String Matching: Knuth-Morris-Pratt Algorithm

Greg Plaxton
Theory in Programming Practice, Spring 2004
Department of Computer Science
University of Texas at Austin

Some Notation

- We index the symbols in a string starting at 0
- For any string s, let \bar{s} denote the length of s
- For any string s and integer i such that $0 \leq i<\bar{s}$, let $s[i]$ denote the symbol of s with index i
- For any string s and integers i and j such that $0 \leq i<\bar{s}$ and $i \leq j \leq \bar{s}$, $s[i . . j]$ denotes the (possibly empty) substring of s starting at index i and ending just before j
$-s[2.4]$ is the two-symbol string $s[2] s[3]$
$-s[2 . .2]$ is the empty string
$-s[0 . . \bar{s}]=s$

The (Exact) String Matching Problem

- Given a text string t and a pattern string p, find all occurrences of p in t

Three Efficient String Matching Algorithms

- Rabin-Karp
- This is a simple randomized algorithm that tends to run in linear time in most scenarios of practical interest
- The worst case running time is as bad as that of the naive algorithm, i.e., $\Theta(\bar{p} \cdot \bar{t})$
- Knuth-Morris-Pratt (this lecture and the next)
- The worst case running time of this algorithm is linear, i.e., $O(\bar{p}+\bar{t})$
- Boyer-Moore
- This algorithm tends to have the best performance in practice, as it often runs in sublinear time
- The worst case running time is as bad as that of the naive algorithm

The KMP String Matching Algorithm: Plan

- We maintain two indices, ℓ and r, into the text string
- We iteratively update these indices and detect matches such that the following loop invariant is maintained
- KMP Invariant: $\ell \leq r, t[\ell . . r]=p[0 . . r-\ell]$, and all occurrences of the pattern p starting prior to ℓ in the text t have been detected
- We ensure that the invariant holds initially by setting ℓ and r to zero
- Remark: We will see later that the algorithm also requires a preprocessing phase involving only the pattern string p

Achieving Linear Time Complexity: The Plan

- The algorithm performs only a constant amount of computation in each iteration
- The algorithm never decreases ℓ or r
- In each iteration, either ℓ or r is increased
- Note that the indices ℓ and r are at most \bar{t}
- By the KMP invariant, all matches have been detected once ℓ reaches \bar{t}, so we can terminate at that point
- The preprocessing phase, which involves only p, runs in $O(\bar{p})$ time

KMP Iteration

- Let's see how to define an iteration of the KMP loop
- Assume the KMP invariant holds at the beginning of the iteration
- Since the loop has not terminated, $\ell<\bar{t}$
- We'd like to increase ℓ or r, while maintaining the invariant
- There are two cases to consider
- Case 1: $0 \leq r-\ell<\bar{p}$, i.e., we do not yet know whether there is a match starting at index ℓ
- Case 2: $r-\ell=\bar{p}$, i.e., we have found a match starting at index ℓ

Case 1: $0 \leq r-\ell<\bar{p}$

- Case 1.1: $t[r]=p[r-\ell]$
- We've matched another symbol; increment r
- Case 1.2: $r=\ell$ and $t[r] \neq p[r-\ell]$
- Our current match is the empty string and the next symbol does not match $p[0]$; increment ℓ and r
- Case 1.3: $r>\ell$ and $t[r] \neq p[r-\ell]$
- Our current match is a nonempty proper prefix of p and the next symbol does not extend this match
- How should we update ℓ and r in this remaining subcase?

Case 1.3: $0 \leq r-\ell<\bar{p}, r>\ell$, and $t[r] \neq p[r-\ell]$

- Our current match u is a nonempty proper prefix of p and the next symbol does not extend this match
- We cannot set ℓ to r because we might skip over one or more matches
- Example: Suppose p is axbcyaxbts and we've already matched axbcyaxb, but the next symbol is not t
- In this example, we advance ℓ by 5
- In general, we advance ℓ by the smallest $k>0$ such that the suffix $v=u[k . . \bar{u}]$ of u is a prefix of p
- Note that v is simply the longest string that is both a proper prefix and a proper suffix of u
- This string is called the core of u, denoted $c(u)$
- Later we will discuss how the KMP algorithm computes such cores

Case 2: $r-\ell=\bar{p}$

- We output that a match exists starting at index ℓ
- How do we update ℓ and r ?
- Note that this case is very similar to Case 1.3 treated earlier
- We increase ℓ by $\bar{p}-\overline{c(p)}$

Core Computation

- It remains only to describe how the KMP algorithm computes the cores required in Cases 1.3 and 2
- Recall that each iteration of KMP is supposed to run in a constant number of operations
- How can we hope to compute the core of a string in constant time?

KMP Core Computation: A Key Observation

- Note that in Case 1.3 we need to compute the core of some proper prefix of p, while in Case 2 we need to compute the core of p
- Thus, if we precompute the core of every prefix of p, we will be able to execute each iteration of the KMP loop in constant time
- It remains to prove that we can compute the core of every prefix of p in $O(\bar{p})$ time

Some Properties of Core

- Let $u \preceq v$ mean that u is both a prefix and a suffix of v
- For any string $u, \epsilon \leq u$
- The \preceq relation is a partial order
- Let $u \prec v$ denote $u \leq v$ and $u \neq v$
- The core $c(v)$ of a string v is the unique string such that for all strings u

$$
u \preceq c(v) \equiv u \prec v
$$

- It follows, by replacing u with $c(v)$, that $c(v) \prec v$ and hence $\overline{c(v)}<\bar{v}$
- Let $c^{0}(u)$ denote u and for any $i \geq 0$ such that $c^{i}(v)$ is a nonempty string, let $c^{i+1}(u)$ denote $c\left(c^{i}(u)\right)$

A Key Property

- Claim: For any u and $v, u \preceq v \equiv\left\langle\exists i: 0 \leq i: u=c^{i}(v)\right\rangle$
- The proof is by induction on the length of v
- Base case $(\bar{v}=0)$:

$$
\begin{gathered}
\\
\equiv \preceq v \\
\equiv \\
\{\bar{v}=0 \text {, i.e., } v=\epsilon\} \\
u=\epsilon \wedge v=\epsilon \\
\equiv \quad\left\{\text { definition of } c^{0}: v=\epsilon \Rightarrow c^{i}(v) \text { is defined for } i=0 \text { only }\right\} \\
\left\langle\exists i: 0 \leq i: u=c^{i}(v)\right\rangle
\end{gathered}
$$

Induction Step: $\bar{v}=n+1, n \geq 0$

$$
\begin{aligned}
& u \preceq v \\
& \equiv \quad\{\text { definition of } \preceq\} \\
& u=v \vee u \prec v \\
& \equiv \quad\{\text { definition of core }\} \\
& u=v \vee u \preceq c(v) \\
& \equiv\{\overline{c(v)}<\bar{v} \text {; induction hypothesis on second term }\} \\
& u=v \vee\left\langle\exists i: 0 \leq i: u=c^{i}(c(v))\right\rangle \\
& \equiv \quad\{\text { rewrite }\} \\
& u=c^{0}(v) \vee\left\langle\exists i: 0<i: u=c^{i}(v)\right\rangle \\
& \equiv \quad\{\text { rewrite }\} \\
& \left\langle\exists i: 0 \leq i: u=c^{i}(v)\right\rangle
\end{aligned}
$$

