Efficient validation and construction of Knuth-Morris-Pratt arrays

Jean-Pierre Duval Thierry Lecroq Arnaud Lefebvre
LITIS, Université de Rouen
\{Jean-Pierre.Duval,Thierry.Lecroq, Arnaud.Lefebvre\}@univ-rouen.fr

Abstract

Knuth-Morris-Pratt (KMP) arrays are known as the "failure function" of the Knuth-Morris-Pratt string matching algorithm. We present an algorithm to check if an integer array is a KMP array. This gives a method for computing all the distinct KMP arrays.

1 Introduction

A border u of a string w is a prefix and a suffix of w such that $u \neq w$. The computation of the border array of a string w i.e. of the borders of each prefix of a string w is strongly related to the string matching problem: given a string w, find the first or, more generally, all its occurrences in a longer string y. The border array of w is better known as the "failure function" introduced in [5]. In [3] a method is presented to check if an integer array f is a border array for some string w. In [1], we gave a more elegant presentation of this result. In [2] we lowered the delay (time spent on one element of the array) from $O(|w|)$ to $O(\min \{|\Sigma|,|w|\})$ comparing to algorithms in $[3,1]$. Moreover we presented new results concerning the relation between the border array f and the skeleton of the deterministic finite automaton recognizing $\Sigma^{*} \cdot w$.

In the present article we deal with KMP (Knuth-Morris-Pratt) arrays instead of border arrays. KMP arrays are used as "failure function" in the Knuth-Morris-Pratt string matching algorithms [4]. Given an integer array g, we can decide if g is the KMP array of some string w on a bounded alphabet of size s. If it is not, we can compute the longest prefix of g for which there exists a string w such that the prefix of g is the KMP array of w. Actually these results are completely independent from w. We are also capable of generating all the distinct KMP arrays in time proportional to their numbers.

2 Notations and definitions

In the following we use an alphabet Σ of size s and $\sigma[i]$ denotes the i-th letter of Σ. A string u is a border of w if u is a prefix and a suffix of w and $u \neq w$. The
border of a string w is the longest of its borders. It is denoted by $\operatorname{Border}(w)$. The border array f_{w} of a string w of length n is defined by: $f_{w}[i]=|\operatorname{Border}(w[1 \ldots i])|$ for $1 \leq i \leq n$. It is also known as the "failure function" of the Morris and Pratt string matching algorithm [5].

The KMP array g_{w} of a string w of length n is defined by: $g_{w}[1]=0$ and $g_{w}[j]=\max \{\{i \mid w[1 \ldots i-1]$ suffix of $w[1 \ldots j-1]$ and $w[i] \neq w[j]\} \cup\{0\}\}$ or equivalently $g_{w}[j]=1+\max \{\{i \mid w[1 \ldots i]$ border of $w[1 \ldots j-1]$ and $w[i+1] \neq$ $w[j]\} \cup\{-1\}\}$ for $2 \leq j \leq n$. Array g_{w} is known as the "failure function" of the Knuth-Morris-Pratt string matching algorithm [4].

Example 1 The border and KMP arrays of ababacaabcababa are the following:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$w[i]$	a	b	a	b	a	c	a	a	b	c	a	b	a	b	a
$f_{w}[i]$	0	0	1	2	3	0	1	1	2	0	1	2	3	4	5
$g_{w}[i]$	0	1	0	1	0	4	0	2	1	3	0	1	0	1	0

The following definition introduces the notion of valid arrays.
Definition 1 An integer array $f[1 \ldots n]$ is a valid border array if and only if it is the border array of at least one string $w[1 \ldots n]$.

Definition 2 An integer array $g[1 \ldots n]$ is a valid KMP array if and only if it is the KMP array of at least one string $w[1 \ldots n]$.

The deterministic finite automaton $\mathcal{D}(w)$ recognizing the language $\Sigma^{*} \cdot w$ is defined by $\mathcal{D}(w[1 \ldots n])=\left(Q, \Sigma, q_{0}, T, F\right)$ where $Q=\{0,1, \ldots, n\}$ is the set of states, Σ is the alphabet, $q_{0}=0$ is the initial state, $T=\{n\}$ is the set of accepting states and $F=\{(i, w[i+1], i+1) \mid 1 \leq i \leq n\} \cup\{(i, a,|\operatorname{Border}(w[1 \ldots i] a)|) \mid$ $1 \leq i \leq n$ and $a \in \Sigma \backslash\{w[i+1]\}\}$ is the set of transitions. The underlying unlabeled graph is called the skeleton of the automaton. We denote by $\delta_{w}(i)$ the list $(j \mid(i, a, j) \in F$ with $a \in \Sigma$ and $j \neq 0)$ and by $\delta_{w}^{\prime}(i)$ the list $(j \mid(i, a, j) \in F$ with $a \in \Sigma$ and $j \notin\{0, i+1\})$ for $0 \leq i \leq n$. In other words $\delta_{w}(i)$ is the list of the targets of the significant transitions leaving state i and $\delta_{w}^{\prime}(i)$ is the list of the targets of the backward significant transitions leaving state i.

3 Known results

Let $f[1 \ldots n]$ be an integer array such that $f[i]<i$ for $1 \leq i \leq n$.
The following proposition shows how to build, from a border array f, the skeleton of the automaton recognizing $\Sigma^{*} \cdot w$ for any string w having f as its border array.

Proposition $1 \delta(0)=(1)$ and $\delta(j)=(j+1) \uplus \delta(f[j]) \uplus(f[j+1])$ for $1 \leq j<n$ and $\delta(n)=\delta(f[n])$.

The next statement is a corollary of the previous proposition and gives the construction of the border array f from the skeleton of an automaton.

Corollary 1 For $j>0$:

$$
f[j+1]= \begin{cases}\delta(f[j]) \uplus \delta(j) & \text { if } \delta(f[j]) \uplus \delta(j) \text { is not empty } \\ 0 & \text { otherwise. }\end{cases}
$$

4 New results

Two strings x and y can have the same KMP array and different border arrays.
Example 2 Consider the two strings $x=$ abaab and $y=$ abacb.

i	1	2	3	4	5
$x[i]$	a	b	a	a	b
$f_{x}[i]$	0	0	1	1	2
$g_{x}[i]$	0	1	0	2	1

i	1	2	3	4	5
$y[i]$	a	b	a	c	b
$f_{y}[i]$	0	0	1	0	0
$g_{y}[i]$	0	1	0	2	1

Given a valid KMP array $g[1 \ldots i]$, an associated border array $f[1 \ldots i]$ and the skeleton of automaton δ^{\prime} the following propositions hold.

Proposition 2 Then $g[i+1]$ can either be equal to $f[i]+1$ or to $g[f[i]+1]$.
Proposition 3 If $g[i+1]=g[f[i]+1]$ then $f[i+1]=f[i]+1$.
Proposition 4 If $g[i+1]=f[i]+1$ then $f[i+1]$ can be any value in $\delta^{\prime}(i) \uplus(f[i]+$ 1) $\uplus(0)$.

In order to check if a given integer array g of length n is a valid KMP array, it is necessary to build along an associated border array f and a skeleton δ^{\prime}. When Proposition 4 applies the different choices are tried until one succeeds or all fail.

The algorithm VERIFY(1), given in Figure 1, returns TRUE if an integer array g of length n is valid and FALSE otherwise. When g is valid it moreover builds a string w for which g is the KMP array. It assumes that the variables g, f, δ^{\prime}, α and w are global. It applies Propositions 2 to 4 .

For instance, with the array $g=0 \cdot 1 \cdot 0 \cdot 1 \cdot 0 \cdot 4 \cdot 0 \cdot 2 \cdot 1 \cdot 3 \cdot 0 \cdot 1 \cdot 0 \cdot 1 \cdot 0$ of Example 2, the algorithm VERIFY produces the string $w=$ ababacaabbababa enhancing the fact that ababacaabcababa is not the smallest lexicographic string having g as a KMP array.

Regarding the complexity, integer arrays $g(n)$ of the form $0 \cdot 1 \cdot 0 \cdot(2 \cdot 1 \cdot 0)^{*}$. $(1|2 \cdot 0| 2 \cdot 1 \cdot 1)$ requires the following number of calls of the function Verify:

- $3(((n / 3) \times(n / 3)+1) / 2)$ if $n \bmod 3=1$;
- $2+3((((n+1) / 3) \times((n+1 /) 3)+1) / 2)-n / 3$ if $n \bmod 3=0$;
- $2+3((((n-1) / 3) \times((n-1 /) 3)+1) / 2)+n / 3+1$ if $n \bmod 3=2$.

Experimentally we did not find other worse cases so we conjecture that the function Verify is quadratic.

```
\(\operatorname{VErify}(j)\)
    if \(j=n+1\) then
    return TRUE
    else if \(g[j] \neq f[j-1]+1\) then
        if \(g[j] \neq g[f[j-1]+1]\) then
            return FALSE
        else \((f[j], w[j]) \leftarrow(f[j-1]+1, w[f[j]])\)
            \(\delta(j-1) \leftarrow \delta(j-1) \uplus(f[j-1]+1) \uplus(j)\)
            \((\alpha[j], \delta(j)) \leftarrow(\alpha[f[j]], \delta(f[j]))\)
            return \(\operatorname{VERIFY}(j+1)\)
            else for \(k \in \delta(j-1) \cup(f[j-1]+1)\) do
                \((f[j], w[j]) \leftarrow(k, w[f[j]])\)
                \(\delta(j-1) \leftarrow \delta(j-1) \uplus(f[j]) \uplus(j)\)
                \((\alpha[j], \delta(j)) \leftarrow(\alpha[f[j]], \delta(f[j]))\)
                if \(\operatorname{Verify}(j+1)\) then
                    return TRUE
                \(\delta(j-1) \leftarrow \delta(j-1) \uplus(j) \uplus(f[j])\)
            if \(\alpha[j-1]<s\) then
                \((f[j], w[j]) \leftarrow(0, \alpha[j-1])\)
                \(\alpha[j-1] \leftarrow \alpha[j-1]+1\)
                \(\delta(j-1) \leftarrow \delta(j-1) \uplus(j)\)
                \((\alpha[j], \delta(j)) \leftarrow(\alpha[f[j]], \delta(f[j]))\)
                return \(\operatorname{Verify}(j+1)\)
            else return FALSE
```

Figure 1: Verification of an integer array.

5 Counting distinct KMP arrays

In order to generate all the valid KMP array, we generate them along with an associated border array and an automaton skeleton. Since a valid KMP array can be generated from different border arrays, we need to store them. To that aim we can use a lexicographic trie.

Let $K(n)$ be the number of distinct KMP arrays of length n on an unbounded alphabet and let $K(n, s)$ be the number of distinct KMP arrays of length n on an alphabet of size s. Table 1 gives the number of distinct KMP arrays of length 1 to 18 for an unbounded alphabet and alphabets of size 2 to 4 .
$K(5,2)=K(5)-1$: the missing KMP array is $0 \cdot 1 \cdot 0 \cdot 2 \cdot 0$, it is the KMP array of abaca. $K(10,3)=K(10)-2$: the two missing KMP arrays are $0 \cdot 1 \cdot 0 \cdot 2 \cdot 0 \cdot 1 \cdot 0 \cdot 4 \cdot 0 \cdot 1$ and $0 \cdot 1 \cdot 0 \cdot 2 \cdot 0 \cdot 1 \cdot 0 \cdot 4 \cdot 1 \cdot 1$, they are the KMP arrays of abacabadab and abacabadbb respectively. $K(18,4)=K(18)-1$: the missing KMP array is $0 \cdot 1 \cdot 0 \cdot 2 \cdot 0 \cdot 1 \cdot 0 \cdot 4 \cdot 0 \cdot 1 \cdot 0 \cdot 2 \cdot 0 \cdot 1 \cdot 0 \cdot 8 \cdot 1 \cdot 1$, it is the KMP array of abacabadabacabaebb. Let $w_{1}=\sigma[1]$. Let $w_{i}=w_{i-1} \cdot \sigma[i] \cdot w_{i-1}$ for $i>1$. Let $g_{1}=0$. Let $g_{i}=g_{i-1} \cdot 2^{i} \cdot g_{i-1}$ for $i>1$. For $i \geq 4, K\left(2^{i}+2, i\right)=K\left(2^{i}+2\right)-1$:

Table 1: Number of distinct KMP arrays on different alphabets.

i	$K(i)$	$K(i, 2)$	$K(i, 3)$	$K(i, 4)$	i	$K(i)$	$K(i, 2)$	$K(i, 3)$	$K(i, 4)$
1	1	1	1	1	10	1106	512	$\mathbf{1 1 0 4}$	1106
2	2	2	2	2	11	2656	1024	2644	2656
3	4	4	4	4	12	6414	2048	6365	6414
4	8	8	8	8	13	15,582	4096	15,406	15,582
5	17	$\mathbf{1 6}$	17	17	14	38,011	8192	37,430	38,011
6	37	32	37	37	15	93,124	16,384	91,317	93,124
7	85	64	85	85	16	228,927	32,768	223,524	228,927
8	197	128	197	197	17	564,674	65,536	548,969	564,674
9	465	256	465	465	18	$1,396,860$	131,072	$1,352,193$	$\mathbf{1 , 3 9 6 , 8 5 9}$

the missing KMP array is $g_{i} \cdot 1 \cdot 1$, it is the KMP array of $w_{i} \cdot \sigma[2] \cdot \sigma[2]$.

References

[1] J.-P. Duval, T. Lecroq, and A. Lefebvre. Border array on bounded alphabet. J. Autom. Lang. Comb., 10(1):51-60, 2005.
[2] J.-P. Duval, T. Lecroq, and A. Lefebvre. Efficient validation and construction of border arrays. In Proceedings of the Mons Days of Theoretical Computer Science (JM 2006), pages 179-189, Rennes, France, 2006.
[3] F. Franěk, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang. Verifying a border array in linear time. J. Comb. Math. Comb. Comp., 42:223-236, 2002.
[4] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAM J. Comput., 6(1):323-350, 1977.
[5] J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm. Report 40, University of California, Berkeley, 1970.

