String Matching: Knuth-Morris-Pratt Algorithm

Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin

Some Notation

- We index the symbols in a string starting at 0
- For any string s, let \overline{s} denote the length of s
- For any string s and integer i such that $0\leq i<\overline{s},$ let s[i] denote the symbol of s with index i
- For any string s and integers i and j such that 0 ≤ i < s and i ≤ j ≤ s, s[i..j] denotes the (possibly empty) substring of s starting at index i and ending just before j
 - s[2..4] is the two-symbol string s[2]s[3]
 - s[2..2] is the empty string
 - $s[0..\overline{s}] = s$

The (Exact) String Matching Problem

• Given a text string t and a pattern string $p, \mbox{ find all occurrences of } p$ in t

Three Efficient String Matching Algorithms

- Rabin-Karp
 - This is a simple randomized algorithm that tends to run in linear time in most scenarios of practical interest
 - The worst case running time is as bad as that of the naive algorithm, i.e., $\Theta(\overline{p}\cdot\overline{t})$
- Knuth-Morris-Pratt (this lecture and the next)
 - The worst case running time of this algorithm is linear, i.e., $O(\overline{p} + \overline{t})$
- Boyer-Moore
 - This algorithm tends to have the best performance in practice, as it often runs in sublinear time
 - The worst case running time is as bad as that of the naive algorithm

The KMP String Matching Algorithm: Plan

- We maintain two indices, ℓ and r, into the text string
- We iteratively update these indices and detect matches such that the following loop invariant is maintained
 - KMP Invariant: $\ell \leq r$, $t[\ell..r] = p[0..r \ell]$, and all occurrences of the pattern p starting prior to ℓ in the text t have been detected
- We ensure that the invariant holds initially by setting ℓ and r to zero
- \bullet Remark: We will see later that the algorithm also requires a preprocessing phase involving only the pattern string p

Achieving Linear Time Complexity: The Plan

- The algorithm performs only a constant amount of computation in each iteration
- The algorithm never decreases ℓ or r
- In each iteration, either ℓ or r is increased
- Note that the indices ℓ and r are at most \overline{t}
- By the KMP invariant, all matches have been detected once ℓ reaches \overline{t} , so we can terminate at that point
- The preprocessing phase, which involves only p, runs in $O(\overline{p})$ time

KMP Iteration

- Let's see how to define an iteration of the KMP loop
- Assume the KMP invariant holds at the beginning of the iteration
- Since the loop has not terminated, $\ell < \overline{t}$
- We'd like to increase ℓ or r, while maintaining the invariant
- There are two cases to consider
 - Case 1: $0 \leq r-\ell < \overline{p},$ i.e., we do not yet know whether there is a match starting at index ℓ
 - Case 2: $r \ell = \overline{p}$, i.e., we have found a match starting at index ℓ

Case 1: $0 \le r - \ell < \overline{p}$

• Case 1.1: $t[r] = p[r - \ell]$

– We've matched another symbol; increment r

- Case 1.2: $r = \ell$ and $t[r] \neq p[r \ell]$
 - Our current match is the empty string and the next symbol does not match p[0]; increment ℓ and r
- Case 1.3: $r > \ell$ and $t[r] \neq p[r \ell]$
 - Our current match is a nonempty proper prefix of p and the next symbol does not extend this match
 - How should we update ℓ and r in this remaining subcase?

Case 1.3: $0 \le r - \ell < \overline{p}$, $r > \ell$, and $t[r] \ne p[r - \ell]$

- Our current match u is a nonempty proper prefix of p and the next symbol does not extend this match
- We cannot set ℓ to r because we might skip over one or more matches
 - Example: Suppose p is axbcyaxbts and we've already matched axbcyaxb, but the next symbol is not t
 - In this example, we advance ℓ by 5
- In general, we advance ℓ by the smallest k>0 such that the suffix $v=u[k..\overline{u}]$ of u is a prefix of p
- Note that v is simply the longest string that is both a proper prefix and a proper suffix of \boldsymbol{u}
 - This string is called the *core* of u, denoted c(u)
 - Later we will discuss how the KMP algorithm computes such cores

Case 2: $r - \ell = \overline{p}$

- We output that a match exists starting at index ℓ
- How do we update ℓ and r?
- Note that this case is very similar to Case 1.3 treated earlier
- We increase ℓ by $\overline{p} \overline{c(p)}$

Core Computation

- It remains only to describe how the KMP algorithm computes the cores required in Cases 1.3 and 2
- Recall that each iteration of KMP is supposed to run in a constant number of operations
- How can we hope to compute the core of a string in constant time?

KMP Core Computation: A Key Observation

- Note that in Case 1.3 we need to compute the core of some proper prefix of p, while in Case 2 we need to compute the core of p
- Thus, if we precompute the core of every prefix of *p*, we will be able to execute each iteration of the KMP loop in constant time
- It remains to prove that we can compute the core of every prefix of p in $O(\overline{p})$ time

Some Properties of Core

- Let $u \preceq v$ mean that u is both a prefix and a suffix of v
 - For any string $u\text{, }\epsilon \leq u$
 - The \preceq relation is a partial order
- Let $u \prec v$ denote $u \leq v$ and $u \neq v$
- The core $c(\boldsymbol{v})$ of a string \boldsymbol{v} is the unique string such that for all strings \boldsymbol{u}

$$u \preceq c(v) \equiv u \prec v$$

– It follows, by replacing u with c(v), that $c(v)\prec v$ and hence $\overline{c(v)}<\overline{v}$

• Let $c^0(u)$ denote u and for any $i \ge 0$ such that $c^i(v)$ is a nonempty string, let $c^{i+1}(u)$ denote $c(c^i(u))$

A Key Property

- Claim: For any u and v, $u \leq v \equiv \langle \exists i : 0 \leq i : u = c^i(v) \rangle$
- $\bullet\,$ The proof is by induction on the length of v
- Base case $(\overline{v}=0)$:

$$\begin{array}{l} u \leq v \\ \equiv & \{\overline{v} = 0, \text{ i.e., } v = \epsilon\} \\ & u = \epsilon \ \land \ v = \epsilon \\ \equiv & \{\text{definition of } c^0 : v = \epsilon \ \Rightarrow \ c^i(v) \text{ is defined for } i = 0 \text{ only}\} \\ & \langle \exists i : 0 \leq i : u = c^i(v) \rangle \end{array}$$

Induction Step: $\overline{v} = n + 1$, $n \ge 0$

$$\begin{array}{rcl} & u \leq v \\ \equiv & \{ \text{definition of } \leq \} \\ & u = v \ \lor \ u \prec v \\ \equiv & \{ \text{definition of core} \} \\ & u = v \ \lor \ u \leq c(v) \\ \equiv & \{ \overline{c(v)} < \overline{v}; \text{ induction hypothesis on second term} \} \\ & u = v \ \lor \ \langle \exists i : 0 \leq i : u = c^i(c(v)) \rangle \\ \equiv & \{ \text{rewrite} \} \\ & u = c^0(v) \ \lor \ \langle \exists i : 0 < i : u = c^i(v) \rangle \\ \equiv & \{ \text{rewrite} \} \\ & \langle \exists i : 0 \leq i : u = c^i(v) \rangle \end{array}$$