
1

CS4311
Design and Analysis of

Algorithms

Tutorial: KMP Algorithm

2

About this tutorial

•Introduce String Matching problem

•Knuth-Morris-Pratt (KMP) algorithm

3

String Matching

•Let T[0..n-1] be a text of length n
•Let P[0..p-1] be a pattern of length p
•Can we find all locations in T that P occurs?

•E.g., T = bacbabababacbb
P = ababa

Here, P occurs at positions 4 and 6 in T

4

Brute Force Approach

•The easiest way to find the locations
where P occurs in T is as follows:

For each position of T
Check if P occurs at that position

•Running time: worst-case O(n p)

5

Brute Force Approach

•In the simple algorithm, when we decide
that P does not occur at a position x,
we start over to match P at position x+1

•However, even if P does not occur at
position x, we may learn some information
from this unsuccessful match
 may help to speed up later checking

6

Brute Force Approach
E.g., suppose when we check if P occurs at

position x, we get the following scenario:

Can P occur in position x + 1 ?

x
cac …?…

bccac

T

P Character
mismatch

7

Brute Force Approach

How about this case?

Can P occur in positions x+1, x+2, or x+3?

x
cac …c…

bccac

T

P Character
mismatch

?

8

Key Observation
Lemma:

Suppose P has matched k chars with T[x…],
but has a mismatch at the (k+1)th char
That is, P[0..k-1] = T[x..x+k-1],

but P[k] T[x+k]

Then, for any 0 r k,
if T[x+r…x+k-1] is not a prefix of P,

P cannot occur at position x + r

9

Checking Which Position Next ?
•So, when T[x..] gets a first mismatch

after matching k chars with P, so that
P[0..k-1] = T[x..x+k-1]

we can restart the next checking at the
leftmost position x+r such that

T[x+r..x+k-1] is a prefix of P

•Note: Leftmost x+r  smallest r

10

Key Observation
E.g., in our first example,

next checking can restart at pos x+2

x
cac …?…

bccac

T

P

11

Key Observation
In our second example,

x
cac …c…

bccac

T

P

?

next checking can restart at pos x+3

12

•We observe that
T[x+r..x+k-1] = P[r..k-1]

•So to find the desired r, we need the
smallest r such that

P[r..k-1] is a prefix of P

•What does that mean ??

Finding Desired r

13

Finding Desired r (Example 1)

bccacP

When k = 3, we ask:

caprefix of P ?
No …

cprefix of P ?
Yes ! (r=2)

14

Finding Desired r (Example 2)

ccaccP

When k = 5 (what does that mean??), we ask:

ccacprefix of P ?
No …

ccaprefix of P ?
No …

ccprefix of P ?
Yes ! (r=3)

15

•For each k, the smallest r such that
P[r..k-1] is a prefix of P

implies
P[r..k-1] is longest such prefix

•Let us define a function , called prefix
function, such that

(k) = length of such P[r..k-1]

Finding Desired r

16

•The KMP algorithm relies on the prefix
function to locate all occurrences of P in
O(n) time  optimal !

•Next, we assume that the prefix function
is already computed
•We first describe a simplified version

and then the actual KMP
•Finally, we show how to get prefix function

KMP Algorithm

17

Set x = 0;
while (x n-p+1) {

1. Match T with P at position x ;
2. Let k = #matched chars ;
3. if (k == p) output “match at x”;
4. Update x = x + k - (k) ;

}

Simplified Version

What is the worst-case running time ?

18

•In simplified version, inside the while loop,
Line 1 restarts matching (every char of)

T with P from position x

•In fact, if previous step of while loop has
matched k chars, we know in this round,
the first (k) chars are already matched

•What if we take advantage of this ??

How can we improve ?

19

Set x = 0; k = 0 ;
while (x n-p+1) {

1. Match T with P at position x
but starting from k+1th position;

2. Update k = #matched chars;
3. if (k == p) output “match at x”;
4. Update x = x + k - (k) ;
5. Update k = (k) ;

}

KMP Algorithm

k keeps track of #matched chars

20

•The running time comes from four parts:

1. Mis/matching a char of T with P (Line 1)
2. Updating the position x (Line 4)
3. Output match (Line 3)
4. Updating k (Line 2, Line 5)

Since each char is matched once, and x
increases for each mismatch
 in total O(n) time

Running Time

21

•It remains to compute the prefix function

•In fact, it can be computed incrementally
(finding (1), then (2), then (3), and so on)

•For instance, suppose we have obtained
(1), (2), …, (k) already
 How can we get (k+1) ?

Computing Prefix Function

22

Key Observation
We know that a prefix of length (k) —

P[0.. (k)-1] — is the longest prefix
matching the suffix of P[0..k-1]

k

……

#

P

P

?

(k)

23

Key Observation
What if the next corresponding chars,

P[(k)] and P[k]
are the same ??

If same, (k+1) = (k) + 1 (prove by contradiction)

……

#

P

P

?

…

24

Key Observation
However, if P[(k)] and P[k] are different,

we should move the P below rightwards to
search for the next longest prefix of P
matching the suffix of P[0..k-1]

……

#

P

P

?

…

((k))

25

Key Observation
What if the next corresponding chars,

P[((k))] and P[k]
are the same ??

If same, (k+1) = ((k)) + 1 (prove by contradiction)

……

#

P

P

?

…

26

Key Observation
•However, if P[((k))] and P[k] are

different, we see that we can repeat the
procedure and obtain (k+1) when we find:

the longest prefix of P matching the suffix
of P[0..k-1], with its next char = P[k]

•Exactly the same as in string matching
•Total time : O(p) time

since (1) at most P matches, and
(2) P below moves rightwards for each mismatch

