
1

CS4311
Design and Analysis of

Algorithms

Tutorial: KMP Algorithm

2

About this tutorial

•Introduce String Matching problem

•Knuth-Morris-Pratt (KMP) algorithm

3

String Matching

•Let T[0..n-1] be a text of length n
•Let P[0..p-1] be a pattern of length p
•Can we find all locations in T that P occurs?

•E.g., T = bacbabababacbb
P = ababa

Here, P occurs at positions 4 and 6 in T

4

Brute Force Approach

•The easiest way to find the locations
where P occurs in T is as follows:

For each position of T
Check if P occurs at that position

•Running time: worst-case O(n p)

5

Brute Force Approach

•In the simple algorithm, when we decide
that P does not occur at a position x,
we start over to match P at position x+1

•However, even if P does not occur at
position x, we may learn some information
from this unsuccessful match
 may help to speed up later checking

6

Brute Force Approach
E.g., suppose when we check if P occurs at

position x, we get the following scenario:

Can P occur in position x + 1 ?

x
cac …?…

bccac

T

P Character
mismatch

7

Brute Force Approach

How about this case?

Can P occur in positions x+1, x+2, or x+3?

x
cac …c…

bccac

T

P Character
mismatch

?

8

Key Observation
Lemma:

Suppose P has matched k chars with T[x…],
but has a mismatch at the (k+1)th char
That is, P[0..k-1] = T[x..x+k-1],

but P[k] T[x+k]

Then, for any 0 r k,
if T[x+r…x+k-1] is not a prefix of P,

P cannot occur at position x + r

9

Checking Which Position Next ?
•So, when T[x..] gets a first mismatch

after matching k chars with P, so that
P[0..k-1] = T[x..x+k-1]

we can restart the next checking at the
leftmost position x+r such that

T[x+r..x+k-1] is a prefix of P

•Note: Leftmost x+r smallest r

10

Key Observation
E.g., in our first example,

next checking can restart at pos x+2

x
cac …?…

bccac

T

P

11

Key Observation
In our second example,

x
cac …c…

bccac

T

P

?

next checking can restart at pos x+3

12

•We observe that
T[x+r..x+k-1] = P[r..k-1]

•So to find the desired r, we need the
smallest r such that

P[r..k-1] is a prefix of P

•What does that mean ??

Finding Desired r

13

Finding Desired r (Example 1)

bccacP

When k = 3, we ask:

caprefix of P ?
No …

cprefix of P ?
Yes ! (r=2)

14

Finding Desired r (Example 2)

ccaccP

When k = 5 (what does that mean??), we ask:

ccacprefix of P ?
No …

ccaprefix of P ?
No …

ccprefix of P ?
Yes ! (r=3)

15

•For each k, the smallest r such that
P[r..k-1] is a prefix of P

implies
P[r..k-1] is longest such prefix

•Let us define a function , called prefix
function, such that

(k) = length of such P[r..k-1]

Finding Desired r

16

•The KMP algorithm relies on the prefix
function to locate all occurrences of P in
O(n) time optimal !

•Next, we assume that the prefix function
is already computed
•We first describe a simplified version

and then the actual KMP
•Finally, we show how to get prefix function

KMP Algorithm

17

Set x = 0;
while (x n-p+1) {

1. Match T with P at position x ;
2. Let k = #matched chars ;
3. if (k == p) output “match at x”;
4. Update x = x + k - (k) ;

}

Simplified Version

What is the worst-case running time ?

18

•In simplified version, inside the while loop,
Line 1 restarts matching (every char of)

T with P from position x

•In fact, if previous step of while loop has
matched k chars, we know in this round,
the first (k) chars are already matched

•What if we take advantage of this ??

How can we improve ?

19

Set x = 0; k = 0 ;
while (x n-p+1) {

1. Match T with P at position x
but starting from k+1th position;

2. Update k = #matched chars;
3. if (k == p) output “match at x”;
4. Update x = x + k - (k) ;
5. Update k = (k) ;

}

KMP Algorithm

k keeps track of #matched chars

20

•The running time comes from four parts:

1. Mis/matching a char of T with P (Line 1)
2. Updating the position x (Line 4)
3. Output match (Line 3)
4. Updating k (Line 2, Line 5)

Since each char is matched once, and x
increases for each mismatch
 in total O(n) time

Running Time

21

•It remains to compute the prefix function

•In fact, it can be computed incrementally
(finding (1), then (2), then (3), and so on)

•For instance, suppose we have obtained
(1), (2), …, (k) already
 How can we get (k+1) ?

Computing Prefix Function

22

Key Observation
We know that a prefix of length (k) —

P[0.. (k)-1] — is the longest prefix
matching the suffix of P[0..k-1]

k

……

#

P

P

?

(k)

23

Key Observation
What if the next corresponding chars,

P[(k)] and P[k]
are the same ??

If same, (k+1) = (k) + 1 (prove by contradiction)

……

#

P

P

?

…

24

Key Observation
However, if P[(k)] and P[k] are different,

we should move the P below rightwards to
search for the next longest prefix of P
matching the suffix of P[0..k-1]

……

#

P

P

?

…

((k))

25

Key Observation
What if the next corresponding chars,

P[((k))] and P[k]
are the same ??

If same, (k+1) = ((k)) + 1 (prove by contradiction)

……

#

P

P

?

…

26

Key Observation
•However, if P[((k))] and P[k] are

different, we see that we can repeat the
procedure and obtain (k+1) when we find:

the longest prefix of P matching the suffix
of P[0..k-1], with its next char = P[k]

•Exactly the same as in string matching
•Total time : O(p) time

since (1) at most P matches, and
(2) P below moves rightwards for each mismatch

