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Some Notation

• We index the symbols in a string starting at 0

• For any string s, let s denote the length of s

• For any string s and integer i such that 0 ≤ i < s, let s[i] denote the
symbol of s with index i

• For any string s and integers i and j such that 0 ≤ i < s and i ≤ j ≤ s,
s[i..j] denotes the (possibly empty) substring of s starting at index i
and ending just before j

– s[2..4] is the two-symbol string s[2]s[3]

– s[2..2] is the empty string

– s[0..s] = s

Theory in Programming Practice, Plaxton, Spring 2004



The (Exact) String Matching Problem

• Given a text string t and a pattern string p, find all occurrences of p in
t
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Three Efficient String Matching Algorithms

• Rabin-Karp

– This is a simple randomized algorithm that tends to run in linear
time in most scenarios of practical interest

– The worst case running time is as bad as that of the naive algorithm,
i.e., Θ(p · t)

• Knuth-Morris-Pratt (this lecture and the next)

– The worst case running time of this algorithm is linear, i.e., O(p+ t)

• Boyer-Moore

– This algorithm tends to have the best performance in practice, as it
often runs in sublinear time

– The worst case running time is as bad as that of the naive algorithm
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The KMP String Matching Algorithm: Plan

• We maintain two indices, ` and r, into the text string

• We iteratively update these indices and detect matches such that the
following loop invariant is maintained

– KMP Invariant: ` ≤ r, t[`..r] = p[0..r − `], and all occurrences of
the pattern p starting prior to ` in the text t have been detected

• We ensure that the invariant holds initially by setting ` and r to zero

• Remark: We will see later that the algorithm also requires a
preprocessing phase involving only the pattern string p
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Achieving Linear Time Complexity: The Plan

• The algorithm performs only a constant amount of computation in
each iteration

• The algorithm never decreases ` or r

• In each iteration, either ` or r is increased

• Note that the indices ` and r are at most t

• By the KMP invariant, all matches have been detected once ` reaches
t, so we can terminate at that point

• The preprocessing phase, which involves only p, runs in O(p) time
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KMP Iteration

• Let’s see how to define an iteration of the KMP loop

• Assume the KMP invariant holds at the beginning of the iteration

• Since the loop has not terminated, ` < t

• We’d like to increase ` or r, while maintaining the invariant

• There are two cases to consider

– Case 1: 0 ≤ r − ` < p, i.e., we do not yet know whether there is a
match starting at index `

– Case 2: r − ` = p, i.e., we have found a match starting at index `
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Case 1: 0 ≤ r − ` < p

• Case 1.1: t[r] = p[r − `]

– We’ve matched another symbol; increment r

• Case 1.2: r = ` and t[r] 6= p[r − `]

– Our current match is the empty string and the next symbol does not
match p[0]; increment ` and r

• Case 1.3: r > ` and t[r] 6= p[r − `]

– Our current match is a nonempty proper prefix of p and the next
symbol does not extend this match

– How should we update ` and r in this remaining subcase?
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Case 1.3: 0 ≤ r − ` < p, r > `, and t[r] 6= p[r − `]

• Our current match u is a nonempty proper prefix of p and the next
symbol does not extend this match

• We cannot set ` to r because we might skip over one or more matches

– Example: Suppose p is axbcyaxbts and we’ve already matched
axbcyaxb, but the next symbol is not t

– In this example, we advance ` by 5

• In general, we advance ` by the smallest k > 0 such that the suffix
v = u[k..u] of u is a prefix of p

• Note that v is simply the longest string that is both a proper prefix and
a proper suffix of u

– This string is called the core of u, denoted c(u)

– Later we will discuss how the KMP algorithm computes such cores
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Case 2: r − ` = p

• We output that a match exists starting at index `

• How do we update ` and r?

• Note that this case is very similar to Case 1.3 treated earlier

• We increase ` by p− c(p)

Theory in Programming Practice, Plaxton, Spring 2004



Core Computation

• It remains only to describe how the KMP algorithm computes the cores
required in Cases 1.3 and 2

• Recall that each iteration of KMP is supposed to run in a constant
number of operations

• How can we hope to compute the core of a string in constant time?
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KMP Core Computation: A Key Observation

• Note that in Case 1.3 we need to compute the core of some proper
prefix of p, while in Case 2 we need to compute the core of p

• Thus, if we precompute the core of every prefix of p, we will be able to
execute each iteration of the KMP loop in constant time

• It remains to prove that we can compute the core of every prefix of p
in O(p) time
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Some Properties of Core

• Let u ¹ v mean that u is both a prefix and a suffix of v

– For any string u, ε ≤ u

– The ¹ relation is a partial order

• Let u ≺ v denote u ≤ v and u 6= v

• The core c(v) of a string v is the unique string such that for all strings
u

u ¹ c(v) ≡ u ≺ v

– It follows, by replacing u with c(v), that c(v) ≺ v and hence c(v) < v

• Let c0(u) denote u and for any i ≥ 0 such that ci(v) is a nonempty
string, let ci+1(u) denote c(ci(u))
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A Key Property

• Claim: For any u and v, u ¹ v ≡ 〈∃i : 0 ≤ i : u = ci(v)〉
• The proof is by induction on the length of v

• Base case (v = 0):

u ¹ v
≡ {v = 0, i.e., v = ε}

u = ε ∧ v = ε
≡ {definition of c0: v = ε ⇒ ci(v) is defined for i = 0 only}

〈∃i : 0 ≤ i : u = ci(v)〉
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Induction Step: v = n + 1, n ≥ 0

u ¹ v
≡ {definition of ¹}

u = v ∨ u ≺ v
≡ {definition of core}

u = v ∨ u ¹ c(v)
≡ {c(v) < v; induction hypothesis on second term}

u = v ∨ 〈∃i : 0 ≤ i : u = ci(c(v))〉
≡ {rewrite}

u = c0(v) ∨ 〈∃i : 0 < i : u = ci(v)〉
≡ {rewrite}

〈∃i : 0 ≤ i : u = ci(v)〉
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