CS4311 Design and Analysis of Algorithms

Tutorial: KMP Algorithm

1

About this tutorial

- Introduce String Matching problem
- Knuth-Morris-Pratt (KMP) algorithm

String Matching

- Let T[0..n-1] be a text of length n
- Let P[0..p-1] be a pattern of length p
- Can we find all locations in T that P occurs?
- E.g., T = bacb<u>ababa</u>bacbb P = ababa

Here, P occurs at positions 4 and 6 in T

Brute Force Approach

 The easiest way to find the locations where P occurs in T is as follows:

> For each position of T Check if P occurs at that position

Running time: worst-case O(np)

Brute Force Approach

- In the simple algorithm, when we decide that P does not occur at a position x, we start over to match P at position x+1
- However, even if P does not occur at position x, we may learn some information from this unsuccessful match
 may help to speed up later checking

Brute Force Approach E.g., suppose when we check if P occurs at position x, we get the following scenario:

Can P occur in position x + 1?

Brute Force Approach

How about this case?

Can P occur in positions x+1, x+2, or x+3?

Key Observation

Lemma:

Suppose P has matched k chars with T[x...], but has a mismatch at the $(k+1)^{th}$ char That is, P[0..k-1] = T[x..x+k-1], but P[k] \neq T[x+k]

Then, for any 0 < r < k, if T[x+r...x+k-1] is not a prefix of P, P cannot occur at position x + r

Checking Which Position Next?

 So, when T[x..] gets a first mismatch after matching k chars with P, so that P[0..k-1] = T[x..x+k-1]

we can restart the next checking at the leftmost position x+r such that T[x+r..x+k-1] is a prefix of P

• Note: Leftmost $x+r \rightarrow \text{smallest } r$

E.g., in our first example,

next checking can restart at pos x+2

In our second example,

next checking can restart at pos x+3

Finding Desired r

- We observe that T[x+r..x+k-1] = P[r..k-1]
- So to find the desired r, we need the smallest r such that
 P[r..k-1] is a prefix of P
- What does that mean ??

Finding Desired r (Example 1) P c a c c b

When $\mathbf{k} = 3$, we ask:

prefix of P? _ Yes!(r=2)	-		С	
		1		

Finding Desired r (Example 2)

When k = 5 (what does that mean??), we ask:

Finding Desired r

- For each k, the smallest r such that
 P[r..k-1] is a prefix of P
 implies

 P[r..k-1] is longest such prefix
- Let us define a function π, called prefix function, such that
 π(k) = length of such P[r..k-1]

KMP Algorithm

- The KMP algorithm relies on the prefix function to locate all occurrences of P in O(n) time \rightarrow optimal!
- Next, we assume that the prefix function is already computed
 - We first describe a simplified version and then the actual KMP
- Finally, we show how to get prefix function

Simplified Version

```
Set x = 0;
```

while (x < n-p+1) {

- 1. Match T with P at position x ;
- 2. Let k = #matched chars ;
- 3. if (k == p) output "match at x" ;

4. Update
$$x = x + k - \pi(k)$$
;

What is the worst-case running time?

How can we improve ?

- In simplified version, inside the while loop,
 Line 1 restarts matching (every char of)
 T with P from position x
- In fact, if previous step of while loop has matched k chars, we know in this round, the first $\pi(k)$ chars are already matched
- What if we take advantage of this ??

KMP Algorithm Set x = 0; k = 0 : while (x < n-p+1) { 1. Match T with P at position x but starting from k+1th position; 2. Update k = #matched chars; 3. if (k == p) output "match at x"; 4. Update $x = x + k - \pi(k)$; 5. Update $\mathbf{k} = \pi(\mathbf{k})$;

k keeps track of #matched chars

Running Time

- The running time comes from four parts:
 - 1. Mis/matching a char of T with P (Line 1)
 - 2. Updating the position x
 - 3. Output match
 - 4. Updating k (Line 2, Line 5)

Since each char is matched once, and x increases for each mismatch

 \rightarrow in total O(n) time

(Line 4)

(Line 3)

Computing Prefix Function

- It remains to compute the prefix function
- In fact, it can be computed incrementally (finding $\pi(1)$, then $\pi(2)$, then $\pi(3)$, and so on)
- For instance, suppose we have obtained π(1), π(2), ..., π(k) already
 → How can we get π(k+1)?

We know that a prefix of length $\pi(k) - P[0...\pi(k)-1] - is$ the longest prefix matching the suffix of P[0..k-1] k

22

What if the next corresponding chars, $P[\pi(k)]$ and P[k]

are the same ??

If same, $\pi(k+1) = \pi(k) + 1$ (prove by contradiction)

However, if P[π(k)] and P[k] are different, we should move the P below rightwards to search for the next longest prefix of P matching the suffix of P[0..k-1]

What if the next corresponding chars, $P[\pi(\pi(k))]$ and P[k]

are the same ??

If same, $\pi(k+1) = \pi(\pi(k)) + 1$ (prove by contradiction)

- However, if $P[\pi(\pi(k))]$ and P[k] are different, we see that we can repeat the procedure and obtain $\pi(k+1)$ when we find:
- the longest prefix of P matching the suffix of P[0..k-1], with its next char = P[k]
- Exactly the same as in string matching
- Total time : O(p) time since (1) at most P matches, and
 (2) P below moves rightwards for each mismatch