vu, a clone V13 of vu 
is created and this edge is redirected to the clone. 



78 CHAPTER 6. SUBWORD GRAPHS 

Figure 6.7: The suffix DAWG of aabbabbba. The node v\s is a clone of vj. 
Several edges leading to the cloned node are redirected. The non-solid a-edge 
VQ —> v-j is redirected to V15. 

link of newsink to v. 

Theorem 6.3 Algorithm on-line-DAWG computes DAWG(text) in linear time. 

Proof. We estimate the complexity of the algorithm. We proceed similarly 
as in the analysis of the suffix tree construction. Let sinki be the sink of 
DAWG(text[l. .i\). What we call the working path consists of nodes wx = 
suf[sink], W2 = suf[wi], . . . , Wk+i = suf[wk\. The complexity of one iteration 
is proportional to the length k, of the working path plus the number k' of 
redirections made at step * of the algorithm. Let Ki be the value of k + k' at 
the i-th iteration. Let depth(u) be the depth of node u in the graph of suffix 
links corresponding to the final DAWG (the depth is the number of applications 
of suf needed to reach the root). Then, the following inequality can be proved 
(we leave it as an exercise): depth(sinki+\) < depth(sinki) — Ki + 2, and this 
implies 

Ki < depth(sinki) — depth(sinki+\) + 2. 

Hence, the sum of all K^s is linear. D 
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6.3 The reverse perspective 

There are close relations between suffix trees and subword graphs, since they 
are compact representations of the same trie. We examine the relations be
tween DAWG{w) and ST(wR) and principally the facts that suffix links of 
DAWQ{w) correspond to ST(wR), and conversely suffix links of ST(wR) give 
solid edges of DAWG(w). Two factors of text, x and y, are equivalent iff their 
end-pos sets are equal. This means that one of the words is a suffix of the 
other (say y is a suffix of a;), and then wherever x appears then y also ap
pears in text. However, what happens if, instead of end-positions, we consider 
start-positions? Let us look from the "reverse perspective" and look at the 
reverse pattern. Suffixes then become prefixes, and end-positions become first-
positions. Denote by first-pos{x) the set of first positions of occurrences of x 
in text. Recall that a chain in a tree is a maximal path in which all the nodes 
have out-degree one and they are non-essential nodes except the last one. The 
following obvious lemma is crucial for understanding the relationship between 
suffix trees and DAWG's. 

Lemma 6.1 The following three properties are equivalent for two factors x 
and y of text: 
(1) end-pos(x) = end-pos(y) in text, 
(2) first-pos(xR) = first-pos(yR) in textR, 
(3) xR, yR are contained in the same chain of the uncompacted tree Trie(textR). 

Observation. The reversed values of nodes of ST(textR) are the longest rep
resentatives of equivalence classes of factors of text. Hence nodes of ST(textR) 
can be treated as nodes of DAWG(text). 

From Suffix trees to subword graphs. 

We strongly require here that all suffixes of the text have corresponding nodes 
(essential nodes) in the suffix tree T, though some of these nodes can be of 
outdegree one. Actually these are the trees constructed by Ukkonen algorithm, 
which gives also suffix links. We use another family of links which are related 
to suffix links (but work in reversed direction), the extension links denoted by 
ext[a, v}. The value of ext[a, v] is the node w for which val(w) is the shortest 
word having prefix ax, where x = val(v). If there is no such node w, then 
ea;i[a,u] = nil. 

Theorem 6.4 (1) DAWG(text) is the graph of extension links of the suffix 
treeT = ST(textR). 
(2) Solid edges of DAWG(text) are reverses of suffix links ofT. 
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Figure 6.8: (1) The suffix tree of abaabb with suffix links (cutting first letter). 
(2) Reverses of suffix links give solid edges of the DAWG of the reversed text 
bbaaba. (3) Three additional non-solid edges corresponding to extension links 
of the suffix tree are added to obtain the complete DAWG of bbaaba. 

Proof. The nodes of the DAWG correspond to nodes of T. In the DAWG 
for text, the edge labeled a goes from the node v with val(v) = x to node w 
with val(w) — y iff y is the longest representative of the class of factors that 
contain word xa. If we consider the reversed text, then it means that axR is 
the longest word yR such that first-pos(yR) = first-pos(axR) in textR. This 
exactly means that 

yR = ext[a,xR] and link[a,xR] = yR. 

In conclusion, this also means that table link gives exactly all solid edges of 
DAWG{text). 0 

Theorem 6.5 If we are given a suffix tree T with the table of suffix links then 
the table of extension links can be computed in linear time. 

Proof. We reverse extension links: if suf[a • a] = a then ext[a, a] = a • a, 
where we identify nodes with strings. Afterwards, we process the tree bottom 
up: 

if ext[u, a] = nil and ext[w, a] ̂  nil for a son w of u then 
ext[u, a] := ext[w,a]. 

The whole process obviously takes linear time for constant-size alphabets. • 
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Figure 6.9: The tree of suffix-links of DAWG(abcbc) is the suffix tree 
ST((abcbc)R). The nodes are identified with their string representatives (in 
the DAWG these are the labels of the longest paths leading to nodes). 

Observation. If we have a suffix tree with essential nodes known, but without 
suffix links then suffix links, can be easily computed bottom-up in linear time. 

From subword graphs to suffix trees. 

Let us look at the opposite direction. Assume again that we identify nodes 
with their corresponding string representations. For each suffix link suf[y] = x 
in DAWG(w) create the edge xR —>• yR labelled yR // xR, where / / means the 
operation of cutting the prefix. The construction is illustrated in Figure 6.9 
on an example DAWG (only suffix links of the DAWG are shown). The same 
arguments as used in the proof of Theorem 6.4 can be applied to show the 
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following fact. 

Theo rem 6.6 The tree of reversed suffix links of DAWG(text) is the suffix 
treeT(textR). 

6.4 Compact subword graphs 

DAWG's result by identifying isomorphic subtrees in suffix tries. We consider 
the construction of DAWG's by identifying isomorphic subtrees in suffix trees. 
This construction gives a succinct representation of DAWG(w) called the com
pact DAWG od w and demoted as CVAWQ(w). This is a version of a DAWG in 
which edges are labeled by words, and there are no non-essential nodes of out-
degree one (chains of non-essential nodes are compacted). In other words this 
is a compacted DAWG. It is very easy to convert CVAWQ(w) into DAWG(w) 
and vice versa. We show the transformation of a suffix tree into a CDAWG. 
The basic procedure is the computation of equivalent classes of subtrees is 
based on the following classical algorithm (see [AHU 74] for example). 

L e m m a 6.2 Let T be a rooted ordered tree in which the edges are labeled by 
letters (assumed to be of constant size). Then, isomorphic classes of all subtrees 
of T can be computed in linear time. 

We illustrate the algorithm with the example text string w = baaabbabb. 
For technical reasons the end-marker # is added to the word w. But this end-
marker is later ignored in the constructed DAWG (it is only needed at this 
stage). Then, the equivalence classes of isomorphic subtrees are computed. 
The roots of isomorphic subtrees are identified, and we get the compacted 
version G' of DAWG(w). The difference between the actual structure and the 
DAWG is related to the lengths of strings that are labels of edges. In the 
DAWG each edge is labeled by a single symbol. The "naive" approach could 
be to break each edge labeled by a string of length k down into k edges. But 
the resulting graph could have a quadratic number of nodes. We apply such an 
approach with the following modification. By the weight of an edge we mean 
the length of its label. For each node v we compute the heaviest (with the 
largest weight) incoming edge. Denote this edge by inedge{v). Then, for each 
node v, we perform a local transformation local—action(v) (see Figure 6.12). It 
is crucial that all these local transformations local — action{v) are independent 
and can be performed for all v. The entire process takes linear time. 
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Figure 6.10: After identification of isomorphic classes of nodes of the suffix tree 
and removal of end-marker # we obtain the compact DAWG for baaabbabb. 

Figure 6.11: After decompacting the compacted DAWG of Figure 6.10 we get 
the suffix DAWG of baaabbabb. 
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Figure 6.12: The decompaction consists of local transformations. New nodes 
(black nodes) are introduced on the heaviest incoming edges. It is illustrated 
for all edges arriving to the sink node, see Figure 6.11. 

Bibliographic notes 

The impressive feature of DAWG's is their linear size, first discovered in 
[BBEHC 83]. After marking nodes of the DAWG associated with suffixes 
of the text as terminal states, the DAWG becomes an automaton recognizing 
the suffixes of the text. In fact, this is indeed the minimal automaton for 
the set of suffixes of the text. This point is discussed in [Cr 85] where an 
algorithm to build the minimal automaton recognizing the set of all factors of 
the text is also presented (the factor automaton can be slightly smaller than 
DAWG{text)). Constructions of DAWG(text) by Blumer et al. [BBEHCS 85] 
and Crochemore [Cr 86] are essentially the same. 

On-line construction of DAWG's can be treated as a simulation of Ukkonen 
algorithm, in which isomorphic classes of vertices are nodes of the DAWG. The 
standard application of DAWG's is for building efficient dictionaries of factors 
of many strings, see [BBHME 87]. 

The relationship between DAWG's and suffix trees is adeptly described in 
[CS 85]. The application of DAWG's to find the longest common factor of two 
words is presented in [Cr 86] (see also [Cr 87]). 



Chapter 7 

Text algorithms related to 
sorting 

The numbering or naming of factors of a text, corresponding to the sorted or
der of these factors, can be used to build a useful data structure. In particular, 
the sorted sequence of all suffixes has a similar asymptotic efficiency for many 
problems as that of suffix trees. Most algorithms in this chapter are optimal 
within a logarithmic factor, but they are easy to implement and easier to un
derstand, compared with asymptotically more efficient and at the same time 
much more sophisticated algorithms for DAWG's and suffix trees. Linear-time 
algorithms for sorting integers in the range [1. .n] can be successfully used in 
several text algorithms, some of them are presented below. 

7.1 The naming technique: KMR algorithm 

The central notion used in the algorithms of the section is called naming or 
numbering. We define a version of the Karp-Miller-Rosenberg algorithm (KMR 
algorithm) as an algorithm computing the data structure called the dictionary 
of basic factors. In the algorithm we assign names to certain subwords, or pairs 
of subwords. 

Assume we have a sequence 
S = ( s i , s 2 , . . . ,st) 

of at most n different objects. The naming of S is a table 
X[l],X[2],...,X[t] 

that satisfies conditions (1-2) below. If, in addition, it satisfies the third con
dition then the naming is called a sorted naming. 

85 
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Positions = 1 2 3 4 5 6 7 8 
text = a b a a b b a a # # # 

Name! = 1 2 1 1 2 2 1 1 
Name2 = 2 4 1 2 5 4 1 3 
Name* = 3 6 1 4 8 7 2 5 

Name of factor = 1 2 3 4 5 6 7 8 
POS-L = 1 2 
Pos2 = 3 1 8 2 5 
P0S4, = 3 7 1 4 8 2 6 5 

Figure 7.1: The dictionary of basic factors for an example text: tables of k-
names and of their positions. The A;-name at position i corresponds to the 
factor text[i. .i + k — 1]; its name is its rank according to lexicographic order 
of all factors of length k (order of symbols is a < b < # ) . Indices k are powers 
of two. The tables can be stored in 0(n log n) space. 

1. Si = Sj <=> X[i] = X[j], for 1 < i,j < t. 

2. X[i] € [1. .n] for each position i, 1 < i < t. 

3. X[i] is the rank of Sj in the ordered list of the different elements of S. 

Given the string text of length n, we say that two positions are fc-equivalent 
if the factors of length k starting at these positions are equal. Such an equiv
alence is best represented by assigning to each position i a name or a number 
to the factor of length k starting at this position. The name is denoted by 
Namek[i] and called a fc-name. We assume that the table Namek is a good 
and sorted numbering of all factors of a given length k. 

We consider only those factors of the text whose length k is a power of two. 
Such factors are called basic factors. The name of a factor is denoted by 
its rank in the lexicographic ordering of factors of a given length. For each 
fc-name r we also require (for further applications) a link Posk[r] to any one 
position at which an occurrence of the /c-name r starts. Symbol # is a special 
end-marker that has the highest rank in the alphabet. The text is padded with 
enough end-markers to let the A;-name at position n defined. 

The tables Name and Pos for a given text w are together called its dic
tionary of basic factors and is denoted by DBF(w). This dictionary is the 
basic data structure of the chapter. 

Remark. String matching for text and pattern pat of length m can be easily 
reduced to the computation of a table Namem. Consider the string w — 
patktext, where & is a special symbol not in the alphabet. Let Namem be the 
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J Composite-Name 

| Name 

H 
Name 

Figure 7.2: The object is decomposed into a constant number of parts of 
identical shape; its composite name consists in assembling names of its parts. 
The function Sort-Rename converts composite names into integers. 

array which is part of DBF(patictext). If q = Namem[l] then the pattern pat 
starts at all positions i on text such that Namem\i + m + l} = q. 

Figure 7.1 displays DBF(abaabbaa4f). Three additional # ' s are appended 
to guarantee that all factors of length 4 starting at positions 1 ,2 , . . . , 8 are well 
defined. The figure presents tables Name and Pos. In particular, the entries of 
P0S4 give the lexicographically-sorted sequence of factors of length 4. This is 
the sequence of factors of length 4 starting at positions 3,7,1,4,8,2,6,5. The 
ordered sequence is: 

aabh, aa$#, abaa, abba, a # # # , baab, 6ao#, bbaa. 

The central machinery of KMR algorithm is the procedure Sort-Rename that 
is defined now. Let S be a sequence of total size t < n containing elements of 
some linearly ordered set. The output of Sort-Rename(S) is an array of size t, 
which is a good and sorted naming of S. 

Example . Let S = (ab, aa, ab,ba,ab,ba,aa). Then 

Sort-Rename(S) = (2, 1, 2, 3, 2, 3, 1) 

For a given k, define (see Figure 7.2), 

Composite-Namek[i] = (Name k[i], Name k[i + k}). 

KMR algorithm is based on the following simple property of naming tables. 

Lemma 7.1 [Key-Lemma] Name2k = Sort-Rename(Composite-Namek). 

The main part of algorithm Sort-Rename is the lexicographic sort. We 
explain the action of Sort-Rename on the following example: 
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x = ((1,2), (3,1), (2,2), (1,1), (2,3), (1,2)). 

The method to compute a vector X of names satisfying conditions (1-3) is as 
follows. We first create the vector y of composite entries y[i] = (x[i],i). Then, 
the entries of y are lexicographically sorted. Therefore, we get the ordered 
sequence 

((1,1),4),((1,2),1),((1,2),6),((2,2),3),((2,3),5),((3,1),2). 

Next, we partition this sequence into groups of elements having the same first 
component. These groups are consecutively numbered starting from 1. The 
last component i of each element is used to define the output element X[i] as 
the number associated with the group. Therefore, in the example, we ge 

X[4] = 1, X[l] = 2, X[6] = 2, X[3] = 3, X[5] = 4, X[2] = 5. 

The linear-time lexicographic sorting based on bucket sort can be applied (see 
[AHU 83], for example). Doing so, the procedure Sort-Rename has the same 
complexity as sorting n elements of a special form, which yields the following 
statement. 

Lemma 7.2 If the vector x has size n, and its components are pairs of integers 
in the range ( 1 ,2 , . . . ,n) , Sort-Rename(x) can be computed in time 0(n). 

The dictionary of basic factors is computed by the algorithm KMR above. 
Its correctness results from fact (*) below. The number of iterations is loga
rithmic, and the dominating operation is the call to procedure Sort-Rename. 

Once all vectors Namep, for all powers of two smaller than r, are computed, 
we easily compute the vector Nameq in linear time for each integer q < r. Let 
t be the greatest power of two not greater than q. We can compute Nameq by 
using the following fact: 

(*) Nameq[i] = Nameq[j] iff {Namet[i\ = Namet[j]) and (Namet[i + q — t] = 
Namet[j +q-i\). 
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Algorithm KMR; 
{ a version of the Karp-Miller-Rosenberg algorithm } 
{ Computation of DBF(text) } 

K := largest power of 2 not exceeding n; 

Computation of table Name: 
Namei := Sort-Rename(text); 
for k := 2 ,4 , . . . ,K do 

Name<2k '•= Sort-Rename(Composite-Namek); 

Computation of table Pos: 
for k = 1,2,4, . . . ,K do 

for 1 < i < n do Posk[Namek[i] ] :— i; 

Let us denote by LongestRepFactor(text) the length of the longest repeated 
factor of text. It is the longest word occurring at least twice in text (occurrences 
are not necessarily consecutive). When there are several such longest repeated 
factors, we consider any of them. Let also LongestRepFactork(text) be the 
maximal length of the factor that occurs at least k times in text. Let us 
denote by REPk(r, text) the function that tests is there is a fc-repeating factor 
of size r. Such function can be easily implemented to run in linear time if we 
have DBF(w). 

Theorem 7.1 The function LongestRepFactork(text) can be computed in time 
0(n log n) for alphabets of size 0(n). 

Proof. We can assume that the length n of the text is a power of two; 
otherwise a suitable number of "dummy" symbols are appended to the text. 
The algorithm KMR is used to compute DBF(text). We then apply a kind 
of binary search using function REPk{r,text): the binary search looks for 
the maximum r such that REPk (r, text) ^ nil. If the search is successful 
then we return the longest (k times) repeated factor. Otherwise, we report 
that there is no such repetitions. The sequence of values of REPk(r, text) 
(for r = 1,2, .,n — 1) is "monotonic" in the following sense: if rl < r2 and 
REPk{r2, text) / nil, then REPk(rl, text) ± nil. The binary search behaves 
similarly to searching an element in a monotonic sequence. It has log n stages; 
at each stage the value REPk(r, text) is computed in linear time. Altogether 
the computation takes 0(n log n) time. This completes the proof. • 

The longest repeated factor problem for texts can also be solved in a 
straightforward way if we have already constructed the suffix tree ST(tree) 
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(see Chapters 4 and 5). The value LongestRepFactor(text) is the length of 
the longest path (in the sense of the length of word corresponding to the 
path) leading from the root of ST(tree) to an internal node. Generally, 
LongestRepFactork(text) is the length of a longest path leading from the root to 
an internal node in which the subtree contains at least k leaves. The computa
tion of such a path can be accomplished easily in linear time. The preprocessing 
needed to construct the suffix tree makes the whole algorithm much more com
plicated than the one applying the strategy of KMR algorithm. Nevertheless, 
this proves that the computation takes linear time with suffix trees. 

7.2 Two-dimensional KMR algorithm 

In the case of arrays, basic factors are k x k sub-arrays, where k is a power 
of two. In this situation, Namek[i,j] is the name of the k x k sub-array of 
a given array text having its upper left corner at position (i,j). We have 
primarily discussed the construction of dictionaries of basic factors for strings. 
The construction in the two-dimensional case is a simple extension of that 
used for one-dimensional data. In the two-dimensional case, there is a fact 
analogous to (*), which makes the algorithm work similarly. 

The naming technique is used on sub-arrays. Let Namer[i,j] be the number 
associated with the r xr sub-array of the array T having its upper-left corner 
at position (i, j ) . There is a fact, analogous to (*), illustrated by Figure 7.3: 

(**) Name2P[i, j] = Name2P[k, I] iff the following conditions are satisfied: 

Namep[i,j] — Namep[k,l]; Namep[i +p,j] = Namep[k +p,l\; 

Namep [i, j + p] = Namep [k,l + p]; 

Namep [i + p, j + p] = Namep [k + p, I + p]. 

The longest repeated factor problem generalizes an equivalent 2-dimensional 
problem in a straightforward way. For this problem, KMR algorithm gives 
0(N log N) time complexity, which is the best upper bound known up to now. 
The algorithm works also for finding repetitions in trees as well. 

Using fact (**), the whole computation of repeating 2p x 2p sub-arrays 
reduces to the computation of repeating pxp sub-arrays. The matrix Name2P is 
computed from Namep using a procedure analogous to Sort-Rename. Here, the 
internal lexicographic sorting is executed on elements having four components 
(instead of two for texts). We then get the next result. 

Theorem 7.2 The size of a longest repeated sub-array of an n x n array of 
symbols can be computed in 0(NlogN) time, where N = n2 . 
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(i,j)—(U+P) 

(i+pJ)-(i+PJ+P)-

(k,l)—(k 1+p)— 

(k+p,l)-(k+p,l+p)-

Figure 7.3: A repeated sub-array of size 2p x 2p. The occurrences can overlap. 
The name of a sub-array is determined by names of its four quadrants. 

7.3 Suffix arrays 

There is a clever and rather simple way to deal with all (non-empty) suffixes 
of a text: to arrange their list in increasing lexicographic order with the aim of 
performing binary searches on them. The implementation of this idea leads to 
a data structure called a suffix array. It is not exactly a "good" representation, 
in the sense defined at the beginning of Chapter 4. But it is "almost good." 
This means that it satisfies the following conditions: 

(1) it has 0(n) size, 

(2) it can be constructed in O(nlogn) time, 

(3) the query x £ F(text) can be answered in 0(\x\ + logn) time. 

So the time required to construct and use the structure is slightly greater than 
that needed to compute the suffix tree (it is 0(nlog |v4|) for the latter). But 
suffix arrays have two advantages: 

• their construction is rather simple; it is even commonly admitted that, 
in practice, it behaves better than the construction of suffix trees, 

• it consists of two linear-size arrays which, in practice again, take little 
memory space (typically three times less space than suffix trees). 

Let text = a io2 . . . an, and let pi = a ia j+i . . . an be the i-th (non-empty) suffix 
of the text. Let SufPos[k] be the position i where the fc-th smallest suffix 
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7 8 9 10 11 12 13 

Figure 7.4: The edges correspond to regular pairs, these are pairs which take 
part in a binary search. 

of text starts (according to the lexicographic order of the suffixes). In other 
words, the fc-th smallest suffix of text is psufPos{k)- Denote by LCPref(u,w) 
the length of the longest common prefix of words (u, w). 

We say that a pair of positions (i,j) in [1. .n] is regular iff there exist 
integers p, k such that i = 1 + p • 2k and j = min{n, i + (p + 1) • 2k}. The 
set of regular pairs is illustrated in Figure 7.4 for n = 13. In particular ( l ,n) 
is always a regular pair. The structure of regular pairs is a binary search tree 
which enables to find a pattern using recursion of logarithmic depth. 

Let Suffix(k) be the lexicographically fc-th suffix of text; it starts at position 
SufPos[k\. The suffix array of text is the data structure consisting of both the 
array SufPos, and the values 

LCP[i,j] = LCPref [Suffix^), SuffixU)}, 

for all regular pairs (i,j). The entire data structure has 0(n) size because the 
number of regular pairs is linear, so it satisfies condition (1). To show that 
condition (2) is satisfied we can use the dictionary of basic factors to build the 
arrays. Note that condition (2) is rather intuitive because it involves sorting 
n words having certain mutual dependencies. But, in our opinion, the most 
interesting property of suffix arrays is that they satisfy condition (3). 
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Theorem 7.3 Assume that the suffix array of text is computed (we have tables 
SufPos and LCPref for regular pairs). Then, for any word x, we can answer 
the query "x G J-(text)" in 0(\x\ +log\text\) time. 

Remark. The lexicographic ordering of suffixes has the following nice prop
erty. Let 

minx = minjfe : x is a prefix of PsufPos[k}}, 
maxx = max{fc : i i s a prefix of PsufPos[k]}-

Then all occurrences of the subword x in text are at positions listed in the 
table SufPos between indices minx and maxx. 

We present an algorithm, written as a recursive binary search function find, 
which computes an occurrence of the pattern. It is a binary search for x inside 
the sorted sequence of suffixes. Let us define 

Suffix[i,j] = (Suffix(i),Suffix(i + l),... ,Suffix(j)). 

We describe the pattern searching recursively. The value of Search(Left, Right) 
is the position of a suffix in the interval of suffixes Suffix [Left, Right] having x as 
a prefix. If there is no such suffix then the output is nil. For a regular pair (i, j) 
of non-consecutive positions, denote by Middle(i,j), middle position between 
i and j , the position such that the pairs (i, Middle(i,j)) and (Middle(i,j),j) 
are regular pairs. If i,j are consecutive then Middle(i,j) = i. 

The crucial component of the algorithm is an additional memory given by 
an integer M. The basic invariant is: 

M = LCPref (Suffix(Left),x) or M = LCPref (Suffix (Right), x); 
the value of M does not decrease during a run of the algorithm. 

The basic additional function is Compare(x, Mid). The function compares, as 
strings, x with Suffix(Mid), and returns the value left or right depending on 
whether x is lexicographically smaller or greater than Suffix(Mid). A naive 
comparison would consist in comparing consecutive letters starting from the 
first one. However the clever comparison uses the knowledge of M and saves 
usually a lot of single letter comparisons. If a letter at some position in x 
is compared and there is an equality of two corresponding letters then this 
position in x will never be checked again, since the value of M will increase. 
Only letters at positions larger than M are possibly checked later. 

Let us denote Suffix(Mid) = u, Suffix(Right) = w. Figure 7.5 illus
trates the situation where M = LCPref (x,w). The situation where M = 
LCPref (x, Suffix(Left))) is symmetric. 



94 CHAPTER?. TEXT ALGORITHMS RELATED TO SORTING 

Suffix(Left) u = Suffix(Mid) 

LCPREF(u,w)/ 

mismatch 

w = Suffix(Right) 
IS55 

p 
m 1 1 
P̂ ' K:$S 

ll m m 
m m 

LCPREF(x,w) 
= M 

x to be searched in this area 

Figure 7.5: Suffix array searching: the case when LCPref(u, w) < M. 

Description of the function Compare. There are two main possible cases: 

Casel: LCPref(u,w) < M (the most interesting case). 
We know that x is not a prefix of Suffix(Mid) and x should be searched 
in the interval [Mid,... ,Right], see Figure 7.5. The function Compare 
returns the value right. 

Case2: LCPref(u,w) > M. 
We compare letters of x against letters of u starting from position M +1 
until the first mismatch occurs, or until the whole a; or u is read. We 
update M, by adding the number of matching positions. If there is a 
mismatch, and the letter of x is smaller than the corresponding letter of 
u then we know that x should be searched in the interval [Left,... , Mid]; 
if there is a mismatch with the opposite result, or if u is a proper prefix 
of a;, then it should be searched in [Mid,... , Right]. In the first case we 
return left, in the second case the output is right. In the third case, when 
there is no mismatch and M =\x\, we assume that Compare returns the 
value left. 

Instead of searching the pattern in the original text we search it in the sorted 
list of suffixes. Initially, M = LCPref (Suffix(l),x). We call Search(l,n). If 
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the output is i, then the pattern x starts at position i in the text. 

Theorem 7.4 The data structure consisting of two tables SufPos and LCP 
has the following properties: it has 0(n) size; it can be constructed in 0(n log n) 
time; each query x £ T(text) can be answered in 0(\x\ + logn) time; the set 
of all r occurrences of x in text can be found in time 0(\x\ + logn + r). 

Proof. The first two points follow from the efficient use of the dictionary 
of basic factors. The third point follows from the analysis of the function 
Search. We make logarithmic number of iterations, and the total time spent 
in making symbols comparisons when calling Compare is O(|o;|), due to the 
savings implied by the use of variable M. 
If we look carefully at the function Search then it happens that the returned 
value i is the index of the lexicographically first suffix that has prefix. 
This is due to the fact that in our description of the function Compare we 
agreed that in the situation where there is no mismatch and M = \x\, Compare 
returns the value left. If we change here left to right then Search(l,n) returns 
the index of the lexicographically last suffix containing X clS cl prefix. All 
occurrences of x are among these two suffixes and they can be listed from the 
table SufPos. This additionally proves the last point. • 

function Search(Left, Right): integer; 
{ intelligent binary search for x in the sorted sequence of suffixes } 

{ (Left, Right) is a regular pair } 
if Left = Right and M = \x\ then return SufPos[Left] 
else if Left — Right and M < \x\ then return nil 
else begin 

Mid := Middle (Left, Right); 
if Compare(x, Mid) — left then return Search(Left, Mid) 
else if Compare(x, Mid) = right 

then return Search(Mid, Right) 
end 

7.4 Constructing suffix trees by sorting 

One of the most important algorithms in stringology is Farach's suffix-tree 
construction. It works in linear time, independently of the size of the alphabet, 
but assuming the letters are integers. Unfortunately Farach's algorithm is still 
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p . a a b a b a b b a # 

p~ a b a a b a b a b b a # 

p , a b a b a b b a # 

p_ a b a b b a # 
mmssm 

P9 a b b a # 

p 1 2 a # 

p , b a a b a b a b b a # 

Pj b a b a a b a b a b b a # 

P6 b a b a b b a * 

b a b b a # P 

H I b a # 

P10 b b a # 

Figure 7.6: The sorted sequence (top-down) of 12 suffixes of the string 
x = babadbdbabba# with the Icp-values between suffixes (length of shaded 
straps). The special suffix # and the empty suffix are not considered. 
We have: lep = [1, 3, 4, 2, 1, 0, 2, 4, 3, 2, 1] and SufPos = 
[4, 2, 5, 7, 9, 12, 3, 1, 6, 8, 11, 10]. 
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too complicated. To show a flavor of Farach's algorithm we show only an 
algorithm which has a similar complexity assuming that we already know the 
sorted order of all suffixes pi, p2, . . . of the string x, where Pi — ^i^i-\-\ • • • -^n 

(though computing this order is the hardest part of Farach's algorithm). We 
need a portion of the LCPref table, corresponding only to pairs of adjacent 
suffixes (in the sorted sequence): 

lcp[i] = LCPref (pSufPos[i\, PSufPos[i+i})-

In other words, lcp[i] is the length of the common prefix of the i-th and (i +1)-
th smallest suffixes in the lexicographic order. The table is illustrated, on an 
example string, in Figure 7.6. We show constructively the following theorem. 

Theorem 7.5 Assume we know the table SufPos[k] of a given text x. Then 
the suffix tree for x can be computed in linear time, independently of the size 
of the alphabet. 

Proof. Assume first we know the table lep and the sorted sequence of 
suffixes is: 

Pi\ i Pi-z j Pis i • • • i Pin • 

We create the suffix tree by inserting consecutive suffixes: each time we add 
one edge outgoing the rightmost branch of the tree. The main operation is to 
find a splitting node v on this branch. When the tree Tfc is created after insert
ing pix,pi2,pi3,...pik, then the splitting node can be found on the rightmost 
branch at total depth lcp[k]. To find this node we follow the rightmost branch 
bottom-up starting at the rightmost leaf, and jumping on each (compacted) 
edge. 

The total work is amortized by the total decreases in the depth of the rightmost 
leaf. We distinguish here between the depth (number of nodes) and total depth 
(length of the string corresponding to a path from the root). • 

The algorithm shortly described in the previous proof is called here the 
suffixes-insertion algorithm. The history of the algorithm is shown in Figures 
7.7 and 7.8. This is probably the simplest suffix tree construction algorithm, 
but it assumes we have sorted the sequence of suffixes. This can be easily done 
in O(nlogn) time with KMR algorithm, but needs a sophisticated algorithm 
to be done in 0(n) time independently of the alphabet size (alphabet is a set 
of integers). 

There is an interesting algorithm, which computes the table lep in a rather 
strange manner. Let rank(i) be the rank of pt in the lexicographic ordering. 
Assume lcp[0] = 0. Then we compute 
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Figure 7.7: The first 6 stages performed by the algorithm suffixes-insertion 
to build the suffix tree of babaabababba# (see Figure 7.6). At each stage, one 
edge is added (indicated by a thick line) from a node v on the rightmost path, 
corresponding to the last processed i-th smallest suffix, to the leaf correspond
ing to (i + l)-th smallest suffix. The total depth of the splitting node v equals 
lcp[i]. 
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Figure 7.8: The final 6 stages of the algorithm suffixes-insertion running on 
string babaabababba#. 
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lcp[rank[l] — 1], lcp[rank[2] — 1], lcp[rank[3] — 1], . . . , lcp[rank[n] — 1] 

in this order. In our example we have: 

rank = [8, 2, 7, 1, 3, 9, 4, 10, 5, 12, 11, 6] 

and we compute lep for positions 

7, 1, 6, 0, 2, 8, 3, 9, 4, 11, 10, 5. 

Let us denote by pred(i) the index of the suffix preceding pi in the sorted 
sequence, so for example pred(6) = 1 and pred(l) = 7. Then, we consider pairs 
(Ppred(i)>Pi) °f adjacent suffixes in the sorted list, in the order of the second 
element of pairs (the entry with 0 is discarded): 

(Ppred( l ) .P l ) , (Ppred(2),P2), (Ppred(3),P3), ••• , (Ppred(n),Pn) 

= {Pi7,Pia), ( P i i . P i 2 ) . (P io .P i r ) . (P»2>Pi3)> ( P i s . P i J * ••• 
= ( P 3 , P l ) , (P4 ,P2) , (P12.P3) , (P2 .P5) , (Pl,P6), ••• 

because ^M/POS = [4, 2, 5, 7, 9, 12, 3, 1, 6, 8, 11, 10]. 

The computation is based on the following inequality: 

lcp[rank[i + 1] — 1] > lcp[rank[i] — 1] — 1, 

which is equivalent to 

LCPref{ppred(i+l),pi+l) > LCPref{ppred{i),pi) - 1. 

In our example we have lcp[l] > lcs[7] — 1 and lcp[6] > lcp[l] — 1. We explain 
the inequality on our example for i = 6. We have that (pi,P6) and (^5,^7) are 
pairs of consecutive suffixes in the sorted list. In this case, the inequality can 
be read as: 

LCPref(p5,p7) > LCPrefipupe) - 1. 

Observe that p-j is the suffix p% with the first letter deleted. Hence 

LCPref{P5,p7) > LCPref(p2,p7) and LCPref(p5,p7) = LCPre}{Pl,p&) - 1. 

Due to the inequality, when we compute the longest common prefix for the 
next pair of suffixes we can start from the previous value minus one. The 
amortized cost is easily seen to be linear. 
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7.5 The Lowest-Common-Ancestor dictionary 

The lowest common ancestor problem (LCA, in short) is to find in constant 
time, for any two leaves of the suffix tree, the deepest node which is ancestor 
of both leaves. From the point of view of stringology, more important is the 
related problem of longest common prefix (LCPREF): for two positions i and 
j find in constant time LCPref (pi,Pj). Any solution to the LCA problem gives 
easily a solution to the LCPREF problem. 

Let us remind that lcp[i\ is the length of the common prefix of the i-th 
and (i + l)-th smallest suffix for the lexicographic ordering. Observe that for 
i < j : 

LCPref (Suffix(i),Suffix(j)) = mm{lcp[t] : te[i..j-l]}. 

Hence LCPref calculation reduces to the computation of range minima. We 
can compute a dictionary of range minima, DRM, is a same way as the dic
tionary of basic factors. Instead of names we compute minima of numbers. 
Denote MINk[i] = mm{lcp[t] : t e [i. A + 2fc - 1]}. If we know the tables 
MIN for each k, 1 < k < logn, then we can compute a minimum over any 
interval in constant time by taking minima of (possibly overlapping) subinter-
vals which sizes are powers of two. The dictionary of range minima can be 
computed in O(nlogn) time and needs O(nlogn) space. 

The LCA problem can be reduced to the LCPREF problem by precomput-
ing lowest common ancestors for neighboring leaves (in lexicographic order). 
Let us denote: 

lca[i] = LCA(Suffix(i),Suffix(i + l) 

where LCA refers to the suffix tree. We have the following obvious fact. 

Lemma 7.3 If LCPref (Suffix(i), Suffix(j)) = lcp[t] and t € [i. .j — 1] then 

LCA(Suffix(i), Suffix(j)) = lca[t] 

Hence we have proved in a very simple way the next statement. 

Theorem 7.6 After O(nlogn) preprocessing time we can answer each LCPref 
and each LCA query in constant time. 

* The LCA problem with linear-time preprocessing 

There are many algorithms to improve the time in Theorem 7.6 to linear. The 
simplest one is an ingenious application of so-called "Four Russians" trick. 
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Again we deal with the range minima problem. The clue is the reduction of 
the size of integers. Instead of the table lep we use the table D such that D[i\ 
is the depth of lca[i] = LCA(Suffix(i),Suffix(i + 1)) in the suffix tree. The 
depth is the number of edges from the root to a given node. Now Lemma 7.3 
can be replaced by this one. 

Lemma 7.4 Ifmin{D[k] : k E [i. .j - 1]} = D[t] and t e [i. .j - 1] then 

LCA{Suffix{i),Suffix{j)) = lca[t\. 

Hence the LCA problem is reduced to range minima computations on the 
table D. 

Example. For the example string of the preceding section we have: 

D = [1, 3, 4, 2, 1, 0, 2, 4, 3, 2, 1]. 

The main trick now is to convert this table to the sequence of numbers differing 
by +1 or -1 and detect small segments that repeat. We insert between any 
two adjacent elements the sequence of consecutive integers (in ascending or 
descending order). For example the table D = [1, 3, 4, 2, 1, 0, 2, 4, 3, 2, 1] 
is converted into 

D' = [1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1]. 

It is easy to see that if D corresponds to a suffix tree then the length of the 
table at most doubles. 

Now we can assume that adjacent entries differ by one only. We partition 
the table D' into blocks of length p = ~^p- For example assume that p = 3, 
then the table [1,2,3,4,3,2,1,0,1,2,3,4,3, 2,1] is partitioned into the blocks 

[1,2,3], [4,3,2], [1,0,1], [2,3,4], [3,2,1]. 

We compute minima for each block and get the compressed table [1, 2, 0, 2, 1]. 
The range minima problem for this table can be done in 0(j^^ • logn), i.e., 
0(n) time and space, by the algorithm from Theorem 7.6. It is enough to 
precompute a range minima data structure for each block: for a given block 
the queries are only for positions inside the block. We can scale the blocks by 
subtracting the first element from each number. For example, this gives only 
three different blocks: 

[0,1,2], [ 0 , - 1 , - 2 ] , [0,-1,0], [0,1,2], [ 0 , - 1 , - 2 ] . 
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Each block corresponds to a sequence of p - 1 increments or decrements by +1 
or - 1 . There are only 2P~1 such sequences, which is 0{^/n). Hence there are 
only 0(y/n) different blocks. We apply the algorithm of Theorem 7.6 to each 
of them. In fact a naive algorithm is sufficient since the number of blocks is 
very small. The blocks with the same structure share the same data structure 
to support range minima queries inside them. 

range minimum in interval of blocks 

Figure 7.9: A range minimum query is implemented as three queries, two 
related to a single block, and one related to the compressed table of blocks. 

If we have to find the minimum in the interval [i. .j] then we check first 
in which blocks are i and j . Next we compute the minimum in the interval 
of complete blocks and minima inside single blocks in which are the positions 
i and j . This takes constant time. The range minimum query is split into 
two queries related to single blocks and one query related to interval of blocks, 
which can be answered with the dictionary for the compressed table D' (see 
Figure 7.9). In this way we have proved the following theorem. 

T h e o r e m 7.7 After 0(n) preprocessing time we can answer each LCPref and 
each LCA query in constant time. 

7.6 Suffix-Merge-Sort 

It is easy to sort all suffixes of a string in 0(n log n) time using its dictionary 
of basic factors or its suffix tree. McCreight and Ukkonen algorithms work 
in 0(n log \A\) time for the alphabet A. Assume that the alphabet is a set 
of integers in the range [1 . . .«] , so the alphabet can be sorted in linear time. 
Farach gave the first algorithm which works for this case really in linear time, 
the constant coefficient does not depend on the size of the alphabet. However 
the improvement from 0(nlog|A|) to 0(n) is at the cost of a very complex 
construction. 

Basically, as we have seen in Section 7.4, the suffix-tree construction reduces 
to the computation of the sorted sequence TZ = Suffix-Merge-Sort(x), for a 
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given text x. Denote by 1Zeven and TZ0dd the sorted sequences of suffixes 
starting at odd positions 1,3,5, . . . and at even positions, respectively. Let us 
sort the set of all pairs of adjacent symbols (integers) in the text x and let 
rank(a, b) be the rank of a pair (a, b). Assume the text x has an even length, 
x = a\a2 • • • a,2m (if necessary some dummy symbol can be appended). Denote 

compress(a\a2 • •. a>2m) = 
(rank(ai,a2), rank{a^,a^), rank(a5,a6),. •. , ranfc(a2m-i,a2m))-

Algorithm 
{ a version 

Suffix-Merge-Sort{x); 
of Farach algorithm } 

if \x\ = 1 then return single suffix of x 
else begin 

Step 1 
Step 2 
Step 3 
Step 4 

end 

TZ0dd '•= Suffix-Merge-Sort(compress(x); 
compute TZeven using TZodd] 
construct Odd/Even-Oracle; 
return MERGE(Sodd, Seven); 

For example compress(2,3,1,2,3,2,1, 2,3,4) = ( 2 , 1 , 2,1,3). We can iden
tify 7Zocid with the sorted sequence of suffixes of compress(x). Each suffix 
starting at an odd position can be treated as a sequence of pairs of adjacent 
symbols a.2i-\a,2i encoded by their rank. At the same time we identify the 
sorted sequence of suffixes with the sequence of their starting positions in x, 
which is essentially the same as the table SufPos. 

We explain each of the steps on the example string a; = babaabababba#. 

Step 1 The only combination of letters on odd/even neighboring positions 
are ab and ba, # # (we add # ' s at the end to have them in pairs). If we 
encode ab by 1 and ba by 2 we obtain: 

compress(babaabababba# = 2 2 1 1 1 2 # 

that is twice shorter than x. The sorted sequence of its suffixes (after 
re-scaling the positions from compress(x) to x) gives the following sorted 
sequence of suffixes starting at odd positions in x: 

TZodd = [5, 7, 9, 3, 1, 11]. 

Step 2 The sorted sequence of odd suffixes is used to give a single integer 
name to each of them: its rank in the sorted sequence. The suffix at 
odd position i can be now identified with the pair (x[i\, rank[i + 1]). The 
sequence of consecutive even suffixes becomes now: 
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(S2,Si,S6,S8,S10,S12) = (a, 2), (a, I), (6,1), (6,1), (6,2), ( a ,# ) . 

We use Sort-Rename to sort such pairs, the sorting order being equivalent 
to the sorted order of even suffixes. This gives: 

TZeven = [4, 2, 12, 6, 8, 10]. 

Step 3 Odd/Even-Oracle should give in constant time LCPref(Si, Sj) for any 
pair of odd/even positions. This is the most complicated step and is 
shortly described later. 

Step 4 Using Odd/Even- Oracle we can compare lexicographically any pair of 
odd/even suffixes in constant time. We are doing a standard linear-time 
merging of two sorted sequences, with each comparison in constant time. 
The output is: 

Suffix-Merge-Sort(x) = TZ = [4, 2, 5, 7, 9, 12, 3, 1, 6, 8, 11, 10]. 

Complexity analysis. If we do not count the complexity of the recursive call 
then the total complexity of all steps is 0(n). Observe that size of compress(x) 
is twice smaller than that of x. Hence the total complexity T(n) can be esti
mated using the recurrence: 

T(n) < r ( f) + 0(n). 

Consequently T(n) = 0(n). 

* Linear-time construction of Odd/Even-Oracle 

We sketch only the main ideas behind this quite involved construction. In 
Section 7.4 we showed that suffix trees can be extremely easily constructed in 
0(n) time if the sorted sequence TZ of suffixes is given, the linear time does not 
dependent on the size of the alphabet. Denote the corresponding procedure 
by TreeConstructiTZ). The sequence TZ is given by the table SufPos. A rough 
structure of the Odd/Even-Oracle construction is as follows: 
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O 

OverMerge 
leaf 

OverMerge 

• 

leaf 

Figure 7.10: Two types of overmerging corresponding paths in T0dd and Te, 

Algorithm Construct-Oracle; 
Todd := TreeConstruct(TZ0dd); 

Teven - — 

TreeConstruct(TZeven); 
T := 0verMerge(Todd, Teven); 
compute Lowest-Common-Ancestor dictionary of T; 
compute d-link for each odd-even node v &T; 

for each v GT do 
L(v) := depth of v in the tree of d-links; 

return Odd/Even-Oracle dictionary = 
tree T, table L, and LCA-dictionary of T; 

The LCPref queries for odd i and even j are answered by Odd/Even-Oracle 
as follows: 

LCPref{Su Sj) = L(LCAT(SU Sj)). 

Each suffix Si corresponds to a leaf of T. In the trees T0dd, Te, 
node i with the suffix Si starting at position i. 

identify the 

Description of operation OverMerge. The paths from Tadd and Teven 

are merged, an operation of merging two paths is schematically illustrated in 
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Figure 7.10. If two edges start with the same letter and are of different lengths 
then the longer one is broken and a new node is created. If the shorter edge 
ends with a leaf then we break it just before the last letter, to guarantee that 
the leafs of T0dd and Teven correspond to different leaves in the tree T. If the 
edges start with the same letter and have the same length then we create a 
double edge, consisting of both edges with end-points identified. Figure 7.11 
shows the result of overmerging the trees T0dd and Teven for an example string. 

Description of table of rf-links. Considering Overmerge(T0dd,Teven), we 
say that a node v in it is an odd/even node iff it has two descendant leaves 
corresponding to an odd i and to an even leaf j such that LCA(i,j) = v. For 
each odd/even node v define: 

d{v) = LCA{i+ 1J + 1). 

Denote by L(v) the depth of v in the tree of d-links; it is the smallest k such 
that dk(v) = root. Some d-links are shown in Figure 7.11. We refer the reader 
to [FFM 00] for the proof of the following lemma. 

Lemma 7.5 [Correctness of Odd/Even Oracle] IfT = 0verMerge(Todd,Teven), 
i is odd and j is even, then 

LCPref(Si, Sj) = L(LCAT(Si, Sj). 

The result of the lemma enables to find LCPref(Si, Sj) in constant time, if 
the tree T, the table L and the LCA dictionary for T are precomputed (which 
takes altogether linear time). Although it is a linear-time construction on the 
whole, the overmerging operation is rather overloaded. 

Bibliographic notes 

The algorithm KMR is from Karp, Miller, and Rosenberg [KMR 72]. Another 
approach is presented in [Cr 81]. It is based on a modification of Hopcroft's 
partitioning algorithm [Ho 71] (see [AHU 74]), and the algorithm computes 
vectors Namer for all values of r with the same complexity. 

The notion of suffix array was invented by Manber and Myers [MM 90]. 
They use a different approach to the construction of suffix arrays than our 
exposition (which refers to the dictionary of basic factors). The worst-case 
complexities of the two approaches are identical, though the average complexity 
of the original solution proposed by Manber and Myers is lower. A kind of 
implementation of suffix arrays is considered by Gonnet and Baeza-Yates in 
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Figure 7.11: Illustration of algorithm Construct-Oracle on the word 
babaabababbajf: T0dd, Teven, and T = OverMerge(Todd,Teven). We have: 
d[vl] = v2, d[v2] = v3, d[v3] — v4, d[v4\ = root. Hence L[vl] = 4, since the d-
links depth of vl is 4, and LCPref(l, 6) = 4. We have also: LCPref(Si,S6) = 
LCPref(S2,S7) + l = LCPref(S3,S8) + 2 = LCPref(S4,S9)+3 = 
LCPref(S5,S10)+4 = 0 + 4. 
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[GB 91], and called Pat trees. The interesting linear-time computation of table 
lep is from Kasai et al. [K-P 01]. 

The first linear-time alphabet-independent algorithm for integer alphabets 
was given by Farach [Fa97]. It is an important theoretical milestone in suffix 
tree constructions. The algorithm is still too complicated. We have shown a 
much simpler algorithm, with the same complexity, assuming that the sorted 
sequence of suffixes is already given. Suffix-Merge-Sort is a version of the 
algorithm in [Fa 97] and [FFM 00]. 
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Chapter 8 

Symmetries and repetitions 
in texts 

This chapter presents algorithms dealing with regularities in texts. By regu
larity we mean a similarity between one segment and some other factors of the 
text. Such a similarity can be at least of two kinds: one segment is an exact 
copy of the other, or it may be a symmetric copy of the other. 

Algorithmically, an interesting exercise is to detect situations in which sim
ilar factors are consecutive in the text. For exact copies we get repetitions of 
the same factor in the form xx (squares). In the case of symmetric copies we 
have words in the form xxR, called even palindromes. Odd palindromes are 
also interesting regularities (words of the form xaxR, where a; is a non-empty 
word). The compositions of very regular words are in some sense also regular: 
a palstar is a composition of palindromes. Algorithms of this chapter are aimed 
at discovering these types of regularities in text. 

8.1 Searching for symmetric words 

We start with a decision problem that consists of verifying if a given text has 
a prefix that is a palindrome; such palindromes are called prefix palindromes. 
There is a very simple linear-time algorithm used to search for a prefix palin
drome: 

• compute the failure function Bord of texthtextR (word of length 2n+1) , 

• then, text has a prefix palindrome iff Bord(2n + 1)^0. 

I l l 
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However, this algorithm has two drawbacks: it is not an on-line algorithm, and 
moreover, we could expect to have an algorithm that computes the smallest 
prefix palindrome in time proportional to the length of this palindrome (if a 
prefix palindrome exists). Later in the chapter (when testing palstars) it will 
be seen why we impose such requirements. 

For the time being, we restrict ourselves to even palindromes. In order to 
improve on the above solution, we proceed in a similar way as in the derivation 
of KMP algorithm: the efficient algorithm is derived from an initial brute-force 
algorithm by examining its invariants. The time complexity of the algorithm 
below is quadratic (in the worst case). A simple instance of a worst text for the 
algorithm is text = abn. The key to the improvement is to make an appropriate 
use of the information gathered by the algorithm. This information is expressed 
by invariant 

w(i,j) : text[i — j + 1. .i] = text[i + 1. A + j]. 

Algorithm brute-force; 
{ looking for prefix even palindromes } 

»:=1; 
while i < [n/2j do begin 

{ check if text[l. .2i] is a palindrome } 
3 == 0; 
while j < i and text[i — j] = text[i + 1 + j] do j := j + 1; 
if j = i then return true; 
{ inv(i,j): text[i — j] ^ text[i + j + 1] } 
i := i + 1; 

end; 
return false; 

The maximum value of j satisfying w(i,j) for a given position i is called 
the radius of the palindrome centered at i, and denoted by Rad[i\. Hence, 
algorithm brute-force computes values of Rad[i] but does not profit from their 
computation. The information is wasted, because at the next iteration, the 
value of j is reset to 0. As an alternative, we try to make use of all possible 
information, and, for that purpose, the computed values of Rad[i] are stored in 
a table for further use. The computation of prefix palindromes easily reduces 
to the computation of table Rad. Hence, we convert the decision version of 
algorithm brute-force into its optimized version computing Rad. For simplicity, 
assume that the text starts with a special symbol. 

The key to the improvement is not only a mere recording of table Rad, but 
also a surprising combinatorial fact about symmetries in words. Suppose that 
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palindrome centered at i palindrome centered at i+k 

palindrome centered at i-k 

Figure 8.1: Case (b) of proof of Lemma 8.1. 

we have already computed the sequence: 

Rad[l], Rad[2], ..., Rad[i\. 

It happens that we can sometimes compute many new entries of table Rad 
without comparing any symbols. The following fact enables us to do so. 

L e m m a 8.1 If the integer k is such that 1 < k < Rad[i] and Rad[i — k] =fi 
Rad[i) — k, then Rad[i + k] = min(Rad[i — k], Rad[i] — k). 

Proof. Two cases are considered: 

Case (a) : Rad[i — k] < Rad[i] - k. 
The palindrome of radius Rad[i — k] centered at t — k is completely 
contained inside the longest palindrome centered at i. Position i — k is 
symmetrical to i + k with respect to i. Hence, by symmetry with respect 
to position i, the longest palindrome centered at i+k has the same radius 
as the palindrome centered at i — k. This implies the conclusion in this 
case: Rad[i + k] = Rad[i — k]. 

Case (b) : Rad[i — k}> Rad[i] - k. 
The situation is illustrated in Figure 8.1. The maximal palindromes 
centered at i — k, i and i + k are presented. Symbols a and 6 are distinct 
due to the maximality of the palindrome centered at i. Hence, Rad[i + 
k] — Rad[i] — k in this case. 

Collecting the results of the two cases, we get Rad[i + k] = mm.(Rad[i — 
k],Rad[i] -k). Q 
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Algorithm Manacher; 
{ on-line computation of prefix even palindromes and of table Rad; 

text starts with a unique left end-marker } 
i := 2; Rad[l] := 0; j := 0; { j = Rad[i] } 
while i < [n/2\ do begin 

while text[i — j] = text[i + 1 + j] do j := 
if j = i then write(i); Rad[i] := j ; 
h — 1-
while Rad[i — k] ^ Rad[i] — k do begin 

Rad\i + k] := mm(Rad[i — k], Rad[i] -
end; 
{ inv(i,j): text\i — j] =fi text[i + j + 1] } 
j :=max(j - k,0); 
i :— i + k; 

end 

j + i; 

- k); k : = * + !; 

During one stage of the algorithm that computes prefix palindromes, we 
can update Rad[i + k] for all consecutive positions k = 1,2,... such that 
Rad[i — k]=fi Rad[i] — k.li the last such k is k', we can then later consider the 
next value of i as i + k', and start the next stage. The strategy applied here is 
similar to shifts applied in string-matching algorithms in which values result 
from a precise consideration on invariants. We obtain the algorithm Manacher 
for on-line recognition of prefix even palindromes and computation of the table 
of radii. 

The solution presented for the computation of prefix even palindromes ad
justs easily to the table of radii of odd palindromes. The same holds true 
for longest palindromes occurring in the text. Several other problems can be 
solved in a straightforward way using the table Rad. 

Theorem 8.1 The longest symmetrical factor and the longest (or shortest) 
prefix palindrome of a text can be computed in linear time. If text has a prefix 
palindrome, and if s is the length of the smallest prefix palindrome, then s can 
be computed in time O(s). 

8.2 Compositions of symmetric words 

We now consider another question regarding regularities in texts. Let P* be 
the set of words that are compositions of even palindromes, and let PAL* 
denote the set of words composed of any type of palindromes (even or odd). 
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Recall that one-letter words are not palindromes according to our definition 
(their symmetry is too trivial to be considered as an "interesting" feature). 

Our aim now is to test whether a word is an even palstar, (a member of 
P*) or a palstar (a member of PAL*). We begin with the simpler case of even 
palstars. 

Let first(text) be a function which value is the first position i in text such 
that text[l. .i] is an even palindrome; it is zero if there is no such prefix palin
drome. The following algorithm tests even palstars in a natural way. It finds 
the first prefix even palindrome and cuts it. Afterward, the same process is 
repeated as often as possible. If we are left with an empty string, then the 
initial word is an even palstar. 

Theorem 8.2 Even palstars can be tested on-line in linear time. 

Proof. It is obvious that the complexity is linear, even on-line. In fact, 
Manacher algorithm computes the function first on-line. An easy modifica
tion of the algorithm gives an on-line algorithm operating within the same 
complexity. 

However, a more difficult issue is the correctness of function PSTAR. Suppose 
that text is an even palstar. It then seems reasonable to expect that its de
composition into even palindromes does not necessarily start with the shortest 
prefix even palindrome. 

function PSTAR(t 
s :=0 ; 

while s < n do 
if first(text\ 
s := s + firs 

end; 
return true; 

ext); { is text an even 

begin 
s + 1. .n]) = 
t(text[s + 1. 

palstar ? } 

0 then return false; 

•«]); 

Fortunately, and perhaps surprisingly, it so happens that we have always a 
good decomposition (starting with the smallest prefix palindrome) if text is an 
even palstar. So the greedy strategy of function PSTAR is correct. To prove 
this fact, we need some notation related to decompositions. It is defined only 
for texts that are even palindromes. Let 

parse(text) = min{s : text\l. .s] £ P and text[s + 1. ,n] G P*}. 

Now the correctness of the algorithm results directly from the following fact. 
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\ center of parse(t) 

prefix palindrome of length 
smaller than first(t) 

(b) | ; — — | ] 

i 
first(t) parse(t) 

textfl .. parse(t)] decomposes into at least 2 palindromes 

Figure 8.2: The proof (by contradiction) of Theorem 8.2. 

Claim. If text is a non-empty palstar, then parse(text) = first(text). 

Proof of t h e claim. It follows from the definitions that first(text) < 
parse(text), hence, it is sufficient to prove that the reverse inequality holds. 
The proof is by contradiction. Assume that text is an even palstar such that 
first(text) < parse(text). Consider two cases 

Case (a) : parse(text)/2 < first(text) < parse(text), 

Case (b) : 2 < first(text) < parse(text)/2. 

The proof of the claim according to these cases is given in Figure 8.2. This 
ends the proof of the theorem. D 

If we try to extend the previous algorithm to all palstars, we are led to 
consider functions firstl and parsel, analogue to first and parse, defined re
spectively as follows: 

parsel(text) = min{s : text[l. .s] € PAL and text[s + 1. .n] e PAL*}, 
firstl(text) = min{s : text[l. ,s] € PAL}. 

Unfortunately, when text is a palstar, the equation parsel(text) = firstl(text) 
is not always true. A counter-example is the text text = bbabb. We have 
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parsel(text) — 5 and firstl(text) = 2. If text = abbabba, then parsel(text) = 7 
and firstl(text) = 4. The third case is for text = aabab: we have parsel(text) = 
firstl(text). Observe that for the first text, we have the equality parsel(text) = 
2 • firstl(text) + 1; for the second text, we have parsel(text) = 2.firstl(text) — 1; 
and for the third text, we have parsel(text) = firstl(text). It happens that it 
is a general rule that only these cases are possible. 

Lemma 8.2 
Let x be a palstar, then parsel(x) G {firstl(x), 2.firstl(x) — 1,2.firstl(x) + 1}. 

Proof. The proof is similar to the proof of the preceding lemma. In fact, 
the two special cases (2.firstl(text) ± 1) are caused by the irregularity im
plied at critical points by considering odd and even palindromes together. Let 
/ = firstl(text), and p = parsel(text). The proof of the impossibility of the 
situation / < p < 2. / — 1 is essentially presented in the case (a) of Figure 8.2. 
The proof of the impossibility of the two other cases, p = 2 . / and p > 2 . / + 1, 
is similar. • 

Theorem 8.3 Palstar membership can be tested in linear time. 

Proof. Assume that we have computed the tables 

F[i] — firstl(text[i + 1. .n]) and PAL[i] = (text[i + 1. ,n] is a palindrome). 

Then it is easy to see that the algorithm PALSTAR recognizes palstars in 
linear time. 

Assuming the correctness of function PALSTAR, in order to prove that it 
works in linear time, it is sufficient to show how to compute tables F and PAL 
in linear time. The computation of PAL is trivial if the table Rad is known. 
This latter can be computed in linear time. 

The computation of table F is more difficult. For simplicity we restrict our
selves to odd palindromes, and compute the table 

Fl[s] = min{s : text[l. .s] is an odd palindrome or s = 0}. 

Assume Rad is the table of radii of odd palindromes: the radius of a palindrome 
of size 2k +1 is k. We say that j is in the range of an odd palindrome centered 
at i iff i - j + 1 < Rad[i] (see Figure 8.3). 

A stack of positions is used. It is convenient to have some special position at 
the bottom. Initially the first position 1 is pushed onto the stack, and i is set 
to 2. One stage begins with the situation depicted in Figure 8.3. All a;'s are 
positions put in the stack (entries of Fl waiting for their values). The whole 
algorithm is: 
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bottom of the stack 

other elements on 
the stack 

positions j which are for the 
first time in range of a palindrome 

top of the stack 

Figure 8.3: Stage (i) in the proof of Theorem 8.3: while the top position j 
is in the range of the palindrome centered at i do begin pop(stack); Fl\j] := 
2(i - i) + 1 end; push(i). 

for i:— 2 t o n do stage(t); 
for all remaining elements j on the stack do 

{ j is not in a range of any palindrome } Fl[j] := 0 

The treatment of even palindromes is similar. In that case, F[i] is computed 
as the niinimum value of even or odd palindromes starting at position i. This 
completes the proof. D 

function PALSTAR(text): Boolean; { palstar recognition } 
pcdstar[n] := true; { the empty word is a palstar } 

for i := n — 1 down t o 0 do begin 

if / = 0 t h e n palstar[i] := true 
else if PAL[i] t h e n pabtar[i} :=true 
else pahtar[i] := (palstar[i + / ] or pabtar[i + 2 / — 1] 

or palstar [i + 2 / + 1]) 
end; 
r e t u r n palstar[0]; 

It is perhaps surprising that testing whether a text is a composition of 
a fixed number of palindromes is more difficult than testing for palstars. 
Recall that here P denotes the set of even palindromes. It is very easy to 
recognize compositions of exactly two words from P. The word text is such 
a composition iff, for some internal position i, text[l. .i] and text[i + 1. .n] are 
even palindromes. This can be checked in linear time if table Rad is already 
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computed. But this approach does not directly produce a linear-time algorithm 
for P3. Fortunately, there is another combinatorial property of texts that is 
useful for that case. Its proof is omitted. 

Lemma 8.3 If x e P2, then there is a decomposition of x into words x[l. .s] 
and x[s. .n] such that both are members of P, and that either the first word 
is the longest prefix palindrome of x, or the second one is the longest suffix 
palindrome of x. 

One can compute the tables of all the longest palindromes starting or end
ing at positions on the word by a linear-time algorithm very similar to that 
computing table F. Assume now that we have these tables, and also the table 
Rad. One can then check if any suffix or prefix of text is a member of P2 in 
constant time thanks to Lemma 8.3 (only two positions are to be checked using 
preprocessed tables). 

Now we are ready to recognize elements of P 3 in linear time. For each 
position i we just check in constant time if text[l. A] € P2 and text[i+l. .n] G P. 
Similarly, we can test elements of P 4 . For each position i we check in constant 
time if text[l. A] e P 2 and text[i + l. .n] £ P2. We have just sketched the proof 
of the following statement. 

Theorem 8.4 The compositions of two, three, and four palindromes can be 
tested in linear time. 

As far as we know, there is presently no algorithm to test compositions of 
exactly five palindromes in linear time. We have defined palindromes as non 
trivial symmetric words (words of size at least two). One can say that for a 
fixed k, palindromes of a size smaller than k are uninteresting. This leads to 
the definition of PAL^ as palindromes of size at least k. Generalized palstars 
(compositions of words from PALk) can also be defined. For a fixed k, there 
are linear-time algorithms for such palstars. The structure of algorithms, and 
the combinatorics of such palindromes and palstars are analogous to what is 
presented in the section. 

8.3 Searching for square factors 

It is a non trivial problem to find a square factor in linear time, that is, a 
non-empty factor in the form xx in a text. A naive algorithm gives cubic 
bound on the number of steps. A simple application of failure functions gives 
a quadratic algorithm. For that purpose, we can compute failure tables Bordi 
for each suffix text[i. .n] of the text. Then, there is a square starting at position 
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middle of the square of size 2k 

u 
1 

V 

1 11 

V. ^ v . 

Figure 8.4: A square xx of size 2fc occurs in uv. The suffix of v[l. .k] of size q 
is also a suffix of u; the prefix of v[k + 1. .\v\] of size p is a prefix of v. We have 
PREF[k]+SUFu[k]>k. 

i in the text iff Bordi[j] > j / 2 , for some l<j<n — i + 1. Since each failure 
table is computed in linear time, the whole algorithm takes quadratic time. 

We develop an 0(n log n) algorithm that tests the squarefreeness of texts, 
and afterward design a linear-time algorithm (for fixed alphabets). The first 
method is based on a divide-and-conquer approach. The main feature of both 
algorithms is a fast implementation of the Boolean function test(u,v) that 
tests whether the word uv contains a square, for two squarefree words u and 
v. Then, if uv contains a square, it must begin in u and ends in v. Thus, the 
operation test is a composition of two smaller Boolean functions: righttest and 
lefttest. The first one searches for a square for which the center is on D, while 
the second searches for a square for which the center is on u. 

We now describe how righttest works on words u and v. We use two auxil
iary tables related to string matching. The first table PREF is defined on the 
word v as in Section 3.2. For a position k on v, PREF[k) is the size of longest 
prefix of v occurring at position k (it is a prefix of v[k + 1. .|x»]]. The second 
table is called SUF. The value SUFu[k] (k is still a position on v) is the size 
of longest suffix of v[l. .k] that is also a suffix of u. Table SUFU is a general
ization of table S discussed in Chapter 3. These tables can be computed in 
linear time with respect to \v\. With the two tables, the existence of a square 
in uv centered on v reduces to a simple test on each position of v, as shown by 
Figure 8.4. 

L e m m a 8.4 The Boolean value righttest(u,v) can be computed in 0(\v\) time 
(independently of \u\). 
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Proof. The computation of tables PREF and SUFU takes 0(\v\) time. It 
is clear (see Figure 8.4) that there exists a square centered on v iff, for some 
position k, PREF[k] + SUFu[k] > k. All these tests take again 0(\v\) time. • 

The dual version of Lemma 8.4 states that the value lefttest(u, v) can be 
computed in 0( |u |) time, which gives the next result. 

Corollary 8.1 The Boolean value test(u,v) can be computed in 0(\u\ + \v\) 
time. 

Proof. Compute righttest(u,v) and lefttest(u,v). The value test(u, v) is the 
Boolean value: righttest(u,v) or lefttest(u,v). 
The computation takes 0 ( H ) (Lemma 8.4), and 0( |u |) time (by symmetry 
from Lemma 8.4), respectively. The result follows. • 

function SQUARE {text): Boolean; 
{ checks if text contains a square, n = \text\ } 

if n > 1 then begin 
if SQUARE(text[l. . |n/2j]) then return true; 
if SQUARE{text[[n/2\ + 1. .n]) then return true; 
if test(text[l. .|_n/2j], £ex£[[n/2j + 1. .n]) then return true; 

end; 
return false; { if value true not yet returned } 

Theorem 8.5 Algorithm SQUARE tests whether a text of length n contains 
a square in time O(nlogn). 

Proof. The algorithm has 0(n log n) time complexity, because test can be 
computed in linear time. The complexity can be estimated using a divide-and-
conquer recurrence. • 

The algorithm SQUARE inherently runs in 0(n log n) time. This is due to 
the divide-and-conquer strategy for the problem. But, it can be shown that 
the algorithm extends to the detection of all squares in a text. And this shows 
that the algorithm becomes optimal, because some texts may contain exactly 
O(nlogn) squares. For example this happens for Fibonacci words. 

We show that the question of testing the squarefreeness of a word can be 
answered in linear time on a fixed alphabet. This contrasts with the previous 
problem. The strategy uses again a kind of divide-and-conquer, but with an 
unbalanced nature. It is based on a special factorization of texts. Our interest 
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vl v2 v3 v4 v5 v6 v7 

Pos(i) 

Figure 8.5: Efficient factorization of the source, v5 is the longest factor occur
ring before position i. 

is mainly theoretical because of a rather large overhead in memory usage. 
The algorithm, or more exactly the factorization denned for the purpose, is 
related to data compression methods based on the elimination of repetitions of 
factors. The algorithm shows another profound application of data structures 
developed in Chapters 4-6 for storing all factors of a text. 

We first define the /-factorization of text (the / stands for factors) (see 
Figure 8.5). It is a sequence of non-empty words (v\,V2, •.. ,vm), where 

• vi = text[l], and 

• for k > 1, Vk is denned as follows. If \v\V2 • • • Vfc-i| = i then Vk is the 
longest prefix u of text[i + 1. .n] that occurs at least twice in text[l. A\u. 
If there is no such u then Vk = text[i + 1]. We denote by pos(vk) the 
smallest position I < i such that an occurrence of v^ starts at /. If there 
is no such position then set pos(vk) = 0. 

function linear-SQUARE(text): Boolean; 
{ checks if text contains a square, n = \text\ } 

compute the /-factorization (v\, i>2, • • • , vm) 
for k := 1 t o m do 

of text; 

if at least one of the conditions of Lemma 8.5 holds then 
return true; 

return false; { if true has not been returnee y e t } 

The /-factorization of a text, and the computation of values pos(vk) can be 
realized in linear time with the directed acyclic word graph G = DAWG{texi) 
or with the suffix tree T(text). Indeed, the factorization is computed while 
the DAWG is built. The overall procedure has the same asymptotic linear 

file:///v/V2
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bound as just building the DAWG. This leads to the final result of the section, 
consequence of the following observation which proof is left as an exercise. 

Lemma 8.5 Let (yi, v2,. . •, vm) be the f-factorization of text. Then, text 
contains a square iff for some k at least one of the following conditions holds: 

1. \viv2...vk-i\ <pos(vk) + \vk\ < \viv2...vk\, 

2. lefttest(vk-i,Vk) or righttest(vk-i,vk), 

3. righttest(viv2 .. • Ufc-2, Ufe-iUfc)-

Theorem 8.6 Function linear-SQUARE tests whether a text of length n con
tains a square in time 0(n) (on a fixed alphabet), with 0(n) additional memory 
space. 

Proof. The computation of righttest{yiv2 .. • vk_2, vk-\vk) is the key point: 
it can be executed in 0{\vk-\vk\) time. Thus the total time is proportional to 
the sum of length of all vk's; hence it is linear. This completes the proof. • 
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Chapter 9 

Constant-space searchings 

The most intriguing algorithms are those efficient simultaneously with respect 
to two measures of complexity. The linear-time string matching with constant 
space is a question of this type. There are several different time-space efficient 
algorithms for this problem, all rely on simple combinatorics of periodicities in 
texts. 

9.1 Constant-space matching for easy patterns 

We start with a family of patterns (self-maximal strings) that are very easy to 
be searched for in texts in constant space and 0(n) time. 

Denote by MaxSuf{w) the lexicographically maximal suffix of the word w. 
The word w is said to be self-maximal if MaxSuf(pat) = pat. 

Maximal suffixes of words and self-maximal words play an important role 
in the computation of periods for several reasons (recall that period(x) is the 
smallest period of x, see Chapter Is): 

(1) If pat is periodic then period(MaxSuf (pat)) = period(pat). 

(2) If pat is self-maximal then each of its prefixes also is. 

(3) If pat is self-maximal then period(pat) can be trivially computed by the 
following function: 

We consider the function Naive-Period that correctly computes the period of 
a word if this word is self-maximal. 

125 
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new period with 
longer continuation 

'old period 
breaks here 

Figure 9.1: Assume, in the algorithm Naive-Period, that pat[i—period (i — 1)] •£ 
patfA], Let a = pat[£], b = pat [i—period]. Since uz is a prefix of pat which is self-
maximal, we have and a < b. If Period(i) < i then, due to the two periodicities, 
zb is a proper subword of pat[l. A — 1] that is lexicographically greater than 
pat. This contradicts the self-maximality of pat. Hence Period(i) = i. 

function Naive-Period(j); 
{ computes the period of self-maximal pat } 

period := 1; 
for i := 2 to j do 

if pat[i] 7̂  pat[i — period] t h e n period := 
r e t u r n period; 

Example . The function Naive-Period usually gives incorrect output for non-
self-maximal words. For example, consider the string 

pat = (aba)6 = abaabaabaabaabaaba. 

The consecutive values of period computed by the function for all positions 
are: 

a b a a b a a b a a b a a b a a b a 
1 2 2 4 5 5 7 8 8 10 11 11 13 14 14 16 17 17 

Hence Naive-Period(18) = 17, for pat = (aba)6, while period(pat) = 3. 

L e m m a 9.1 Assume pat is a self-maximal string. The function Naive-Period 
computes correctly the exact period of pat, as well as of each prefix of pat. 
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Proof. An informal justification is given in Figure 9.1. • 

We modify MP algorithm (Morris-Pratt algorithm) that uses one addi
tional table related to the pattern and a constant number of additional reg
isters. We consider how to get rid of the table. Recall that the basic table 
needed in MP algorithm is the table MPShift[j] = j - Bord[j}. Recall also 
that Bord[j] is precisely the length of the largest proper border of pat[l. .j]. 
Therefore 

MP.Shift[j} = Period(j) 

for j > 0, where Period(j) — period(pat[l. .j]). The MP algorithm can be 
re-written by changing MPShift to Period(j), assuming Period(0) — 0. 

In addition, for self-maximal patterns we can embed the computation of 
Naive-Period(j) directly into MP algorithm. Period(j) is computed here uon-
the-fly" in an especially simple way. Doing so, we get the algorithm called 
SpecialCase-MP. The next lemma follows directly from the correctness of both 
algorithm Naive-Period(j) and algorithm MP. 

Lemma 9.2 / / the pattern is self-maximal then we can find all its occurrences 
in 0(1) space and linear time with the algorithm SpecialCase-MP. 

Algorithm SpecialCase-MP; 
i := 0; j := 0; period := 1; 

while i < n — m do begin 
while j <m and pat[j + 1] 

3=3 + 1] 
= text[i + 

if j > period and pat\j] ^ pat\j — 
period := j ; 

end; 

j + 1] do begin 

period] then 

MATCH: if j = m then return match at i; 
i := i + period; 
if j > 2 - period then j := j 
else begin j := 0; period :— 

end; 
return no match; 

— period; 
1; end; 

9.2 MaxSuffix-Matching 

In this section we develop the first time-space optimal string-matching algo
rithm, which is a natural extension of Morris-Pratt algorithm and which as-
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U V 

/ * s , * v 

pat = Fib? = abaababaabaababaababa = abaababaabaa babaababa 
V V V 

text — abaabaa babaababa baa babaababa abaa babaababa ba 

Figure 9.2: The decomposition of the 7-th Fibonacci word and history of 
MaxSuffix-Matching on an example text. Only for the third occurrence of 
v we check if there is an occurrence of u (underlined segment) to the left of 
this occurrence of v, because gaps between previous occurrences of v are too 
small. The first occurrence is too close to the beginning of text. 

sumes that the alphabet is ordered. We assume that pat and text are read-only 
arrays, and we count the additional memory space as the number of integer reg
isters (each in the range [0. .n]). We assume that the decomposition pat — u-v, 
where v = MaxSuf(pat), is known. Algorithm SpecialCase-MP can be used to 
report each occurrence of v. We extend this algorithm to general patterns by 
testing in a naive way occurrences of u to the left of v. But we do not need 
to test for u to the left of v for each occurrence of v due to the following fact 
(see Figure 9.2). 

Lemma 9.3 [Key-Lemma] Assume that an occurrence of v starts at position 
i on text. Then, no occurrence of uv starts at any of the positions i — \u\ + 
1, i — \u\ + 2,... , i on text. 

Proof. This is because the maximal suffix v of pat can start at only one 
position on pat. • 

The algorithm that implement the remark of Lemma 9.3 is presented below. 
It is followed by a less informal description. 

Algorithm Informal-MaxSuffix-Matching; 
Let pat — uv, where v = MaxSuf (pat); 

Search for v with algorithm SpecialCase-MP; 
for each occurrence of v at i on text do 

Let prev be the previous occurrence of v; 
if i —prev > \u\ then 

if u occurs to the left of v then report a 
{ occurrence of u is tested in a naive way 

match; 

} 
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Theorem 9.1 Algorithm MaxSuffix-Matching makes at most n extra symbol 
comparisons in addition to the total cost of searching for v. 

Proof. Additional naive tests for occurrences of u are related to disjoint 
segments of text, due to Lemma 9.3. Then, altogether this takes at most n 
extra symbol comparisons. • 

Algorithm MaxSuffix-Matching; 
i := 0; j := 0; period := 1; prev 

while i < n — \v\ do begin 
while j < \v\ and v[j + 1] = 

j = j +1; 
if j > period and v[j] ^ 

end; 

{ MATCH OF v. } if j = 
if i — prev > \u\ and u 

report a match at i -
prev :— i; 

end; 
i := i + period; 
if j > 2 • period then j := j 
else begin j := 0; period := 

end 

:=0; 

text[i + j + 1] do 

v[j — period] then 

v\ then 
— text[i — \u\ + 1. 

- I « l ; 

— period 
1; end; 

begin 

period 

.i] then 

= j ; 

begin 

9.3 Computation of maximal suffixes 

We can convert the function Naive-Period into a computation of the length 
of the longest self-maximal prefix of a given text x. The algorithm simulta
neously computes its shortest period. The correctness is straightforward from 
the previous discussion. 

function Longest-Self-Maximal-Prefix (x); 
period := 1; 

for i :— 2 to |a;| do 
if x[i] < x[i — period] then period := i 
else if x[i] > x[i — period] then 

return (i — 1,period); 
return (|x|, period) { there was no return earlier }; 
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We use the algorithm Longest-Self-Maximal-Prefix as a key component in 
the computation of the maximal suffix of the whole text. The function MaxSuf-
and-PeriodO returns the starting position of the maximal suffix of its input and 
the period of the maximal suffix. 

function MaxSuf-and-PeriodO(x); 
i — 1 • 
J • 1 i 

repeat 
(i, period) := Longest-Self-Maximal 
if i = n then return (j, period) 
else j := j + i — (i mod period); 

forever { a return breaks the loop } 

- Prefix (x[j. •«]); 

Example. Let x = abcbcbacbcbacbc. Then, for the usual ordering of letters, 

MaxSuf (x) = cbcbacbcbacbc, 

which is also (cbcba)2cbc. The maximal suffix of xa is: 

cbcbacbcbacbca = MaxSuf (x)a, 

which is a border-free word. The maximal suffix of xb is 

cbcbacbcbacbcb = MaxSuf (x)b. 

This word has the same period as MaxSuf (x). Finally, the maximal suffix of 
xc is cc. 

We can rewrite the function MaxSuf-and-PeriodO as a self-contained func
tion which does not use calls to other functions. The code is shorter but looks 
more tricky. It is impressive that such a short code describes a rather com
plex computation of maximum suffix together with its period in linear time 
and constant additional space. The function mod can even be removed at 
the expense of a slightly more complex structure of the algorithm, without 
affecting the linear-time complexity. 

Lemma 9.4 The algorithm MaxSuf-and-Period makes less than 2.\x\ letter 
comparisons. 

Proof. The value of expression s + j + k is increased by at least one unit 
after each symbol comparison. The result then follows from inequalities 2 < 
s+j + k<2.\x\ + l. • 
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function Maxsuf-and-Period(x); 
s := 1; i := 2; p := 1; 

while (i < n) do begin 
r := (i — s) mod p; 
if (a:[i] = x[s + r]) then i := = i + l 
else if (x[i\ < x[s + r]) then begin 

i := i + 1; p :=i — s; 
end else begin 

s := i — r; i := s + 1; p 
end; 

end; 
return (s,p); 

= i ; 

{ x[s. .n] = MaxSuf(x), p = period(MaxSuf (x)) } 

9.4 Matching patterns with short maximal suf
fixes 

Maximal suffixes have many unexpected properties. We use the following sim
ple property of maximal suffixes which proof is left to the reader (see Figure 
9.3). 

Figure 9.3: An overlap between u and v is impossible when v is the maximal 
suffix of uv. 

Lemma 9.5 Let v = MaxSuf(x) and x = uv. Then u and v cannot overlap: 
no non-empty suffix ofu can be a prefix of v. 

In this section we consider a special case of patterns x with short maximal 
suffixes. They satisfy: 

\MaxSuf{x)\ < |a;|/2. 
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u I prefix of v H ! 
partial-match \ mismatch 

of size j 

i i+j+1 

Figure 9.4: Illustration of the proof of the Short Prefixes Lemma: impossible 
situation. Any next occurrence of v can start only to the right of position 
i + j + 1 because an overlap between u and v is impossible. 

Example . Let x = abababaaababaabababababah. 
Then x decomposes into uMaxSuf(x) with 

u = abababaaababaaa and MaxSuf(x) = bababababab. 

L e m m a 9.6 [Short Prefixes Lemma] Assume the pattern pat has a short maxi
mal suffix. Let pat = uv be the decomposition of the pattern (v — MaxSuf{pat)). 
Assume that we align the pattern pat starting at position i, scan part v and 
find the first mismatch at the (j + l)-th position on v. Then we can skip safely 
the pattern by j + 1 positions without missing any occurrence of pat in the text. 

Proof. Assume that pat is aligned with text in such a way that text[i] is 
aligned with the last letter of u. If we shift pat and align the segment v with 
the text at a position between % and i + j + 1, then u and v will overlap on the 
previously matched part of v, see Figure 9.4. But due to Lemma 9.5, u and v 
cannot have a nonempty overlap. A contradiction that proves the result. • 

We can now modify the MaxSuffic-Matching algorithm by inserting directly 
the shift rule implied by the above lemma. It gives the instruction: 

If j < \v\ t h e n Shift{j) = j + 1 else Shift{j) — period(v). 

The resulting algorithm is called Two- Way Pattern-Matching. 

T h e o r e m 9.2 Assume \MaxSuf(pat)\ < \pat\/2. Algorithm Two-Way Pattern-
Matching finds all occurrences of the pattern in O(l) space using at most 2» 
symbol comparisons, if the maximal suffix v = MaxSuf(pat) is precomputed. 

Proof. Due to large shifts we never test a position of v against the same 
position of the text twice. Tests for u are done on disjoint segments of the 
text. This gives at most n + n comparisons. • 
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Algor i thm Two-way Pattern-Matching; 
{ Simplified version of Crochemore-Perrin algorithm } 

{ period = the period of v } 
i := |u|; j := 0; prev := 0; 
while i < n — \v\ do begin 

while j < \v\ and v[j + 1] = 
{ MATCH OF v. } if j = 

if i — prev > |u| and u -
report a match at i 

prev \= i; i := i+ period 
end else 
{ MISMATCH of v. }i := 

end 

text[i + j + 1] do j = j + 1; 
\v\ then begin 
= text[i — \u\ + 1. A] then 

- M; 
; j := \v\ — period; 

= i + j + l\ 

9.5 Two-way matching and magic decomposi
tion 

For general patterns the algorithm of the preceding section would be incorrect. 
The algorithm is based on the interaction between the two parts u and v of 
the pattern. The nightmare scenario for this algorithm is the case of self-
maximal patterns because then u is empty and there is no useful interaction 
at all. Fortunately, there is a surprising way to get around this problem. 
Consider two inverse orderings of the alphabet, compute the maximal suffixes 
with respect to these orderings, and keep the shorter of them. It does not 
have to be short in the sense of the preceding section, but it is short enough 
to guarantee the correctness of the two-way pattern matching. 

We consider two alphabetical orderings on words. The first one, denoted by 
<, is induced by a given ordering < on the alphabet. The second ordering on 
words, called the reverse ordering and denoted by C, is obtained by reversing 
the order < on the alphabet A. 

Magic decomposit ion. Let x be a non-empty word on A. Let x = u\V\ = 
U2V2, where v\ (resp. v2) is the alphabetically maximal suffix of x accord
ing to the ordering < (resp. C). If \v\\ < \v2\, then (u\,vi) is the magic 
decomposition of x. Otherwise (112, ^2) is the magic decomposition of x. 

Let (u, v) be the magic decomposition of pat and assume that the pattern 
is nontrivial, which means here that it contains at least two distinct letters. In 
this case certainly u is a non-empty word. 
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Figure 9.5: Searching pattern x = u • v = aabbab • aabaabbabaa. Text is the 
bottom line. Since |u| = 6, we start searching for v at position 7; the mismatch 
is at position 7 on v, so the shift has length 7 and we start testing v at position 
14, aligning v at positions indicated by *, despite the fact that we missed the 
match of v at position 10. But this occurrence cannot be preceded by u, so no 
occurrence of uv is missed. 

Example. Let x = aabbabaabaabbabaa. Then 

magic-decomposition(x) = u • v = aabbab • aabaabbabaa. 

Figure 9.5 gives an example of the use of this decomposition. 

Theorem 9.3 Assume the pattern contains at least two distinct symbols. The 
algorithm Two- Way Pattern-Matching is correct if (u, v) is the magic decom
position of the pattern. 

Proof. We only need to show that Lemma 9.6 works also in the case where 
(u, v) is the magic decomposition of pat, with u nonempty. The following fact 
is obvious and we omit its proof. 

Claim 1. For any words x and y, inequalities x < y and x C y are equivalent 
to a; is a prefix of y. 

Claim 2. Assume u occurs in v. v = zuy for some z, y. Then \zu\ is a period 
of the whole pattern. 
Proof of the claim. Let w = zu (Figure 9.6). 

Without loss of generality we may assume that v is the maximal suffix for the 
ordering <. Let pat — u'v' where v' is the maximal suffix for C. Let u" be the 
non-empty word such that u = u'u" (see Figure 9.7). Recall that hypothesis 
|v| < \v'\ implies that u' is a proper prefix of u. Since u"y is a suffix of a;, by 
the definition of v', we get u"y C v' = u"v, hence y C v. By the definition of 
v, we also have y < v. By Claim 1, these two inequalities imply that y is a 
prefix of v. Hence, pat = uzuy, where y is a prefix of zuy. This shows that 
\zu\ is a period of v and of the whole pattern, which completes the proof of 
the claim. 
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Figure 9.6: When (u, v) is the magic decomposition of the pattern, if « occurs 
fully inside v then \zu\ is a global period of the pattern. 
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Figure 9.7: Illustration of the proof that y is a prefix of zuy. 

a period of pattern 
pattern 

prefix of v 
partial-match 

of size j / mismatch text 

Figure 9.8: Any second occurrence of u inside the pattern determines a period 
of it. Then, the mismatch recurs. 
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Assume now that we have a mismatch when scanning v and that we make 
a shift of length smaller than j + 1, which results in placing u "inside" the 
matched part of u. Observe that overlap is impossible due to Lemma 9.5. 
Then we have the situation displayed in Figure 9.8. However the shift is a 
period of the pattern, due to Claim 2. Hence the same mismatch happens, 
so there is no match of the whole pattern starting at this position. Therefore 
any shift smaller than j + 1 can be skipped. This complete the proof of the 
theorem. O 

For a position i on the word x a local period at i is any positive integer 
per such that x[i — j] = x[i — j + per] for each j , 0 < j < per — 1, for which 
both sides of the equation are denned. Denote by LocalPeriod(x, i) the size of 
a minimal local period at i. We say that i is a critical factorization point if 
period(x) = LocalPeriod(x, i). As a side effect of the proofs of the last theorem 
we have the following corollary. 

Theorem 9.4 Assume x contains at least two distinct symbols and let (u,v) 
be its magic decomposition. Then \u\ is a critical factorization point of x. A 
critical factorization point can be computed in constant space and linear time. 

9.6 Sequential sampling for unordered alpha
bets 

When the only access to the input data is by testing equality of two symbols, we 
cannot use the previous algorithms MaxSuffix-matching nor Two- Way Pattern-
Matching since they are based on maximal suffixes. 

We describe shortly the searching phases of two algorithms that work op
timally in this situation: Sequential-Sampling in the section and the Galil-
Seiferas algorithm in the next section. 

The searching phases of both algorithms are simple, but the preprocessing 
phases are not. Another disadvantage is that the cases of periodic and non-
periodic patterns should be considered separately. This was not necessary for 
maximal-suffix-based algorithms. 

Recall that a text x is periodic if period(x) < \x\/2. We consider only the 
case when pat is not periodic but has a periodic prefix of pat. Let j be the 
length of the longest periodic prefix of pat. Define the set 

S = { p, q }, where p = j + 1 — period [pat])., .j]), q = j + 1. 

The set S is called the sample of pat. The positions p and q are the first (from 
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the left) witnesses against the period period(pat[l. .j] of pat. This means that 
q—p = period(pat[l. .q—1]) and pat[p] ^ pat[q}. Let us introduce the predicate: 

MatchSample(i, S) = (text[i +p] = pat[p] and text[i + q] = pat[q\). 

Observation. If MatchSample(i, S) holds then no occurrence of the pattern 
starts at any position in i + 1, i + 2, . . . , i+p on text. The observation implies 
that if the pattern matches the text at the positions of the sample, then the 
next safe shift has length at least p. For example if pat — aaaaaaab then 
S = {7,8}. In this case if MatchSample(i, S) then the next shift has length at 
least 8. 

Algorithm Sequential-Sampling; { Searching phase only } 
{ the case where pat has a sample S = {p, q) } 

i : = 0 ; 
while i < n - m d o begin 

if pat\p] ^ text[i + p] or pat[q] ̂  text[i + q] then i := i + 1 
else begin 

j •= 0; 
while j <m and pat[j +1] = text[i + j +1] do j := j +1; 

MATCH: if j = m then report a match at i; 
MISMATCH: if j < q - 1 then i := i + p else i := i + \^]; 
end 

end 

Remark. In the algorithm, we assume that, when computing j := max{fc : 
text[i + 1. A + k] = pat[l. .k] or k = 0}, symbols text[i + p] and text[i + 
q] are not tested again, since we have already tested them when comput
ing MatchSample(i, S). We say that a word x is highly periodic if |a;| > 
period(x)/3. 

Theorem 9.5 Assume pat is not highly periodic but has a highly periodic 
prefix. Then there exist a sample of pat for which the algorithm Sequential-
Sampling performs report the occurrences of pat in text. The algorithm makes 
at most 2n symbol comparisons and uses a constant additional space. 

Proof. Let pat[l. .q — 1] be the longest periodic prefix of pat, per be the 
period of pat[l. .q — 1] and S = {q — per, q}. Negative tests on letters are 
amortized by immediate shifts, i.e. two comparisons are amortized by a shift 
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of length one. In case of a positive match of the sample S, we start to test 
the full match of pat[l. .q], omitting earlier recognized symbols of the sample. 
Symbols at positions in S do not belong to the period of the prefix pat[l. .q— 1], 
so if a mismatch between text and the prefix is found we can make a shift of 
length s = p. Hence the total work is not greater than q — 1 and p > ^ ^ (prefix 
pat[l. .q — 1] is periodic) so q < 2 • s, and we get the proper amortization. • 

9.7 Galil-Seiferas algorithm 

The algorithm of Galil and Seiferas (GS algorithm in short) can be regarded 
as another space-efficient implementation of MP algorithm. In the context 
of MP algorithm, the idea behind saving on space is to avoid storing all the 
periods of prefixes of the pattern. Only small periods are memorized, where 
"small" is relative to the length of the prefix. Approximations of other periods 
are computed when necessary during the search phase. 

Highly repeating prefixes (hrp's). A primitive word w is called a highly 
repeating prefix of x (a hrp of x, in short) if w3 is a prefix of x. Recall that a 
word w is said to be primitive if it is not a (proper) power of any other word. 
Primitive words are non-empty, so are hrp's. 

GS-decomposition. We say that a word is GS-good if it has at most one 
hrp. The decomposition (u, v) of x is said to be a GS-decomposition if 

|u| < 2.period(v) and v has at most one hrp. 

The basic idea behind GS algorithm is to scan the pattern from a posi
tion where a GS-good word starts. Fortunately, such a position always exists 
because words satisfy a remarkable combinatorial property stated in the next 
theorem, and which technical proof is omitted (we refer the interested reader 
to [CR94]). 

Theorem 9.6 [GS-decomposition theorem] Any non-empty wordx can befac-
torized into a GS-decomposition in 0(1) space and linear time. 

Consider a GS-good word v as a pattern. Let p be the length of the only 
hrp of v and let r be the length of the longest prefix of v having period p. 
Then we can search for pattern v using a version of MP algorithm with the 
shift function computed in constant space and constant time as follows: 

(1) Shift(j)=pitje[2p..r], 
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(2) Shift(j) = r | l , otherwise. 

In the first case we reset j to j — p, in the second case we reset j to 0. The 
cost of comparisons is amortized by shifts, and this proves the following. 

Lemma 9.7 If v is a GS-good word, then we can search for v in constant 
space and linear time with MP algorithm modified by the shift function Shift. 

If the pattern pat is not GS-good, we consider its GS-decomposition (u,v). 
Searching for the whole pattern is done by the previous search for its part 
v, together with naive tests for the prefix part u. Since \u\ < 2.period(v), 
comparisons for the latter tests are no more than \text\. This gives the following 
informal description of Galil-Seiferas algorithm. Observe that it is quite 
similar to MaxSuffix-Matching, where we have a part v (self-maximal word) 
which search is simple and the other part u that is tested naively. 

Algorithm GS\ { informal description } 
{ search for pat in text } 

(u, v) := GS-decomposition of pat; 
find all occurrences of v in text using 
MP algorithm with the modified shift function; 
for each position q of an occurrence of v in text do 

if u ends at q then report a match at position q— \u 
{ occurrences of u are tested in a naive way } 

9.8 Cyclic equality of words 

A rotation of a word u of length n is any word of the form u[k + 1. .n]u[l. .k], 
denoted by u^ (note that u^ = u^1 = u). Let u, w be two words of the 
same length n. They are said to be cyclic-equivalent if u^' — w^> for some 
i,j. If words u and w are written as circles, they are cyclic-equivalent if the 
circles coincide after appropriate rotations. 

There are several linear-time algorithms for testing the cyclic-equivalence 
of two words. The simplest one is to apply any string matching algorithm to 
pattern pat — u and text = ww because words u and w are cyclic-equivalent 
iff pat occurs in text. 

Another algorithm is to find maximal suffixes of uu and ww and check if 
they are identical on prefixes of size n. We have chosen this problem because 
there is simpler interesting algorithm, working in linear time and constant 
space simultaneously, which deserves presentation. 
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Define D(u) and D(w) as: 

D(u) = {k : 1 < k < n and u^ > w^ for some j}, 
D(w) = {k : 1 < k < n and w^ > u^ for some j}. 

We use the following simple fact: 

if D{u) = [1. .n] or D{w) = [1. .n], then words w, W are not cyclic equivalent. 

Now the correctness of the algorithm follows from preserving the invariant: 

D(w) D [1. .i] and D(u) D [1. .j}. 

Algorithm Cyclic-Equivalence(u, w) 
{ checks cyclic equality of u and w of common length n } 

x := uu; y := ww; 
i := 0; j := 0; 
while (i < n) and (j < n) do begi 

k := 1; 
while x[i + k] = y[j + k] do k : 
if k > n then return true; 
if x[i + k] > y[i + k] then i := i 
{ invariant } 

end; 
return false; 

n 

= k + l; 

+ k else j := j + k; 

The number of symbol comparisons is linear. The largest number of com
parisons is for words in the forms u = 1 1 1 . . . 1201 and w = 1111. . . 120. 

Bibliographic notes 

The first time-space optimal string-matching algorithm is from Galil and 
Seiferas [GS 83]. The same authors have designed other string-matching al
gorithms requiring only a small memory space [GS 80], [GS 81]. MaxSuffix-
Matching is from Rytter [Ry 02]. 

Two-Way Pattern-Matching is from Crochemore and Perrin [CP 91]. The 
proof of the magic lemma is based on critical factorization. And the proof of 
the critical factorization theorem can be found in [Lo 83], [CP 91] or [CR 94]. 
The computation of maximal suffixes is adapted from an algorithm of Duval 
[Du 83]. 



Chapter 10 

Text compression 
techniques 

The aim of data compression is to provide representations of data in a reduced 
form. The information carried by data is left unchanged by the compression 
processes considered in this chapter. There is no loss of information. In other 
words, the compression processes that we discuss are reversible. 

The main interest of data compression is its practical nature. Methods are 
used both to reduce the memory space required to store files on hard disks or 
other similar devices, and to accelerate the transmission of data in telecom
munications. This feature remains important particularly due to the rapid 
increase of mass memory, because the amount of data increases accordingly 
(to store images produced by satellites or medical scanners, for example). The 
same argument applies to transmission of data, even if the capacity of existing 
media is constantly improved. 

We describe data compression methods based on substitutions. The meth
ods are general, which means that they apply to data about which little infor
mation is known. Semantic data compression techniques are not considered. 
Therefore, compression ratios must be appreciated on that condition. Standard 
methods usually save about 50% memory space. 

Data compression methods attempt to eliminate redundancies, regulari
ties, and repetitions in order to compress the data. It is not surprising then 
that algorithms have features in commons with others described in preceding 
chapters. 

After Section 10.1 on elementary notions about the compression problem, 
we consider the classical Huffman statistical coding (Sections 10.2 and 10.3). 

141 
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It is implemented by the UNIX (system V) command "pack." It admits an 
adaptive version well suited for telecommunications, and implemented by the 
"compact" command of UNIX (BSD 4.2). Section 10.4 deals with the general 
problem of factor encoding, and contains the efficient Ziv-Lempel algorithm. 

The "compress" command of UNIX (BSD 4.2) is based on a variant of this 
latter algorithm. 

10.1 Substitutions 

The input of a data compression algorithm is a text. It is denoted by s, for 
source. It should be considered as a string on the alphabet {0,1}. The output 
of the algorithm is also a word of {0,1}* denoted by c, for encoded text. Data 
compression methods based on substitutions are often described with the aid 
of an intermediate alphabet A on which the source s translates into a text 
text. A method is then defined by mean of two morphisms g and h from A* 
to {0,1}*. The text text is an inverse image of s by the morphism g, which 
means that its letters are coded with bits. The encoded text c is the direct 
image of text by the morphism h. The set {(g(a), h(a)) : a £ A} is called the 
dictionary of the coding method. When the morphism g is known or implicit, 
the description of the dictionary is given simply by the set {a, h(a) : a £ A}. 

We only consider data compression methods that have no loss of informa
tion. This implies that a decoding function f exists such that s = / (c). Again, 
/ is often defined through a decoding function h' such that text = h'(c), and 
then / itself is the composition of h! and g. The lossless information constraint 
implies that the morphism h is one-to-one, and that h! is its inverse morphism. 
This means that the set {h(a) : a G A} is a uniquely decipherable code. 

The pair of morphisms, (g, h), Leads to a classification of data compression 
methods with substitutions. We get four principal classes according to whether 
g is uniform (i.e., all images of letters by g are words of the same length) or 
not, and whether the dictionary is fixed or computed during the compression 
process. Most elementary methods do not use any dictionary. Strings of a given 
length are sometimes called blocks in this context, while factors of variable 
lengths are called variables. A method is then qualified as block-to-variable 
if the morphism g is uniform, or variable-to-variable if neither g nor h are 
assumed to be uniform. 

The efficiency of a compression method that encodes a text s into a text c 
is measured through a compression ratio. It can be |s|/ |c| , or its inverse |c|/ |s | . 
It is sometimes more sensible to compute the amount of space saved by the 
compression: (\s\ — |c|)/|c|. 
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1100001 1100001 1100001 1100001 1100001 1100001 
cl cl ct cL c l cl 

encoded by 

& a 6 
0100110 1100001 0000110 

Figure 10.1: Repetition coding (with ASCII code). 
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The remainder of this section is devoted to the description of two basic 
methods. They appear on the first line of the previous table repetitions encod
ing and differential encoding. 

The aim of repetitions encoding is to efficiently encode repetitions. Let text 
be a text on the alphabet A. Let us assume that text contains a certain quantity 
of repetitions of the form aa.. .a for some character a (a £ A). Within text, a 
sequence of n letters a, can be replaced by Szan, where the symbol & is a new 
character (& ^ A). This corresponds to the usual mathematical notation an. 
When all the repetitions of a fixed letter are encoded in such a manner, the 
letter itself does not need to appear, so that a repetition is encoded by just 
&n. This is commonly considered for space deletion in text format. 

The string Scan that encodes a repetitions of n consecutive occurrences of 
a is itself encoded on the binary alphabet {0,1}. In practice, letters are often 
represented by their ASCII code. Therefore, the codeword of a letter belongs 
to {0, l} f c with k = 7 or 8. Generally there is no problem in choosing the special 
character & (in Figure 10.1, the real ASCII symbol & is used). Both symbols 
& and a appear in the coded text c under their ASCII form. The integer n of 
the string han should also by encoded on the binary alphabet. Note that it is 
not sufficient to translate n by its binary representation, because we would be 
unable to localize it at decoding time inside the stream of bits. A simple way 
to cope with this is to encode n by the string O^bin(n), where bin(n) is the 
binary representation of n, and t is the length of it. This works well because 
the binary representation of n starts with a 1 (also because n > 0). There are 
even more sophisticated integer representations, but none really suitable for 
the present situation. Conversely, a simpler solution is to encode n on the same 
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number of bits as letters. If this number is k = 8 for example, the translation 
of any repetitions of length less than 256 has length 3 letters or 24 bits. Thus 
it is useless to encode a2 and a3. A repetition of more than 256 identical letters 
is then cut into smaller repetitions. This limitation reduces the efficiency of 
the method. 

The second very useful elementary compression technique is differential en
coding, also called relative encoding. We explain it using an example. Assume 
that the source text s is a series of dates 

1981,1982,1980,1982,1985,1984,1984,1981,... 

These dates appear in binary form in s, so at least 11 bits are necessary for 
each of them. But, the sequence can be represented by the other sequence 

1 9 8 1 , 1 , - 2 , 2 , 3 , - 1 , 0 , - 3 , . . . 

assuming that the integer 1 in place of the second date is the difference between 
the second and the first dates and so on. An integer in the second sequence, 
except the first one, is the difference between two consecutive dates. The 
decoding algorithm is straightforward, and processes the sequence from left 
to right, which is well adapted for texts. Again, the integers of the second 
sequence appear in binary form in the coded text c. In the example, all but 
the first can be represented with only 3 bits each. This is how the compression 
is realized on suitable data. 

More generally, differential encoding takes a sequence (u\,U2,... ,un) of 
data, and represents it by the sequence of differences (iti, u^—u\,..., un—u„_i) 
where — is an appropriate operation. 

Differential encoding is commonly used to create archives of successive ver
sions of a text. The initial text is fully memorized on the device. And, for 
each following version, only the differences from the preceding one are kept 
on the device. Several variations on this idea are possible. For example, 
(ui,u2,...,un) can be translated into {u\,U2 — ui, • • • ,un — u-\), considering 
that the differences are all computed relatively to the first element of the se
quence. This element can also change during the process according to some 
rule. 

Very often, several compression methods are combined to realize a whole 
compression software. A good example of this strategy is given by the appli
cation to facsimile (FAX) machines, for which we consider one of the existing 
protocols. Pages to be transmitted are made of lines, each of 1728 bits. A 
differential encoding is first applied on consecutive lines. Therefore, if the nth 

line is 
010100101010101001001110100110111011000000... 
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and the n + 1 line is 

010100001010110111001110010110111010000000... 

the following line to be sent is 

000000100000011110000000110000000001000000... 

in which a symbol indicates a difference between lines n and n + 1. Of course, 
no compression at all would be achieved if the line were sent explicitly as it is. 
There are two solutions to encoding the line of differences. The first solution 
encodes runs of 1 occurring in the line both by their length and their relative 
position in the line. Therefore, we get the sequence 

(7,1), (7,4), (8,2), (10,1), . . . 

which representation on the binary alphabet gives the coded text. The second 
solution makes use of statistical Huffman codes to encode successive runs of 0s 
and runs of Is. This type of codes is defined in the next section. 

A good compression ratio is generally obtained when the transmitted im
age contains typeset text. But it is clear that "dense" pages lead to a small 
compression ratio, and the that best ratios are reached with blank (or black) 
pages. 

10.2 Static Huffman coding 

The most common technique for compressing a text is to redefine the codewords 
associated with the letters of the alphabet. This is achieved by block-to-variable 
compression methods. According to the pair of morphisms (g, h) introduced 
in Section 10.1, this means that g represents the usual code attributed to the 
characters (ASCII code, for example). More generally, the source is factorized 
into blocks of a given length. Once this length is chosen, the method reduces 
to the computation of a morphism h that minimizes the size of the encoded 
text h(text). The key to finding h is to consider the frequency of letters, and 
to encode frequent letters by short codewords. Methods based on this criterion 
are called statistical compression methods. 

Computing h requires finding the set C = {h(a) : a G A}, which must be a 
uniquely decipherable code in order to permit the decoding of the compressed 
text. Moreover, to get an efficient decoding algorithm, C is chosen as ah 
instantaneous code, i.e., a prefix code, which means that no word of C is a 
prefix of another word of C. It is quite surprising that this does not reduce the 
power of the method. This is due to the fact that any code has an equivalent 
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Figure 10.2: The trie of the prefix code {0,10,1100,1101, 111}. Black nodes 
correspond to codewords. 

prefix code with the same distribution of codeword lengths. The property, 
stated in the following theorem, is a consequence of what is known as the 
Kraft-McMillan inequalities related to codeword lengths, which are recalled 
first. 

Kraft's inequality. There is a prefix code with word lengths i\,^2,---Ak 
on the alphabet {0,1} iff 

k 

Y,2~li <1 ( l(U) 

McMillan's inequality. There is a uniquely decipherable code with word 
lengths £i,£2, • • • ,£k on the alphabet {0,1} iff the inequality 10.1 holds. 

Theo rem 10.1 A uniquely decipherable code with prescribed word lengths ex
ists iff a prefix code with the same word lengths exists. 

Huffman's method computes the code C according to a given distribution 
of frequencies of the letters. This method is both optimal and practical. The 
entire Huffman's compression algorithm proceeds in three steps. In the first 
step, the numbers of occurrences of letters (blocks) are computed. Let na 

be the number of times letter a occurs in text. In the second step, the set 
{na : a £ A} is used to compute a prefix code C. Finally, in the third step, 
the text is encoded with the prefix code C found previously. 

Note that the prefix code should be appended to the coded text because 
the decoder needs it to perform the decompression. It is commonly put inside 
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a header (of the compressed file) which contains additional information on the 
file. Instead of computing the exact numbers of occurrences of letters in the 
source, a prefix code can be computed on the base of a standard probability 
distribution of letters. In this situation, only the third step is applied to encode 
a text, which gives a very simple and fast encoding procedure. Obviously, 
however, the coding is no longer optimal for a given text. 

The core of Huffman algorithm is the computation of a prefix code, over the 
alphabet {0,1}, corresponding to the distribution of letters {na : a € A}. This 
part of the algorithm builds the word trie T of the desired prefix code. The 
prefix property of the code ensures that there is a one-to-one correspondence 
between codewords and leaves of T (see Figure 10.2). Each codeword (and leaf 
of the trie) corresponds to some number na, and yields the encoding h(a) of 
the letter a. 

The size of the coded text is 

\h(text)\ = y~]na x |/i(a)|. 
a€A 

On the trie of the code C the equality translates into 

\h(text)\ = J 2 n0 x \level(fa)\ 

a£A 

where fa is the leaf of T associated with letter o, and level(fa) is its distance 
to the root of T. The problem of computing a prefix code C = {h(a) : a £ A} 
such that \h(text)\ is minimum becomes a problem on trees: 

• find a minimum weighted binary tree T in which the leaves {/a : a G A} 
have initial costs (na : a £ A}, 

where the weight of T, denoted by W(T), is understood as the quantity 
^ n „ x level(fa). The following algorithm builds a minimum weighted tree 
in a bottom-up fashion, grouping together two subtrees under a new node. 
In other words, at each stage the algorithm creates a new node that is made 
a father of two existing nodes. There are several possible trees of minimum 
weight, and all trees that can be created by Huffman algorithm are called 
Huffman trees. 
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Figure 10.3: Huffman tree for abracadabra. 

Algorithm Huffman { minimum weighted tree construction } 
for a in A do create a one-node tree fa with cost c(/a) = na 

L :— queue of trees fa in increasing order of costs; 
N := empty queue; { for internal nodes of the final tree } 
while \L\ + \N\ > 1 do begin 

let u and v be the elements of L U N with smallest costs; 
{ u and v are found from heads of lists } 
delete u and v from (heads of) queues; 
create a tree x with a new node as root, 

and u and v as left and right subtrees; 
c(x) := c(u) + c(v); 
add tree x at the end of queue N; 

end; 
return the remaining tree in L U N; 

Example. Let text — abracadabra. The number of occurrences of letters are 

na — 5,rib = 2,nc = l , n j = l,nr = 2. 

The tree of a possible prefix code built by Huffman algorithm is shown in 
Figure 10.3. The corresponding prefix code is: 

h(a) = 0, h(b) = 10, h{c) = 1100, h(d) = 1101, h(r) = 111. 

The coded text is then 

01011101100011010101110 
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that is a word of length 23. If the initial codewords of letters have length 5, 
we get the compression ratio 55/23 sa 2.4. However, if the prefix code (or 
its trie) has to be memorized, this additionally takes at least 9 bits, which 
reduces the compression ratio to 55/32 « 1.7. If the initial coding of letters 
also has to be stored (with at least 25 bits), the compression ratio is even 
worse: 55/57 ss 0.96. In the latter case, the encoding leads to an expansion of 
the source text. 

As noted in the previous example, the header of the coded text must often 
contain sufficient information on the coding to allow a later decoding of the 
text. The information necessary is the prefix code (or information to recompute 
it) computed by Huffman algorithm, and the initial codewords of letters. 
Altogether, this takes approximately 2|yl| +fc|A| bits (if k is the length of initial 
codewords), because the structure of the trie can be encoded with 2 |A| — 1 bits. 

Theorem 10.2 Huffman algorithm produces a minimum weighted tree in time 
0(\A\log\A\). 

Proof. The correctness is based on several observations. First, a Huffman 
tree is a binary complete tree, in the sense that all internal nodes have exactly 
two sons. Otherwise, the weight of the tree could be decreased by replacing 
a node having one child by the child itself. Second, there is a Huffman tree 
T for {na : a € A} in which two leaves at the maximum level are siblings, 
and have minimum weights among all leaves (and all nodes, as well). Possibly 
exchanging leaves in a Huffman tree gives the conclusion. Third, let x be the 
father of two leaves /;, and fc in a Huffman tree T. Consider a weighted tree 
T' for {na : a G A} — {nb,nc} + {rib + nc}, assuming that x is a leaf of cost 
rib + nc. Then, 

W(T) = W{T') +nb + nc. 

Thus, T is a Huffman tree iff T" is. This is the way the tree is built by the 
algorithm, joining two trees of minimal weights into a new tree. 

The sorting phase of the algorithm takes 0( |A| log \A\) time with any efficient 
sorting method. The running time of the instructions inside the "while" loop 
is constant because the minimal weighted nodes in L U N are at the beginning 
of the lists. Therefore, the running time of the "while" loop is proportional 
to the number of created nodes. Since exactly |A| — 1 nodes are created, this 
takes 0(\A\) time. • 

The performance of Huffman codes is related to a measure of information 
of the source text, called the entropy of the alphabet. Let pa be na/\text\. 
This quantity can be viewed as the probability that letter a occurs at a given 
position in the text. This probability is assumed to be independent of the 
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position. Then, the entropy of the alphabet according to p a ' s is defined as 

H{A) = - ^ Pa log Pa-
a€A 

The entropy is expressed in bits (log is a base-two logarithm). It is a lower 
bound of the average length of the codewords h(a), 

m(A) = Y^,Pa-\h{a)\. 
agA 

Moreover, Huffman codes give the best possible approximation of the entropy 
(among methods based on a recoding of the alphabet). This is summarized in 
the following theorem whose proof relies on the Kraft-McMillan inequalities. 

Theorem 10.3 The average length of any uniquely decipherable code on the 
alphabet A is at least H(A). The average length m(A) of a Huffman code on 
A satisfies H(A) < m{A) < H(A) + 1. 

The average length of Huffman codes is exactly the entropy H(A) when, 
for each letter a of A, pa = 2~\h(a^ (note that the sum of all p a ' s is 1 ). 
The ratio H(X)/m(X) measures the efficiency of the code. In English, the 
entropy of letters according to a common probability distribution of letters 
is close to 4 bits. And the efficiency of a Huffman code is more than 99%. 
This means that if the English source text is stored as a 8-bit ASCII file, the 
Huffman compression method is likely to divide its size by two. The Morse 
code (developed for telegraphic transmissions), which also takes into account 
probabilities of letters, is not a Huffman code, and has an efficiency close to 
66%. This not as good as any Huffman code, but Morse code incorporates 
redundancies in order to make transmissions safer. 

In practice, Huffman codes are built for ASCII letters of the source text, 
but also for digrams (factors of length 2) occurring in the text instead of letters. 
In the latter case, the source is factorized into blocks of length 16 bits (or 14 
bits). On larger texts, the length of blocks chosen can be higher to capture 
extra dependencies between consecutive letters, but the size of the alphabet 
grows exponentially with the length of blocks. 

Huffman algorithm generalizes to the construction of prefix codes on alpha
bet of size m larger than two. The trie of the code is then an almost ro-ary 
tree. Internal nodes have m sons, except maybe one node which is a parent of 
less than m leaves. 

The main default of the entire Huffman compression algorithm is that the 
source text must be read twice: the first time to compute the frequencies 
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of letters, and the second time to encode the text. Only one reading of the 
text is possible if one uses known average frequencies of letters, but then, 
the compression is not necessarily optimal on a given text. The next section 
presents a solution for avoiding two readings of the source text. 

There is another statistical encoding that produces a prefix code. It is 
known as the Shannon-Fano coding. It builds a weighted tree, as Huffman's 
method does, but the process works top-down. The tree and all its subtrees are 
balanced according to their costs (sums of occurrences of characters associated 
with leaves). The result of the method is not necessarily an optimal weighted 
tree, so its performance is generally within that of Huffman coding. 

10.3 Dynamic Huffman coding 

The section describes an adaptive version of Huffman's method. With this 
algorithm, the source text is read only once, which avoids the drawback of the 
original method. Moreover, the memory space required by the algorithm is 
proportional to the size of the current trie, that is, to the size of the alphabet. 
The encoding of letters of the source text is realized while the text is scanned. 
In some situations, the obtained compression ratio is even better that the 
corresponding ratio of Huffman's method. 

Assume that za (z a word, a a letter) is a prefix of text. We consider the 
alphabet A of letters occurring in z, plus the extra symbol # that stands for 
all letters not occurring in z but possibly appearing in text. Let us denote by 
Tz any Huffman tree built on the alphabet A U {#} with the following costs: 

{ na = number of occurrences of a in z, 

n#- = 0. 

We denote by hz(a) the codeword corresponding to a, and determined by the 
treeT2 . 

Note that the tree has only one leaf of null cost, namely, the leaf associate 
with # . 

The encoding of letters proceeds as follows. In the current situation, the 
prefix z of text has already been coded, and we have the tree Tz together with 
the corresponding encoding function hz. The next letter a is then encoded 
by hz(a) (according the tree Tz). Afterward, the tree is transformed into Tza. 
At decoding time the algorithm reproduces the same tree at the same time. 
However, the letter a may not occur in z, in which case it cannot be translated 
as any other letter. In this situation, the letter a is encoded by hz{4f)g{a), 
that is, the codeword of the special symbol # according the tree Tz followed by 
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the initial code of letter a. This step is also reproduced without any problem 
at decoding time. 

The reason why this method is practically effective is due to an efficient 
procedure updating the tree. The procedure UPDATE used in the following 
algorithm can be implemented in time proportional to the height of the tree. 
This means that the compression and decompression algorithms work in real 
time for any fixed alphabet, as it is the case in practice. Moreover, the com
pression ratio obtained by the method is close to that of Huffman compression 
algorithm. 

Algorithm adaptive-Huffman-coding 
T := TE; 

while not end of text do begin 
a := next letter of text; { h is implied by T } 
if a is not a new letter then write(/i(a)) 
else write(/i(#)<?(a)); { g(a) = initial codeword of a } 
T := UPDATE(T); 

end 

The key point of the adaptive compression algorithm is a fast implementa
tion of the procedure UPDATE. It is based on a characterization of Huffman 
trees, known as the siblings property. This property does not hold in general 
for minimum weighted trees. 

Theorem 10.4 [siblings property] Let T be a complete binary weighted tree 
(with n leaves) in which leaves have positive costs, and the cost of any internal 
node is the sum of costs of its children. Then, T is a Huffman tree iff its nodes 
can be arranged in a sequence (a;i,a;2,... ,£271-1) such that: 

1. the sequence of costs (c(xi), c(x2), • • •, c(x2n-i)) is in increasing order, 
and 

2. for any i, 1 < i < n, the consecutive nodes x<n-\ and x^i are siblings 
(they have the same parent). 

Proof. If T is a tree built by Huffman algorithm, the ordering on nodes is 
simply given by the order in which nodes are deleted from queues during the 
run of the algorithm. 

The "if" part of the proof is by induction on the number n of leaves. 
Consider the two nodes x\ and X2 of the list. It is rather obvious that they 
are leaves because their costs are strictly positive integers. The leaves x\ and 
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Figure 10.4: Transformation of Tabra into Tabrac- Marked nodes have been 
exchanged. Number beside nodes give an ordering satisfying the sibling prop
erty. 

X2 can be chosen first by the Huffman algorithm because they have minimum 
costs. Let x be their parent. The rest of the construction is executed as if we 
had only n — 1 leaves, x\ and X2 being substituted by x. By induction, the 
existence of the ordering proves that the tree in which a; is a leaf is a Huffman 
tree. Thus, the initial tree in which x is the parent of x\ and x2 is also a 
Huffman tree (see the proof of Theorem 10.2). • 

The characterization of Huffman trees by the siblings property remains 
true if only one leaf has a null cost. During the sequential encoding, the 
transformation of the current tree Tz into Tza starts by incrementing the cost 
of the leaf Xi that corresponds to a. If point 1 of the siblings property is 
no longer satisfied, node Xi is exchanged with the node Xj for which j is the 
greatest integer such that C(XJ) < c(xi). If necessary, the same operation is 
repeated on the father of Xi, and so on. The exchange of nodes is, in fact, the 
exchange of the corresponding subtrees (see Figure 10.4). The tree structure 
is not affected by exchanges because costs strictly increase from leaves to the 
root (except maybe in the 3-node tree containing the leaf associated with # ) , 
so that a node cannot be exchanged with any of its ancestors. This proves that 
procedure UPDATE can be implemented in time proportional to the height of 
the tree. Thus, we have the following statement. 
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Lemma 10.1 Procedure UPDATE can be implemented to work in time 0(\A\). 

Example. Figure 10.5 shows the sequential encoding of abracadabra. Letters 
are assumed to be initially encoded on 5 bits (a —¥ 00000, b -> 00001, c —• 
00010, . . . , z —>• 11010). The entire translation of abracadabra is: 

00000 000001 0010001 0 10000010 0 110000011 0 110 110 0 
a b r a c a d a b r a 

We get a word of length 45. These 45 bits are to be compared with the 
57 bits obtained by the original Huffman algorithm. For this example, the 
dynamic algorithm gives a better compression ratio, say 55/45 ~ 1.22. 

The precise analysis of the adaptive Huffman compression algorithm has 
led to an improved compression algorithm. The key for the improvement is to 
choose a specific ordering for the nodes of the Huffman tree. Indeed, one may 
note that in the ordering given by the siblings property, two nodes of same cost 
are exchangeable. The improvement is based on a ordering that corresponds 
to a width-first tree-traversal of the tree from leaves to the root. Moreover, 
at each level in the tree, nodes are ordered from left to right, and leaves of 
a given cost precede internal nodes having the same cost. The algorithm 
derived from this idea is efficient for texts of just a few thousand characters. 
The encoding of larger texts save almost one bit per character compared with 
Huffman algorithm. 

10.4 Factor encoding 

Data compression methods with substitutions gain their full power when the 
substitution applies to variable-length factors rather than blocks. The substi
tution is defined by a dictionary: 

D = {(f,c):f&F,c€C}, 

where F is a (finite) set of factors of the source text s, and C is the set of their 
corresponding codewords. The set F acts as the alphabet A of Section 10.1. 
The source text is a concatenation of elements of F. 

Example. Let text be a text composed of ordinary ASCII characters encoded 
on 8 bits. For C, one may choose the 8-bit words, if any, that correspond to 
no letter of text. Then, F can be a set of factors occurring frequently inside 
the text text. Replacing factors of F in text by letters of C compresses the 
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Figure 10.5: Dynamic Huffman compression of abracadabra. 
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text. This result comes from an increase of the alphabet on which the source 
text is written. 

In the general case of factor encoding, a data compression scheme must 
solve the three following points: 

• find the set F of factors that are to be encoded, 

• design an algorithm to factorize the source text according to F, 

• compute a code C in one-to-one correspondence with F. 

When the text is given, the computation of such an optimal encoding is a 
NP-complete problem. The proof can be executed inside the following model 
of encoding. Let A be the alphabet of text. The encoding of text is a word 
in the form d#c where d (e A*) is supposed to represent the dictionary, # 
is a new letter (not in A), and c is the compressed text. The part c of the 
encoded string is written on the alphabet A U {1, 2 , . . . , n) x {1 ,2 , . . . , n}. A 
pair (i, j) occurring in c means a reference to the factor of length j that occurs 
at position i in d. 

Example. On A = {a, b, c}, let text = aababbabbabbc. Its encoding can be 
hhahh#aa(l,4)a(0,5)c. The explicit dictionary is then 

D = {(babb, (1,4)), (bbabb, (0,5))} U A x A. 

Within the above model, the length of d#c is the number of occurrences of 
both letters and pairs of integers that appear in it. For example, this length is 
12 in the previous example. The search for a shortest word d#c that encodes 
a given text reduces to the SCS problem—the Shortest Common Superstring 
problem for a finite set of words—which is a classical NP-complete problem. 

When the set F of factors is known, the main problem is to factorize the 
source s efficiently according to the elements of F, that is, to find factors 
fi,f2,---,fk e F such tha t 

s = / 1 / 2 • • • / / = • 

The problem arises from the fact that F is not necessarily a unique decipherable 
code, several factorizations are often possible. It is important that the integer k 
be as small as possible, and a factorization is said to be an optimal factorization 
when k is minimal. 

The simplest strategy for factorizing s is to use a greedy algorithm. The 
factorization is computed sequentially. Therefore, the first factor /1 is naturally 
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chosen as the longest prefix of s that belongs to F. And the decomposition of 
the remainder of the text is done iteratively in the same way. 

Remark 1. If F is a set of letters or digrams (F C A U A x A), the greedy 
algorithm computes an optimal factorization. The condition may seem quite 
restrictive, but in French, for example, the most frequent factors ("er" and 
"en") have length 2. 

Remark 2. If F is a factor-closed set (all factors of words of F are in F), 
the greedy algorithm also computes an optimal factorization. 

Another factorization strategy, called semi-greedy here, leads to optimal 
factorizations under broader conditions. Moreover, its time complexity is sim
ilar to the previous strategy. 

Semi-greedy factorization strategy of s. 

• let m = max{|uu| : u,v G F, and uv is a prefix of s}; 

• let / i be an element of F such that f\v is a prefix of s, and | / iv | = TO, 
for some v € F; 

• set / i as the next factor; 

• setting s = f\s', iterate the same process on s'. 

Example. Let F = {a,b,c,ab,ba,bb,bab,bba,babb,bbab}, and consider the 
greedy algorithm applied to s = aababbabbabbc. It produces the factorization 

s = a.ab.ab.babb.ab.b.c 

that contains 7 factors. The semi-greedy algorithm gives 

s = a.a.ba.bbab.babb.c 

that is an optimal factorization. Note that F is prefix-closed (prefixes of words 
of F are in F) after adding the empty word. 

The interest in the semi-greedy factorization algorithm is due to the fol
lowing lemma for which the proof is left as an exercise. As we shall see later 
in this section, the hypothesis of the set of factors F originates naturally for 
some compression algorithms. 

Lemma 10.2 / / the set F is prefix-closed, the semi-greedy factorization strat
egy produces an optimal factorization. 
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When the set F is finite, the semi-greedy algorithm may be realized with 
the help of a string-matching automaton (see Chapter 7). This leads to a 
linear-time algorithm to factorize a text. 

Finally, if the set F is known, and if the factorization algorithm has been 
designed, the next step to consider when performing a whole compression pro
cess is to determine the code C. As for the statistical encodings of Sections 
10.2 and 10.3, the choice of codewords associated with factors of F can take 
their frequencies into account. This choice can be made once for all, or in a 
dynamic way during the factorization of s. Here is an example of a possible 
strategy: the elements of F are put into a list and encoded by their position in 
the list. A move-to-front procedure realized during the encoding phase tends 
to attribute small positions, and thus short encodings, to frequent factors. 
The idea of encoding a factor by its position in a list is applied in the next 
compression method. 

Factor encoding becomes even more powerful with an adaptive feature. It 
is realized by the Ziv-Lempel method (ZL method, for short). The dictionary 
is built during the compression process. The codewords of factors are their 
positions in the dictionary. Therefore, we regard the dictionary D as a mere 
sequence of words (/o, /i> • • • )• The algorithm encodes positions in the most 
efficient way according to the present state of the dictionary, using the function 
Ig defined by: 

lg(l) = 1 and 
lg(n) = riog2(n)] for n > 1. 

Algorithm ZL; { Ziv-Lempel compression algorithm } 
{ encodes source s on the binary alphabet } 

D := {e}; x := s # ; 
while x ^ £ do begin 

fk = longest word of D such that x = fk&y, 
for some a € A; 

a :— letter following fk in a;; 
write k on lg\D\ bits; 
write the initial codeword of a on lg\A\ bits; 
add /fca at the end of D; 

x := y; 
end 

Example. Let A = {a,b, # } . Assume that the initial codewords of letters 
are 00 for a, 01 for b, and 10 for # . Let s = aababbabbabb#. Then, the 
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Figure 10.6: Efficient factorization of the source: v$ is the shortest factor not 
occurring to its left. 

decomposition of s is 

that leads to 

s = a.ab.abb.abba.b.b# 

c = 000 101 1001 1100 00001 10110. 

After that, the dictionary D contains seven words: 

D = (e, a, ab, abb, abba, b, b-jf). 

Intuitively, ZL algorithm compresses the source text because it is able to 
discover some repeated factors within it. The second occurrence of such a 
factor is encoded only by a pointer onto its first position, which can save a 
large amount of space. 

From the implementation point of view, the dictionary D in ZL algorithm 
can be stored as a word trie. The addition of a new word in the dictionary 
takes a constant amount of time and space. 

There is a large number of possible variations on ZL algorithm. The study 
of this algorithm has been stimulated by its high performance in practical 
applications. Note, for example, that the dictionary built by ZL algorithm 
is prefix-closed, so the semi-greedy factorization strategy above may help to 
reduce the number of factors in the decomposition. 

The model of encoding valid for that kind of compression method is a 
bit more general than the model introduced previously. In this model, the 
encoding c of the source text s is a word on the alphabet i U { l , 2 , . . . , n } x 
{1 ,2 , . . . , n} . A pair (i, j) occurring in c references a factor of s itself: i is the 
position of the factor, and j is its length. 

Example. Again let s = aababbabbabb#. It can be encoded by the word 

c = a(0,1)6(1,2)6(3,3)afc(ll, 1)# 

of length 10, which corresponds to the factorization found by ZL algorithm. 

The number of factors of the decomposition of the source text reduces if we 
consider a decomposition of the text similar to the /-factorization of Section 
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8.2. The factorization of s is a sequence of words (/ i , /2, • • •, fm) such that 
s = f\fi- • -fm and that is iteratively defined by (see Figure 10.6): / is the 
shortest prefix of fif%+\ • • • fm which does not occurs before in s. 

Example. The factorization of s — aababbabbabbjf- is 

(a, ab, abb, abbabb#) 

which accounts to encode s into 

c = o(0,1)6(1,2)6(3,6)#, 

word of length 7 only, to be compared with the previous factorization. 

Theorem 10.5 The f-factorization of a string s can be computed in linear 
time. 

Proof. Use the directed acyclic word graph DAWG(s), or the suffix tree 
T(s). a 

The number of factors appearing in the /-factorization of a text measures, 
in a certain sense, the complexity of the text. The complexity of sequences is 
related to the notion of entropy of a set of strings as stated below. Assume 
that the possible set of texts of length n (on the alphabet A) is of size \A\hn 

(for all length n). Then h (< 1) is called the entropy of the set of texts. For 
example, if the probability of appearance of a letter in a text does not depend 
on its position, then h is the entropy H(A) considered in Section 10.2. 

Theorem 10.6 The number m of elements of the f -factorization of long enough 
texts is upper bounded by hn/ log n, for almost all texts. 

We end this section by reporting some experiments on compression algo
rithms. Table 10.1 gives the results. Rows are indexed by algorithms, and 
columns by types of text files. "Uniform" is a text on a 20-letter alphabet 
generated with a uniform and independent distribution of letters. "Repeated 
alphabet" is a repetition of the word a6c . . . zABC... Z. Compression of the 
five files has been executed using the Huffman method, Ziv-Lempel algorithm 
(more precisely, COMPRESS command of UNIX), and the compression al
gorithm, called FACT, based on the /-factorization. Huffman method is the 
most efficient only for the file "Uniform", which is not surprising. For other 
files, the results obtained with COMPRESS and FACT are similar. 
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Sources 

Initial length 
Huffman 
COMPRESS 
FACT 

French _ TT .„ Repeated 
text C program Uniform a l o h a b e t 

62816 684497 70000 530000 
53.27 % 62.10 % 55.58 % 72.65 % 

41.46 % 34.16 % 63.60 % 2.13 % 
47.43 % 31.86 % 73.74 % 0.09 % 

Table 10.1: Sizes of some compressed files (best scores in bold). 
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Practical versions of dynamic Huffman coding have been designed by Cormack 
and Horspool [CH 84], and Knuth [Kn 85]. The precise analysis of sequen
tial statistical data compression has been done by Vitter in [Vi 87], where an 
improved version is given. 

NP-completeness of various questions on data compression can be found in 
the book of Storer [St 77]. The idea of the semi-greedy factorization strategy 
is from Hartman and Rodeh [HR 84]. And the dynamic factor encoding using 
the move-to-front strategy is by Bentley, Sleator, Tarjan, and Wei [BSTW 86]. 

This strategy is also used the method designed by Burrows and Wheeler 
(1999) and implemented by bzip. 

In 1977, Ziv and Lempel designed the main algorithm of Section 10.4 (see 
[ZL 77] and also [ZL 88]). The notion of word complexity, and Theorem 10.6 
appears in [LZ 76]. The corresponding linear-time computations are by Rodeh, 
Pratt, and Even [RPE 81] (with suffix trees) and Crochemore [Cr 83] (with 
suffix DAWG's). A large number of variants of Ziv-Lempel algorithm may be 
found in [BCW 90] and [St 88]. An efficient implementation of a variant of 
ZL algorithm is by Welch [We 84]. The experimental results of Section 10.4 
are from Zipstein [Zi 92]. References and results relating compression ratios 
and entropy may be found in [HPS 92]. 
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Considering words that do not occur in the source text instead of factors, 
Crochemore, Mignosi, Restivo, and Salemi (1998) have designed the DCA 
method that has good performance [CMRS 01]. 

Some data compression methods do not use substitutions. A typical exam
ple is given by the application of arithmetic coding that often leads to higher 
efficiency because it can be combined with algorithms that evaluate or approx
imate the source probabilities. A software version of data compression based 
on arithmetic coding is by Witten, Neal, and Cleary [WNC 87]. It is not clear 
to whom application of arithmetic coding to compression should be attributed, 
see [BCW 90] for historical remarks on this point. 



Chapter 11 

Automata-theoretic 
approach 

Finite automata can be considered both as simplified models of machines and 
as mechanisms used to specify languages. As machines, their only memory is 
composed of a finite set of states. In the present chapter, both aspects are 
considered and lead to different approaches to pattern matching. Formally, 
a (deterministic) automaton G is a sequence (A, Q, init,8, T) where A is an 
input alphabet, Q is a finite set of states, init is the initial state (an element 
of Q), and S is the transition function. For reasons of economy we allow 6 to 
be a partial function. The value S(q, a) is the state reached from state q by the 
transition labelled by input symbol a, if any. The transition function extends 
in a natural way to all words, and, for the word x, S(q, x) denotes, if it exists, 
the state reached after parsing the word x with the automaton from the state 
q. The set T is the set of accepting states, or terminal states of the automaton. 

The automaton G accepts the language: 

L(G) = {x : 5(init,x) is defined and belongs to T}. 

The size of G, denoted by size(G), is the number of transitions of G: number 
of pairs (q, a) (q is a state, a is a single symbol) for which S(q, a) is defined. 
Another example for a useful size of G is the number of states denoted by 
statesize(G). 

Probably the most fundamental problem in this chapter is to construct in 
linear time a (deterministic) finite automaton G accepting the words ending 
by one pattern among a finite set of patterns, and gives a representation of 
G of linear size, independently on the size of the alphabet. The use of the 
automaton leads to a linear-time searching algorithm. 
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The background of the previous question is the regular-expression match
ing, in which the finite set is extended into a regular expression e. It is still 
possible to build a linear-size automaton equivalent to the expression, but it 
is no longer deterministic. This yields a slower algorithm to localize patterns 
as stated in the next theorem. 

Theorem 11.1 The recognition of patterns specified by a regular expression e 
in a text text can be realized in time 0{size(e) x |iea;i|) and space 0(size(e)). 

If the automaton is made deterministic, its size may grow exponentially 
but the searching time no longer depends on the expression as stated next. 

Theorem 11.2 The recognition of patterns specified by a regular expression 
e in a text text can be realized in time 0((\A\ x 2S2ze(e)) + |ieii|) and space 
0(\A\ x 2size^), where A is the set of letters occurring effectively in e. 

The proof of the two above theorem may be found in books on automata 
and compiling (see bibliographic references). 

11.1 Aho-Corasick automaton 

We denote by SMA(pat), for String-Matching Automaton, a (deterministic) 
finite automaton G accepting the set of all words containing pat as a suffix. 
In similar way, we denote by SMA(U) an automaton accepting the set of all 
words having a word of the finite set of words II as a suffix. In other words, 
noting A* the set of all words on the alphabet A, 

L(SMA{pat)) = A*pat and L{SMA(U)) = A*U. 

In this section we present a construction of the minimal finite automaton G = 
SMA(pat), where minimality is understood based on the number of states of 
automata. 

Unfortunately, the total size of G depends heavily upon the size of the 
alphabet. We show how to construct these automata in linear time (with 
respect to the output). 

With these automata, the following real-time algorithm SMA can be ap
plied to solve the string-matching problem (for one or many patterns). The 
algorithm outputs a string of O's and l's that locates all occurrences of the 
pattern in the text (l 's mark the end position of occurrences of the pattern). 
The algorithm does not use the same model of computation as the algorithms 
of Chapters 3 and 4 do. There, the elementary operation used by algorithms 



11.1. AHO-CORASICK AUTOMATON 165 

Figure 11.1: One step in the construction of an SMA—from SMA(abaab) to 
SMA(abaaba)—unfolding the a-transition from state 5. Terminal states are 
black. 

(MP, BM, and their variations) is letter comparison. Here, the basic operation 
is branching (computation of a transition). 

Algorithm SMA { real-time transducer for string-matching } 
state := init; TeaA(symbol); 

while symbol ^ end-marker do begin 
state := S(state, symbol); 
if state in T then 

write(l); { it reports an occurrence 
else write(O); 
rea.d(symbol); 

end 

of the pattern } 

We start with the case of only one pattern pat. We show how to build 
the minimal automaton SMA(pat). The function buildSMA builds SMA(pat) 
sequentially. The core of the construction consists, for each letter a of the 
pattern, in unfolding the a-transition from the last created state t. This is 
illustrated on pattern ababa in Figure 11.1. 
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Figure 11.2: The function Bord (dotted arrows) of pattern abaaba, and the 
automaton SMA(abaaba). 

function buildSMA(pat): automaton; 
create a state init; terminal := init; 

for all b in A do S(init, b) := init; 
for a := first to last letter of pat do begin 

temp := 5(terminal, a); 5{terminal,a) := 
for all b in A do 5(x, b) := 6(temp, b); 
terminal := x; 

end; 

new state x; 

return (A, set of created states, 6, init, {terminal}); 

Lemma 11.1 Algorithm buildSMA constructs the automaton SMA(pat) in 
time 0(m.\A\). The (minimal) automaton SMA(pat) has (m + 1)\A\ tran
sitions, and m + 1 states. 

Proof. The proof is left as an exercise. • 

There is an alternative construction of the automaton SMA(pat) that shows 
the relation between SMA's and the MP-like algorithm of Chapter 3. Once we 
have computed the failure table Bord for pattern pat, the automaton SMA(pat) 
can be constructed as follows. We first define Q = { 0 , 1 , . . . ,m}, T — {m}, 
init = 0. The transition function (table) S is computed by the algorithm below. 
Figure 11.2 simultaneously displays the failure links (arrows going to the left) 
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and SMA(abaaba). 

In some sense, we can consider that table Bord represents the transition 
function 5 of the automaton SMA(pat). Then, MP algorithm becomes a mere 
simulation of algorithm SMA above. In the simulation, branching operations 
are substituted by letter comparisons. This remark is indeed the basis of Si
mon's algorithm. The representation of SMA(pat) by a failure function makes 
the size of the representation independent of the alphabet without increasing 
the total time complexity of the search phase. 

Algor i thm { computes the transition function of SMA(pat) } 
{ assuming that table Bord 

for all a in A do 6(0, a) := 0; 
if m > 0 t h e n S(0,pat[l]) := 1; 
for i := 1 to m do 

for all a in A do 
if i < m and a = pat[i + 1] 
else 6(i,a) := 5(Bord[i],a); 

is already computed } 

t h e n S(i,a) := i + 1 

The algorithm above shows that the transition function of SMA(pat) can 
be computed from the failure table Bord. 

We next apply the same strategy to the recognition of a finite set of pat
terns. Assume that we have a set II of r patterns. The i-th pattern is denoted 
by pi. Let m be the sum of lengths of all patterns. We no longer try to build 
the minimal string-matching automaton corresponding to the problem. There
fore, SMA(H) is not necessarily the minimal (deterministic) automaton of the 
language A*T\., as it is when II contains only one pattern. 

To construct SMA(H), we first consider a tree (a word trie) Tree(II) in 
which the branches are labelled by elements of II. The nodes of Tree (II) 
are identified with prefixes of words in II. The root is the empty word e. 
The father of a non-empty prefix xa (a a letter) is the prefix x. We write 
father(xa) = x, and child(x,a) = xa. Nodes of Tree(II) are considered as 
states of an automaton, and they are marked terminal or non-terminal. A 
node is marked terminal if the word it represents is in the set II. All leaves 
are terminal states, but it may also occur that some internal node is also a 
terminal state. This happens when a pattern is a proper prefix of another 
pattern. Figure 11.3 displays Tree({ab,babb,bb}). When applied to a set of 
string II, the algorithm buildSMA below builds an automaton SMA (II) from 
the tree Tree (II). The states of the automaton are the nodes of the tree. The 
algorithm essentially transforms and completes the relation child of Tree (II) 
into the transition S of SMA (II). The algorithm is very similar to the case of a 
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Figure 11.3: The trie of set {ab,babb,bb}. Terminal nodes are black (3, 7, 8). 

single word. Here, no state is created because states are taken from the input 
tree. 

There is, however, a delicate point involved in the computation of terminal 
states. It may occur that some word of II is an internal factor of another word 
of the set. This is the case for the set {ab, babb, bb} considered in Figure 11.3 
because ab is an internal factor of babb. Node 6 of Tree({ab, babb, bb}) becomes 
a terminal state in SMA({ab, babb, bb}), because bab ends with the word ab 
that is in the set (see Figure 11.4). More generally, this happens during the 
construction when the clone of node x, namely node temp in the algorithm, is 
itself a terminal node. 

L e m m a 11.2 The algorithm buildSMA applied to a set II of strings builds 
a deterministic automaton SMA (II) having the same set of nodes as the trie 
Tree(II). It runs in time O (state size (Tree (U)) x \A\). 
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Figure 11.4: The automaton SMA(U) for II = {ab, babb, bb}. Note that node 6 
is terminal. 

function buildSMA(JT): automaton; 
{ father and child links refer to the tree TVee(II) } 

{ states of SMA(U) are the nodes of Tree(II) } 
if root is a terminal node then T :— {root} else T := 0; 
for all b in A do 5(root, b) := root; 
for all non-root nodes x of Tree (II) in bfs order do begin 

t:— father(x); a := the letter such that x — child(t, a); 
temp := S(t,a); 6(t,a) := x; 
if x or temp are terminal nodes then add x to T; 
for all b in A do 

if child(temp,b) is defined then <5(a:,&) := child(temp,b) 
else (5(re, 6) := 6(temp, b); 

end; 
return(j4, nodes of Tree(II), (5, rooi, T); 

The automaton 5MA (II) can also be built from scratch without a previous 
computation of Tree (II). Branches are unfolded as in the case of one pattern. 
Patterns are processed simultaneously, all prefixes of the same length at a 
time, which correspond to the breath-first-search order applied on Tree(II) by 
the algorithm buildSMA. Figure 11.5 illustrates this alternative strategy for 
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Figure 11.5: One step of another possible algorithm for the construction of 
SMA({ab, babb, bb}). Node 6 is a clone of 6(5, b) = 3 (on the left). Transitions 
on node 6 are the same as those on node 3. 

building SMA(U). 

With the automaton SMA(U) built by the previous algorithm, searching a 
text for occurrences of patterns that are in IT can be realized by the algorithm 
SMA. The search is then performed in real time, and the space required to store 
the automaton is 0(statesize(Tree(H)) x |.A|). Again, it is possible to represent 
the automaton SMA(H) with a failure function. The advantage in doing so is 
to represent the automaton within space 0(statesize(Tree(II))), quantity that 
is independent of the alphabet. The search then becomes analogous to MP 
algorithm of Chapter 3. 

Continuing the analogy, a function Bord related to IT can then be defined 
as follows. For a non-empty word u, 

Bord(u) = longest proper suffix of u that is a prefix of some pattern in II. 

We also denote by Bord the failure table defined on nodes of Tree (IT) (except 
on the root) (see Figure 11.6). The relation used by the next algorithm that 
computes table Bord is 

Bord[ta] = Bordk[t]a for the smallest k such that Bordh[t]a e TWe(II), 

Bord[ta] — e otherwise, 

where t is a node of Tree (IT) different from the root. 

Note that the algorithm also marks nodes as terminal in the same situation 
as that explained for the direct construction of SMA(Il). 
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Figure 11.6: The tree Tree(II) with suffix links Bord (left), and the automaton 
SMA(U) (right), for II = {ab,babb,bb}. 

procedure compute-Bord; { failure table on Tree(II) } 
{ father and child refer to the tree Tree (II) } 

{ Bord is defined on nodes of Tree (II) } 
set Bord[e] as undefined; 
for all a in Tree(U) do Bord[a] := e; 
for all nodes x of Tree (II), a; > 2, in bfs order do begin 

£ := father(x); a := the letter such that x = child(t, 
z := Bord[t]; 
while z is defined and za is not in Tree (II) do z := 
if za is in Tree (II) then 5ord[a;] 
if Bord\u] is terminal then mark 

end 

= za else Bord[x] 
x as terminal; 

a); 

Bord[z\; 
: = £ ; 

The time complexity of the above algorithm is proportional to m, the total 
size of II. The analysis is similar to that of computing Bord for a single 
pattern. It is sufficient to estimate the total number of all executed statements 
z := Bord[z\. This statement can again be treated as deleting some items from 
a store and z as the number of items. Let us fix a path 7r of length k from 
the root to a leaf. Using the store principle it is easy to prove that the total 
number of insertions (increases of z) into the store for nodes of n is bounded 
by k, hence, the total number of deletions (executing z := Bord[z}) is also 
bounded by k. If we sum this over all paths we then get the total length m of 
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all patterns in II. 

We can again base the construction of an automaton SMA(H) on the failure 
table of Tree (II). The transition function is defined on nodes of the tree as 
shown by the following algorithm. 

Algorithm { computes transition function for SMA (II) } 
for all 
for all 

a not in Tree (II) do 
nodes x of Tree (II), 

for all a in A do 
if xa is in Tree (II) 

S(e,a) := e; 
\u\ > 0, in bfs order do 

then 6(x, 
else S(x,a) := S(Bord[x],a); 

a) := xa 

function AC(Tree(J[); text): boolean; 
{ Aho-Corasick multi-pattern matching } 
{ uses the table Bord on Tree (II) } 

state := root; rea,d(symbol); 
while symbol ^ end-marker do begin 

while state is defined and child(state, symbol) is undefined do 
state := Bord[state]; 

if state is undefined then state := root 
else state := child (state, symbol); 
if state is terminal then return true; 
read(symbol); 

end; 
return false; 

Algorithm AC is the version of algorithm MP for several patterns. It is a 
straightforward application of the notion of the failure table (namely Bord). 
The preprocessing phase of A C algorithm is the procedure compute-Bord. 

Terminal nodes of SMA(H) can be assigned numbers corresponding to pat
terns in II. Hence, the automaton can produce in real-time numbers that 
correspond to those patterns ending at the last scanned position of the text. 
If no pattern occurs, 0 is written. This proves the following statement. 

Theorem 11.3 The string-matching problem for a finite number of patterns 
can be solved in time 0(n + m). The additional memory is of size 0(m). 
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Figure 11.7: Optimized table Bord on Tree({ab, babb, bb}). Note that the table 
is undefined on node 4. 

The table Bord used in AC algorithm can be improved in the following 
manner. Assume, for example, that during the search, node 6 of Figure 11.6 
has been reached, and that the next letter is a. Since node 6 has no a-son 
in the tree, AC algorithm iterates function Bord from node 6. It successively 
finds nodes 3 and node 4 where the iteration stops. It is clear that the test 
on node 3 is useless in any situation because this node has no son at all. On 
the contrary, node 4 plays its role because it has an a-son. Some iterations 
of the function Bord can be precomputed on the tree. Figure 11.7 shows the 
result of the transformation. The optimization does not change the worst-case 
behavior of AC algorithm. 

11.2 Determinizing automata 

We consider a certain set S of patterns represented in a succinct way by a 
deterministic automaton G with n states. The set S is the language L(G) 
accepted by G. Typical examples of sets of patterns are S = {pat}, a singleton, 
and S = {pat1,pat2,... ,patr}, a finite set of words. In the first example, the 
structure of G is mainly done by the line of consecutive positions in pat. The 
rightmost state (position) is the only terminal state. In the second example, 
the structure of G is the tree of prefixes of patterns. All leaves of the tree are 
terminal states, and some internal nodes can also be terminal if a pattern is a 
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Figure 11.8: The non-deterministic pattern-matching automaton for abaaba. 
The powerset construction gives the automaton SMA(abaaba) of Figure 11.2. 
An efficient case of the powerset construction. 

Figure 11.9: The non-deterministic pattern-matching automaton for the 
set {ab,babb,bb}. The powerset construction gives the automaton 
SMA({ab, babb, bb}) of Figure 11.4. An efficient case of the powerset construc
tion. 

prefix of another pattern of the set. 

We can transform G into a non-deterministic pattern-matching automaton, 
denoted by loop(G), that accepts the language of all words having a suffix in 
L(G). The automaton loop(G) is obtained by adding a loop on the initial 
state, for each letter of the alphabet. The automata loop(G) for the two 
examples of cases mentioned above are presented in Figure 11.8 and Figure 
11.9 respectively. The actual non-determinism of the automata appears only 
on the initial state. 

We can apply the classical powerset construction (see [HU 79], for example) 
to a non-deterministic automaton loop(G) to get an equivalent deterministic 
automaton. It appears that, in the two cases of one pattern and of a finite 
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Figure 11.10: A non-efficient case of the powerset construction. The displayed 
automaton results by adding loops onto the initial state of the deterministic 
automaton accepting words of length 7 that start with letter a. The smallest 
equivalent deterministic automaton has 128 states. 

set of patterns, by doing so we obtain efficiently deterministic string-matching 
automata. In the powerset construction, only those subsets that are accessible 
from the initial subset are considered. 

However, the idea of using loop(G) and the powerset construction on it alto
gether is not always efficient. In Figure 11.10 a non-efficient case is presented. 
It is not hard to become convinced that the deterministic version of loop(G), 
which has a tree-like structure, cannot have less than 27 states. Extending the 
example shows that there exists a non-deterministic automaton, even of the 
form loop(G), with n + 1 states that is transformed into an equivalent deter
ministic automaton having 2™ states. And that is has no smaller equivalent 
deterministic automaton. 

Similarly we can transform the deterministic automaton G accepting one 
word pat into a non-deterministic automaton FAC{G) accepting the set Fac(pat) 
of factors of pat (see Figure 11.11). The transformation can be done simply 
by making all states simultaneously initial and terminal states. But we prefer 
modifying it by creating additional edges from the single initial state to all 
other states, edges that are labelled by all letters. It happens again that we 
find an efficient case of the powerset construction if we start with the deter
ministic automaton accepting just a single word. The powerset construction 
gives the smallest deterministic automaton accepting the suffixes of pat. 

The powerset construction applied on automata of the form FAC(G) is not 
always efficient (see Figure 11.12). If we take as G the deterministic automaton 
with 2n + 3 states accepting the set S = (a + b)na(a + b)nc, then the automaton 
FAC(G) also has 2n + 3 states. But the smallest deterministic automaton 
accepting the set of all factors of words in S has an exponential number of 
states. 

Combining loop and FAC sometimes yields an efficient powerset construc
tion. This is done implicitly in Section 6.2 or when a DAWG is used as a 
pattern-matching machine. There, the failure function defined on the automa
ton DAWG(pat) serves to represent the automaton loop (DAWG (pat)). The 

2 
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Figure 11.11: An efficient case of the powerset construction. Applied to 
FAC(G) accepting Fac(text), it gives the smallest automaton accepting the 
suffixes of pat; it has a linear number of states. 

overall result is efficient because both steps—from pat to DAWG (pat) and 
from DAWG(pat) to loop (DAWG (pat))—are. However, in general, the whole 
determinization process is inefficient. 

11.3 Two-way pushdown automata 

The two-way deterministic pushdown automaton (2dpda) is an abstract model 
of linear-time computations on texts. A 2dpda G is essentially a deterministic 
pushdown finite-state machine (see [HU 79]) that differs from the standard 
model in its ability to move the input head in two directions. 

The possible actions of the automaton are: changing the current state of 
the finite control, moving the head by one position, and locally changing the 
contents of the stack "near" its top. For simplicity, we assume that each change 
of the contents of the stack is of one of two types: 

• push(a)—pushing a symbol a onto the stack; 

• pop—popping one symbol off the stack. 

The automaton has access to the top symbol of the stack and to the symbol in 
front of the two-way head. We also assume that there are special left and right 
end-markers on both ends of the input word. The output of such an abstract 
algorithm is "true" iff the automaton stops in an accepting state. Otherwise, 
the output is "false." Initially the stack contains a special "bottom" symbol, 
and we assume that at the final moment of acceptance the stack also contains 
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Figure 11.12: A non-efficient case of the powerset construction. The automaton 
G (on the left) accepts (a + b)na(a + b)nc, for n = 3. A deterministic version 
of FAC(G) (on the right) has, in this case, an exponential number of states. 

one element. When the stack is empty the automaton stops (the next move is 
undefined). 

A problem solved by a 2dpda can be treated abstractly as a formal language 
L consisting of all words for which the answer of the automaton is "true" (G 
stops in an accepting state). We say also that G accepts the language L. The 
string-matching problem, for a fixed input alphabet, can be also interpreted 
as the formal language: 

Lsm = {pat&ctext : pat is a factor of text}. 

This language is accepted by some 2dpda and this property gives an automata-
theoretic approach to linear-time string-matching, because, as we shall see 
later, a 2dpda can be simulated in linear time. Historically, in fact, it was one 
of the first methods used for the (theoretical) design of a linear-time string-
matching algorithm. 

Lemma 11.3 There is a 2dpda accepting the language Lsm. 

Proof. We define a 2dpda G for Lsm. It simulates the naive string-matching 
algorithm brute-forcel (see Chapter 3). At a given stage of the algorithm, we 
start at a position i in the text text, and at the position j = 1 in the pattern 
pat. The pair (i,j) is replaced by the pair (stack, j), where j is the position of 
the input head in the pattern (and has exactly the same role as j in algorithm 
brute-forcel). The contents of the stack is text[i. .n] with texi[i + l] at the top. 
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The automaton tries to match the pattern starting from position i + 1 in the 
text. It checks if the top of the stack equals the current symbol at position 
j in the pattern; if so, then (j = j + l,pop). This action is repeated until 
a mismatch is found, or until the input head points on the marker "&." In 
the latter case, G accepts. Otherwise, it goes on to the next stage. The stack 
should now correspond to text[i + 1. .n] and j — 1. It is not difficult to reach 
such a configuration. The stack is reconstructed by shifting the input head back 
while simultaneously pushing scanned symbols of pat (that have been matched 
successfully against the pattern). This shows that the algorithm brute-forcel 
can be simulated by a 2dpda, and completes the proof. • 

Similarly to the previous simulation, the problem of finding the prefix palin
dromes of a string, and several other problems related to palindromes, can be 
interpreted as formal languages. Here is a sample: 

Lprefpal = {ww u : u,w G A*, w non-empty word}, 

LPrefpai3 = {wwRuuRvvRz : w, v G A*,w,u,v non-empty words}, 

Lpai2 = {ww uu : w, u, v G A*, w, u non-empty words}. 

All these languages related to symmetries are accepted by 2dpda. We leave 
it as an exercise to construct appropriate 2dpdas. 

The main feature of 2dpdas is that they correspond to some simple linear-
time algorithms. Assume that we are given a 2dpda G and an input word w 
of length n. The size of the problems is n (the static description of G has 
constant size). Then, it is proven below that testing whether w is in L(G) 
takes linear time. We present the concepts that lead to the proof of the result. 

The key concept for 2dpda is the consideration of top configurations also 
called surface configurations. The top configuration of a 2dpda retains its top 
element from the stack only. The first basic property of top configurations is 
that they contain sufficient information for the 2dpda to choose the next move. 
The entire configuration consists of the current state, the present contents of 
the stack, and the position of the two-way input head. Unfortunately, there 
are too many such configurations (potentially infinite, as the automaton can 
loop while making push operations). It is easy to see that in every accepting 
computation the height of the stack is linearly bounded. But this does not 
help very much because there is an exponential number of possible contents of 
the stack of linear height. The second basic property of top configurations is 
that their number is linear in the size of the problem n. 

Formally, a top configuration is a tuple C = (state, top, symbol,position). 
The linearity of the set of top configurations obviously follows from the fact 
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that the number of states and the number of top symbols (elements of the 
stack alphabet) are bounded by a constant: they do not depend on n. 

We can classify top configurations according to the type of next move of the 
2dpda as pop configurations and push configurations. For a top configuration 
C, we define Term[C] as a pop configuration C" accessible from C after some 
number (possibly zero) of moves that do not pop the top symbol C. If there is 
no such C" then Term[C] is undefined. Assume w. 1. o. g. that the accepting 
configuration is a pop configuration and that the stack is a simple element. 

The theorem below is the main result related to 2dpdas. It is surprising in 
view of the fact that the number of moves is usually bigger than that of top 
configurations. In fact, a 2dpda can make an exponential number of moves 
and halt. But the result simply shows that shortcuts are possible. 

Theorem 11.4 If the language L is accepted by a 2dpda, then there is a linear-
time algorithm to test whether x belongs to L (for fixed-size alphabets). 

Proof. Let G be a 2dpda, and let w b e a given input word of length n. Let 
us introduce two functions acting on top configurations: 

• Pl(C) = C', where C" results from C by a push move; this is defined 
only for push configurations. 

• P2(CI, C2) = C", where C" results from C2 by a pop move, and the top 
symbol of C" is the same as in Cl (C2 determines only the state and the 
position). 

Let POP be the boolean function defined by: POP(C) = true iff C is a pop 
configuration. All these functions can be evaluated in constant time by a ran
dom access machine using the (constant-sized) description of the automaton. 

It is sufficient to compute in linear time the value of Term[C0] (or find 
that it is undefined), where CO is an initial top configuration. According to 
our assumptions simplifying 2dpdas, if G accepts, then Term[C0] is defined. 
Assume that initially all entries of the table Term contain a special value "not 
computed." 

We start with the assumption that G never loops and ends with a one-
element stack. In fact, if the move of G is at some moment undefined we 
can assume that it goes to a state in which all the symbols in the stack are 
successively popped. 

Algorithm { linear-time simulation of the halting 2dpda } 
for all configuration C do onstack[C] :=false; 
return Comp(C0); 
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function Comp(C); 
if Term[C] = "not computed" then 

if POP(C) t h e n Term[C] := C 
else Term[C] := Comp(P2{C, Comp{Pl{C)))); 

r e t u r n Term[C]; 

The correctness and time linearity of the algorithm above are obvious in 
the case of a halting automaton. The statement uTerm[C] : = . . . " is executed 
at most once for each C. Hence, only a linear number of push moves (using 
function P I ) are applied. 

Algorithm Simulatel; 
{ a version of the previous algorithm that detects loops } 

for all configuration C do onstack[C] :=false; 
r e t u r n Compl(C0); 

function Compl(C); 
{ returns Term[C] if defined, 'false' otherwise, C l is a local variable } 

if Term[C] = "not computed" then begin 
C l := P1(C); 
if onstack[Cl] then return false { loop } 
else onstack[Cl] :— true; 
Cl := Comp(Cl); onstack[Cl] := false; { pop move }; 
C l : = P 2 ( C , C l ) ; 
if onstack[Cl] then return false { loop } else begin 

onstack[C] :=false; onstack[Cl] :=true 
end; 
Term[C] := Comp{Cl) 

end; 
r e t u r n Term[C]\ 

The algorithm Simulatel is for the general case: it also detects a possible 
looping of G for a given input. We use the table onstack initially consisting 
of "false" values. Whenever we make a push move we then set onstack[Cl] to 
true for the current top configuration Cl , and whenever a pop move is made 
we set onstack[Cl] to false. The looping is detected if the automaton tries to 
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put a configuration that is already on the (virtual) stack of top configurations. 
And if there is a loop, such a situation occurs. 

The algorithm Simulate 1 has also a linear-time complexity by the same 
argument as in the case of halting 2dpdas. This completes the proof. • 

Sometimes it is quite difficult to design a 2dpda for a given language L, 
even if we Know that such 2dpda exists. An example of such a language L is: 

L = {1™ : n is the square of an integer}. 

A 2dpda for this language can be constructed by a method presented in 
[Mo 85]. It is much easier to construct 2dpdas for the following languages: 

{anbm : m = 2"}, {anbm : m = n 4 } , {anbm : m = log*(n)}. 

But it is not known whether there is a 2dpda accepting the set of even 
palstars, or the set of all palstars. In general, there is no good technique for 
proving that a specific language is not accepted by any 2dpda. In fact the 
"P= NP?" problem can be reduced to the question: does a 2dpda exist for a 
specific language LI There are several examples of such languages. Generally, 
2dpdas are used to give alternative formulations of many important problems 
in complexity theory. 

Bibliographic notes 

Two "simple" pattern-matching machines are discussed by Aho, Hopcroft, and 
Ullman in [AHU 74] and, in the case of many patterns, by Aho and Corasick 
in [AC 75]. The algorithms first compute failure functions, and then the 
automata. The constructions given in Section 11.1 are direct constructions 
of the pattern-matching machines. The algorithm of Aho and Corasick is 
implemented by the command "fgrep" of UNIX system. A version of BM 
algorithm adapted to the search for a finite set of patterns was first sketched 
by Commentz-Walter [Co 79]. The algorithm was completed by Aho [Ah 90]. 
Another version of Commentz-Walter's algorithm is presented in [BR 90]. An 
algorithm for multiple string searches is presented in Crochemore et al. [C-R 
93], where experiments on the real behavior of the algorithm are presented. 

The determinization of automata can be found in the standard textbook 
of Hopcroft and Ullman [HU 79]. The question of efficient determinization of 
automata is from Perrin [Pe 90]. This paper is a survey on the main properties 
and discoveries about automata theory. 
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Chapter 12 

Approximate pat tern 
matching 

In practical pattern-matching applications, the exact matching is not always 
pertinent. It is often more important to find objects that match a given pattern 
in a reasonably approximate way. In this chapter, approximation is measured 
mainly by the so-called edit distance: the minimal number of local edit oper
ations needed to transform one object into another. The analogue for DNA 
sequences is called the alignment problem (see Figure 12.1). Algorithms are 
mainly based on the algorithmic method called dynamic programming. We 
also present problems strongly related to the notion of edit distance, namely, 
the computation of longest common subsequences, string matching allowing 
errors, and string matching with don't care symbols. 

12.1 Edit distance 

An immediate question arising in applications is how to test the equality of 
two strings allowing some errors. The errors correspond to differences between 

A T G A A - - T C T T A C C G C C T C G 

I I I I I I I I I I I I I 
A T G A G G C T C T G G C C - C C T - G 

Figure 12.1: Alignment of two DNA sequences showing the operations of 
changes, insertions ("-" in top line), and deletions ("-" in bottom line). 
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the two words. We consider in this section three types of differences between 
two strings x and y: 

change: symbols at corresponding positions are distinct, 

insertion: a symbol of y is missing in a; at a corresponding position, 

deletion: a symbol of x is missing in y at a corresponding position. 

We require the minimum number of differences between x and y. We translate 
this as the smallest possible number of operations (change, deletion, insertion) 
to transform x into y. This is called the edit distance between x and y, and 
denoted by edit(x,y). It is clear that it is a distance between words, in the 
mathematical sense. This means that the following properties are satisfied: 

• edit(x, y) > 0, 

• edit(x, y) = 0 iff x = y, 

• edit(x,y) = edit(y,x) (symmetry), 

• edit(x,y) < edit(x,z) + edit(z,y) (triangle inequality). 

The symmetry of edit comes from the duality between deletions and insertions: 
a deletion of the letter a of a; in order to get y corresponds to an insertion of 
a into y to get x. 

Example. The text x = wojtk can be transformed into y = wjeek using one 
deletion, one change and one insertion. This shows that edit(wojtk, wjeek) < 
3, because it uses three operations. In fact, this is the minimum number of 
edit operations to transform wojtk into wjeek. 

From now on, we consider that words x and y are fixed. The length of x is 
m, and the length of y is n, and we assume that n > m. We define the table 
EDIT by: 

EDIT[i,j] = edU{x[l. .i},y[l. .j}) 

for 0 < i < m and 0 < j < n. The boundary values are defined as follows (for 
0 < i < m, 0 < j < n): 

EDIT[0,j]=j, EDIT[i,0] = i. 

There is a simple formula for computing other elements. 
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Figure 12.2: The path corresponds to the sequence of edit operations: insert(a), 
insert(b), delete(b), insert(b), insert(b), change(c,a). 

(*) Dynamic Programming Recurrence: 

EDIT[i,j] = mm(EDIT[i - 1, j] + 1, EDIT[i,j - 1] + 1, 
EDIT[i-l,j-l]+d(x\i],y\j]), 

where d(a, b) = 0 if a — b, and d(a, b) = 1 otherwise. 

The formula reflects the three operations, deletion, insertion, and change, in 
that order. 

There is a graph theoretical formulation of the editing problem. We consider 
the grid graph also called the alignment graph, denoted by G. It is composed 
of nodes (i, j) (for 0 < i < m , 0 < j < n). 

The node (i — 1, j — 1) is connected to the three nodes (i — l,j), (i,j — 1), (i, j) 
when they are defined (i.e., when i < m, or j < n). 

Each edge of the grid graph has a weight corresponding to the recurrence (*). 
The edges from (i — 1, j - 1) to (i — 1, j ) and {i,j — 1) have weight 1, as they 
correspond to the insertion and deletion of a single symbol, respectively. The 
edge from (i — 1, j — 1) to (i, j) has weight 9(a:[i],j/[ 

Figure 12.2 shows an example of grid graph for words cbabac and abcabbbaa. 

The edit distance between words x and y equals the length of a least weighted 
path in this graph from the source (0,0), left upper corner, to the sink (m, n), 
right bottom corner. 
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function 
{ \x\ = m 

for i :-
for j : 
for i :• 

edit(x, y) { computation of edit distance } 
, |y| = n, EDIT is a matrix o 
= 0 to TO do EDIT[i,0] := i\ 
= 1 to n do EDIT[0,j] := j ; 
= 1 to TO do 

for j := 1 to n do 
EDIT[i,j] = mm{EDIT[i -

EDIT[i 
return EDIT[m,n}; 

f integers } 

l,j] + l,EDIT[i,j 
-l,j-l]+d(x[t\, 

- 1 ] + 1, 
y[j}); 

The algorithm above computes the edit distance of strings x and y. It 
stores and computes all values of the matrix EDIT, although only one entry, 
EDIT[m,n], is required. This serves to save time, and this feature is called 
the dynamic programming method. Another possible algorithm to compute 
edit(x, y) could be to use the classical Dijkstra's algorithm for shortest paths 
in the grid graph. 

Theorem 12.1 Edit distance of two words of lengths TO andn can be computed 
in 0(mn) time using 0(min{TO, n}) additional memory. 

Proof. The time complexity of the algorithm above is obvious. The space 
complexity results from the fact that we do not have to store the entire table. 
The current and the previous columns (or lines) are sufficient for carrying out 
computations. • 

We can assign specific costs to edit operations, depending on the type 
of operations and on the type of symbols involved. Such a generalized edit 
distance can be computed using a formula analogous to equation (*). 

As noted in the proof of the previous theorem, the whole matrix EDIT 
does not need to be stored (only two columns are sufficient at a given step) 
in order to compute only edit(x, y). However, we can keep it in memory if we 
want to compute a shortest sequence of edit operations transforming x into y. 
This is essentially done by tracing back in the matrix how each value has been 
obtained. 

12.2 Longest common subsequence problem 

In this section, we consider a problem that illustrates a particular case of the 
edit distance problem of the previous section. This is the example of computing 
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Figure 12.3: The size of the longest subsequences is the maximal number of 
shaded boxes (associated with matches) on a monotonically decreasing path 
from source to sink. Compare with Figure 12.4. 

source 

c 

b 

a 

b 

a 

c 

a b c b b a 

\ 

\ 

\ 

\ 

—< 
sink 

Figure 12.4: Assigning cost 2 diagonal edges, the length of the path is TO + n. 
Diagonal edges correspond to equal letters, other edges to edit operations. 
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longest common subsequences (see Figure 12.3). We denote by lcs(x,y) the 
maximal length of subsequences common to x and y. For fixed x and y, we 
denote by LCS[i,j] the length of a longest common subsequence of x\l. .i] and 

y[i.-j]. 
There is a strong relationship between the longest common subsequence 

problem and a particular edit distance computation. Let editdi(x,y) be the 
minimal number of operations delete and insert necessary to transform x into 
y. This corresponds to a restricted edit distance where changes are not allowed. 
A change in the edit distance can be replaced by a pair of operations, deletion 
and insertion. The following lemma shows that the computation of lcs(x, y) is 
equivalent to the evaluation of editdi(x, y). The statement is not true in general 
for all edit operations, or for edit operations having distinct costs. However, 
the restricted edit distance editdi remains to give weight 2 to changes, and 
weight 1 to both deletions and insertions. Recall that x and y have respective 
length m and n, and let EDITdi[i,j] be editdi(x[l. .i], [1. .j]). 

Lemma 12.1 We have 2 • lcs(x, y) =m + n— editdi(x, y), and 2 • LCS[i, j] = 
i+j — EDlTdi[i,j], for 0 <i <m and 0 < j <n. 

Proof. The equation can be easily proved by induction on i and j . This is 
also apparent on the graphical representation in Figure 12.4. Consider a path 
from the source to the sink in which diagonal edges are only allowed when the 
corresponding symbols are equal. The number of diagonal edges in the path is 
the length of a subsequence common to x and y. Horizontal and vertical edges 
correspond to a sequence of edit operations (delete, insert) to transform x into 
y. If we assign cost 2 to the diagonal edges, the length of the path is exactly 
the sum of the lengths of words, m + n. D 

As a consequence of Lemma 12.1 computing lcs(x, y) takes the same amount 
of time as computing the edit distance of the strings. A longest common subse
quence can even be found with linear extra space (see bibliographic references). 

Theorem 12.2 A longest common subsequence of two strings of lengths m, n 
can be computed in 0(mn) time using 0{mn) additional memory. 

Proof. Assume that the table EDITdi is computed for zero-one costs of 
edges. Table LCS can be precomputed from Lemma 12.1. After that, a longest 
common subsequence can be constructed from the table LCS. • 

Let r be the number of shaded boxes in Figure 12.3. More formally, it is the 
number of pairs (i,j) such that x[i] = y[j]. If r is small (which happens often 
in practice) compared to mn, then there is an algorithm to compute longest 
common subsequence that is faster than the previous algorithm. 
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Figure 12.5: Hunt-Szymanski strategy on the word y = abcabbaba. Par t i t ions 
of positions just before processing letter a of x = cba ( top), and just after 
(bot tom). 

The algorithm is given below. It processes the word x sequentially from left 
to right. Consider the situation in which x[l. A — 1] has jus t been processed. 
The algorithm maintains a part i t ion of positions on the word y into intervals 
Io, h, • • • , h, • • • tha t are defined by 

Ik = {j:lcs{x{l..i-l],y[l..j])=k}. 

In other words, positions in a class Ik correspond to prefixes of y having the 
same maximal length of common subsequence with x[l. .i — 1]. Consider, for 
instance, y = abcabbaba and x = cb.... Figure 12.5 (top) shows the part i t ion 
{Io,h,l2} of positions on y. For the next symbol of x, letter a, the figure 
(bot tom) displays the modified part i t ion {Io, h, I2, h}- The computat ion re
duces to shifting to the right, like bowls on a wire, positions corresponding to 
occurrences of a inside y. 

The algorithm les below implements this strategy. It makes use of opera
tions on intervals of positions: CLASS, SPLIT, and UNION. They are defined 
as follows. For a position p on y, CLASS(p) is the index k of the interval 1^ 
to which it belongs. When p is in the interval [f,f + l,...,g], and p / / , 
then SPLIT(h,p) is the pair of intervals ( [ / , f + 1,... ,p—l],\p,p+l,..., g]). 
Finally, UNION is the union of two intervals; in the algorithm, only unions of 
disjoint consecutive intervals are performed. 
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Theorem 12.3 Algorithm les computes the length of a longest common sub
sequence of words of length m and n (m < n) in 0((n + r) logn) time, where 
r = \{{i,j) : x\i] = y[j]}\. 

Proof. The correctness of the algorithm is left as an exercise. The time 
complexity of the algorithm strongly relies on an efficient implementation of 
intervals Ik's. Using an implementation with B-trees, it can be shown that each 
operation CLASS, SPLIT, and UNION takes O(logn) time. Preprocessing lists 
of occurrences of letters of the word y takes O(nlogn) time. The rest of the 
algorithm takes 0{r\ogn) time. • 

function lcs{x,y): integer; { Hunt-Szymanski algorithm } 
{ m = |a:| and n = \y\ } 

I0 := { 0 , 1 , . . . , n}; for k := 1 to n do Ik = 0; 
for i := 1 to m do 

for each p position of x[i] inside y 
in decreasing order do begin 

k := CLASS{p); 
if k = CLASS(p - 1) then begin 

(Ik,X):=SPLIT(Ik,p); 
Ik+i:= UNION(X,Ik+1); 

end; 
end; 

return CLASS(n); 

According to Theorem 12.3, if r is small, the computation of les by the 
last algorithm takes O(nlogn) time, which is faster than with the dynamic 
programming algorithm. But, r can be of order mn (in the trivial case 
where x = am,y = an, for example), and then the time complexity becomes 
0(mnlogn), which is larger than the running time of the dynamic program
ming algorithm. 

The problem of computing les can be reduced to the computation of the 
longest increasing subsequence of a given string of elements belonging to a 
linearly ordered set. Let us write the coordinates of shaded boxes (as in Fig
ure 12.3) from the first to the last row, and from left to right within rows. By 
doing so, we get a string w. No matrix table is needed to build w, the words 
x and y themselves suffice. For example, for the words of Figure 12.4 we get 
the sequence 

((1,3), (2,2), (2,5), (2,6), (3,1), (3,4), (3,7), 
(4,2), (4,5), (4,6), (5,1), (5,4), (5,7), (6,3)). 
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Define the following linear order on pairs of positions: 

(i,j) < ( M ) iff ((* = *0 and (j > I)) or ((t < k) and (j < I)). 

Then a longest increasing (according to <C) subsequence of the string w gives 
a longest common subsequence of the words x and y. There is an elegant 
algorithm to compute such increasing subsequences running is 0(r log r) time. 
It presents an alternative to the above algorithm. 

12.3 String matching with errors 

String matching with errors differs only slightly from the edit distance prob
lem. Here, we are given pattern pat and text text and we want to compute 
mm(edit(pat, y) : y £ !F(text)). Simultaneously, we want to find a factor y of 
text realizing the minimum and the position of one of its occurrences on text. 
We consider the table SE (that stands for String matching with Errors), of 
the same type as table EDIT: 

SE[i,j] = mm(edit(pat[l. .i],y) : y g T{text[l. .j))). 

The computation of table SE can be executed with dynamic programming. It 
is very similar to the computation of table EDIT. 

Theorem 12.4 The problem of string matching with errors can be solved in 
0(mn) time. 

Proof. Surprisingly the algorithm is almost the same as that for computing 
edit distances. The only difference is that we initialize SE[0,j] to 0, instead of 
j for EDIT. This is because the empty prefix of pat matches an empty factor 
of text (no error). The formula (*) also works for SE. Then, SE[rn,n] is the 
distance between pat and one of its best matches y in the text. To find an 
occurrence of y and its position in text, we can use the same graph-theoretic 
approach as we used for the computation of longest common subsequences. It 
is recovered by a trace back inside the computed table SE from an extremal 
value. This completes the proof. D 

One of the most interesting problems related to string matching with errors 
concerns the case in which the allowed number of errors is bound by a constant 
k. The number k is usually understood as a small fixed constant. We show 
that this problem can be solved in 0(n) time, or more exactly in 0(kn) time, 
if k is not fixed. For a fixed value of the parameter k, this gives an algorithm 
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diagonal p p p+1 p-l p 

0 d-special nodes £ (rf-l)-nodes 

Figure 12.6: The computation of d-special nodes: nodes reachable by one edge 
of weight 1 from a (d — l)-node. 

having an optimal asymptotic time complexity. Recall that the string edit 
table SE is computed according to the recurrence: 

(*) SE[iJ]=min(SE[i-l,j] + l,SE[i,j-l] + l,SE[i-l,j-l]+d(x\i],y\j])), 

for words x and y. 

Suppose that we have a fixed bound k on the number of errors. We re
quire that the complexity is 0(kn). Only 0{kn) entries of the table must be 
considered. The basic algorithmic trick is to consider only so-called d-nodes, 
which are entries of the table SE satisfying special conditions. The d-nodes 
are defined in such a way that altogether we haveO(fcn) such nodes. 

We consider diagonals of the table SE. Each diagonal is oriented top-down, 
left-to-right. We define a d-node as the last pair (i, j) on a given diagonal 
satisfying SE[i,j] = d. Note that it is possible that a diagonal has no d-node. 
The approximate string-matching problem reduces to the computation of d-
nodes. And it is clear that there is an occurrence of the pattern with d errors 
ending at position j on text iff (m,j) is a d-node. 

Computation of d-nodes is executed for d = 0 , 1 , . . . , k in this order. Com
putation of 0-nodes is equivalent to string matching without errors. Assume 
that we have already computed the (d— l)-nodes. To compute d-nodes we need 
two auxiliary concepts: d-special nodes, and maximal subpaths of zero-weight 
on a given diagonal. For a node (i, j), define the node NEXT(i, j) = (i+t, j+t) 
as the lowest node on the same diagonal as (i,j), reachable from (i,j) by a 
subpath of zero weight. The subpath can be of zero length, and in this case 
NEXT(i,j) = (i, j). A d-special node is a node reachable from a (d — l)-node 
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Figure 12.7: The computation of d-nodes from cZ-special nodes. 

by one edge. Once (i-special nodes are computed, the d-nodes can be easily 
found, as suggested in Figure 12.7. The structure of the algorithm is given 
below. 

Theorem 12.5 Assume that the alphabet is of a constant size. Approximate 
string matching with k errors can be achieved in 0{kn) time. 

Proof. It is sufficient to prove that we can run 0(kn) calls of the function 
NEXT in 0{kn) time. The equation NEXT(i,j) = (i + t,j +1) means that 
t is the size of the longest common prefix of pat[i. .m] and text[j. .n). Assume 
that we have computed the common suffix tree for words pat and text. The 
computation of the longest common prefix of two suffixes is equivalent to the 
computation of their lowest common ancestor LCA in the tree. There is an 
algorithm (mentioned in Chapter 5) that preprocesses any tree in linear time 
in order to allow further LCA queries in constant time. This completes the 
proof. • 
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Algorithm Approximate string-matching with at most k errors; 
compute 0-nodes { exact string-matching } 

for d := 1 to k do begin 
compute d-special nodes; { see Figure 12.6 } 
{ computation of d-nodes } 
S = {NEXT(i,j) : (i,j) is a d-special node }; 
for each diagonal p do 

select on p, the lowest node that is in the set S; 
{ selected nodes form the set of d-nodes } 

12.4 String matching with don't care symbols 

In this section, we assume that pattern pat and text can contain occurrences of 
the symbol 0 , called the don't care symbol. Several different don't care symbols 
can be considered instead of only one, but the assumption is that they are all 
indistinguishable from the point of view of string matching. These symbols 
match any other symbol of the alphabet. We define an associated notion of 
matching on words as follows. We say that two symbols a, b match if they are 
equal, or if one of them is a don't care symbol (see Figure 12.8). We write 
a « b in this case. We say that two strings u and v (of same length) match if 
u[i] « v[i] for any position i. String matching with don't care symbols entails 
the problem of finding a factor of text that matches the pattern pat according 
to the present relation « . 

a a a 0 b a b b 0 0 a a b 0 

a 0 a b b 0 0 b b a a a b a 

Figure 12.8: Two strings, with don't care symbols, that match. 

String matching with don't care symbols does not use any of the techniques 
developed for other string-matching questions. This is because the relation w 
is not transitive. Moreover, if symbol comparisons (involving only the rela
tion f») are the only access to input texts, then there is a quadratic lower 
bound for the problem, which additionally proves that the problem is quite 
different from other string-matching problems. The algorithm presented later 
is an interesting example of a reduction of a textual problem to a problem in 
arithmetics. 
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Theorem 12.6 If symbol comparisons are the only access to input texts, then 
f2(n2) such comparisons are necessary to solve the string-matching problem 
with don't care symbols. 

Proof. Consider a pattern of length m, and a text of length n = 2m, both 
consisting entirely of don't care symbols 0 . Occurrences of the pattern start at 
all positions 1 , . . . , m. If the comparison upat[j] « text[i}" for 1 < j < m and 
1 < j < n, is not done, then we can replace pat[j] and text[i] by two distinct 
symbols a,b (that are not don't care symbols). The output then remains 
unchanged, but one of the occurrences is disqualified. Hence, the algorithm is 
not correct. This proves that all comparisons upat[j) K, text[i\" for 1 < j < m 
and m < i <n, must be executed. • 

Contrary to what occurs elsewhere, we temporarily assume that positions 
in pat and text are numbered from zero (and not from one). We start with 
an algorithm that "multiplies" two words in a manner similar to how two 
binary numbers are multiplied, but ignoring the carry. We define the product 
operation • as the composition of w and the logical "and" in the following 
sense. If x, y are two strings, then z = x • y is defined by 

z[k] = AND(a;[i] w y[j] :i + j = k), 

for k = 0 , 1 , . . . , m + n — 2. In other words, it is the logical "and" of all values 
x[i] « y[j] taken over all i, j such that both i + j = k and x[i], y[j] are defined: 
We can write symbolically • = (« , and). 

Let p be the reverse of pattern pat, and consider z = p • text. Let us 
examine the value of z[k]. We have z[k] = true iff (p[m — 1] « text[k — m + 1]) 
and p[m — 2] as text[k — m + 2] and . . . and p[0] « text[k]). Therefore, uz[k] = 
true" exactly means that there is an occurrence of pat ending at position k 
in text. Hence, the string matching with don't care symbols reduces to the 
computation of the product •. 

Let us define an operation on logical vectors similar to •. If x,y are two 
logical vectors, then z = x§y is defined by 

z[k] = OR(i[i] and y[j] : i+ j = k). 

For a word x and a symbol a, denote by logical(a, x) the logical vector in which 
the i-th component is true iff x[i] = a. Define also 

LOGICALa^(x,y) = logical(a,x) 0 logical(b,y). 

The following fact is now apparent: for two words x, y, the vector x • y equals 
the negation of logical OR of all vectors LOGICALatb(x,y) over all distinct 
symbols a, b that are not don't care symbols. 
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A consequence of the above fact is that, for a fixed-size alphabet, the com
plexity of evaluating the product • is of the same order as that of computing 
the operation (}. Now, we show that the computation of the operation <) can 
be reduced to the computation of the ordinary product * of two integers. Let 
x, y be two logical vectors of size n. Let k = logn. Replace logical values true 
and false by ones and zeros, respectively. Next, insert an additional group of 
k zeros between each two consecutive digits. We obtain binary representations 
of two numbers x', y'. Let z' be the integer x * y. The vector z = x 0 y can 
be recovered from z' as follows. Take the first digit (starting at position 0), 
and then each (k + l)-th digit of z'; convert one and zero into true and false, 
respectively. In this way, we have proven the following statement. 

Theorem 12.7 The string-matching problem with don't care symbols can be 
solved IM(n\ogn) time, where IM(r) denotes the complexity of multiplying 
two integers of size r. 

The value IM(r) depends heavily on the model of computations considered. 
If bit operations are counted, then the best known algorithm for the prob
lem is given by the Schonhage-Strassen multiplication, which works in time 
only slightly larger than O(rlogr). No linear-time algorithm for the problem 
is known. This gives an 0(nlog n)-time algorithm for the string-matching 
problem with don't care symbols. String matching with don't care symbols 
generates a methodological interest because of its relationship to arithmetics. 
It would be also interesting to find relationship between some other typical 
textual problems to arithmetics. 
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Chapter 13 

Matching by dueling and 
sampling 

In this chapter we present a non-classical string-matching algorithm in which 
the preprocessing phase is closely related to borders of words and to KMP 
algorithm. We also introduce an interesting new operation called the duel. 
A more essential use of this operation can be seen in optimal parallel string 
matching and two-dimensional pattern matching. Hence, this section can be 
treated as a preparation for more advanced algorithms to be presented later. 

13.1 String matching by duels 

We assume in this section that the pattern pat is non-periodic, which means 
that its smallest period is larger than \pat\/2. This assumption implies that 
two consecutive occurrences of the pattern in a text (if any) are at a distance 
greater than \pat\/2. However, it is not clear how to use this property for 
searching the pattern. We proceed as follows: after a suitable preprocessing 
phase, given too close positions in the text, we eliminate one of them as a 
candidate for a match. This leads to the idea of a duel. The basic table which 
enables us to search for the pattern created by a duel-based algorithm can be 
computed either as a side effect of KMP algorithm, or by use of the table Bord. 
Duels are performed at search phase. Finally we define the following witness 
table WIT: for 0 < i < \m\, 

WIT[i] = any k such that pat[i + k] =£ pat[k\, or 
WiT[i] = 0, if there is no such k. 

199 
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pat 
1 

pat b 
1 i+k 

Figure 13.1: Witness of mismatch a ^ b, k = WIT[i] 

text 

pat] 

pat ni 
IE 

i2 

Figure 13.2: Duel between two inconsistent positions i\ and i2. One of them 
is eliminated by comparing symbol "?" in the text with a and b. 

This definition is illustrated in Figure 13.1. A position i\ on text is said to be in 
the range of a position i2 if |ii — i2\ < m. We also say that two positions ix < i2 

on the text are consistent if i2 is not in the range of i\, or if WIT[i2 — ii] = 0. If 
the positions are not consistent, then we can remove one of them as a candidate 
for the starting position of an occurrence of the pattern just by considering 
position i2 + WIT[i2 — i{\ on the text. This is the operation called a duel (see 
Figure 13.1). Let i = i2 — i\, and k = WIT[i]. Assume that we have k > 0, 
that is, positions i\, i2 are not consistent. Let a = pat[k] and b = pat[i + k], 
then a^b. Let c be the symbol in the text at position i2 + k; it is indicated by 
"?" in Figure 13.1. We can eliminate at least one of the positions i\ or i2 as a 
candidate for a match by comparing c with a and b. In some situations, both 
positions can be eliminated, but, for simplicity, the algorithm below always 
removes exactly one position. Let us define, with a = pat[WIT[i2 — ii]]: 

duel{ii,i2) — (if a = c then i2 else i{). 

The position that "survives" is the value of duel, the other position is elimi
nated. 

Assume the witness table is computed. It is then possible to reduce the 
search for pat in text to the search for pattern l m (repetition of m l's) in a 
text of 0's and l's. This last problem is obviously simpler than the general 
string-matching problem and can be solved in linear time (essentially with one 
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counter). The following property of consistent positions (transitivity) is crucial 
for the correctness of the algorithm. It is called the consistency property: 

let i\ < 22 < 13; if i\, 12 are consistent and 12,13 are consistent 

then 11,13 are also consistent. 

Using this property we are able to eliminate a set of candidate positions from 
the text in such a way that all remaining positions are pairwise consistent. This 
can be done using the mechanism of stack (pushdown-store). Assume we have 
a stack of positions satisfying the property: positions are pairwise consistent, 
and in increasing order (from the top of the stack). Then, if we push onto the 
stack a position that is both smaller than the top position and consistent with 
it, the stack retains the property. 

A set of consistent positions is complete if an occurrence of the pattern 
cannot start at any position that is not in the set. We say that a position x in 
the text agrees with a candidate position y if the symbol at position x agrees 
with the corresponding symbol of the pattern when it is placed at position y 
(that is, text[x] = pat[x — y]). Assume that S is a complete set of consistent 
positions, x is any position in the text, and y is any candidate position in S 
such that x is in the range of y with x > y. Then, as a consequence of the 
consistency property, we have the following equivalence: 

x agrees with y iff x agrees with all positions in S. 

Hence, it is sufficient to check the agreement of each position with any position 
from a set of consistent positions, see Figure 13.2. In this checking, we flag 
x with the value 0 or 1 depending on the agreement. Using this feature, the 
string matching reduces to the matching of unary patterns (patterns consisting 
entirely of ones). 

The duel-based algorithm uses an additional zero-one vector, called textl. 
The value of the vector textl computed by the algorithm satisfies: pattern lm 

occurs at position i in textl iff the original pattern occurs at i in the text. 

The algorithm obviously has linear-time complexity. Moreover, this com
plexity does not depend on the size of the alphabet. The basic component 
that remains to be shown is the computation of the witness table WIT on the 
pattern. 

Later we shall see, in the case of parallel computations, that the fact that 
any position k for a witness is possible has a great importance. This is sufficient 
to choose any position, which is easier to compute in parallel. However, in the 
case of sequential computations, we can take the smallest such position as a 
witness. This leads us to define W7T[i] as PREF[i], for each position i such 
that i + WIT[i] < m and WIT[i) - 0 for others. Section 3.2 contains both the 
definition of PREF, and a linear-time algorithm to compute it. The complexity 
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of this latter algorithm is independent of the size of the alphabet, which shows 
the following statement. 

Theo rem 13.1 String matching by duels takes linear time (search phase and 
pre-processing phase). 

We believe that matching by duels is one of the basic algorithms, since 
the idea of duels is the key to the optimal parallel string matching of Vishkin. 
Historically, however, the first optimal (for fixed alphabets) parallel string-
matching algorithm uses another type of duels that we call expensive duels. Its 
advantage is that no additional table, like the one of witnesses, is needed. Its 
drawback is that the resulting algorithm is not optimal. 

Let us observe the very parallel nature of this algorithm at a given stage 
k: the actions on all fc-blocks can be performed simultaneously. 

function expensive-duel(i, j) : integer; 
k:=log2(j -i) + l; 

if text[i + 1.A + 2k] = pat[l. .2k] then return i else return j ; 

Theorem 13.2 Assume that all prefixes of pat in the form pat[l. .2fc] are 
non-periodic. Then, the algorithm String-searching-by-expensive-duels takes 
0(n log m) time. 

Proof. At stage k we consider only 0(n/2k) survivals. Each expensive duel 
at this stage takes 0(2k) time. There are m/2 stages. Together this gives 
0(n log m) time. This completes the proof. • 

The expensive duels are restricted in use. Historically, however, they ap
peared before the concept of duel appeared. This is the only reason why it 
is reported here. The function expensive-duel is similar to the function duel, 
but its computation is much more expensive. This is the reason for the name 
"expensive duel." In the searching algorithm below, we partition the text into 
disjoint blocks of size 2fc. We call them A;-blocks. 
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function String-searching-by-duels: Boolean; 
{ Let 5 be a stack of positions } 

S := empty stack; 
for i :— n down to 1 do begin 

push i on the stack S; 
while \S\ > 2 and 

the top two elements i\, ii of S are inconsistent do 
replace them in S by the single element duel{i\, 22); 

end; 
mark in the text all positions that are in S; 
{ all marked positions are pairwise consistent } 
for i := 1 to n do begin 

k := first marked position to the left of i, including i; 
if k undefined or pat[i — k + 1] ^ text[i] then £ex£l[i] := 0 
else textl[i) := 1; 

end; 
if textl contains the pattern l m return true 
else return false; 

We only show the use of expensive duels for a special type of pattern. 
Assume that the size of the pattern is a power of two. Assume also that 
pat[1..2k] is non-periodic, for each 1 < k < logn. Here, such patterns are 
called special patterns. 

Algorithm String-searching-by-expensive-duels; 
{ assume n — m + 1 and m are powers of two } 

{ assume that the pattern is special } 
initially all positions in [1. .n — m] are survivals; 
for A; := 1 to logn do 

for each fc-block do begin 
let i and j be the only survivals in the fc-blocks; 
make expensive-duel(i, j) a survival; 

end; 
{ there are 0(n/m) survivals } 
for each survival position i do 

check occurrence of pat at position i naively; 
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the sample S 
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position i match at selected positions 

Figure 13.3: An occurrence of the sample S in the text. 

occurrence of the sample 
at position i 

. m/2-k _ 

~r the desert 

the only candidate for the 
pattern occurrence in this area 

Figure 13.4: An occurrence of the sample, and the desert area. 

13.2 String matching by sampling 

Both KMP algorithm and BM algorithm (Chapter 2) scan symbols at con
secutive positions on the pattern. The first one scans a prefix of the pattern, 
and the second one scans a suffix of the pattern. In this section, we show an 
algorithm that first scans a sequence of not necessarily consecutive positions 
on the pattern, and then, in case of success, completes the scan of the pattern. 
The first scanning sequence is called a sample. 

A sample S for the pattern pat is a set of positions on pat. A sample S 
occurs at position i in the text if pat[j] = text[i +j] for each j in S (see Figure 
13.3). 

A sample S is called a good sample if it satisfies the two conditions (see 
Figure 13.4): 
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1. S is small: | 5 | = O(logm), 

2. there is an integer k such that if 5 occurs at position i in the text then 
no occurrence of the pattern starts in the segment [i — k..i + m/2 — k], 
except perhaps at position i. The segment is called the desert. 

If the pattern has period p, setting k = min(m, 2.p — 1), the prefix pat[l. .k] is 
called the non-periodic part of the pattern. 

Theorem 13.3 Assume we are given the period of the pattern pat, and a 
good sample of its non-periodic part, then, the search for pat can be done in 
O(nlogn) time with only O(logm) additional memory space. 

Proof. Assume for a moment that the pattern itself is non-periodic. Let us 
partition the input text into windows of size m/2. We consider each window 
separately, and find the first and the last positions of occurrences of the sample 
in the window (if there are at least two occurrences). These occurrences only 
are possible candidates for an occurrence of the pattern. Each of these occur
rences is checked in a naive way (constant size additional memory is sufficient 
for that). This proves that the non-periodic part of the pattern can be found in 
the text with the required complexity. The general case of periodic patterns is 
left as an exercise. One has to find sufficiently many consecutive occurrences 
of the non-periodic part of the pattern. An additional counter is needed to 
remember the number of consecutive occurrences. This completes the proof. 
• 

Theorem 13.4 If the pattern is non-periodic then it has a good sample S. 
The sample can be constructed in linear time. 

Proof. Assume we have computed the witness table WIT (see Section 13.1). 
Let us consider potential occurrences of the pattern at positions 1,2,. . . , m/2 
of some imaginary text. Let us identify these pattern occurrences with numbers 
1,2,. . . , m/2. The occurrence corresponding to the i-th position is called the 
i-th row. If we draw a vertical line at a position j , then it can intersect a 
given i-th row or not. If it intersects, then there is a symbol at the point of 
intersection (see Figure 13.5). Let us denote this symbol by symbol(i,j). 

Claim 1. Let i\, i^ be two different elements of [1. .m/2]. Then, there is an 
integer j such that the j-th. column intersects both rows i\ and if, Moreover, 
symbol{i\, j) ^ symbol(i,2,j). The integer j can be found in constant time if 
the witness table of the pattern is precomputed. 

The claim is a reformulation of the property of non-periodicity. Due to non-
periodicity, for occurrences of the pattern placed at positions ii,i2 there is a 
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column j t + 1 selected rows 
setAt+j 

Figure 13.5: The set At+i = {i 6 At : Symbol(i, jt+i) — a} is the smaller one. 

mismatch position j given by j = i2+ WITfo - h] • This means that if we look 
at the column placed at position j , then this column intersects occurrences of 
the pattern with different symbols. 

Claim 2. Let J be any set of rows. If a vertical column intersects the first 
and the last row of J , then it intersects all the rows of J . 

We now prove an equivalent geometrical formulation of the thesis of the theo-

Claim 3. There is a row i and a set J of O(logm) vertical columns placed 
at positions ji,J2, • • • ,jk such that: 

1. all columns in J intersect the row i, 

2. if i ^ r (r e [1. .m/2]), then there is a column j in J intersecting rows i 
and r such that symbol(i,j) ^ symbol(r,j). 

Proof of the claim. We construct the set J and the row i by the algorithm 
below, that ends the proof of the theorem. • 
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Algorithm Find-good-sample; 
J := empty set; AQ := [1. .ra/2]; t:— 0; 

while | At | > 1 do begin 
find any column jt+i that intersect all rows of At 

with two different symbols at intersection points; 
{ use Claim 1 and Claim 2 } 
Let a, b be the two different symbols at intersections; 
At+i := smaller of the two sets: 

{ie At: symbol(i,jt+i) = a} 
and {i G At : symbol(i,jt+i) = b}; 

add jt+i to J; t := t + 1; 
end; 
let i be the unique element of At; 
return(J, i); 

Bibliographic notes 

The ideas of duels and samples can be attributed to Vishkin who applied it to 
the design of parallel algorithms [ Vi 85], [Vi 90] (see Chapter 16). Expensive 

duels were implicitly considered by Galil in [Ga 85]. 
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Chapter 14 

Two-dimensional pat tern 
matching 

The two-dimensional pattern matching is interesting due to its relationship to 
image processing. The efficiency of algorithms is even more important in the 
two-dimensional case because the size of the problem, the number of pixels of 
images, is very large in practical situations. 

We mainly consider rectangular images. The pattern-matching problem is 
to locate an m x m' pattern array PAT inside an n x n' (text) array T. The 
position of an occurrence of PAT in T, (see Figure 14.1), is a pair (i, j), such 
that 

PAT = T[i + 1.A + m,j + 1. .j + m']. 

We present two different solutions to the two-dimensional pattern match
ing. The first reduces the problem to multi-pattern matching. The second is 
based on two-dimensional periodicities and the notion of duels; it is presented 
in the next chapter. The linear-time algorithms with constant coefficients in
dependent on the size of the alphabet are presented in Chapter 15. We also 
consider non-rectangular patterns in relation to approximate matching. 

The method of sampling is presented here for two-dimensional patterns and 
appears to be very powerful for almost all patterns. 

209 
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w 
Figure 14.1: The pattern PAT occurs at position (i,j) in T. 
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Figure 14.2: Two-dimensional pattern matching by searching for columns of 
the pattern. 
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a a a 

b b a 

a a b 

Figure 14.3: A pattern array, and the SMA automaton of its columns. Columns 
1 and 2 are identified with state 4, column with state 5. 
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Figure 14.4: A text array, and its associated array of states (according to the 
SMA automaton of Figure 14.3). 

14.1 Multi-pattern approach 

The first solution to two-dimensional pattern matching is to translate it into a 
string-matching problem. The pattern is viewed as a set of strings, its columns. 
To locate columns of the pattern within columns of the text array requires 
searching for several patterns (see Figure 14.2). Moreover, the occurrences of 
patterns must be found in a particular configuration within rows: all columns 
of the patterns are to be found in the order specified by the pattern, and all 
ending on a same row of the text array. In this section, we use the Aho-Corasick 
approach (see Chapter 11) to solve the multi-pattern matching problem. 

The strategy for searching for PAT in the text array T is as follows. Let II 
be the set of all (distinct) columns of PAT (treated as words). We first build the 
string-matching automaton G = SMA(H) with terminal states (see Chapter 

links 
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Figure 14.5: The pattern "445" corresponds to the pattern array of Figure 14.3 
(left). Occurrences of "445" in the array of states give occurrences of the 
pattern array in the original text array. 

11). Each terminal state corresponds to a pattern of II. Therefore, columns 
of the patterns are identified with states of the SMA automaton. There can 
be less than m terminal states because of possible equalities between columns. 
Then, the automaton is applied to each column of T. We generate an array T' 
of the same size as T, and in which the entries are states of G. The pattern PAT 
itself is replaced by a string pat drawn from the set of states: the i-th symbol 
of pat is the state identified with the z'-th column of PAT. The remainder of 
the procedure consists in locating pat inside the lines of T". The strategy is 
illustrated by Figures 14.3, 14.4 and 14.5. This yields the subsequent result. 

Theorem 14.1 The two-dimensional pattern matching can be solved in time 
0{N\og\A\), where N — n • n' is the size of the text array, and A is the 
alphabet. 

Proof. The time to build the automaton SMA(U) is 0(Mlog \A\) where 
M = m x m' is the size of the pattern PAT. The construction of the array 
of column numbers T" takes 0(Nlog \A\) time. The final search phase, string 
matching inside lines of T", takes O(N) time. • 

The above algorithm seems to be inherently dependent upon the alphabet. 
This is because of the automaton approach. The existence of a linear-time 
alphabet-independent algorithm is discussed in the next chapter. 

14.2 Don't cares and non-rectangular patterns 

Assume that the two-dimensional pattern contains a certain number of holes. 
Holes can be regarded as filled with a special symbol that matches any other 
symbol. It is the don't care symbol 0 considered in Chapter 12 for approximate 



14.2. DON'T CARES AND NON-RECTANGULAR PATTERNS 213 

the pattern 

Figure 14.6: Searching a non-rectangular mxm pattern within pieces of shape 
2mx2m. Lin(PAT) (see proof of Theorem 14.2) is independent of the position 
where PAT is placed inside shape S. 

string matching. If the pattern is not rectangular, we can also complete it, 
adding enough don't care symbols so that it fits into an mxm' rectangle. By 
doing so, both questions become similar. 

T h e o r e m 14.2 Two-dimensional pattern matching with don't care symbols, 
and pattern matching of non-rectangular patterns can be done in 0(N log m) 
time (with an mxm pattern, m>m, and annxn' text array, N = nn'). 

Proof. We linearize the problem. Let PAT be a non-rectangular pattern 
that fits into an m x m rectangle, with m>m. We consider windows of shape 
2m x 2m on the text array (see Figure 14.6). We first solve the problem as if 
n = 2m. We define Lin(PAT) as a one-dimensional version of PAT. It is a 
string with don't care symbols of 0(m) size constructed as follows: place PAT 
inside a 2m x 2m shape S. All positions not occupied by PAT are filled with 
the don't care symbol 0 ; then, concatenate the rows of S, starting from the 
topmost row; within the string obtained in this way, remove the longest prefix 
and the longest suffix containing only don't care symbols. The resulting string 
is Lin(PAT). 

The basic property of the transformation Lin is: Let T be an 2m x 2m text 
array. Let Lin(T) be the string obtained by concatenating all rows of T, 
starting from the topmost row; then, searching for PAT in T is equivalent to 
searching for Lin(PAT) inside Lin(T). This can be executed using methods for 
string matching with don't care symbols (see Chapter 12). Then it is proven 
how to do it in 0(n log2 n) time, which here becomes 0(m2 log2 m). A text 
array of size greater than 2m x 2m can be decomposed into such (overlapping) 
sub-arrays on which the above procedure is applied. The total time becomes 

2m 

2m 

1 L I 

^ 

-.1 -b 
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then 0(N log m). This completes the proof. • 

14.3 2D-Pattern matching with mismatches 

The definition of a distance between two arrays is more complicated than 
for (one-dimensional) strings. Insertions or deletions of a symbol can result 
in an increase or decrease of the length of one row (column). Therefore, for 
simplicity, we concentrate here on the approximate pattern matching with only 
one edit operation: replacement of one symbol by another. This corresponds 
to unit-cost mismatches. 

For two strings x, y denote by MISMk(x, y, i) the set of A; first (left-to-right) 
mismatch positions between y[i. .i + \x\ — 1] and x. We are not interested in 
more than k mismatches. 

Lemma 14.1 Assume we are given two strings x and y, and their suffix tree 
processed for LCA queries. Then, the computation of MISMk(x,y,i) can be 
executed in 0(k) time for each position i in the text y. 

Proof. First we find the longest common prefix of y[i. .n] and x. This is 
done using an LCA query for the leaves corresponding to y and x in the joint 
suffix tree for these both texts. In this way, we obtain the first mismatch 
position i\. 

Then, we look for the longest common prefix of x[i\ —i + l. .m] and y[i\. .n]. 
This is again done by asking a suitable LCA query about leaves related to 
x[i\ —i + l. .m] and y[ii. .n]. We obtain the next mismatch position (if its 
exists). We continue in this way until k mismatch positions are found, or (in 
the case where there are less than k mismatch positions) all mismatch positions 
are found. 

The time is proportional to the number of LCA queries, that is 0(k). This 
completes the proof. D 

Theorem 14.3 Assume the alphabet is of constant size. The problem of 
matching with a fixed number k of mismatches a pattern within an n x n text 
array can be solved in 0(kn2) time. 

Proof. Let PAT be the mxm pattern, where m < n. The algorithm starts 
as in the exact two-dimensional pattern matching, by a multi-pattern string 
matching. The Aho-Corasick automaton for all columns of the pattern is 
built. Then, the automaton is applied to all columns of the text T to obtain a 
state array T". The pattern array is replaced by a string of states pat. 
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looking for bad columns 

approximate matching 
for bad columns 

V 

Figure 14.7: Approximate matching. There are at most k bad columns. If there 
is a match with at most k mismatches, then the total number of mismatches 
in all bad columns cannot exceed k. 

Figure 14.7 illustrates how we check the approximate match at position (r, s) 
with at most k mismatches. Let y be the r-th row of T". We compute 
MISMk(pat,y,s). This produces all columns that contain at least one mis
match with the pattern PAT placed at (r,s). Let us call these columns the 
bad columns. 

We compute the total number of mismatch positions in bad columns with 
respect to the corresponding columns of the pattern (assuming it is placed at 
position (r, s)). We are only interested in a total of at most k mismatches. All 
mismatches are found by using the function MISM. The total complexity is 
proportional to the number of all LCA queries executed in the algorithm. We 
make at most k such queries. 

Hence, for a fixed position (r, s) after the preprocessing, the complexity is 0{k). 
Since there is a quadratic number of positions, the total time complexity is as 
required. • 

14.4 Multi-pattern matching 

In this section we consider a set of k square pattern arrays Xi,X2,. •• ,Xk-
For a given nxn text array T we want to check if any of these patterns occurs 
in T. This is the multi-pattern matching in two dimensions. Assume, for 
simplicity, that the size of the alphabet is constant. The strategy developed 
for Karp-Miller-Rosenberg algorithm (see Chapter 7) yields a solution to the 
general multi-pattern problem that works in 0(n2 log n) time. We omit the 

bad columns 

(r,s) /w 
i 1 

1 
I 
I i 



216 CHAPTER 14. TWO-DIMENSIONAL PATTERN MATCHING 

obvious proof. 

Fact. Two-dimensional multi-pattern matching can be solved in 0(n2 logn) 
time using the algorithm KMR. 

Indeed, the above result can be improved to 0(n2 log k) time, where k is 
the number of patterns. Of course, k can be of the same order as n, and 
this does not provide a substantial improvement. But we are also interested 
in alternative algorithms and some interesting new ideas behind them that 
enrich the algorithmics of two-dimensional matching. The natural alternative 
algorithm considered here is based on an extension of the Aho-Corasick string-
matching automaton to the two-dimensional case. By the way, this also shows 
the important extension of the notion of border, suffix, and prefix to two-
dimensional arrays. It also provides another pattern-matching algorithm for 
one pattern: it shows that searching the pattern along a fixed diagonal of 
the text array is reducible to one-dimensional string matching. Again, LCA 
preprocessing is crucial for the two-dimensional pattern-matching algorithm of 
the section. First consider the simple case in which all the patterns are of the 
same shape. Assume that they are mxm arrays. The method of Section 14.1 
generally facilitates this situation. This gives a linear-time algorithm when all 
patterns are of the same size. 

Theo rem 14.4 Two-dimensional multi-pattern matching can be solved in time 
O(N) when the alphabet is fixed and all patterns are of the same size (where 
N is the total size of the problem). 

Proof. The algorithm works as follows. The Aho-Corasick machine is con
structed for all columns of all patterns. Each pattern array is then transformed 
into a string of states. We obtain a set of strings x i,a;2j •• • ,%k- The text array 
T is replaced by the state array T" in the same way as in Section 14.1. Any 
multi-pattern string-matching algorithm then gives a solution. This gives a 
linear-time algorithm for this special case (fixed alphabet). • 

Next, we consider the general case, in which the patterns are square arrays 
of possibly different sizes. Again, the algorithm is an extension of the Aho-
Corasick multi-pattern matching. 

A prefix (resp. suffix) of a square array is a square sub-array containing 
the left top corner (resp. right bottom corner) of the array. We construct 
a two-dimensional version of the Aho-Corasick multi-pattern automaton A 
as follows. Each pattern is considered as a string: its i-th letter is the i-th 
segment of the array. The i-th segment is composed of the upper part of 
the i-th column, and the left part of the i-th row, beginning both at the i-th 
position on the diagonal (see Figure 14.8). The states of A are prefixes of all 
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Figure 14.8: The z-th segment of a pattern array. 

border of X 

a pattern 
array 

Figure 14.9: A border of a sub-array X of a pattern. 

the pattern arrays. The set of states is organized in a tree in which the nodes 
correspond to the two-dimensional prefixes of the pattern. 

The edges outgoing a node at depth i — 1 are labeled by the names of the 
i-th segments of the patterns. We can give consistent names to j- th segments 
of all patterns in time 0(k log k) for a given i, since there are at most k such 
segments, one for each pattern. The equality of two segments can be checked 
in constant time using an LCPref query (a longest common prefix query) after 
a suitable preprocessing of the tree in which the edge labels are names of 
segments. 

After that, the failure table Bord on the tree is built. The notion corre
sponds to borders of square arrays as illustrated in Figure 14.9. They are the 
largest proper sub-arrays that are both prefix and suffix of the given array. 

We say that a segment TX\ is a part of a segment TT2 if the columns part of 
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Figure 14.10: Checking the occurrences of a pattern at position (r,s) in the 
text array. 

•E\ is a prefix of the column part of W2 and a similar relation holds between 
rows of the segments. Define the following relation = = between two segments. 
Let 7ri,7T2 be j-th and j'-th segments, respectively, with i < j . Then, we write 
m = = 7T2 iff either, both i = j holds and the names of the segments are the 
same, or, ni is a part of iT2. The table Bord for the two-dimensional case is 
defined as for strings, except that relation = = is considered instead of equality. 

T h e o r e m 14.5 Assume that the alphabet is fixed. Then the two-dimensional 
multi-pattern matching can be solved in time 0(Nlogk) time, where k is the 
number of patterns. 

Proof. The two-dimensional pattern matching is essentially reduced to 
one-dimensional multi-pattern matching (see Figure 14.10). The equality of 
symbols is replaced by the relation = = , and the corresponding table Bord 
works similarly. D 

14.5 Matching by sampling 

The concept of deterministic sample introduced in Chapter 13 for one-dimen
sional patterns is very powerful. Its wide applicability appears, for example, in 
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occurrence of 
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Figure 14.11: A deterministic sample S. 

the domain of parallel computation, leading to a constant-time parallel string 
matching. The aim of this section is to extend and use the concept of a deter
ministic sample to the two-dimensional case. Almost every non-periodic pat
tern has a deterministic sample for which the properties are analogous to those 
of one-dimensional patterns. The use of 2-D sampling gives solutions both to 
sequential computation requiring only small extra space, and to constant-time 
parallel computation for the two-dimensional pattern-matching problem. 

A deterministic sample S for PAT is a set of positions in the pattern PAT 
satisfying certain conditions. The sample S occurs at position x = (i,j) in the 
text array if PAT[y) = T[x + y] for each y in S (see Figure 14.11). 

The central idea related to samples is the field of fire of the sample S similar 
to the desert area for strings. Finding an occurrence of the sample in the text 
assures us that there is an m/2 x m/2 square in the text, called the field of 
fire of the occurrence of 5 , where there is only one possible matching position 
of the entire pattern. This possible matching position is z = (k, I) relative to 
the origin of the field of fire (see Figure 14.12). Let x be a position of S in 
the text array. Let us denote by fofire(x, S) its corresponding field of fire: it 
is the m/2 x TO/2 sub-square of the text array at position x - z. The field of 
fire should satisfy the field of fire condition described below. 

Whenever the sample S occurs at position x in the text array, then there 
is no occurrence of the pattern within the area fofire(x, S) of the text array, 
except maybe at position x. The size of a square S, denoted by | 5 | , is defined 
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I 

iiii 

Figure 14.12: The field of fire of the sample S. 

here as the length of its side. The deterministic sample S must be small but 
effective in "killing" other positions. It must satisfy the following conditions: 

(*) \S\=0(logm), 

(**) \fofire(x,S)\>rn/4. 

We consider only very particular samples. They are special segments: hori
zontal factor of length 4 log TO at position (TO/2, TO/2) in the pattern (see Fig
ure 14.13). Moreover, we say that the pattern PAT is good if its special segment 
occurs only once in PAT. Note that any segment lying "far away enough" from 
the boundaries of the array would work as well. 

T h e o r e m 14.6 Assume that the alphabet contains at least two symbols. Then: 

(a) almost all patterns are good, 

(b) for almost all patterns there is a logarithmic-size sample for which the 
field of fire is an TO/2 X TO/2 square, 

(c) both, the sample can be found, and the goodness of the pattern can be 
checked in constant extra space and linear time. 

Proof. The first point follows by simple calculations. If the patterns is good 
the special segment is the sample. It is of logarithmic size. Its field of fire is the 
left upper TO/2 X TO/2 quadrant of the pattern. If the sample occurs at position 
x in the text array, then no occurrence of the pattern in the text has position 

k 

occurrence of the 
sample at point x 

m 

text array 

"fofire(x, S) 
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x + (k,l) for 0 < k < m/2, 0 < I < m/2, and (k,l) ^ (0,0). In that case 
there would be two occurrences of the special segment in the pattern. The last 
point follows from the fact that all occurrences of the special segment can be 
found within claimed complexities using algorithms for string matching. This 
completes the sketch of the proof. • 

Theorem 14.7 Assume that the alphabet contains at least two symbols. Then 
the two-dimensional pattern matching can be solved in constant extra space and 
linear time, for almost all patterns, 

Sketch of the proof. Only good patterns and considered, so results hold 
only for them. The whole text array is partitioned into m/2 x m/2 windows. 
Within each window, we search for occurrences of the special segment with a 
serial algorithm working with the claimed complexities. This is done for all 
windows independently, window after window. 

14.6 An algorithm fast on the average 

A natural problem related to pattern matching is designing algorithms that 
are fast in practice. Since the notion of "practice" is not well denned, it is 
often considered for algorithms that are fast on the average. In this section, 
we design an algorithm making 0((N log M)/M) comparisons on the average 
for the two-dimensional pattern matching (the pattern is an m x m array, the 
text is an n x n array, N = n2, and M = m2). All symbols appear with the 
same probability independently of each other in arrays. If M is of the same 
order as N, the algorithm makes only 0(log N) comparisons on the average. 
The method described here is similar to the use of special segments in Section 
14.5. 

For simplicity we assume that the alphabet has only two elements, and 
that each of the two symbols of the text is chosen independently with the 
same probability. Let r be equal to 4 log m. 

The algorithm is similar to the algorithm fast-on-average presented at the 
end of Chapter 2 as a variation of Boyer-Moore algorithm for string matching. 

Informal description of the algorithm. 

1. Partition the text array into windows of shape mxm; the sub-window of 
a window consists of the last r positions of the lowest row of the window; 

2. first check if the text contained in the sub-window is a factor of any row 
of the pattern; 
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Figure 14.13: Searching for an occurrence of the pattern starting in the window; 
checking the sub-window first. 

3. if so, search for an occurrence of the pattern having its left upper corner 
position in the window by any linear-time algorithm; apply the same 
procedure to each window. 

The suffix of length r of the last row of the pattern behaves like a fingerprint. 
It has only logarithmic size, by definition. But it is unlikely to appear in sub-
windows. The test at line 2 above can be done with the help of a suffix tree 
or a suffix DAWG. On fixed alphabets, this takes 0(r) time. There are N/M 
windows, and a simple calculation shows the following (see also end of Chapter 
2)-

Theo rem 14.8 The two-dimensional pattern matching can be solved by do
ing 0(n2 log(m)/m2) comparisons on the average, for fixed alphabets, after 
preprocessing the pattern. 
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Chapter 15 

Two-dimensional 
periodicities 

Similarly as in the one-dimensional case, the most interesting algorithms for ex
act two-dimensional matching are related to periodicities. However the struc
ture of 2D-periodicities is much more complex, in particular the periodicity 
lemma (Section 1.7) is no longer directly applicable. For simplicity we assume 
that the pattern is an m x m square array of symbols. 

A period of the pattern PAT is a non-null vector p = (r, s) such that 
—m < r < m, 0 < s < m, and 

PAT[i,j} = PAT[r + i,s + j] 

whenever both sides of the equation are defined. Note that the second compo
nent of a period is assumed to be a non-negative integer, because we consider 
that period vectors are always oriented from left to right. There are two cat
egories of periods, see Figure 15.1 and Figure 15.2, according to whether r is 
negative or not. 

If there are close occurrences of the pattern in a text array, then there is 
an overlap of the pattern over itself, that is, a periodicity. If x and y are close 
positions of two occurrences PAT in the array T, assuming that y is to the 
right of x, the vector y — x is a period of the pattern. 

15.1 Amir-Benson-Farach algorithm 

The algorithm of the present section is based on the idea of duels. The string-
matching algorithm by duels presented in Chapter 13 for "one-dimensional" 
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vector (r, s) 
a period of pattern 

X 

Figure 15.1: When (i,j) <t (k,l). If two occurrences of PAT overlap, PAT 
has a period (r,s) = (k,l) - (i,j). Otherwise, a duel between (i,j) and (k,l) 
can be applied, to eliminate one possibility. 
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vector (r, s) 
a period of 
second type 

Figure 15.2: The second category of period, when (i, j) <b (k,l). 



228 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES 

Figure 15.3: Ordering on positions: x <b y (left), x' <t y' (right). 

strings extends to the two-dimensional case. The advantage of this approach is 
to produce a two-dimensional pattern-matching algorithm in which the search 
phase takes linear time, independently of the alphabet. The two-dimensional 
settings for duels, witnesses, and consistency relation are necessary for adapting 
the string-matching algorithm by duels. Positions in arrays are numbered 
top-down (rows) and left-to-right (columns). We define two partial orderings 
<b (for bottom) and <t(for top) on positions on the array T: 

{i, j) <6 {k, I) iff i > k and j < I, 
(i,j) <t (k,l) iff i < k and j < I. 

The relation x <& y means that position x is to the left and at the bottom 
of y. The relation x <t y means that position x is to the left and at the top 
oty. For example, we have (i,j) <b (k,l) and (i',j') <t (k',V) in Figure 15.3. 
Making duels during the searching phase of the pattern-matching algorithm 
supposes, that we have an analogue to the witness table considered for strings. 
For arrays, the two-dimensional witness table WIT is defined as follows: 

WIT[r, s] = any position (p, q) such that PAT[p, q) ^ PAT\r + p, s + q], 
WIT[r, s] = 0, if there is no such (p, q). 

The definition is illustrated in Figure 15.2 for the two categories of vector (r, s) 
(depending on whether r < 0 holds or not). 

A duel is only performed on close positions according to the following no
tion. A position (k, I) is said to be in the range of the position (i,j) (according 
to the size of PAT) if \k — i\ <m and \l — j \ < m. In addition, two positions x 
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and y such that y is to the right of x, are said to be consistent if y is not in the 
range of a;, or if WIT[y — x] = 0 , which means that y — x is a period of PAT. 
Let us recall the notion of duel. If the positions x and y are not consistent, the 
pattern PAT cannot appear both at positions x and y inside the array T. In 
constant time, we can remove one of them as a candidate for a position of an 
occurrence of the pattern. Such an operation, called a duel, can be described as 
follows. Assume that positions a; and y are not consistent, with y to the right 
of x. Let z = WIT[y - x], a = PAT[z] and b = PAT[y - x + z\. By definition 
of the witness table WIT, symbols a and b are distinct. Let c be the symbol 
T[y + z]. This symbol cannot be both equal to a and to b, so at least one of the 
positions x,y is not a matching position for PAT. lib ^ c, the pattern cannot 
occur at position x. If a ^ c, the same holds for y. Therefore, comparing c 
with a and b permits us to eliminate (at least) one of the positions. Note that 
in some situations both positions could be eliminated, however, for simplicity 
of the algorithm, only one position is always removed at a time. This is a mere 
duplication of the strategy developed for "one-dimensional" string matching. 
Let duel be defined by 

duel{x, y) = (if b = c then x else y). 

The value duel{x, y) is the position that "survives", the other position is elim
inated. 

We now describe the two-dimensional pattern-matching based on duels. 
Assume the witness table of the pattern PAT is computed. Its precomputation 
is sketched at the end of this section. The first step of the searching phase 
reduces the problem to a two-dimensional pattern matching for unary patterns, 
as if all entries of PAT were the unique symbol a. We want to eliminate 
a set of candidate positions from the text array T in such a way that all 
remaining positions are pairwise consistent. Removed positions cannot be 
matching positions of the pattern. Then, with each position x on the text 
array we associate the value 1 iff, after duels, it corresponds to the symbol 
compatible with occurrences of the pattern placed at any position in the range 
of x. Otherwise, we associate 0 with position x. By doing so, we are left 
with a new text array consisting only of zeros and ones. Finally, we look for 
occurrences of an m x m array containing only Is. Therefore, the algorithm is 
essentially the same as in the one-dimensional case. But here, the relationship 
between positions is a bit more complicated. This is why relations <& and <t 

have been introduced. The following property of consistent positions is crucial 
for the correctness of the algorithm. 

Consistency property (transitivity). Let x <t y <t z, or x <{, y <(, z. If 
x,y are consistent and y,z are consistent, then x,z are also consistent. 
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1 >* witness 

! • 
1 (r+p, s+q) 

Figure 15.4: The second category of witnesses. The vector (r, s) is not a period, 
(p,q) = WIT[r, a], and PAT\p, q] ^ PAT[r +p,s + q}. 

According to relations <;, and <t, consistency refines to bottom consistency 
and top consistency. A set of positions is bottom consistent if for any two 
positions x, y of the set, such that x <b y, the positions are consistent. Top 
consistent positions are defined similarly. It is clear that two elements are 
consistent iff they are top and bottom consistent. The same refers to sets of 
(pairwise) consistent positions. 

Let R be a sub-rectangle of the text array T. The set S of positions in R is 
said to be good with respect to R if both positions in S are pairwise consistent, 
and there is no matching position within R — S. Let k be a column of the text 
array T. In the searching algorithm, we maintain the following invariant: 

a good set of consistent positions in the columns k,k + l,... ,n' is known. 

First, we construct good sets of consistent positions separately for each columns. 
This gives the invariant for k = n'. Then we satisfy the invariant for k = 
n' — 1, n' — 2 , . . . , 1 . At completion we have a good set of consistent positions 
for the entire text array. 

When processing the fc-th columns, we run through consistent positions 
of this columns in a top-down fashion (see Figure 15.5). We maintain the 
following invariant: 
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Figure 15.5: The situation when processing the next column. The current 
columns contains positions mutually consistent within this columns. Then, 
positions inconsistent with other columns are removed. 
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Figure 15.6: From inv(xl,zl,k) to inv(x2,z2, k). 

inv(x,z,k): z is the leftmost consistent position in its own row; 
let R be the rectangle composed of rows above z, and columns 
k,... ,n'\ the set S of all remaining positions in R is a good set in 
R. 

Let xl, x2 be two consecutive (in the top-down order) consistent posi
tions in the fe-th columns. Figure 15.6 illustrates how the process goes from 
mu(xl,zl,fc) to inv(x2, z2, k). 

The set of consistent positions in columns k + 1,... , n' is maintained as a 
set of stacks. These stacks correspond to rows. The positions in a given row, 
from left to right, are on their stack from top to bottom: the leftmost position 
in i-th row (in columns k + 1 , . . . ,n') is at the top of the i-th stack. The 
duels of xl against elements of the i-th row are executed using the same stack 
procedure as in the string-matching algorithm by duels (see Chapter 13). 

Assume that we start a given phase with position xl in the fe-th columns, 
and with position zl in the i l row (see Figure 15.6). The rows are processed 
top-down and left-to-right, starting with z l , and ending before or at the row 
containing xl. Initially z = z l . Then, assume that we consider a candidate 
z in a column to the right of xl. The basic operation is the duel between xl 
and z. Three cases are possible: 

1. both xl and z survive (they are consistent); the crucial point is that 
we know at this moment (due to transitivity of consistency) that all 
candidates to the right of z and in the same row as z are consistent with 

il 

n 

J2 
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xl; we do not need to process them; we just go to the next row, starting 
with the leftmost candidate z (to the right of A;-th column) in this row; 

2. z is "killed" by x\ in the duel; we process the next candidate in the same 
row as z; if there is no such candidate we simply go on to the next row; 

3. xl is "killed" and z survives; then, the processing of xl has been com
pleted; xl is removed as a candidate, zl = z, and we start the next phase 
with the next candidate x2 below xl in the same column as xl; if there 
is no such candidate, then the processing of the entire column has been 
completed; take xl as the top most candidate in the (k — 1) column, and 
start processing column k-1. 

Through this process, we obtain a set of consistent positions in the sense 
of the ordering <t. If x, y are in this order, and are in the set, then they are 
consistent. After that, we again process the whole text array, but in a bottom-
up manner, essentially performing the same algorithm as described above for 
the top-down ordering. The rows are again processed from left to right. The 
remaining set of positions is guaranteed to be bottom consistent. Thus, the 
final set S is a good consistent set. 

The problem is reduced to "unary" pattern matching, in which the pattern 
consists of only one symbol, as follows. For each position x in the text array, 
find any position y in S such that x is in the range of y. Place the pattern 
at position y on the text array, and check if the symbol at x matches the 
corresponding symbol of the pattern. If "yes" associate "1" with position x. 
If "no", or if there is no such position y, associate "0" with x. In this way, 
we obtain a new array of zeros and ones. What remains is to search for a 
rectangular shape of size mxm containing only l's inside the new array. This 
is straightforward, and is left to the reader. The above discussion gives a proof 
of the following statement. 

Theorem 15.1 / / the witness table for the pattern array is computed, the 
search phase for the two-dimensional pattern matching can be done in linear 
time, independent of the size of the alphabet. 

The computation of the witness table given in the following employs a suf
fix tree. It takes a time that depends on the size of the alphabet, though it is 
linear with respect to the length of the pattern. This is due to the construction 
of suffix trees. In the computation of the witness table, the basic operation 
consists of checking the equality of two sub-rows of the pattern. This is ex
ecuted on the suffix tree of the set of rows of the pattern, after it has been 
preprocessed for LCA queries. 
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Figure 15.7: Computing a witness for position (r, s) of PAT. 

Theorem 15.2 The witness table for anm x m two-dimensional pattern on 
the alphabet A can be computed in 0(m2 log \A\) time. 

Proof. Let us examine the situation in which the witness for the position 
(r, s) of PAT is to be computed. Let k — m — s + 1. Assume that elements 
of the first and of the s-th columns are names of the rows of size k starting at 
the positions of columns to the right. Denote the resulting columns by C[ ' 
and Cs (see Figure 15.7). 

Let ST be the suffix tree of all rows of the pattern. It takes 0(m2 log \A\) time 
to build this tree. Preprocess the tree in order to answer LCA queries (locating 
Lowest Common Ancestors) in constant time. Also consider the table PREF 
as defined in Chapter 3. 

We show that the table PREF of the column Cg with respect to c | ^ can be 
computed in 0(m) time, once the tree ST is given. The computation of this 
table essentially reduces to the computation of the table of border lengths (see 
Chapter 3). We don't need actually the names of entries of the columns 
and These names represent sub-rows of length k. It is sufficient to make 
comparisons in constant time, hence, it is also sufficient to be able to quickly 
check the equality between two sub-rows of the same size k. This can be 
executed using LCA queries about the rows of the pattern array. First assume 
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that (r, s) is a period of the pattern. Then PREF[r] = m — r. Otherwise, 
PREF[r] gives the index of the row where the witness position is. To find 
the witness position it is sufficient to find the longest common prefix of two 
sub-rows of length k. This can be done using ST and LCA queries. • 

15.2 Geometry of two-dimensional periodicities 

This section presents some theoretical tools for the Galil-Park 2D-pattern-
matching algorithm of Section 15.4. The proofs of several simple facts are 
omitted. Let PAT be a two-dimensional pattern of shape mxm, with its rows 
and columns numbered by 1, 2 , . . . ,ra. The vectors of PAT are denoted by 
n and /3. We consider only two-dimensional vectors with integer components. 
Recall that a vector TT is a period of PAT if PAT[x] = PAT[x + TT], whenever 
both sides are defined. If both sides are defined for at least one point x, then 
•K is a nontrivial period. We also write that 7r is a ID-period to emphasize 
its one-dimensional status. The main difference between 1-dimensional and 
2-dimensional pattern matching lies in the different structures of periods of 
patterns. In two dimensions, some periods are inherently two-dimensional and 
are called 2D-periods. 

A pair /x = (7r, /?) of non-collinear vectors is a 2D-period of PAT iff n and (3 
are nontrivial periods, and each linear combination of 7r and f3 is a ID-period 
of PAT. An equivalent formulation is: PAT can be extended to an infinite 
plane in which n and f3 are periods. By a linear combination we always mean 
a combination with integer coefficients, i.e., a vector i.n + j./3, in which i, j are 
integers. Two (or more) vectors are said to be collinear if they are in the same 
direction, which, in this case, does not necessarily mean that one is an integer 
combination of the other (others). Let us denote by Lattice(fi) the set of all 
linear combinations of IT, (3. The elements of Lattice^) are called the lattice 
points. Therefore, the pair /z is a 2D-period iff all elements of Lattice^) as 
vectors, are periods. 

A vectors ir = (r, c) is said to be small iff its components r, c satisfy \r\ < 
d.m and \c\ < d.m, in which d = 1/16. That is, a 2D-period is small if 
both its components are small vectors. The pattern PAT is called periodic 
(lattice-periodic or 2D-periodic) if it has a small ID-period (2D-periods). 

Remark. In one-dimensional string matching a linear combination of small 
ID-periods is always a period. But this is not generally valid for two dimen
sions, even for non-negative combinations of collinear vectors (as well as for 
non-collinear vectors, of course). If all elements of the array PAT are the same 
letter except for a small number of elements closed to one fixed corner, then 
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there are many ID-periods, but there is no non-trivial 2D-period. The part 
around the corners is responsible for the irregularities. 

The 2D-period /x = (TT, /?) is said to be normal if n is a quad-I period as in 
Figure 15.1 and (3 is a quad-II period as in Figure 15.4. 

Lemma 15.1 [normalizing lemma] / / the pattern has a small 2D-period then 
it has a small normal 2D-period. 

A notion of divisibility for 2D-periods, /xl,/x2, is introduced as follows: 

/xl | /x2 iff Lattice(til) includes Lattice{^2). 

We also introduce the notion of a smallest 2D-period /x = period(PAT). It is a 
fixed small 2D-period of PAT that divides each other small 2D-period: in other 
words, /x | /x' for each small 2D-period /x'. There are several ways to decide 
which /x is to be chosen, but any of them is good. Assume PAT is 2D-periodic. 
We define period(PAT) as a small normal 2D-period (IT, (3), in which TT is a 
quad-I small period of a minimal length (in case of ties the most horizontal 
vector is chosen), and (3 is a quad-II small period of a minimal length (in case 
of ties the most vertical vector is chosen). Lemma 15.1 guarantees that this 
definition makes sense. It can be proven that any small ID-period corresponds 
to a point in Lattice(PAT). This implies the following lemma. 

Lemma 15.2 [2D-periodicity lemma] (a) Assume /xl, /x2 are small 2D-periods 
of PAT. Then, there is a 2D-period /x such that fi \ fil and fi \ /x2. 
(b) Assume PAT is lattice-periodic and TT is a small vector. Then TT is a ID-
period of PAT 

iff TT is in Lattice(period(PAT)). Moreover, period(PAT) \ /t for all 
small 2D-period fi. 

Observation. Assume we know which points of PAT are small sources (see 
below). Then, if it exists, period(PAT) can be computed in 0{M) time inde
pendently of the alphabet. 

Lemma 15.3 [overlap lemma] Assume the patterns PATi and PAT2 are 2D-
periodic subsquares of the same rectangle, that we have period(PATi) = /xl 
and period{PAT2) = / A in which |/xl|, |/x2| < m/2 < m. If PAT\ and PAT2 

overlap on an m x m square, then /xl = /x2. 

According to their periodicities, 2D-patterns are classified into four main 
categories: 
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Figure 15.8: The shaded areas correspond to Centera(PAT) (left) and 
Cut-Cornerss(PAT) (right). 

• non-periodic: no small period at all, 

• lattice-periodic (or 2D-periodic): at least one small 2D-period, 

• radiant-periodic: at least two non-collinear small ID-periods, but not 
lattice-periodic, 

• line-periodic: all periods in the same direction. 

We have already defined quad-I periods and quad-II periods. We recall 
these definitions and introduce similar categories for so-called sources. The 
pattern is divided into four m/2 x ra/2 disjoint squares, called quads, and 
named quad I, quad II, quad III, and quad IV, according to the counter
clockwise ordering, and starting at the upper left corner. Therefore, quad I 
corresponds to the upper left square corner, and quad II corresponds to the 
lower left square corner. 

For technical reasons it is convenient for these categories to be disjoint. So 
we assume that horizontal vectors are not quad II vectors, and vertical vectors 
are not quad-I vectors. As per this assumption, each ID-period oriented from 
left to right is exactly of one type: a quad-I period or a quad-II period. 

Let Centers(PAT) — PAT' be the central sub-array of PAT that results 
after "peeling off" the s boundary columns and rows (from top, down, right, 
and left). The shape of such a sub-array is (m — 2s) x (TO — 2s). 

We state the following lemma without proof. 

L e m m a 15.4 [radiant-periodicity lemma] Assume that PAT is radiant-periodic. 
Then the array C'enter2d.m{PAT) is not radiant-periodic. 
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A vector TT can be identified as the point 7r of PAT, extremity of TT, when 
its origin is at the quad-I top left corner (point(0,0)) or at the quad-II corner 
(point (TO, 0)) of the pattern. The point TT_ is called the quad-I beginning point, 
or the quad-II beginning point, respectively, corresponding to TT. If TT is a 
period and the quad-I beginning point 7r is in PAT, then TT is called a quad-I 
period, and TT_ is called a quad-I source. Quad-II periods and sources are denned 
analogously. Using the terminology of sources, the periodicity type of pattern 
PAT can be characterized equivalently as follows: 

• non-periodic: no small source; 

• lattice-periodic (or 2D-periodic): at least one quad-I source and one quad-
II source; 

• radiant-periodic: not lattice-periodic and at least two non-collinear small 
sources; 

• line-periodic: all sources on the same line. 

Let /* = (TT, f3) be a 2D-vectors. We say that two points x, y are //-equivalent if 
x — y is in Lattice(n). A /x-path is a path consisting of edges that are vectors 
TT, —TT, f3 or —f3. The processing of certain difficult patterns is executed by 
exploring some simple geometry of paths on a lattice generated by two vectors 
TT, ft belonging to the same quadrant. If we have two points x, y containing 
distinct symbols and we have a (7r,/3)-path from x to y within the pattern, 
then one of the edges of the path gives a witness of non-periodicity to one of 
the vectors TT or /3. This is due to the fact that the initial and terminating 
positions do not match, so there should be a mismatch "on the way" from x 
to y. The length of the path is the number of edges it contains. 

Observation. The basic difficulty with such an approach is the length of the 
path. It may be that /z is a small 2D-period, but the length of a shortest /x-path 
between two /t-connected points of an TO x TO square is quadratic. Consider, 
for example, /t = ((TO/2, 1), (1,0)), x = (TO/2, 0) and y = (m/2, m — 1). 

Despite the previous observation, we can find useful short paths in some 
situations, as shown in the next lemma. Let Cut-Cornerss(R) be the part of 
array R without top-right and bottom-left corner squares of shape s x s, see 
Figure 15.8. 

Lemma 15.5 [linear-path lemma] Assume TT,/3 are quad-I vectors of size at 
most k. Let S be a subsquare of size k x k of a large square R, and let x be 
the point that is the bottom-left corner or top-right corner of S. Assume x is 
inside Cut-CornerS2k(R)• Then, there is a linear-length fi-path inside R from 
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Figure 15.9: Illustration of Lemma 15.5: a short path from x to y G S. 

x to a point y ^ x in S, see Fig 15.9. Such a path can be computed in 0(k) 
time. 

Proof. We can assume, without loss of generality, that x is the quad-II 
corner of S, and that n and /3 are quad-I vectors of size at most k. Moreover, 
we can assume that the array R is of shape 3fc x 3k, and S is the square of size 
k x k at the top-left corner of R. Then, x is the point of R at position (k, 0). 
Assume that (3 is a more horizontal vector than n. We find a path and a point 
y by the algorithm GREEDY presented below. 

Algorithm GREEDY 
y:=x; 

repeat 
if y — it is outside the area R then y 
else y :=y — n; 

until y is in S; 

= y + P 

We prove that the algorithm GREEDY terminates successfully after a lin
ear number of iterations and generates the required path. Consider the lines 
Lo, L\,L2,... , in which L^ is the line parallel to 7r and that contains the points 
x + hp. Then, points x + i(3 + JTT (i, j integers) belong to the line Li. If some 
line Li cuts the two horizontal borders of S, or its two vertical borders, then 
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the segment of the line tha t is inside S is longer than n. Thus, x + i/3 + jn 
belongs to S for some (negative) integer j . If each line Li cuts bo th a horizon
tal and vertical border of S then let i be such tha t lines Li and Lj+i surround 
the diagonal segment of S; it can then be proven tha t , either there is a point 
x + ij3 + jir in S or a point x + (i + 1)(3 + j'n in S. Values of variable y in the 
algorithm are points of a /x-path inside R because if uy — n not in i?," y + /3 
is in R. We have yet to explain why the pa th has linear length, which at the 
same time proves that the algorithm works in O(k) t ime. Let n = (r, c) and 
(3 — (r ' , c'). The point x + r(3 — r'ir is on the same column as x, and can be 
the point y if it is in S. It is clear tha t the / i-path followed by the algorithm is 
entirely (except maybe its last edge) inside the triangle (x,x+r(3,x + r(3 — r'n). 
Thus, the length of the /x-path followed by the algorithm is no longer than r+r' 
which is 0(k). • 

We introduce a special type of duels called here long-duels. Assume we have 
small quad-I vectors n, f3 and a point x at distance at least 2k from quad-II and 
quad-IV corners. Assume also tha t if y is any point such tha t y — x is a small 
quad-II vectors, then PilTfa;] ^ PAT[y]. The procedure long- duels (TT, (3, x) 
"kills" one of the vectors -K, (3 and finds its witness. It works as follows: a 
(-7r,/3)-path from a given point x to some point y in the pa t t e rn is found by 
the algorithm of the linear-path lemma. The pa th consists of a linear number 
of edges. End points x and y contain distinct symbols. Therefore, one of the 
edges on the pa th consists of a linear number of edges. End points x and 
y contain distinct symbols. Therefore, one of the edges on the pa th gives a 
witness for n or (3. In doing so, one of the potential small periods 7r or (3 is 
"eliminated" in linear time. 

T h e o r e m 15 .3 [long-duel theorem] Assume we have a set X of small quad-
I vectors, in which \X\ = 0(m), and that we are given a position x inside 
Cut-CornerS2d.m(PAT). Assume also that if y is any point such that y — x is 
a small quad-II vector, then PAT[x] ^ PAT[y\. Then, in linear time, by using 
long duels, we can find witnesses for all small quad-I vectors (except maybe for 
a set of vectors on a same line L). 

Proof. We run the following instruction. 

w h i l e X is non-empty d o b e g i n 
take any element (3 from X; add (3 to Y, and delete (3 from X; 
wh i l e there are two non-collinear vectors TT, (3 in Y d o 

execute long-duel{~K, j3, x) and delete the "loser" from Y; 
end; 
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We keep the elements of X that have not been eliminated so far in the set Y. 
Initially Y is empty. The invariant of the loop is: non-null witnesses for all 
elements not in the current sets X or Y are computed, and all elements of Y 
are on the same line L. Altogether, the execution time is 0(m ) and alphabet 
independent. At the end, all remaining vectors (with non-null witnesses up to 
now) are on a same line L. This completes the proof. • 

Let us call the algorithm of the long-duel theorem the long-duel algorithm. 
There is a natural analogue of the theorem for quad-II small vectors, and for 
quad-I and quad-Ill corners. The crucial point is played by the following suffix-
testing problem: given m strings x\,... , xm of total size 0(m), compute the 
m x m table Suf-Test defined as follows: 

Suf-Test[i, j] — nil if the i-th string is a suffix of the j-th string, 
Suf-Test[i,j] = positions of the rightmost mismatch otherwise. 

The algorithm is given below as Algorithm Suffix- Testing. We sketch its rough 
structure to show that it runs in linear time independently of the alphabet. It 
is sufficient to compute for each pair (i,j) the length SUF[i,j] of the longest 
common suffix of Xi and Xj. The algorithm can be easily implemented to work 
in 0{m2) time. The main point in the evaluation of the time complexity is that 
if a position participates in a positive comparison (when two symbols match), 
then this position is never inspected again. When we process a given word 
Xk and compute SUF[k,j] for j > k, then we first look at SUF[i,j], in which 
i = MAX[j, k — 1], 1 < i < k, is the index that maximizes SUF[i,j], and then 
at SUF[i,k]. These data are available at this moment, due to invariant. The 
word Xj is scanned backward starting from position SUF[i,j]. The pointers 
only go backward. This proves the following. 

Theorem 15.4 [suffix-testing theorem] The suffix-testing problem related to 
m strings of total size 0(m2) can be solved in Oim1) time, independently of 
the alphabet. 

Algorithm Suffix-Testing 
assume strings x\,... 

{ invariant(k): for all i 
xm in increasing order of their lengths; 
,j, 1 < i < k, 1 < j 

SUF[i, j] is computed, and, for each j , 
< m, 
1 < j < 

i — MAX[j, k] the index i < k that maximizes 
make invariant(l) ; 
for k := 2 t o m do 

make invariant(k) using invariant (k — i ) ; 

m, we 
SUF[i, 

know 

j]} 
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Figure 15.10: A mono-central pattern. 

15.3 * Patterns with large monochromatic cen
ters 

The alphabet-independent linear-time computation of 2D-witness tables is 
quite technical, hence the present and following sections may be considered 
as optional. In this section, we present an alphabet-independent linear-time 
computation of witnesses for special patterns, the "large" central part of which 
is "monochromatic." The pattern PAT is called mono-central if all symbols 
lying in Center^, are equal to the same letter a of the alphabet, for k < 3m/8. 
Then, the central sub-array of PAT of size at least TO/4 X TO/4 is monochro
matic. A position containing a letter different from letter a is called a defect, 
see Figure 15.10 

Assume the existence of at least one defect (otherwise the preprocessing is 
trivial). Opposite corners of PAT are the corners lying on the same forward 
or backward diagonal of PAT (quad-I and quad-III, or quad-II and quad-IV 
corners). A mono-central pattern PAT is called a corner if there is a pair of 
opposite corners x, y of PAT such that each defect can be reached by at most 
two small vectors from x or y. The corner patterns are the most difficult with 
respect to their witness computation, because they can be radiant-periodic. 
The non-corner patterns are simpler to deal with, due to the following obser
vation. 

Observation. If PAT is a periodic non-corner mono-central pattern, then, 
PAT is non-periodic or line-periodic (therefore, PAT is not radiant-periodic). 

Lemma 15.6 [subsquare lemma] Let us assume that PAT is mono-central, 
and that there is a defect inside the area R = Cut-Corners2k(PAT). Then 
there is a defect position x within R satisfying one of the following conditions: 
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(1) x is a quad-I or is a quad-Ill corner of a k x k subsquare S containing no 
defect position strictly within S; 
(2) x is a quad-II or is a quad-IV corner of a k x k subsquare S containing 
no defect position at all, except x. 

Proof. Take a defect point in R closest to the center of PAT. • 

Theorem 15.5 [non-corner theorem] The witness table for all small vectors 
of mono-central non-corner pattern PAT can be computed in 0(m2) time. 

Proof. Consider the defect z closest to the center of PAT. Assume with
out loss of generality that z is in quadrant II. The position z is the witness 
(of non-periodicity) for all small quad-II vectors, except perhaps for vertical 
vectors. The case of vertical and horizontal periodicities is very easy to pro
cess, therefore, we assume that all witnesses for vertical and horizontal vectors 
are computed and PAT is not vertically nor horizontally periodic. The set 
of potential small quad-I periods is sparsified using vertical duels in columns. 
Afterward, in quadrant I we have only a linear number of candidates for small 
periods. Denote by X the set of these candidates. To compute witnesses 
for quad-I small vectors it is sufficient to find a point x implied by the sub-
square lemma. If condition (1) of this lemma holds, then x itself is the witness 
for all quad-I vectors that are not vertical nor horizontal vectors. Otherwise, 
x is "good" to apply the long-duel theorem. The case of a horizontally- or 
vertically-periodic pattern can be easily processed. This completes the proof. 
• 

Theorem 15.6 [corner theorem] Consider an m x m array PAT that is a 
mono-central corner pattern. Then, witnesses for all vectors of size at most 
m/8 can be computed in 0(m?) time. 

Proof. Assume that opposite corners from the definition of corner patterns 
are quad-II and quad-IV corners. Then, all defects are closed to quad-II and 
quad-IV corners. These corners are separated by a large area of non-defects. 
Therefore, we can compute periods and witnesses separately with respect to 
each corner. Hence, without loss of generally, we can assume that all defect 
are close to the quad-II corner, and, in particular, that there is no defect that 
contains the same symbol a in quadrants I, III, and IV. Assume PAT contains 
at least one defect in quadrant II. PAT obviously has no small quad-II periods, 
since the rightmost defect gives witnesses against all quad-II vectors. We show 
how to compute witnesses for small quad-I vectors. 

Let PAT1 be the following transformation of the pattern. In each row replace 
all symbols by a, except the rightmost non-a symbol of each row. Replace 
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these rightmost non-a symbols by a special symbol $. Let X be the set of 
positions containing the symbol $; call them special positions. 

For x i n X denote by string(x) the word in PAT consisting of the part of the 
row containing x from the left side up to x (including x). Let ir be a vector of 
size at most m/4. Then, it is easy to see the following: 

Claim. 7r is not a period iff (1) ir is not a period in PAT1, or (2) for two 
positions w, y in X we have: y — x = n and string(x) is not a suffix of string(y) 
(then, a witness for ir is given by a mismatch between string(x) and string(y)). 

The computation of all witness for vectors of size at most k in PATl is rather 
simple. Only quad-I vectors are to be processed. Assume there is no small 
vertical period. Then, the set of potential small quad-I periods is sparsified 
using duels in columns. Afterward a linear number of candidates remains. Each 
of them is checked against all (linear number) symbols at special positions in 
a naive way. The witnesses arising from condition (2) are computed directly 
using the Suffix-Testing algorithm. This completes the proof. • 

We extend the definition of defects. Assume a mono-central pattern PAT 
has a lattice-periodic central sub-array C of size at least m/4. We say that x is 
a lattice-defect if x does not agree with (contains a symbol different from) any 
point y in C that is lattice-equivalent to x. Let Mono(PAT) be the pattern in 
which all positions that are not lattice-defects are replaced by the same special 
symbol. We omit the proof of the following simple lemma. 

Lemma 15.7 [mono lemma] If a small vector n is in the lattice generated 
by the smallest period of C, then it is a period of PAT iff TT is a period of 
Mono(PAT). 

15.4 * A version of the Galil-Park algorithm 

Recall that the periodicity type of a sub-array depends on its size. When we 
say that the witnesses for a given array or sub-array are computed we mean 
the witnesses, if any, for all vectors that are small according to the size of the 
presently considered array. 

Lemma 15.8 [line lemma] Assume we have a set S of points, in a fixed quad
rant of PAT, such that they are all on the same line L. Then, we can check 
which of them correspond to periods, and compute witnesses, wherever they 
are, in 0(m?) time independently of the alphabet. 
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Figure 15.11: The graphical illustration of the performance of Galil-Park al
gorithm, the witnesses are computed for small vectors in a central sub-pattern, 
then they are iteratively computed (using procedures Extend) to geometrically 
larger sub-arrays (resulting from the Large-Extend operation). 

Proof. The proof reduces to the computation of witness tables for m one 
dimensional strings of size 2m each. Let Li be all lines parallel to L; take m 
pairs of lines (Li,Ki), in which Ki is parallel to Li and the distance between 
Ki and Li equals the distance between the point (0,0) and L. Each line is 
taken as a string of symbols. For each i, lines Li and Ki are concatenated, 
and witnesses for these strings are computed using a one-dimensional classical 
algorithm. • 

Assume C is a central sub-array of shape s x s, in which s <m. Denote by 
Large-Extend(C) = D, in which I? is a twice larger central sub-array of shape 
2s x 2s. If ever 2s > m, we define Large-Extend(G) = PAT. Observe that 
a small period with respect to Large-Extend(C), in case Large-Extend(C) ^ 
PAT, means a vector of size at most 2d.s (recall that d = 1/16). Large-
extend^) is twice as large as C except maybe at the last iteration of the 
algorithm. The reason for such irregularity is that while making duels for 
small vectors in D we use mismatches in C, and we should guarantee that 
D is large enough with respect to C, and that vectors (taking part in a duel) 
starting in C do not go outside the pattern PAT. Also define Small~Extend(C) 
as a central sub-array of shape 3s/2 x 3s/2, Due to Lemma 15.4, if Large-
Extend^) ^ PAT and if it is radiant-periodic, then Small-Exiend(C) is not 
radiant-periodic. This saves one case (radiant-periodic) in the algorithm: C is 
never radiant-periodic. 

Before each iteration in GP algorithm witnesses and periods are already 
known for a central sub-array C, which shape is s x s. The witnesses for 
a larger central sub-array D are computed, in which D = Large-Extend(C), 
or D = Small-Extend(C) in the case Large-extend(C) is radiant-periodic and 
Large-Extend(C) ^ PAT. In the latter case, D has shape 3s/2 x 3s/2, and 

i 



246 CHAPTER 15. TWO-DIMENSIONAL PERIODICITIES 

Lemma 15.4 guarantees that D is not radiant-periodic. Then C is set to D 
and the next iteration starts. We first describe three procedures that compute 
witnesses for small vectors in D = Larg e-Extend (C), depending on what type 
of periodicity is in C. In Figure 15.11 the sub-array C is shaded. At the next 
stage of Galil-Park algorithm we will have {C,D) := (D, Large-Extend(D)). 

procedure Nonperiodic-Extend(C); 
the witness table of C is used to make duels between 

candidates for small periods in D; 
after dueling, only a constant number of candidates remains, 

their witnesses are computed in a naive way; 

p rocedure Lattice-Periodic-Extend (C); 
consider the areas Ql, Q2 of candidates of small 

(with respect to D) periods in, respectively, quad I and 
quad II of D; divide each area into d.s x d.s subsquares; 
in each smaller subsquare do begin 

make duels between candidates using witnesses from C; 
{ only candidates on the same line survive } 
apply the algorithm from the Line Lemma; 

end 

Three disjoint cases are considered in the Galil-Park algorithm depending 
on whether C is non-periodic, lattice-periodic, or line-periodic. The first case 
(non-periodic) is very simple. 

At each iteration we spend 0(r2) time, in which r is the size of the actual 
array D; this size grows at least by a factor 3/2 at each iteration. Altogether, 
the time is linear with respect to the total size of the pattern, as the sum of a 
geometric progression. 
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procedure Line-Periodic-Extend(C); 
{ C is lattice-periodic } 

let fi = period (C); 
for each small candidate period n £ Lattice(n) do 

find a /i-equivalent point y in quad I or quad II of C, 
then the witness corresponding to y gives a witness for x; 

for each small candidate period 7r € Lattice(fi) do 
compute witness of TT in Mono(PAT); { Mono Lemma } 
{ use algorithms from Non-corner or Corner Theorem } 

When the witness table is eventually computed, the Amir-Benson-Farach 
searching phase can be applied. Altogether we have proven the following 
result. 

Theorem 15.7 There is a 2D-pattern-matching algorithm which time com
plexity is linear in the size of the input, and independent of the alphabet (in
cluding the preprocessing). 

Algorithm GP; { modified Galil-Park algorithm; } 
{ computes witnesses for all small vectors of PAT } 

C :=an initial constant-size non radiant-periodic 
central sub-array of PAT; 

compute the witness table of C in 0(1) time; 
D := Large-Extend(C); 
while C ^ PAT do begin { main iteration } 

if C is non-periodic then Nonperiodic-Extend(C) 
else if C is line-periodic then Line-Periodic-Extend(C) 
else Lattice-Periodic-Extend (C); 
if D ^ PAT and D is radiant-periodic then 

D := Small-Extend(C) 
else begin C :— D; D := Large-Extend(C) end; 

end { of main iteration } 

Bibliographic notes 

The linear-time searching algorithm of Section 15.1 is from Amir, Benson, 
and Farach [ABF 92a]. It is quite surprising that this is the first alphabet-
independent linear-time algorithm, because, in the case of strings, the first 
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algorithm satisfying the same requirements is the algorithm of Morris and Pratt 
[MP 70], The gap between these is more than twenty years! Furthermore, the 
preprocessing phase of the algorithm in [ABF 92a] is not alphabet-independent. 
The rest of the chapter is an adaptation of the results of Galil and Park in [GP 
92b], it is a version of Galil-Park algorithm presented in [CR95]. 

The question of periodicities for two-dimensional patterns is discussed in 
several papers, particularly in [AB 92], [GP 92], and [GP 93]. A constant-space 
2-dimensional pattern-searching algorithm has been designed in [CGPR95], 
using properties of periodicities. 



Chapter 16 

Parallel text algorithms 

We present several poly logarithmic-time parallel algorithms using a high level 
description of the Parallel Random Access Machine (PRAM). A lot of research 
has been done on the so-called optimal parallel algorithms, the ones that achieve 
linear total work (the product of the number of processors by the parallel time). 
Optimal parallel text algorithms are Vishkin's algorithm and algorithms using 
the splitting technique (also known as pseudoperiod technique). In practice 
the polylogarithmic factors for the total work are not so important, especially if 
the total work is 0(n1+a) for a > 0. Example of such algorithms are parallel 
construction of Huffman trees and computation of edit distance. For these 
problems the total work of known polylogarithmic-time algorithms is far from 
linear. But the reduction below cubic work provides beautiful algorithms. 

16.1 The abstract model of parallel computing 

Concerning parallel computations, a very general model is assumed, since we 
are interested mainly in exposing the parallel nature of some problems without 
going into the details of the parallel hardware. The parallel random access 
machine (PRAM), a parallel version of the random access machine, is used as 
a standard model for presentation of parallel algorithms. 

The PRAM consists of a number of processors working synchronously and 
communicating through a common random access memory. Each processor is a 
random access machine with the usual operations. The processors are indexed 
by consecutive natural numbers, and synchronously execute the same central 
program; but, the action of a given processor also depends on its number 
(known to the processor). In one step, a processor can access one memory 
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location. The models differ with respect to simultaneous access to the same 
memory location by more than one processor. For the CREW (concurrent 
read, exclusive write) variety of PRAM machine, any number of processors 
can read from the same memory location simultaneously, but write conflicts are 
not allowed: no two processors can attempt to write simultaneously into the 
same location. CRCW (concurrent read, concurrent write) denotes the PRAM 
model in which, in addition to concurrent read, write conflicts are allowed: 
many processors can attempt to write into the same location simultaneously 
but only if they all attempt to write the same value. 

There is no generally accepted universal language for the presentation of 
parallel algorithms. The PRAM is a rather idealized model. We have chosen 
this model as the best one suitable for the presentation of algorithms, and 
especially for the presentation of the inherent parallelism of some problems. 
It would be difficult to adequately present these algorithms with languages 
oriented toward concrete existing hardware of parallel computers. Moreover, 
the PRAM model is widely accepted in the literature on parallel computation 
on texts. 

Parallelism will be expressed by the following type of parallel statement: 

for all i € X do in parallel action(i). 

The execution of this statement consists in 

• assigning a processor to each element of X, 

• executing in parallel by assigned processors the operations specified by 
action(i). 

Usually the part "x e X" looks like "1 < i < n" if X is an interval of integers. 

Methodologically one can apply two different approaches for constructing 
efficient parallel algorithms: 

(1) translation into a parallel version of a known sequential algorithm, 

(2) design of a new algorithm with a good parallel structure. 

Method (1) works well in the case of almost optimal parallel string-matching 
algorithms, and square finding. The known KMR algorithm, and the Main-
Lorentz algorithm (for squares) already have a good parallel algorithmic struc
ture. However method (1) works poorly in the case of edit distance and Huff
man coding, for example. 

The PRAM model is best suited to work with tree-structured objects or 
tree-like (recursive) structured computations. As an introduction we show such 
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a type of computation on one of the basic parallel operations known as prefix 
computation. 

Given a vector x of n values the problem is to compute all prefix products: 

y[l] = x[l], y{2] = x[l] ® x[2], y[3] = x[l] ® x[2] ® x[3], ... 

Let us denote by prefprod(x) the function that returns the vector y as value. 
We assume that ® is an associative operation computable on a RAM machine 
in 0(1) time. We also assume for simplicity that n is a power of two. The 
typical instances of <g> are arithmetic operations +, min and max. The parallel 
implementation of prefprod works as follows. 

Lemma 16.1 Parallel prefix computation can be accomplished in O(logn) time 
with nj log n processors. 

Proof. The algorithm above computes prefprod(x) in O(logn) time and 
uses n processors. The reduction of the number of processors by a factor 
logn is technical. We partition the vector x into segments of length logn. 
A processor is assigned to each segment. All these processors simultaneously 
compute all prefix computations locally for their segments. Each processor 
does so using a sequential process. We then compress the vector by taking 
a representative (say the first element) from each segment. A vector x' of 
size n/ log n is obtained. The function prefprod is applied to x' (now n/ log n 
processors suffice because of the size of a;'). Finally, all processors assigned to 
segments update values for all entries of their own segments using a (globally) 
correct value of the segment representative. This takes again 0(log n) time, 
but uses only n/ log n processors. • 

function prefprod(x); { the size of a; is a power of two } 
n := size{x); 

if n = 1 then return x else begin 
xi := first half of x\ X2 := second half of x; 
for each i e {1, 2} do in parallel 

yi := prefprod(xi); 
midval := yi[n/2]; 
for each j , 1 < j < n/2, do in parallel 

2/2[j] := midval ® y2[j]; 
return concatenation of vectors yi and y2; 

end 
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16.2 Parallel string-matching algorithms 

Suppose that v is the shortest prefix of the pattern that is a period of the 
pattern. If the pattern is periodic (vv is a prefix of the pattern) then vv~ is 
called the non-periodic part of the pattern (v~ denotes the word v with the last 
symbol removed). We omit the proof of the following lemma, which justifies 
the name "non-periodic part" of the pattern. 

Lemma 16.2 / / the pattern is periodic (it is twice as long as its period) then 
its non-periodic part is non-periodic. 

The witness table (see Chapter 13) is relevant only for the non-periodic 
pattern. So, it is easier to deal with non-periodic patterns. We prove that 
such assumption can be done without loss of generality, by ruling out the case 
of periodic patterns. 

Lemma 16.3 Assume that the pattern is periodic, and that all occurrences (in 
the text) of its non-periodic part are known. Then, we can find all occurrences 
of the whole pattern in the text 
(i) in 0(1) time with n processors in the CRCW PRAM model, (ii) in 0(log m) 
time with nj logm processors in the CREW PRAM model. 

Proof. We reduce the general problem to unary string matching. Let 
w = vv~ be the non-periodic part of the pattern. Assume that w starts at 
position i on the text. By a segment containing position i we mean the largest 
segment of the text containing position i and having a period of size \v\. We 
assign a processor to each position. All these processors simultaneously write 
1 into their positions if the symbol at distance \v\ to the left contains the same 
symbol. The last position containing 1 to the right of i (all positions between 
them also contain ones) is the end of the segment containing i. Similarly, 
we can compute the first position of the segment containing i. It is easy to 
compute it optimally for all positions i in O(logm) time by a parallel prefix 
computation. The constant-time computation on a CRCW PRAM is more 
advanced; we refer the reader to [BG 90]. Some tricks are used by applying 
the power of concurrent writes. • 

Now we can assume that the pattern is non-periodic. We consider the wit
ness table used in Chapter 13 for two sequential string-matching algorithms: 
by duels and by sampling. The parallel counterparts of these algorithms are 
presented. We skip the complicated proof of the preprocessing part of Vishkin 
algorithm. 
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L e m m a 16 .4 The witness table can be computed in 0 ( log n) time on a CREW 

PRAM using 0(n/ log2 n) processors. 

Recall tha t a position I on the text is said to be in the range of a position 
k if k < I < k + m. We say tha t two positions k < I on the text are consistent 
if I is not in the range of k, or if WIT[l — k] — 0. If the positions are not 
consistent, then, in constant t ime we can remove one of them as a candidate 
for a start ing position of the pa t te rn using the operation duel (see Chapter 
13). 

Let us part i t ion the input text into windows of size m/2. Then, the duel 
between two positions in the same window eliminates at least one of them. 
The position tha t "survives" is the value of the duel. Define the operation ® 

by 

i® j = duel(i,j). 

The operation ® is "practically" associative. This means tha t the value of 
i\ ® ii ® «3 ® . • • ® im/2 depends on the order of multiplications, but all values 
(for all possible orders) are good for our purpose. We need any of the possible 
values. 

Once the witness table is computed, the string-matching problem reduces 
to instances of the parallel prefix computat ion problem. We have the following 
algorithm. 

A l g o r i t h m Vishkin-string-matching-by-duels; 
consider windows of size m / 2 on text; 

{ sieve phase } 
for each window d o in paral le l 

{ ® can be t reated as if it were associative } 
compute the surviving position i\ ® ii ® is ® • • • ® im/2 
where ii,t2,h,--- , i m / 2 a r e consecutive positions 
in the window; 

{ naive phase } 
for each surviving position i d o in paral le l 

check naively an occurrence of pat at position i 
using m processors; 

T h e o r e m 16 .1 Assume we know the witness table and the period of the pat
tern. Then, the string-matching problem can be solved optimally in O( logm) 
time with 0(n/ log m) processors of a CREW PRAM. 
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Proof. Let i\, 12, 13, • • • , im/2 be the sequence of positions in a given 
window. We can compute i\ ® 12 <8> 13 ® • • • ® im/2 using an optimal parallel 
algorithm for the parallel prefix computation. Then, in a given window, only 
one position survives; this position is the value of i\ ® i^ ® 13 (g) • • • ® im/2-
This operation can be executed simultaneously for all windows of size m/2. 
For all windows, this takes O (log TO) time with 0{n/ log m) processors of a 
CREW PRAM. Afterward, we have 0(n/m) surviving positions altogether. 
For each of them we can check the match using m / log TO processors. Again, a 
parallel prefix computation is used to collect the result, that is, to compute the 
conjunction of TO Boolean values (match or mismatch, for a given position). 
This takes again 0(log TO) time with 0(n/ log TO) processors. Finally, we collect 
the 0{n/m) Boolean values using a similar process. • 

Corollary 16.1 There is an 0(log n) time parallel algorithm that solves the 
string-matching problem (including preprocessing) with 0(n/ log n) processors 
of a CREW PRAM. 

Algorithm Vishkin-string-matching-by-sampling; 
consider windows of size m/2 on text; 

{ sieve phase } 
for each window do in parallel begin 

for each position i in the window do in parallel 
kill i if the sample does not occur at i; 

kill all surviving positions in the window, 
except the first and the last; 
eliminate one of them in the field of fire of the other; 

end; 
{ naive phase } 
for each surviving position i do in parallel 

check naively an occurrence of pat starting at i 
using TO processors; 

The idea of deterministic sampling was originally developed for parallel 
string matching. In Chapter 13, a sequential use of sampling is shown. Let us 
recall the definition of the good sample. A sample S is a set of positions on 
the pattern. A sample S occurs at position i in the text if pat[j] = text[i + j] 
for each j in S. A sample S is called a deterministic sample if it is small 
(\S\ — O(logm)), and if it has a large field of fire (a segment [i — k. .i+m/2 — k]). 
If the sample occurs at i in the text, then positions in the field of fire of i, except 
i, cannot be matching positions. The important property of samples is that if 
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we have two positions of occurrences of the sample in a window of size m/2. 
Then one "kills" the other: only one can possibly be a matching position. 

In the sieve phase of the algorithm, we use n log m processors to check a 
sample match at each position. In the naive phase, we have 0{n/m) windows, 
and, in each window, m processors are used. This proves the following. 

Theorem 16.2 Assume we know the deterministic sample and the period of 
the pattern. Then, the string-matching problem can be solved in O(l) time with 
0(n log m) processors in the CRCW PRAM model. 

The deterministic sample can be computed in 0(log m) time with n pro
cessors using a direct parallel implementation of the sequential construction of 
deterministic samples. 

16.3 * Splitting technique 

Several open problems have been cracked using the approach of splitting a 
string into disjoint subsequences. The technique was originally known as the 
pseudoperiod technique for certain reasons. A small sample string z is selected 
and a binary string occur(z,pat) representing all occurrences of z in pat is 
produced (string occurrences are ones, other positions are zeros). The smallest 
period of occur(z,pat) is a pseudoperiod of pat. As a side effect, witnesses are 
computed for all relevant positions which are not multiples of the pseudoperiod. 
The elegancy of the method is obscured by many technical details. We only 
sketch some main ideas. The advantage is the (small) reduction of parallel time. 
We list the four most interesting problems that have been solved positively with 
this approach: 

1. existence of a deterministic optimal string-matching algorithm working 
in O(logm) time on a CREW PRAM, 

2. existence of a randomized string-matching algorithm working in constant 
time with a linear number of processors on a CRCW PRAM, 

3. existence of an 0(logn)-time string-matching algorithm working on a 
hypercube computer with a linear number of processors, 

4. existence of an 0(n1/2)-time string-matching algorithm running on a 
mesh-connected array of processors. 

All above problems can be solved using the pseudoperiod technique. 

Theorem 16.3 There exist efficient parallel algorithms for each of the four 
problems listed above. 
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The technique also provides a new optimal string-matching algorithm work
ing in O(loglogn) time on a CRCW PRAM. Recall that the CRCW PRAM is 
the weakest model of the PRAM with concurrent writes (whenever such writes 
occur the same value is written by each processor), and the CREW PRAM is 
the PRAM without concurrent writes. Vishkin algorithm works in C(log2 n) 
time if implemented on a CREW PRAM. An optimal O(lognloglogn) time 
algorithm for the CREW PRAM model was presented earlier by Breslauer 
and Galil. The full proof of Theorem 16.3 is beyond the scope of the book, 
we only point the most crucial features in the algorithms. The power of the 
splitting technique is related to the following recurrence relations: 

(*) time(n) = O(logn) + iime(n1/2), 

(**) time(n) = (9(1) + izme(n1//2). 

Claim 1. The solutions of recurrence relations (*) and (**) satisfy, respec
tively: 

time(n) = O(logn) and time(n) = O(loglogn). 

Let P be a pattern of length m. Its witness table WIT is computed only for 
the positions inside the interval FirstHalf — [1. .m/2]. We say that a set S of 
positions is fc-regularly sparse if S is the set of positions i inside FirstHalf such 
that i mod k = 1. If 5 is regularly sparse then let sparsity(S) be the minimal 
integer k for which S is fc-regularly sparse. For 1 < q < k let us note: 

p(i) = P{q)P{k + q)P(2k + q)P(3k + q)... 

and 
SPLIT(P, k) = {PW : 1 < q < k}. 

Example. 

SPLIT(a bacbdabadaa, 3) = {a c a d, b b b a, a d a a}. 

Assume S is a fc-regularly sparse set of positions. Denote by COLLECT(P, k) 
the procedure that computes values of the witness table for all positions in S, 
assuming that the witness tables for all strings in SPLIT'(P, k) are known. 

Claim 2. Assume the witness tables for all strings in SPLIT(P, k) are known. 
Then, COLLECT(P, k) can be implemented by an optimal parallel algorithm 
running in 0(log m) time on a CREW PRAM, and in O(l) on a CRCW PRAM. 
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The next fact is more technical. Denote by SPARSIFY(P) the function that 
computes the witness table at all positions in FirstHalf except at a set S that 
is /c-regularly sparse. The value returned by the function is the sparsity of 
5; when k > m/2, S is empty. In fact, the main role of the function is the 
sparsification of non-computed entries of the witness table. 

Claim 3. SPARSIFY(P) can be computed by an optimal parallel algorithm 
in O(logm) time on a CREW PRAM, and in O(l) on a CRCW PRAM. The 
value k of SPARSIFY{P) satisfies k > m1/2. 

The basic component of the function SPARSIFY is the function FINDSUB(P) 
that finds a non-periodic subword z of P of size m1 /2 , or reports that there 
is no such subword. It is easy to check whether the prefix z' of size m1 /2 is 
non-periodic or not (we have a quadratic number of processors with respect to 
m1 /2); if z' is periodic we find the continuation of the periodicity and take the 
last subword of size m1 /2 . The computed segment z can be preprocessed (its 
witness table is computed). Then, all occurrences of z are found, and, based 
on these, the sparsification is performed. 

We only present how to compute witness tables in O(logm) time using 
0(m log m) processors. The number of processors can be further reduced by 
a logarithmic factor, which makes the algorithm optimal. The algorithm is 
illustrated by the following procedure Compute-by-Splitting. 

procedure Compute-by-Splitting(P); 
k :=1; 

while k < m/2 do begin 
k := SPARSIFY{P); 
( P W . P W , . . . , P ( ' ' ) := SPLIT'(P,fc); 
for each q, 1 < q < k, do in parallel 

Compute-by-Splitting(p(q}); 
COLLECT (P,k); 

end 

According to the recurrence relations (*) and (**), the time for computing 
the witness table using the procedure Compute-by-Splitting is O(logm) on a 
CREW PRAM, and O(loglogm) on a CRCW PRAM. Implementations of the 
sub-procedures SPARSIFY and COLLECT on a hypercube and on a mesh-
connected computer give the results stated in points 3 and 4 above. The 
constant-time randomized algorithm (point 2) is much more complicated to 
design. After achieving a large sparsification, the algorithm stops further calls, 
and begins a special randomized iteration. At this stage, it is more convenient 
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to consider an iterative algorithm. The definition of SPARSIFY(P) needs 
to be slightly changed: the new version sparsifies the set S of non-computed 
entries of the witness table assuming that S is already sparse. The basic point 
is that the sparsity grows according to the inequality: 

k' > k.{m/k)1^2, 

in which k is the old sparsity, and k' is the new sparsity of the set S of non-
computed entries. The randomization occurs when sparsity > m7 /8 . This is 
achieved after at most three deterministic iterations. 

The constant-time string matching also requires a quite technical (though 
very interesting) construction of several deterministic samples in constant time. 
But this is outside the scope of this book. We refer the reader to the biblio
graphic notes for details. 

16.4 Parallel KMR algorithm and application 

The doubling technique is the crucial feature of the structure of the Karp-
Miller-Rosenberg algorithm. It is so again in a parallel setting. At one stage, 
the algorithm computes the names for all words of size k. At the next stage, 
using these names, it computes names of words having a size twice as large. 
We now explain how the algorithm KMR of Chapter 7 can be parallelized. 

To make a parallel version of KMR algorithm, it is sufficient to design an 
efficient parallel version of one stage of the computation, and this essentially 
reduces to the parallel computation of Sort-Rename(x). If this procedure is 
implemented in T{n) parallel time with n processors, we then have a parallel 
version of KMR algorithm working in T(n) log n time also with n processors. 
This is due to the doubling technique, and the fact that there are only logn 
stages. Essentially, the same problems that are solved by a sequential algorithm 
can be solved by its parallel version in T{n) log n time. 

The time complexity of computing Sort-Rename(x) depends heavily on the 
model of parallel computation used. It is T(n) = O(logn) without concurrent 
writes, and it is T(n) = 0(1) with concurrent writes. In the latter case, one 
needs a memory larger than the total number of operations used by what 
is called a bulletin board (auxiliary table with n2 entries; or, by using some 
arithmetic tricks, with n1+£ entries). This looks slightly artificial, but entries 
of auxiliary memory do not have to be initialized. The details related to the 
distribution of processors are also very technical in the case of concurrent 
writes models. Therefore, we present the algorithms of this section using the 
PRAM model without concurrent writes. This generally increases the time 
by a logarithmic factor. This logarithmic factor also allows more time for 
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solving technical problems related to the assignment of processors to elements 
to be processed. The operation Sort-Rename(x) basically reduces to sorting, 
and running it in O(logn) with 0(n) processors is possible. Both in KMR 
algorithm and in the suffix tree construction we have a logarithmic number of 
phases, each one using Sort-Rename. This implies directly the following fact. 

Theorem 16.4 The dictionary of basic factors and the suffix tree of a text of 
length n can be constructed in log2(n) time with 0(n) processors of a CREW 
PRAM. 

The theorem has many corollaries, since using the dictionary of basic factors 
and suffix trees we can solve many other problems in log (n) time with 0(n) 
processors, e.g., square testing, construction of string-matching automata, and 
searching for symmetries. The dictionary of basic factors leads to another 
efficient construction of suffix trees, though that is not optimal. 

Theorem 16.5 The algorithm Suffix-Trees-by-Refining can be implemented to 
work in 0(log2 n) time with 0(n) processors of a CREW PRAM. 

To build the suffix tree of a text, a coarse approximation of it is first built. 
Afterward the tree is refined step by step. We build a series of a logarithmic 
number of trees Tn,Tn/2,... ,T\\ each successive tree is an approximation of 
the suffix tree of the text; the key invariant is: 

inv(k): for each internal node v of Tk there are no two distinct outgoing 
edges for which the labels have the same prefix of the length k; the label of 
the path from the root to leaf i is text[i. A + n]; there is no internal node of 
outdegree one. 

Remark. If inv(l) holds, then, the tree T\ is essentially the suffix tree 
ST(text). Just a trivial modification may be needed to delete all # ' s padded 
for technical reasons, but one. Note that the parameter A; is always a power of 
two. This gives the logarithmic number of iterations. 

The core of the construction is the procedure REFINE(k) that transforms 
T-2k into Tfc. The procedure maintains the invariant: if inv(2k) is satisfied 
for T2fc, then inv(k) holds for Tk after running REFINE{k) on T2fc. The 
correctness (preservation of invariant) of the construction is based on the trivial 
fact expressed graphically in Figure 16.1. The procedure REFINE(k) consists 
of two stages: 

(1) insertion of new nodes, one per each non-singleton fc-equivalence class, 

(2) deletion of nodes of outdegree one. 
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Figure 16.1: If x ^ y and x\ = yi, then x2 ^ yv. After insertion of a new node, 
if inv(2k) is locally satisfied on the left, inv(k) holds locally on the right. 

We need the following procedure. 

procedure REFINE(k); 
for each internal node v of T do LocalRefine(k,v); 

delete all nodes of outdegree one; 

The informal description of the construction of the suffix tree ST {text) is 
summarized by the algorithm below. 

Algorithm Suffix-Tree-by-Refining; 
let T be the tree of height 1 which leaves are 1,2, . . . ,n, 

the label of the i-th edge is text[i. .n] encoded as [i, *]; 
k := n; 
repeat { T satisfies inv(k) } 

k := Jb/2; REFINE(k); 
until k = 1; 

In the first stage the operation LocalRefine(k,v) is applied to all internal 
nodes v of the current tree. This local operation is graphically presented in Fig
ures 16.1 and 16.2. The fc-equivalence classes, labels of edges outgoing a given 
node, are computed. For each non-singleton class, we insert a new (internal) 
node. The algorithm is informally presented on the example text abaabbaa#, 
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fc-name edge 

.'1 v2 v3 v4 v5 v6 v7 v8 

3^^«^^S 
vl v2 v3 v4 v5 v6 v7 v8 

-̂equivalence classes 

Figure 16.2: Local refinement. The sons of node v for which the edge labels 
have the same fc-prefixes are fc-equivalent. 

toot hare [i,*] * [i,i+7] 

Figure 16.3: The tree T8 for text = abaabbaaft. The 8-equivalence is the 
4-equivalence, hence T% = T4. But the 2-equivalence classes of nodes are 
{2,6}, {3,7}, {1,4}, {8}, {5}. We apply REFINE(2) to get T2 (Figure 16.4). 
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S 0 H H B 

Figure 16.4: The tree T2. Three new nodes have to be created to obtain T\. 
Now the 1-equivalence classes are: {3}, {7}, {4}, {1}, {v\, V2, 8}, {6,2}, {1*3, 5}. 

Figure 16.5: Tree 7\ after the first stage of REFINE(l): insertion of new nodes 
v4,v5,v6. 
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Figure 16.6: Tree T\ after the second stage of REFINE{1): deletion of node 
of out-degree one. 

see Figure 16.3. We start with the tree T% of all factors of length 8 starting at 
positions 1,2,... ,8 . The tree is almost a suffix tree: the only condition that is 
violated is that the root has two distinct outgoing edges in which labels have a 
common non-empty prefix. We attempt to satisfy the condition by successive 
refinements: the prefixes violating the condition become smaller and smaller, 
divided by two at each stage, until they become empty. This is illustrated in 
the series of Figures 16.4, 16.5, and 16.6. 

16.5 Parallel Huffman coding 

The sequential algorithm for Huffman coding is quite simple, but unfortunately 
it appears to be inherently sequential (see Chapter 10). Its parallel counterpart 
is much more complicated, and requires a new approach. The global structure 
of Huffman trees must be explored in depth. In this section, we give a poly-
logarithmic parallel-time algorithm to compute a Huffman code. The number 
of processors is M(n), where M(n) is the number of processors needed for a 
(min, +) multiplication of two nxn real matrices in logarithmic parallel time. 
We assume, for simplicity, that the alphabet is binary. 

A binary tree T is said to be left-justified if it satisfies the following prop
erties: 
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Figure 16.7: A left-justified Huffman tree. The hanging subtrees are of loga
rithmic height. 

1. the depths of the leaves are in non-increasing order from left to right, 

2. if a node v has only one son, then it is a left son, 

3. let u be a left brother of v, and assume that the height of the subtree 
rooted at v is at least I. Then the tree rooted at u is full at level Z, which 
means that u has 2l descendants at distance I. 

Most important for the present problem is the following property of left-
adjusted trees. 

Basic property. Let T be a left-justified binary tree. Then, it has a structure 
as illustrated in Figure 16.7. All hanging subtrees have height at most logn. 

Lemma 16.5 Assume that the weights p\, pi, ... , pn are pairwise distinct 
and in increasing order. Then, there is Huffman tree for (pi,P2, • • • ,pn) that 
is left-justified. 

Proof. We first show the following claim: 

For each tree T we can find a tree T' satisfying properties (1), (2), (3), 
in which the leaves are a permutation of leaves of T, and such that 
the depths of corresponding leaves in the trees T and T" are the 

same. 
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The claim can be proven by induction with respect to the height h of the tree 
T. Let Ti be derived from T by the following transformation: cut all leaves 
of T at maximal level; the fathers of these leaves become new leaves, called 
special leaves in Ti. The tree T\ has height h — 1. It can be transformed into 
a tree T[ satisfying (1), by applying the inductive assumption. The leaves of 
height h — 1 of T{ form a segment of consecutive leaves from left to right. It 
contains all special leaves. We can permute the leaves at height h — 1 in such a 
way that special leaves are at the left. Then, we insert the deleted leaves back 
as sons of their original fathers (special leaves in T\ and T[). The resulting 
tree T' satisfies the claim. 

Let us consider a Huffman tree T. It can be transformed into a tree satisfying 
conditions (1) to (3), with the weight of the tree left unchanged. Hence, after 
the transformation, the tree is also of minimal weight. Therefore, we can 
consider that our tree T is optimal and is left-justified. It is sufficient to prove 
that leaves are in increasing order of their weights pi, from left to right. But 
this is straightforward since the deepest leaf has the smallest weight. Hence, 
the tree T satisfies all requirements. • 

Theorem 16.6 The weight of a Huffman tree can be computed in 0(log n) 
time with n3 processors. The corresponding tree can be constructed within the 
same complexity bounds. 

Proof. Let weight[i,j] = pi+\ + Pi+2 + ••• + Pj- Let cost[i,j] be the 
weight of a Huffman tree for (pi+i,pi+2, • • • ,Pj) in which the leaves are keys 
Ki+i,Ki+2, • • • , Kj. Then, for i + 1 < j , we have: 

(*)cost[i,j] = min{cost[i,k] + cost[k,j] + weight[i,j] : i < k < j}. 

Let us use the structure of T illustrated in Figure 16.7. All hanging subtrees 
are shallow; they are of height at most log n. Therefore, we first compute the 
weights of such shallow subtrees. 

Let cost-low[i,j] be the weight of the Huffman tree of logarithmic height, in 
which the leaves are keys Ki+i,Ki+2, • • • ,Kj- The table cost-low can be easily 
computed in parallel by applying (*). We initialize cost-low[i,i + 1] to pi, and 
cost-low[i,j] to oo, for all other entries. Then, we repeat logn times the same 
parallel-do statement: 

for each i and j , i < j' — 1, do in parallel 
cost-low[i,j] := min{cost-low[i, k] + cost-low[k,j] : i < k < j} 

+weight[i,j}. 

We need n processors for each operation "min" concerning a fixed pair (i,j). 
Since there are n2 pairs (i,j), globally we use a cubic number of processors to 
compute cost-low's. Now, we have to find the weight of an optimal decompo
sition of the entire tree T into a leftmost branch, and hanging subtrees. The 
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Figure 16.8: edge-cost[i,j] = cost-low[i,j] + weight[i,j] 

consecutive points of this branch correspond to points (1, i). Consider the edge 
from (l , i ) to ( l , j ) , and identify it with the edge (i,j). The contribution of 
this edge to the total weight is illustrated in Figure 16.8. 

We assign to the edge (i,j) the cost given by the formula: 

edge-cost(i,j) = cost-low[i,j) + weight])., j]. 

It is easy to deduce the following fact: the total weight of T is the sum of costs 
of edges corresponding to the leftmost branch. 

Once we have computed all cost-low's we can assign the weights to the edges 
according to the formula, and we have an acyclic directed graph with weighted 
edges. The cost of the Huffman tree is reduced to the computation of the 
minimal cost from 1 to n in this graph. This can be executed by log n squaring 
of the weight matrix of the graph. Each squaring corresponds to a (min, +) 
multiplication of n x n matrices, and, therefore, can be executed in logn time 
with n3 processors. Hence log2 n time is sufficient for the entire process. This 
completes the proof of the first part of the theorem. Given costs, the Huffman 
tree can be constructed within the same complexity bounds. We refer the 
reader to [AKLMT 89]. a 

In fact matrices that occur in the algorithm have a special property called 
the quadrangle inequality (see Figure 16.9) or Monge property. This property 
allows the number of processors to be reduced to a quadratic number. A matrix 
C satisfies the quadrangle inequality if for each i < j < k < I we have: 

C[i,k] + C[j,l]<C[i,l] + C[j,k}. 

Let us consider matrices that are strictly upper triangular (elements below 
the main diagonal and on the main diagonal are null). Such matrices corre
spond to weights of edges in acyclic directed graphs. Denote by © the (min, +) 
multiplication of matrices: 

F©G = CiKC[i,j} = mm{F[i,k] + G[k,j] : i < k < j}. 



16.5. PARALLEL HUFFMAN CODING 267 

k 

I 

Figure 16.9: The quadrangle inequality: (cost of plain lines) < (cost of dashed 
lines). 

The proof of the following fact is left to the reader. 

Lemma 16.6 / / matrices F and G satisfy the quadrangle inequality, then 
F©G also satisfies this property. 

For matrices occurring in the Huffman tree algorithm, the (min, +) multi
plication is simple in parallel, and the number of processors is reduced by a 
linear factor, due to the following lemma. 

Lemma 16.7 If matrices F and G satisfy the quadrangle inequality, then 
F©G can be computed in 0(log n) time with 0(n2) processors. 

Proof. Let us fix j , and denote by CUT[i] the smallest integer k for which 
the value of F[i, k] + G[k,j] is minimal. The computation of F©G reduces to 
the computation of vectors CUT for each j . It is sufficient to show that, for j 
fixed, this vector can be computed in 0(log2 n) time with n processors. The 
structure of the algorithm to do it is the following: 

let imid be the middle of interval [1,2, . . . , n]; compute CUT[imid] 
in O(logn) time with n processors assuming that the value of CUT 
is in the whole interval [1 ,2 , . . . , n]. 

Afterward, it is easy to see, due to the quadrangle inequality, that 

CUT[i] < CUT[imid] for all i < imid, 
CUT[i] > CUT[imid] for all i > imid. 
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Using this information we compute CUT[i] for all i < imid, knowing that its 
value is above CUT\imid\- Simultaneously we compute CUT[i] for all i > imid, 
knowing that its value is not above CUT[imid]. Let m be the size of the interval 
in which we expect to find the value of CUT[i] (for i in the interval of size n). 
We have the following equation for the number P(n, m) of processors: 

P(n, m) < max{m, P(n, mi) + P(n,mj)}, where mi + m-i = m. 

Obviously P(n,n) = 0(n). The depth of the recursion is logarithmic. Each 
evaluation of a minimum also takes logarithmic time. Hence, we get the re
quired total time. For a fixed j , P(n,n) processors are adequate. Altogether, 
for all j , we need only a quadratic number of processors. • 

The lemma implies that the parallel Huffman coding problem can indeed 
be solved in polylogarithmic time with only a quadratic number of proces
sors. This is not optimal, since the sequential algorithm makes only 0(n log n) 
operations. We refer the reader to [AKLMT 89] for an optimal algorithm. 

16.6 Edit distance — efficient parallel 
computation 

The edit distance can be viewed as a shortest path problem on a grid graph 
G (see Chapter 12. For simplicity assume that words x and y are of the same 
length n. Then, G has (n + l ) 2 nodes. Let W be the matrix of weights 
associated to edges of G. We can use (min, +) matrix multiplication to obtain 
the required value of the edit distance. Assume that the weight from the sink 
node to itself is zero. Then edit(x,y) = Wn[0,n]. 

The matrix Wn can be computed using successive squaring (or an adapta
tion of it, if n is not a power of 2): 

repeat logn times W := W2. 

Obviously, k3 processors are sufficient for multiplying two k x k matrices in 
0(log k) time on a CREW PRAM. In our case k = (n+1) 2 , so, this proves that 
n6 processors suffice to compute the edit distance. The time of computation 
is 0(log2n). However, there is a more efficient algorithm, due to the special 
structure of the grid graph G. The grid graph can be decomposed into four 
grid graphs of the same type (see Figure 16.10). The partition of G leads to a 
kind of parallel divide-and-conquer computation. 

Theorem 16.7 The edit distance can be computed in log n time with r? pro
cessors. 
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sink 
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Figure 16.10: Decomposition of the shortest path problem into sub-problems. 

Proof. The edit distance problem reduces to the computation of a shortest 
path from the source (left upper corner) to the sink (right lower corner) on the 
weighted grid graph G. We compute (recursively) the matrix W of all costs of 
paths, from positions x on the left or top boundary to any position y on the 
right or bottom boundary of G. Let us partition the grid into four identical 
sub-grids, as in Figure 16.10. If we know the matrices of costs between bound
ary points for all sub-grids, then all costs of paths between boundary positions 
of the whole grid can be computed with 0(M(n)) processors in 0(log n) time, 
using a constant number of matrix multiplications. Here, M(n) denotes the 
number of processors needed to multiply, in 0(log n) time, two matrices sat
isfying the quadrangle inequality. We have M(n) — 0(n2). For n/2 x n/2 
sub-grids we need M(n/2) processors at one level of recursion. Altogether 
M(n) processors suffice, since we have the inequality AM(n/2) < M(n) (be
cause M(n) = en2). • 

Bibliographic notes 

The first optimal parallel algorithm for string matching was presented by Galil 
in [Ga 85]. The algorithm was optimal only for alphabets of constant size. 
Vishkin improved on the notion of the slow duels of Galil, and described 
the more powerful concept of (fast) duels that leads to an optimal algorithm 
independently of the size of the alphabet [Vi 85]. The optimal parallel string-
matching algorithm working in 0(log n) time on a CREW PRAM is also from 
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Vishkin [Vi 85]. The idea of witnesses and duels is used by Vishkin in [Vi 91] 
in the string matching by sampling. The concept of deterministic sampling is 
very powerful. It has been used by Galil to design a constant-time optimal 
parallel searching algorithm (the preprocessing is not included). This result 
was an improvement upon the 0(log* n) result of Vishkin, though <9(log* n) 
time can also be treated practically as a constant time. The construction 
of suffix tree by refining was presented originally in [AILSV 88]. The parallel 
algorithm computing the edit distance is from [AALF 88]. It was also observed 
independently by Rytter [Ry 88]. 



Chapter 17 

Miscellaneous 

This chapter addresses several interesting questions about strings that have not 
been considered yet in previous chapters: string-matching by hashing, shortest 
common superstrings, unique decipherability problem of codes, parameterized 
pattern-matching and breaking paragraphs into lines. The treatment of prob
lems is not always handled in full details. 

17.1 Karp-Rabin string matching by hashing 

When we need to compare two objects x and y, we can look at their "finger
prints" given by hash(x), hash(y). If the fingerprints of two objects are equal, 
there is a strong likelihood that they are really the same object, and we can 
then apply a more thorough test of equality (if necessary). The two basic 
properties of fingerprints are: 

• efficiently computable 

• highly discriminating: it is unlikely to have both x ^ y and hash(x) = 
hash(y). 

The idea of hashing is utilized in the Karp-Rabin string-matching algo
rithm. The fingerprint FP of the pattern (of length m) is computed first. 
Then, for each position i on the text, the fingerprint FT of text[i + 1.A + m] 
is computed. If ever FT = FP, we check directly to see if the equation 
pat = text[i + 1. .i + m] really holds. 

Going efficiently from a position i on the text to the next position i + 1 
requires another property of hashing functions for this specific problem (see 
Figure 17.1): 

271 
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hl= hash(ax) 

text 

hi = hashQcb) 

Figure 17.1: /i2 = f(a,h,hl), where / is easy to compute. 

hash(text[i + l. A + m]) should be easily computable from hash(text[i. A-

m 

Assume for simplicity that the alphabet is {0,1}. Then each string x of length 
TO can be treated as the binary representation of an integer. If TO is large, the 
number becomes too large to fit into a unique memory cell. It is convenient 
then to take as a fingerprint the value x modulo Q, in which Q is a prime 
number as large as possible (for example, the largest prime number that fits 
into a memory cell). The fingerprint function is then 

hash(x) = [x]2 mod Q 

where [14)2 is the number which binary representation is the string u of length 
TO. All string arguments of hash are of length TO. Let g = 2 m _ 1 mod Q. 
Then, the function / (see Figure 17.1) can be computed by the formula: 

f(a, b, h) = 2(h — ag) + b. 

Proceeding in this way, the third basic property of fingerprints is satisfied: / 
is easily computable. 

Algor i thm Karp-Rahin; 
{ string-matching by hashing } 

FP := [pat[l. .m]]2 mod Q; g := 2m~1 mod Q; 
FT := [text[l. .TO]]2 mod Q; 
for i := 0 t o n — TO do begin 

if FT = FP { small probability } then 
check equality pat = text[i + 1. A + TO] 
applying symbol by symbol comparisons 
and report a possible match; 

FT := f(text[i + 1], text[i + TO + 1], FT); 
end 
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The worst-case time complexity of the algorithm is quadratic. But it could 
be difficult to find interesting input data causing the algorithm to make ef
fectively a quadratic number of comparisons (the non-interesting example is 
that in which pat and text consist only of repetitions of the same symbol). On 
the average the algorithm is fast, but the best time complexity is still linear. 
This is to be compared with the lower bound of string matching on the av
erage (which is 0{nlogm/m)), and the best time complexity of Boyer-Moore 
type algorithms (which is 0{n/m)). String matching by hashing produces a 
straightforward O(logn) randomized optimal parallel algorithm because the 
process reduces to prefix computations. 

One can also apply other hashing functions that satisfy the three basic prop
erties above. The original Karp-Rabin algorithm chooses the prime number 
randomly. 

Essentially, the idea of hashing can also be used to solve the problem 
of finding repetitions in strings and arrays (looking for repetitions of finger
prints). The algorithm below is an extension of Karp-Rabin algorithm to two-
dimensional pattern matching. Let m be the number of rows of the pattern 
array. Fingerprints are computed for columns of the pattern, and for factors of 
length m of columns of the text array. The problem then reduces to ordinary 
string matching on the alphabet of fingerprints. Since this alphabet is large, an 
algorithm in which the performance is independent of the alphabet is actually 
required. 

Algorithm 2D-pattern matching by hashing; 
{ PAT is an m x m' array, T is an n x n' array } 

pat := hash(Pi)... hash(Pm>), 
where Pj is the j - t h column of PAT; 

text :— hash(T\)... hash(Tni), 
where Tj is the prefix of length m of the j - t h column of T; 

for i := 0 to n — m do begin 
if pat occurs in text at position j then 

check if PAT occurs in T at position (i, j) 
applying symbol by symbol comparisons, { cost 0(rnm') } 
and report a possible match; 

if i =£ n — m then { shift one row down } 
for j :— 1 to n' do 

text[j] := f(T[i + l,j],T[i + m + 1, j], text[j\); 
end 
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17.2 Shortest common superstrings 

The shortest common superstring problem (SCS) is defined as follows: given a 
finite set of strings R find a shortest text w such that R C ^(w). The size of 
the problem is the total size of all words in R. The superstring w represents 
in a certain sense all subwords of R. 

The problem is known to be NP-complete. So the natural question is to 
find a polynomial-time approximation for it. The aim of Gallant's method is 
to compute an approximate solution. The resulting algorithm is called here 
Greedy-SCS. Without loss of generality, we assume (throughout this section) 
that R is a factor-free set, which means that no word in R is a factor of another 
word in R. Otherwise, if u is a factor of v (u, v £ R), a solution for R — {u} 
is a solution for R. For two words x and y let us define Overlap(x,y) as the 
longest prefix of y which is a suffix of x. liv— Overlap(x, y), then x, y are in 
the form 

x = u\v and y = vu?-

Let us define x©y as the word Uivv,2 (= u\y = xu^). Observe that the 
shortest superstring of two words u, v is either u©v or v©u. Since the set R 
is factor-free, the operation © has the following properties: 

(*) operation © is associative (on R), 

(**) the shortest superstring for R is of the form x\©X2©X3© . . . ©Xk, where 
x\, X2, X3,..., Xk is a permutation of all words of the set R. 

function Greedy-SCS (R); 
{ Gallant's algorithm, greedy approach to SCS } 

if R consists of one word w then return w 
else begin 

find two words x, y such that Overlap(x, y)\ is 
return Greedy-SCS(R - {x, y} U {x©y}); 

end 

maximal; 

The above algorithm is quite effective in term of compression. Let n be the 
sum of lengths of all words in R. Let wmin be a shortest common superstring, 
and let WQ be the output of Gallant algorithm. Note that |iz;mj„| < \WQ\ < n. 
The difference n — |wmm| is the size of compression. The smaller the shortest 
superstring, the better the compression. The following lemma states that the 
compression reached by Gallant algorithm is at least half the optimal value 
(see bibliographic notes). 
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Lemma 17.1 n - \WQ\ > (n — |u>min|)/2. 

If we take wi = abn, W2 = bna, W3 = bn+1 then the size of the compression 
is approximately twice the optimal one, if the algorithm first merges w\ and 
W2- Hence the order is essential, unfortunately there generally exponentially 
many different orderings possible. 

i a c b d 

e g i a k h 

h b g e g i 

b d i a c h 

11 U d l a c | r e s u l t o f GREEDY 

[ f b d i a c h b g e g i a k h i a c b d | 

Figure 17.2: The action of the algorithm Greedy-SCS on the example strings. 

Example. Take the following example set R = {w\,W2, u>3,1^4, iv&}, in which 

w\ = egiakh, u>2 = fbdiac, w3 = hbgegi, Wi — iacbd, w^ = bdiach. 

Gallant algorithm produces the following string, see Figure 17.2. 

WG = Greedy-SCS{w11 W2©ws, w3, W4) 
= Greedy-SCS(u>3©wi, W2©'w5, W4) 
= Greedy-SCS{w2©W5©W3©wi, w±) 
= W2©W5©W3©Wi©W4. 

Its size £ is 

i = n— Overlap (w2,W5) — Overlap (ws,w3) 
— Overlap(w3,wi) — Overlap(w\, W4) 

= 2 9 - 5 - 1 - 3 - 0 
= 20. 

In this case, n — \WG\ = 9. 
An alternative approach to Greedy-SCS algorithm is to find a permutation 

Xi, X2, X3, . . . , Xk 
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of all words of R, such that xi©X2©x3©... ©Xk is of minimal size. This 
produces exactly a shortest superstring (property **). Translated into graph 
notation (with nodes aij's, linked by edges weighted by lengths of overlaps) 
the problem reduces to the Traveling Salesman Problem, which is also NP-
complete. Heuristics for this latter problem can be used for the shortest su
perstring problem. 

The complexity of Gallant algorithm depends on its implementation. Ob
viously the basic operation is computing overlaps. It is easy to see that for 
two given strings u and v the overlap is the size of the border of the word 
v#u. Hence, methods from Chapter 3 (to compute the border table) can be 
used here. This leads to an 0(nk) implementation of Gallant method. The 
best known implementations of the method work in O(nlogn) time, using 
sophisticated data structures. 

17.3 Unique-decipherability problem 

A set of words H, is said to be a uniquely-decipherable code if words that 
are compositions of words of H have only one factorization according to H. 
The unique decipherability problem consists in testing whether a set of words 
satisfies the condition. The size n of the problem, when H is a finite set, is 
the total length of all elements of H; in particular, the cardinality of H is also 
bounded by n. Note that we can consider that H does not contain the empty 
word, because otherwise H is not uniquely decipherable and the problem is 
solved. 

Another way to set up the problem is to consider a coding function h, 
or substitution, from B* to A* (B and A are two finite alphabets). The 

function is a morphism (i.e., it satisfies both properties h(s) = e and h(uv) = 
h(u)h(v) for all u,v), and the set H, called the code, is {h(a) : a e B}. The 
elements of H are called codewords. Then, asking whether h is a one-to-one 
function is equivalent to the unique decipherability for H provided all h(a)'s 
are pairwise distinct. Coding functions related to data compression algorithms 
are considered in Chapter 10. We can assume that all codewords h(a) are 
non-empty and pairwise distinct. If not, then obviously the function is not 
one-to-one and the problem is solved. 

We translate the unique decipherability condition for H into a problem on 
a graph G that is now denned. The nodes of G are suffixes of the codewords 
(including the empty word). There is an edge in G from u to v iff v = u//x 
or v — xj/u for some codeword x. The operation y//z is denned only if z is a 
prefix of y, that is, if y = zw for some word w, and the result is precisely this 
word w. 



17.3. UNIQUE-DECIPHERABILITY PROBLEM 277 

(dba ) 

Figure 17.3: Graph G for the example code. 

A set of initial nodes, Init, is denned for the graph G. Initial nodes are 
those of the form xjjy in which x, y are two distinct codewords. Let us call 
the empty word the sink. Then, it is easy to prove the following fact: 

the code H is uniquely decipherable iff there is no path in G from 
an initial node to the sink. 

Example. Let H = {ab, abba, baaabad, aa, badcc, cc, dccbad, badba}. The cor
responding graph G is displayed in Figure 17.3. The set is not a uniquely 
decipherable code because there is a path from ba to the sink. The word ba is 
an initial node because ba = abba/ jab. The path is: 

ba —>• aabad —> bad —»• ce —> e 

associated with the four equalities baaabad//ba = aabad, aabad//aa = bad, 
badcc//bad = cc, cc//cc = e. The path corresponds to two factorizations of 
the word abbaaabadcc: 

ab.baaabad.cc and abba.aa.badcc. 

The size of graph G is 0(n2), and we can search a path from an initial 
node to the sink in time proportional to the size of the graph by any standard 
algorithm. We show that the construction of G can also be accomplished within 
the same time bound. If we can answer questions like "is y//x defined?" in 
constant time, then, there is at most a quadratic number of such questions, 
and we are done. The question "is y//x denned?" is equivalent to "is the x a 
prefix of y." For a fixed codeword y this takes 0(n + \y\) time, since n is the 
total size of all codewords. Altogether this takes 0{n2) time if we sum over all 
y's. This proves the following. 



278 CHAPTER 17. MISCELLANEOUS 

Theorem 17.1 The unique decipherability problem can be solved in 0{n*) 
time. 

A more precise estimation of the same algorithm shows that it works in 
0{nk) time, where k is the number of codewords. By applying some data 
structures, the space complexity can also be improved for some instances of 
the problem. The close relationship between the unique decipherability prob
lem and accessibility problem in graphs is quite inherent, particularly if space 
complexity is considered. Indeed, the problems are mutually reducible using 
additional constant-space memory of a random access machine (or log n deter
ministic space of a Turing machine). 

17.4 Parameterized pat tern matching 

Assume we search for a pattern P e SJ of length m in a text T G Ej of 
length n and the same symbol can be written differently in P and T but the 
full correspondence between symbols can be unknown in advance. For some 
symbols of Si we know their equivalent symbols in £2 via an injective partial 
naming function 

Ninit : Si —>• S2. 

We are to check if there is an injective full naming function Af defined for 
all symbols of S i , which is an extension of Afinit, and such that the coded 
pattern Af(P) occurs in T. We ask for all occurrences for which there exists a 
corresponding function Af; the naming function may differ for each occurrence. 
The symbols for which Afinit is not denned are called unknown symbols, so 
the problem is to check how to name them consistently in such a way that 
the pattern occurs in T. We assume that the alphabets are enumerated, i.e. 
identified with intervals on natural numbers starting at 1. 

Example. Assume that initially Afinit{a) = b and Af is not defined for other 
symbols, consider the following text and pattern: 

T — abcabbbbac, P = a b c. 

Then, there are two occurrences of P in T which start at positions 2 and 8. 
In the first occurrence abc corresponds to bca and in the second one to bac. 
Hence the naming function for the first occurrence is 

Af : a^>b, b-+c, c—ta 
and for the second occurrence it is: 

Af : a -¥ b, b —> a, c—tc. 
In both correspondences it should be a —> b. 
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We say that u agrees with w and write u « w if there is an injective naming 
function N such that Af(u) = w. Using this terminology we have 

P occurs at position i in T iff P w T[i. .i + m — 1]. 

Let So be the set of symbols for which the initial partial naming function 
is defined. So So is the set of known symbols and A \ So is the set of unknown 
symbols. For two strings u,w built over the alphabet Si containing So we 
define the equivalence relation u = w as follows: 
(1) u and w have the same length, (2) there is a bijection / : Si -> Si such 
that f(u) = w and / is the identity on So-

Lemma 17.2 
(1) If u = w and w w v then u « v. 
(2) If P[l. .j] « T[i + l..i+ j] andl<t<j then 

P[l. .t] « T[i + j - t. .i + j] => P[l. .t] = P[j -t + 1. .j}. 

We introduce a new version of the border table which is suitable to using 
the same strategy for pattern matching with unknown symbols. 

For 0 < j < m, define 

ModBord[j] = max{0 < t < j : P[l. .t] = P[j -t + l. .j}}. 

In other words, the entry ModBord[j] is equal to the length of a longest proper 
suffix of P[l. .j] which agrees (with respect to =) with a prefix of P of the same 
length. The entry is null if no non-empty proper suffix satisfy the condition, 
e.g., it always holds ModBord[l] = 0. 

In the algorithm we need one table more, called PRED. For a string X it 
is defined by 

PREDx[i) = max{i < i : X[i] = X[t] or t = 0} 

for all position i on X. For example, if X = abcaabac we have: PREDx = 
[0,0,0,1,4,2,5,3]. 

Lemma 17.3 The table PRED can be computed in linear time. 

Proof. We scan the string X from left to right and use an auxiliary table 
LAST, which records the position of the last occurrence of each symbol before 
the currently visited position i. Initially LAST contains only zeros. And at 
the i-th iteration we execute the instruction: 
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PREDx[i\ •= LAST[X[i]] ; LAST[X[i]] := i; 

The computation takes linear time if the alphabet is enumerated. D 

function MATCH-EXTENDS {ij); 
{ input: P[l. .j] « T[i + 1.A+ j] and 0 < j < m } 

{ output: true iff P[ l . .j + 1] « T[i + 1.. 
u : = P [ j + l ] ; t ; : = r [ i + i + l]; 
if it G So or v G Mmt(So) then 

return (Afinit(u) = v) 
else if PREDP[j + 1] > 0 then 

; + i + i ] } 

return (T[i + j + 1] = T[i + PREDP[j + 1]) 
else 

return (PREDT[i + j + 1] < i); 

The crucial part of the modified KMP algorithm is an auxiliary function 
MATCH-EXTENDS, which checks whether a partial match of P[ l . .j] against 
T[i. .i + j] extends by one symbol to the right. 

Theorem 17.2 [Modified-KMP: searching] Assume the table ModBord for 
pattern P is precomputed. Then we can search for P with unknown symbols in 
a text of length n in time 0{n). 

Proof. Algorithm Modified-KMP is presented below. It works essentially in 
the same manner as KMP algorithm does; but, instead of making simple sym
bols comparisons, it uses the special boolean function MATCH-EXTENDS(i,j). 
Since running the function MATCH-EXTENDS takes only constant time, the 
algorithm works in linear time. The proof of correctness of the algorithm is 
less trivial but it follows essentially from Lemma 17.2. • 

Algorithm Modified-KMP; 
i := 0; j := 0; 

compute tables PREDp and PREDT; 

compute table ModifiedFailureTable; 
while i < n — m do begin 

while j < m and MATCH-EXTENDS(i, 
j := i + 1; 
if j = m then REPORT MATCH at 
i := i + max(l, j — ModBord\j]); 
j := ModBord[j]; 

j) do 

i + 1; 



17.5. BREAKING PARAGRAPHS INTO LINES 281 

Theorem 17.3 [Modified-KMP: preprocessing] The table ModBord for a pat
tern of length m can be computed in 0(m) time. 

Proof. We use the algorithm Computation-of-ModifiedFailureTable, which 
is given below. The algorithm mimics a standard algorithm. The function 
MATCH-EXTENDS'(t, k) is a slight modification of MATCH-EXTENDS. It 
checks whether a partial match of P[ l . .t] against P[j — t. .j] extends by one 
position in the pattern in the sense of relation =. The function is designed as 
a straightforward modification of MATCH-EXTENDS. The time complexity 
of the algorithm Computation-of-ModifiedFailureTable is linear due to the fact 
that MATCH-EXTENDS' is computed in constant time. • 

Algorithm Computation-of-ModifiedFailureTable; 
compute the table PREDp; 

ModifiedFailureTable[Q] := - 1 ; t := - 1 ; 
for j := 1 to m do begin 

while t > 0 and not MATCH-EXTENDS1 {t,j - t) do 
t := ModifiedFailureTable[t}; 

t := t + 1; ModifiedFailureTable[j] := t; 

17.5 Breaking paragraphs into lines 

In this section, we describe an application of text manipulation to text editing. 
It is the problem of breaking a paragraph optimally into lines. The algorithm 
may be seen as another application of the notion of failure function, introduced 
in Chapter 2 for the KMP string-matching algorithm. 

The problem of breaking a paragraph is defined as follows. We are given 
a paragraph (a sequence) of n words (in the usual sense) x\, x^, . . . , xn, and 
bounds Imin, Imax on lengths of lines. The i-th word of the paragraph has 
length wi. A line is an interval [i. .j] of consecutive words x'ks (i < k < j). 
The length of line [i. .j], denoted by line(i,j), is the total length of its words, 
that is, Wi + u>i+i + • • - + Wj. Bounds Imin and Imax are related to the smallest 
and largest lengths of lines respectively. The optimal length of a line is Imax. 
Moreover, the length of the line [i. .j] is said to be legal if Imin < line(i,j) < 
Imax. Let us denote the corresponding predicate by legal(i,j). 

For a legal line, its penalty is defined as penalty(i,j) = C.(lmax — line(i,j)), 
for some constant C. The problem of breaking a paragraph consists in finding 
a sequence of integers 

h{= 1), h, ••• , ik(=n) 
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such that both, lines [ii. .i2], [h + 1- -*3], • • • , [h-i + 1- -h] have legal lengths, 
and the total penalty (sum of penalties of lines) is minimum. Integers i\, i2, 
i3, ... , ik are called the breaking points of the paragraph. We assume that 
there is no penalty (or zero penalty) for the first line, if its length does not 
exceed Imax. It is as if we treated the paragraph starting from the end. In the 
common definition of the problem the last line is not penalized for being too 
short. Reversing the order of words in paragraphs leads to an algorithm that 
is even more similar to KMP algorithm, since indices are processed from left 
to right. 

Let break[i] be the rightmost breaking point preceding i in an optimal 
breaking of the subparagraph [1. .i]. When break [i] is computed for all values 
of i (from 1 to n), the problem is solved: the sequence of breaking points can 
be recovered by iterating break from n. 

We first design a brute-force breaking algorithm that runs in quadratic 
time. The informal scheme of such a naive algorithm is given below. It uses 
the table / : f[i] is the total penalty of breaking into lines the subparagraph 
[1. .i\. The scheme assumes that f[i] is initialized to 0 for all integers i such 
that line(l,i) < Imax, and is initialized to infinity for all other values of i. 

for i :— 1 to n do begin 
j := an integer which minimizes 
break[i) :— j ; 
/[*] : = f[J] + penalty(j + l,i); 

end 

f[j] + penalty(j + 1, 0; 

The value of the variable j at the second line is computed by scanning the 
interval [first[i],... , last[i]], in which first[i] is the smallest integer k for which 
legal(k,i) holds, and, similarly, /osi[i] is the largest such k less than i. The 
interval [/irs£[i],... , Zas£[i]] is called the legal interval of i. All values first[i], 
last[i], line(l,i) can be precomputed. Therefore, the above scheme yields an 
0(n2) time algorithm. The next theorem shows that this can be improved 
upon considerably. 

procedure Update-table-Next, 
repeat 

pop the top index j of the stack S; 
until g[j] < g[i]; 
push i onto S; 

Next[j] := i; 
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Algorithm HL; { breaking a paragraph of n words into lines } 
precompute values first[i], last[i], line(l, i) for all i < n; 

let k be the maximal index such that line[l, k] < Imax; 
initialize f[i\ to 0 and break[i] to 0 for alii < k 

and compute the corresponding values g[i] and Next[i}; 

j •= 0; 
for i := k + 1 to n do begin 

{ invariant: break[i] < i, first[i] < last[i] < i } 
{ legal interval is [/jrs£[i]. ./asi[i]] } 
if j < first[i] then j := first[i}; 
while Next[j] denned and Next[j] < last[i] do 

{j is not rightmost minimal } j := Next[j]; 
break[i] := j ; f[i] := f[j] + penalty (j + 1, i); 
g[i] := f[i] + C.line(l,i); 
Update-table-next, 

end; 
return table break, which gives an optimal breaking; 

Theorem 17.4 The problem of optimally breaking a paragraph ofn words can 
be solved in 0(n) time. 

Proof. Let us define the function g by g[j] = f[j] + C.line(j, n). The crucial 
point is the following property: a value of j that minimizes f[j]+penalty(j+l,i) 
also minimizes g[j] in the legal interval of j . 

That the difference between expressions depends only on i can be checked 
using simple arithmetics. Another important property is the monotonicity of 
breaking points: 

i' < i => break[i'\ < break[i\. 

Hence, the value of j is to be found in the interval [max(first[i], break[i — 
1]). .Zas£[i]]. Define Next[j] to be the first position k < i to the right of j such 
that g[k] < g[j}. When looking for the minimal value of g[j] in a legal interval, 
we can initialize j to the beginning of the interval, and compute successive 
positions by iterating Next: 

J! = Next[j], j 2 = Next[ji], ... 

until the value is undefined, or until it goes outside the interval. Doing so, Next 
works as the failure table of KMP algorithm. This produces the algorithm 
presented below. It works in linear time, as per a similar argument as that 
used in the analysis of KMP algorithm, if the total cost of updating the table 
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Next is linear. Let ji, J2, • • • , j r be the increasing sequence of values of j for 
which Next[j] is not denned at a given stage of the algorithm. Then the values 
of g[j] are strictly increasing for this sequence. We keep the sequence j l t j 2 , 
. . . , j r on a stack S, the last element at the top. The procedure Update-table-
Next is then applied. The total complexity of computing the table Next is 
linear, since each position is popped from stack S at most once. • 

Bibliographic notes 

String matching by hashing was first considered by Harrison [Ha 71]. A 
complete analysis is presented by Karp and Rabin in [KR 87]. The same idea 
(using hashing) is applied to finding repetitions in [Ra 85]. An adaptation of 

Karp-Rabin algorithm to two-dimensional pattern matching has been designed 
by Feng and Takaoka [FT 89]. The approximation of the SCS is from [GMS 
80]. An efficient implementation has been designed by Tarhio and Ukkonen 
[TU 88]. Stronger methods are developed in [Tu 89], providing an 0(n log n)-
time algorithm, there are plenty of other algorithms for the problem. The 
algorithm for testing unique decipherability of a code is usually attributed to 
Sardinas and Paterson (see [Lo 83]). The problem is complete in the class of 
non-deterministic logn-space computations (see [Ry 86]). The parameterized 
pattern matching was introduced by Baker [Ba 93]. It has also been considered 
by Amir, Farach, Muthukrishnan [AFM 94]. We present here our own version. 
The application of failure functions to the problem of breaking a paragraph into 
lines is from Hirschberg and Larmore [HL 87a]. There are many stringology 
subjects which are not covered in the book, one of them is recently developed 
algorithmics on compressed strings, see [Ry 00], [KS 99], [Ry 02a]. Another 
problem is the solvability of word equations, the main jewel in this area is 
the algorithm of Plandowski [PI 99]. However this problem is almost certainly 
beyond the class of polynomially solvable problems (the best algorithm works 
in a polynomial space). There are many iVP-hard stringology problems, for 
example word equations and the superstring problem. However our book was 
mostly devoted to (deterministic) polynomial-time algorithms. 
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