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Preface

This document attempts to provide tutorial in writing efficient assembly code for
the Itanium 2 processor. The primary motivation of writing this is to show off
the elegance of the IA-64 architecture, to demonstrate to as wide a programming
audience as possible the features which make IA-64 unique. As of the time of
this writing, IA-64 seems destined to become a niche architecture, used only in
high-end servers for high-performance computation, and even that small niche is
not a sure thing. Even if the Itanium 2 should disappear, the ideas it presented
will almost certainly be reintroduced.

The secondary, and more practical, motivation for this that since writing
efficient code for the Itanium 2 depends so severely on having good compilers
and since no good compilers have ever been written, it should be expected to
write assembly code. It is not uncommon for hand-written Itanium 2 assembly
code to be 50% more efficient than that generated by the best C compilers under
the most aggressive optimization settings.

What is expected of the reader is that she has access to an Itanium 2 proces-
sor, has access to the GNU Compiler Collection (gcc) and the GNU debugger
(gdb), and is comfortable with general low-level architecture concepts such as
registers and branches. The IA-64 architecture likely makes a poor choice as
the first architecture an assembly programmer should learn due to number of
concepts that need to be learned up front. For assembly language neophytes the
pacing may be brisk. Readers unfamiliar with the SPARC architecture should
pay special attention to section 3.2.1.
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Chapter 1

Development environment

The examples of Itanium 2 assembly code given in this document assume the use
of gcc and were tested on the HP-UX operating system. In reality the operating
system should make no difference and a Linux-based operating system should
work just as well. The standard Unix macro processor m4 will also be assumed
to exist and is used to define macros that will make the assembly source code
more readable and easier to maintain.

Should you wish to use the cc compiler bundled with HP-UX, the differences
in syntax are slight. In particular, labels should two colons rather than one
colon. The +DD64 command-line option is used to mandate the 64-bit API
rather than -mlp64.

Figure 1.1 gives the source code listing of our first program. Historically we
would start off with a “hello world” program, but such a program would be too
complex for assembly code.

All lines starting with a dot and written in sans-serif typeface are compiler
directives and do not produce machine code. We will not belabour the compiler
directives right now, but will take on faith that we should include them in every
program. The .text directive introduces the segment of the produced object file

.text

.global main

.proc main
main: .prologue

.body
mov ret0 = 42
.restore sp
br.ret.sptk rp // return to the operating system
.endp main

Figure 1.1: The source file return-42.m, which returns a status of 42 to the
operating system.

3



4 CHAPTER 1. DEVELOPMENT ENVIRONMENT

that holds the machine code (it is usual for the code segment to be named the
“text” segment); the .global directive ensures that the main function will be
globally visible in the object file; the paired .proc and .endp directives sandwich
any function which we define; and the .prologue, .body and .restore directives
allow for more debugging information should we wish to run our program in
gdb.

Comments start with a double-slash and will be written in italic typeface by
convention. Labels end with a colon and are written in boldface.

This leaves two instructions: mov ret0 = 42; and br.ret.sptk rp. As one
might expect, the first instruction is the return value of the main function. On
the Itanium 2, there are registers specific to returning values from functions.
Functions which return only one value—which is just about every function—
will return its value in the ret0 register. The second instruction, as one might
expect, returns from the function, though deciphering it may be less obvious.
br.ret.sptk is read as “branch, returning from this function, and we statically
predict that this branch will be taken”. The “sptk” component of it is seman-
tically unnecessary, but unfortunately syntactically required by the assembler.
Almost all br.ret instructions will be of the br.ret.sptk variety. The rp operand
to the br.ret.sptk instruction is the “return pointer”, a register which holds the
address to return to, analogous to the “link register” used in other architectures
such as POWER.

The caption for figure 1.1 gives a filename of return-42.m. We will use
the convention of having m4 source files a “.m” extension and raw assembler
source files a “.s” extension; further, we will use the convention of always writing
assembly code as m4 source files. Even though no m4 macros have been used
in return-42.m, we write it as an m4 file anyway, solely for the pedagogical
purpose of demonstrating the toolchain used to assemble and run the code,
which the following shell commands1 demonstrate:

zx624% m4 return-42.m >return-42.s

zx624% gcc -mlp64 -o return-42.bin return-42.s

zx624% ./return-42.bin

zx624% echo $?

42

zx624%

The usage of -mlp64 in the invocation of gcc mandates the 64-bit API
available under HP-UX and properly under any operating system. While the
Itanium 2 is a native 64-bit processor and effectively has no “32-bit mode”, the
default on HP-UX is to use the 32-bit API, namely that integers and pointers
stored in memory should be stored using 4-byte instructions (st4 and ld4) rather
than 8-byte instructions (st8 and ld8). We settle on the 64-bit API in this
document and assume all integer and pointer primitives are 64 bits wide.

1The Z shell, zsh, is used for all shell examples in this document, though the use of shell
is a moot issue.
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.SUFFIXES: .m .s .o .bin

.m.s:

m4 $^ >$@

.s.o:

gcc -mlp64 -g -c $^

.o.bin:

gcc -mlp64 -g -o $@ $^

Figure 1.2: An example Makefile, suitable for GNU make, which automatically
produces “.bin” files from “.m” files.

The constant usage m4 and gcc is tedious when trying code and, for the rest
of this document, we assume the presence of a Makefile which automatically
produces documents for us, as shown in figure 1.2.
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Chapter 2

Simple beginnings

2.1 Register-to-register instructions

We begin with the simplest instructions of any architecture, the ALU (arith-
metic and logic unit) register-to-register instructions. A full specification of all
instructions is published by Intel [Int06b] and we will not repeat descriptions of
instructions in this document, but only give examples and guides through the
most typical uses of them.

One of the more famous attributes of the IA-64 is its plethora of registers,
though until the next section we will use only a tiny number of them, less than
5% of the registers available to the programmer. Even among the so-called
general-purpose registers, those used by ALU, we will constrain ourselves to
using only a few of the 128 visible to the programmer until the next chapter.
The fact of the matter is that the first 32 general-purpose registers, r0–r31,
are more than sufficient for describing any simple register-to-register operations
might want to perform. IA-64’s extra registers are for more specialized use.

A quick description of the first 32 general-purpose registers follows. A more
thorough description can be found [Int01b].

r0—Hard-coded to the value 0 (all bits 0). Unlike on other RISC architectures
such as SPARC, writing to this register will not silently discard values;
rather, writing to r0 will cause an “illegal instruction” error.

r1—The global pointer, to be described in later chapters. Do not touch!

r13—The thread pointer, to be described in later chapters. Do not touch!

r12—The stack pointer, to be described in later chapters.

r4–r7—Preserved (“callee-saved”) global registers. These should not be modi-
fied until being stored somewhere else first so they can be restored.

r8–r11—ret0–ret3, the return registers.

7



8 CHAPTER 2. SIMPLE BEGINNINGS

.text

.global main

.proc main
main: .prologue

.body
mov r14 = 6 // r14 will have the value 6
add r15 = 6,r0 // r15 will also have the value 6
add r16 = r17,r18 // r16 will have the value r17 + r18
sub r17 = 4,r18 // r17 will have the value 4− r18
shl ret0 = r18,3 // return the value 8 · r18
.restore sp
br.ret.sptk rp // return to the operating system
.endp main

Figure 2.1: The source file simple-alu.m, which performs simple and pointless
arithmetic instructions.

r2–r3,r14–r31—Scratch (“caller-saved”) global registers which are completely
free for use.

It should be of no surprise that we will restrict ourselves to the last row,
the r2–r3 and r14–r31 registers. An astute reader might recognize that there
are a few usual suspects for global registers which are missing here, such as
the instruction pointer, ip, or the return pointer, rp, which we used in our first
example. On the Itanium 2, the ip is considered a special register, distinct from
every other register which cannot be used as a general-purpose register; the rp
register is considered a “branch register”, which will be covered in later sections,
distinct from general-purpose registers.

Figure 2.1 shows some simple ALU instructions, which should give an intro-
duction to the flavour of the syntax used in Itanium 2 assembly code. Of course
running that code yield nonsense results. The returned value is eight times r18
but r18 has never been initialized! A clever reader might try to initialize r18
first only to be given an error message as follows:

simple-alu.s: Assembler messages:

simple-alu.s:11: Warning: Use of ’shl’ violates RAW dependency

’GR%, % in 1 - 127’ (impliedf), specific resource number is 18

simple-alu.s:11: Warning: Only the first path encountering the

conflict is reported

simple-alu.s:10: Warning: This is the location of the conflicting

usage

Actually under cc bundled with HP-UX this would be an error, not a warning,
and for very good reason. Trying to initialize r18 (by inserting an instruction
such as “mov r18 = 2”) before issuing the shl instruction is an error on the
Itanium 2, unlike almost every other architecture to date, and would cause
undefined results if executed.
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The first warning tells us moderately clearly what the problem is: it is a
RAW dependency violation and it involves r18. But what is a RAW dependency
violation?

2.2 Explicit parallelism

Unlike almost every other architecture to date, and certainly unlike every pro-
cessor architecture designed for general-purpose use, the IA-64 architecture re-
quires instruction-level parallelism to be explicit in the machine code. Indeed
before being renamed IA-64, the architecture was called EPIC (explicit paral-
lelism instruction computing) in honour of this.

Instructions must be grouped together into instruction groups. For our
purposes (the actual definition covers a few more cases), an instruction group
is defined as a series of contiguous instructions which end with either: (a) a
branch which is taken; or (b) an explicit “stop”. Because we will not consider
branches until section 3, we will focus on stops.

A stop is a command to the CPU that all instructions previous to that may
be executed in parallel and that some instructions after the stop depend on the
values which are to be computed. It is, in essence, a request to the CPU to finish
executing what it is currently executing before moving on to new instructions.
In reality, of course, it is more complicated than that: the CPU is free to, and
will, execute instructions after a stop before instructions before the stop have
finished executing, but it will place them at a different pipeline stage so that it
is guaranteed the values will be computed in time.

In almost every other architecture, these dependencies would be handled
implicitly by the CPU. The instructions “mov r18 = 3” and “mov r19 = r18”
would cause either an implicit stall in the pipeline or an implicit reordering of
instructions to avoid the inconsistency inherent in the fact that the first mov
instruction will not finish before the second begins executing. On the Itanium
2, very little is implicit: it is borne on the programmer to explicitly determine
which instructions have dependencies on one another. As we have seen, the
assembler will assist us with some static analysis.

Even though they execute in parallel, there is still an ordering among
instructions within an instruction block. This distinction matters for
WAR (write-after-read) dependencies. The four types of register dependencies
are as follows:

RAR (read-after-read)—this clearly cannot cause any problems and conse-
quently there is no such thing as a RAR dependency violation. The fol-
lowing is a RAR dependency, which causes no problems:

mov r14 = r15 // read from r15
add r16 = 3,r15 // read from r15 again

WAR (write-after-read)—it might be expected that this can cause problems,
but the ordering of the instructions ensures it won’t and consequently
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.text

.global main

.proc main
main: .prologue

.body
mov r14 = 6 // r14 will have the value 6
add r15 = 6,r0 // r15 will also have the value 6
;;
sub r17 = 8,r15 // r17 will have the value 2
add r18 = r15,r14 // r18 will have the value 12
;;
shl ret0 = r18,r17 // return the value 48
.restore sp
br.ret.sptk rp // return to the operating system
.endp main

Figure 2.2: The source file simple-alu2.m, which performs simple and point-
less arithmetic instructions, with the use of an explicit stop to allow initialized
values.

there is no such thing as a WAR dependency violation. The following is
a WAR dependency, which causes no problems:

mov r14 = r15 // read from r15
add r15 = r16,r17 // write to r15

RAW (read-after-write)—this is the problem we ran into above and requires
an end to the instruction group—e.g., by using an explicit stop—to solve.
The following is illegal code:

mov r14 = r15 // write to r14
add r15 = r14,r16 // read from r14. Problem!

WAW (write-after-write)—this also is a violation and must be solved by ending
the instruction group. The following is illegal code:

mov r14 = r15 // write to r14
add r14 = r15,r16 // write to r15 again. Problem!

The use of a double semicolon marks an explicit stop. For instance, the following
would be legal code and would solve a RAW dependency:

mov r14 = r15 // write to r14
;; // stop
add r15 = r14,r16 // read from r14. No problem!

One can place an explicit stop after every instruction to avoid having to
deal with dependency issues. A stop is always permitted after an instruction.
However, this carries grave performance issues. Unlike other processors, an
Itanium 2 does not have the ability to implicitly parallelize machine code; it relies



2.3. STATIC DATA AND THE GLOBAL POINTER 11

on the programmer to explicitly do that. By placing a stop after each instruction
it becomes impossible for the CPU to execute instructions concurrently.

Figure 2.2 shows an example similar to figure 2.1, but with initialized values.

2.3 Static data and the global pointer

It’s a common problem on RISC architectures to load immediate values. Because
every instruction is of a fixed length, usually the same length as a machine
word, it’s typically impossible to load a full immediate in one instruction. On
the Itanium 2, instructions are actually shorter than machine words: 41 bits
versus 64 bits. The Itanium 2 does offer double-wide instructions for dealing
with 64-bit immediates, which will be dealt with later on, but they are seldom
used.

The most common use for large immediates is dealing with static pointer
values, usually pointers to static data in the object file or pointers to code such
as external functions. Rather than force the programmer to use double-wide
instructions and load 64-bit immediates for these pointers, the philosophy is to
make these pointer values relative in the hopes that we can represent them in a
smaller address space and thus load them in a single instruction.

Every executable binary contains with it, in addition to machine code, static
data. Once loaded into memory by the loader so that the code can execute, this
static data is located in the process’s address space. The ELF format used
for Itanium 2 processes specifies how this data is laid out [Int01a]. On most
architectures the static data would be placed at the beginning of the address
space; on Itanium it not necessarily so, but the global pointer, gp, provides the
base address such that everything else can be offset from it.

Typically, Itanium 2 instructions allow for only 14-bit immediate values
(ranging from −8192 to +8191). However, when using the first four registers,
r0–r3, we are allowed to use 22-bit immediate values. The global pointer, gp, is
conveniently r1, which means it can be used as on offset with 22-bit immediates
in one in instruction. This is not a coincidence.

Figure 2.3 features our first example of a program using static data. The
first change is that we are now using m4’s define macro to define names for
local registers. This is a convention that will be followed throughout the rest
of the document. Intel’s own assembler, ias, has an option to automatically
produce local registers from symbol names, which would diminish the need to
use m4. One can also see the use of explicit stop bits as a way to separate RAW
dependencies within the code.

The @gprel assembler directive reduces a symbol down to its location in the
process’s address space, relative to the global pointer. Consequently, adding that
offset on to gp will yield a pointer to the value in memory. The ld8 instruction—
load 8 bytes—will then load a 64-bit value from that location in memory into a
register, where it can be manipulated.

After the code we see the introduction of the .sdata section. The .sdata
section is short for “short data” and is the first section we have seen outside
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define(a reg, r14) // m4 macros defining register names
define(b reg, r15)

.text

.global main

.proc main
main: .prologue

.body
add a reg = @gprel(a),gp // get the pointer to ‘a’
add b reg = @gprel(b),gp // get the pointer to ‘b’
;;
ld8 a reg = [a reg] // load the value from the object file
ld8 b reg = [b reg]
;;
add ret0 = a reg,b reg // return a + b
.restore sp
br.ret.sptk rp // return to the operating system
.endp main

.sdata
a: data8 17
b: data8 19

Figure 2.3: The source file add-numbers.m, which makes use of static data.

of the .text section, the section used to store machine code. Itanium 2 binaries
contain two data sections which we will be dealing with in this document: the
“short data” section, designed for data which is 8 bytes or smaller in size; and
the “data” section, which is designed for larger data. In future sections we
will see an example of the data section. Itanium 2 binaries do allow for other
sections which will not be considered in this document.

The data8 assembler directive stores a 64-bit signed integer value in the
object file. Should we want to use 32-bit values instead, we would use the data4
directives to store the data and the ld4 instructions to load the data.

2.4 The debugger

The use of a debugger is key for understanding any executable code, but is
especially valuable with assembly code. For this document we assume the use
of the GNU debugger, gdb. Although it will not be explicitly stated throughout
the document, we assume the reader will be running any code she does not fully
understand in the debugger to verify that the CPU is behaving as expected.

After producing add-numbers.bin from figure 2.3, one can run the command
gdb add-numbers.bin from the shell to invoke the debugger. A warning mes-
sage of “warning: Unwind base not found” means that the .prologue, .body or
.restore assembler directives have not been used properly, a habit which should
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be stamped out immediately.
Before running the debugger, it is recommend to create a .gdbinit file either

in the reader’s home directory, if gdb is going to be used exclusively for assembly
language debugging on that system, or in the directory where assembly language
development is being done, which should read as follows:

display /i $ip

break main

In lieu, these two commands can be issued at the beginning of every gdb session.
The first says to display the next instruction to be executed at all times (literally,
interpret the ip register as an instruction and display it every time gdb gives a
prompt); the second says to create a breakpoint at the beginning of the main
function, which is something the reader will typically want to do.

Figure 2.4 is a short session with gdb with the source code given in figure 2.3.
First, the run (short form: r) command is given to execute the program from
the beginning. As there is a breakpoint at the beginning of main, the debugger
stops there and shows us the first instruction, add a reg = @gprel(a), gp. In
this case @gprel(a) is −16. By convention we use p/x (print in hex notation) for
printing memory addresses, such as printing out gp. Unadorned p will print in
decimal notation. The stepi (short form: si) command is used to single-step
one instruction at a time. The continue (short form: c) command will continue
execution until the next breakpoint, if there is one. Note that gdb’s convention
is to prefix all register names with a dollar sign.

Further instruction on the operation of the GNU debugger can be found
online [Fre10].

An observant reader might notice there have been instructions added which
were not present in the original source file, specifically nop.i instructions. Other
programs may generate phantom nop.m instructions. These are “no-ops” (“no
operation”), operations which do nothing. The generation of these instructions
is sometimes required, but they are harmless to the operation of the program.
The only negative of them is that they waste the potential for more computation
and thus can be considered inefficient. Their necessity and the elimination of
them will be considered in chapter 4.

2.5 Multiplication and division

We have conveniently ignored two very common arithmetic operations: multi-
plication and division. The Itanium 2 does contain an integer multiplication
instruction, but it is performed by the floating-point unit (FPU) and is beyond
the scope of this chapter. The Itanium 2 does not contain an integer division in-
struction. Every Itanium 2 operating system should supply a standard function
.divI (with the leading dot) to perform integer division. If multiplication, divi-
sion or remainder are needed, it would be prudent to define one’s own functions
in C and then link with the assembly code to use as needed. In future sections
we will look at using the FPU to perform integer multiplication and division.
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zx624% gdb add-numbers.bin
HP gdb 6.1 for HP Itanium (32 or 64 bit) and target HP-UX 11iv2 and 11iv3.
Copyright 1986 - 2009 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 6.1 (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for warranty/support.
..Breakpoint 1 (deferred) at "main" ("main" was not found).
Breakpoint deferred until a shared library containing "main" is loaded.

(gdb) r
Starting program: /home/mike/add-numbers.bin

Breakpoint 1, main+0 () at add-numbers.s:8
8 add-numbers.s: No such file or directory.

in add-numbers.s
1: x/i $ip 0x4000000000000b40:0 <main>:

addl r14=-16,gp MI,I
Current language: auto; currently asm
(gdb) p/x $gp
$1 = 0x6000000000000018
(gdb) si
0x4000000000000b40:1 addl r15=-8,gp;;
9 in add-numbers.s
1: x/i $ip 0x4000000000000b40:1 <main+0x1>:

addl r15=-8,gp;;
(gdb) p/x $r14
$2 = 0x6000000000000008
(gdb) si
0x4000000000000b40:2 nop.i 0x0
9 in add-numbers.s
1: x/i $ip 0x4000000000000b40:2 <main+0x2>: nop.i 0x0
(gdb) p *(long *)$r15
$3 = 19
(gdb) si
0x4000000000000b50:0 ld8 r14=[r14] MMI,
11 in add-numbers.s
1: x/i $ip 0x4000000000000b50:0 <main+0x10>:

ld8 r14=[r14] MMI,
(gdb)
0x4000000000000b50:1 ld8 r15=[r15]
12 in add-numbers.s
1: x/i $ip 0x4000000000000b50:1 <main+0x11>:

ld8 r15=[r15]
(gdb) p $r14
$4 = 17
(gdb) si
0x4000000000000b50:2 nop.i 0x0;;
12 in add-numbers.s
1: x/i $ip 0x4000000000000b50:2 <main+0x12>: nop.i 0x0;;
(gdb)
0x4000000000000b60:0 add ret0=r14,r15 MIB,
14 in add-numbers.s
1: x/i $ip 0x4000000000000b60:0 <main+0x20>:

add ret0=r14,r15 MIB,
(gdb)
0x4000000000000b60:1 nop.i 0x0
14 in add-numbers.s
1: x/i $ip 0x4000000000000b60:1 <main+0x21>: nop.i 0x0
(gdb) p $ret0
$5 = 36
(gdb) c
Continuing.

Program exited with code 044.
(gdb) q
zx624%

Figure 2.4: Using gdb to trace through the example given in figure 2.3.
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long
mul(long x, long y)
{

return x * y;
}

long
div(long x, long y)
{

return x / y;
}

long
rem(long x, long y)
{

return x % y;
}

Figure 2.5: C source code for performing common arithmetic operations.

The C code given in figure 2.5 would suffice. The curious reader can run
the C compiler with the -S option, which will force the C compiler to reveal its
generated assembly code.
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Chapter 3

Branches

In a stored-program computer processor like the Itanium 2—like any modern
architecture—the ability to branch is required to allow universal computational
power. Without branching, we would not have the ability to iterate or recurse.

We have already seen one branch: the br.ret.sptk instruction. We will now
consider most of the rest of the branches, with the more advanced and unique
Itanium 2 branches saved for later sections.

3.1 Branches and RAW dependencies

It is a short note, but an important one, which warrants its own section. On
the Itanium 2, a branch is allowed to violate RAW dependencies. In
figure 3.1 we see that the br.ret.sptk makes use of the rp register even though
there is no explicit stop between it and the “mov rp = rp old” instruction.
When we deal with predicated branches, i.e., conditional branches, we will see
that we are allowed to assign to a predicate and then use that predict in a
branch without an explicit stop between them.

Branches are the only instructions which allow RAW dependencies.

3.2 Function calls

The br.call instruction is used to perform function calls, though its operation
requires some explanation for full understanding. Figure 3.1 shows the infamous
“hello world” program, as written in Itanium 2 assembly, using the C function
puts to print to standard out.

A lot has changed in this example compared to previous examples, beyond
just the usage of the br.call.sptk instruction. The @ltoff directive has never
been seen before; the .data section has never been before; the alloc instruction
has never been seen before and the out and loc registers have never been seen
before. The latter two of those novelties will be dealt with in subsection 3.2.1.

17
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define(ar pfs old, loc1)
define(gp old, loc2)
define(rp old, loc3)

.text

.global main

.proc main
main: .prologue

alloc ar pfs old = ar.pfs,0,4,1,0 // set up a new register stack
mov gp old = gp // save the global pointer
mov rp old = rp // save the old return pointer
.body
add loc0 = @ltoff(s),gp // get a pointer in the

// offset table
;;
ld8 out0 = [loc0] // get the pointer to the string
br.call.sptk rp = puts // print to the screen
mov gp = gp old // restore global pointer
.restore sp
mov rp = rp old // restore return pointer
mov ar.pfs = ar pfs old // restore the old function state
mov ret0 = 0 // return success
br.ret.sptk rp
.endp main

.data
s: stringz “Hello world!”

Figure 3.1: The source file hello-world.m.
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The .data (“data”) section is only slightly different in operation as compared
to the .sdata (“small data”) section. Both introduce offsets relative to the global
pointer, gp. The major distinction is that the data section requires an extra step
of indirection. In the interest of keeping all offsets within a 22-bit immediate
of the global pointer, “large” data, data in the data section, does not reside
close to the global pointer, but only has a pointer to it reside close to the global
pointer. The @ltoff directive gets us a pointer to the data we’re looking for,
relative to the global pointer. We then require a ld8 instruction to follow that
pointer to the actual data.

In practice, almost all data can be stored in the small data section, and it is
more efficient to do so. By Intel’s conventions, a programmer should move data
to the large data section if it is larger than 8 bytes, which our string is. In your
own code you may wish to move data to the large data section only when the
small data section has exceeded four megabytes in size.

Some explanation is required on why we saved the gp and rp registers, as
well. The rp register was modified by the call to puts, and necessarily so: we
required the use of the rp register so that puts knew where to return to. We
then had to restore it before we ourselves to return to the operating system.

The gp register is less obvious, but it, too, is modified by the call to puts.
In fact every call to a function external to the current file changes the
global pointer. Each object file—each .o file—has its own value for the global
pointer for the reason that every object file has its static data stored somewhere
else in the process’s address space. Thus, the global pointer should be restored
after every function call.

The gp is also required to be correct—according to the current object file—
before making any call to a function external to the current object file. In this
case it doesn’t come into play since we only make one external function call,
but if we had more than one, we would be required to restore gp before making
the next function call. Further, making a function call is an implicit read on
the gp register. Restoring gp and making an external function call in the same
instruction group is a RAW dependency and, unfortunately, one which is not
caught by the assembler. Restoring gp and making an external function call
without a stop between them will cause undefined behaviour.

As mentioned previously, every branch which is taken itself introduces an
end to an instruction group, an implicit stop. There can be no RAW or WAW
dependencies across a branch which is taken.

3.2.1 Register windows

IA-64 and SPARC are the only contemporary architectures which borrow from
the original Berkeley RISC design the idea of register windows. Register
windows allow some of a function’s registers to be hidden on a function call and
restored when the function returns. Further, they allow certain registers to be
renamed on a function call.

Figure 3.2 shows how registers are renamed if hypothetical function x is
calling hypothetical function y. Note that the operation is different from on
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in0 loc0 loc1 loc2
(r32) (r33) (r34) (r35)

out0 out1
(r36) (r37)

��

In function x

r32 r33

��

br.call to y

in0 in1 loc0
(r32) (r33) (r34)

alloc – = 2,1,0,0

Figure 3.2: Register renaming of a function x calling function y. For our pur-
poses, x has 1 input register (1 parameter) and 3 local registers; y has 2 input
registers (2 parameters) and 1 local register and no output registers. As a con-
sequence, x requires at least 2 output registers: in this example it has exactly
2 output registers.

the SPARC operation in a few ways. Firstly, the register window slides by a
variable amount: the programmer chooses the number of input, local and output
registers, rather than having each fixed at 8. Secondly, the renaming happens
with the br.call instruction, not with the alloc instruction. On SPARC, the
renaming only happens with the save instruction, not the call instruction. On
the Itanium 2, it is the br.call instruction which renames the output registers
to become the new input registers: the primary purpose of the alloc instruction
is to record how many registers to save the next time a br.call instruction is
issued.

What figure 3.2 shows is that the input and local registers of x become
hidden to function y and thus there’s no reason for x to save them. Further,
the output registers of x, r36–r37, automatically become the input registers of
y, r32–r33. This makes for very efficient function calls: no registers need to be
saved in memory.

The syntax of the alloc instruction is “alloc rd = ar.pfs, i, l, o, r” where i, l,
o and r are all constants (immediates). The use of r will be dealt with in later
sections and will always be treated as 0 for the beginning parts of this document.
The i, l and o numbers indicate the number of input, local and output registers,
respectively, used by the function. Two things to note: no register but ar.pfs
may be used as the first operand; and the CPU makes no distinction between
input registers and local registers. Indeed the encoding of the alloc instruction
includes only two operands: i + l and r. The separation of i and l is only for
the benefit of the assembler, so that it knows how many input registers there
and therefore which register loc0 is. The rd is a general-purpose register that
will store the previous function state such that it can be later restored: it is
recommended to always store it in a local register.

The alloc instruction must always be the first instruction of an instruction
group. Input, local and output registers allocated by an alloc instruction may



3.3. PREDICATES 21

r0 Always 0 (all-bits zero)
r1 caller-saved Global pointer (gp)

r2–r3 caller-saved Scratch registers of use with 22-bit immediates
r4–r7 callee-saved
r8–r11 callee-saved Used for return values (ret0–ret1)

r12 Stack pointer (sp)
r13 caller-saved Thread pointer (tp)

r14–r31 caller-saved

r32–r127 automatically saved
Windowed registers (in0–in95, loc0–loc95

and/or out0–out95)

Table 3.1: The general purpose registers, r0–r127, and the conventions used
across function call. See section 5.2 of Intel’s conventions document [Int01b] for
more information.

be immediately used without the need for a stop. This is not a violation of
WAW dependency as alloc does not actually write to any of the register it
allocates, and the registers were already there as soon as the br.call instruction
was executed.

The register window always starts at r32 and extends up to r127. Thus,
theoretically, one could allocate 96 fresh registers with an alloc instruction.
Registers r0–r31 are fixed and thus are never renamed. Due to the large number
of available registers, one could conceivably write a compiler specific to the
Itanium 2 which does not require any spill code, i.e., which does not need to
consider that there could be more values than registers and thus would need to
“spill” registers into memory.

Table 3.1 gives a description of all general purpose registers and how they
are treated across function calls.

3.3 Predicates

Unlike most other architectures, IA-64 offers no conditional branches. It ac-
cordingly has no integer condition codes, the familiar NZVC (negative, zero,
overflow, carry) bits that are to common to almost every other general-purpose
architecture to date. What it offers instead is predication, the ability to con-
ditionally execute an instruction based on the value of some predicate register.
Many architectures—even x86—offer some specialized predicated instructions
and some architectures—most famously ARM—offer pervasive predication such
that most instructions can be predicated in a general way. The IA-64 archi-
tecture is relatively unique in relying exclusively on predication for conditional
execution, however.

Table 3.2 gives the IA-64’s predicate registers and functional call conven-
tions. Unlike for general purpose registers, there are no “automatic” predicate
registers, registers that are automatically saved and restore with an alloc in-
struction. Unlike the general purpose register r0, the predicate register p0 does
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p0 Always 1
p1–p5 callee-saved
p6–p15 caller-saved
p16–p63 callee-saved Rotating registers, described in chapter 5

Table 3.2: The predicate registers, p0–p63, and the conventions used across
function call. See section 5.4 of Intel’s conventions document [Int01b] for more
information.

not cause an illegal instruction error if written to; rather, the write is silently
ignored.

Since the predicate registers are 1-bit in size and there are 64 of them, the
entire predicate register file can be saved in an entire general purpose register,
which modifies how we might treat them and nullifies the penalty of not having
automatic predicate registers. If a function does not require any predicates to
persist across function calls, then it should use predicate registers p6–p15, which
are generally adequate for most needs. No saving or restoring is ever needed
then. If any predicate is required to persist across a function call, it is generally
easiest to save the entire predicate register file at call time and restore it at
return time, effectively turning all 64 predicate registers into caller-saved.

The instruction “mov r14=pr” saves the entire predicate register file to reg-
ister 14; the complementary “mov pr=r14” would then restore the register file.

Unlike on other architectures, an assembler for an Itanium 2 performs some
static analysis, specifically in determining which predicates are mutually exclu-
sive. Knowing that two predicates are mutually exclusive is essential for deter-
mining WAW and RAW dependencies. Two instructions in the same instruction
group are allowed to have conflicting dependencies (RAW or WAW dependen-
cies) if and only if they are predicated by mutually exclusive predicates, thus
ensuring at most one of them will execute. Note that mutual exclusion is not
the same as complementarity, though complementary necessarily implies mutual
exclusion. Mutual exclusion guarantees at most one is true; complementarity
guarantees exactly one is true.

• The assembler directive .pred.rel “mutex” is used to force the assembler to
see two predicates as mutually exclusive. An example would be .pred.rel
“mutex”, p6, p7.

• The assembler directive .pred.safe across calls is used to force the assembler
to assume that mutual exclusion properties are maintained across function
calls. An example is .pred.safe across calls p1–p5, p16–p63, which includes
all the conventionally callee-saved predicate registers.

3.3.1 Comparisons and predicated instructions

Unlike on most other architectures, there are no condition codes to set and thus
the results from arithmetic operations cannot be used as conditions. The “cmp”
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define(ar pfs old, loc0)
define(gp old, loc1)
define(rp old, loc2)

.text

.global main

.proc main
main: .prologue

alloc ar pfs old = ar.pfs,2,3,1,0
mov gp old = gp
.body
cmp.eq p6,p7 = 2,in0 // check if argc is 2
;;
mov rp old = rp
(p6) add out0 = 8,in1 // if so, get a pointer to argv[1]
(p7) add out0 = @ltoff(errorMsg),gp // otherwise, get a pointer to

// an error message
;;
ld8 out0 = [out0]
br.call.sptk rp = puts
.restore sp
mov rp = rp old
mov gp = gp old
mov ar.pfs = ar pfs old
mov ret0 = 0
br.ret.sptk rp
.endp main
.data

errorMsg: stringz “no argument given!”

Figure 3.3: The source file print-arg.m, which prints out the command-line
argument if there is one; otherwise it prints out an error message.
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define(ar pfs old, loc0)
.text
.global between
.proc between

between: .prologue
alloc ar pfs old = ar.pfs,3,2,0,0
.body
sub loc1 = in1,in2 // for checking if in1 ≥ in2
cmp.le p6,p7 = in0,in2 // in0 ≤ in2?
;;
cmp.ge.and.orcm p6,p7 = loc1,r0 // in1 ≥ in2?
;;
.restore sp
(p6) mov ret0 = 1
(p7) mov ret0 = 0
mov ar.pfs = ar pfs old
br.ret.sptk rp
.endp between

Figure 3.4: The source file between.m, which returns a boolean value indicating
whether its third argument is inclusively between its first two arguments.

(compare) instruction is most often used to set predicate registers. Figure 3.3
gives an example of a program which uses the cmp instruction to set a predicate.
Specifically, it uses the cmp.eq form, which tests for equality. If its two operands,
2 and in0, are equal, then it will set p6 to true and p7 to false; otherwise it will
set p6 to false and p7 to true.

The predicates p6 and p7 are then used in the next bundle. The syntax of
prefixing an instruction with “(p6)” means to only execute that instruction if p6
is true. In this case, the two add instructions will execute concurrently, though
only one will actually be executed. Due to simple static analysis performed by
the assembler, it is known that p6 and p7 are mutually exclusive (complemen-
tary, in this case) and thus the assembler will not emit a WAW dependency
error.

The cmp instruction can be used to write to only one predicate register.
In that case p0 is implicitly taken to be the second output register, which will
silently discard the result.

The allowable forms of cmp instruction are eq, ne, lt, le, gt, ge, ltu, leu, glu
and geu, forming all usual arithmetic comparators. Their usage does not require
further explanation and the reader is directed to the instruction set reference
for more information [Int06b]. The “tbit” (test bit) instruction is the other
instruction commonly used to set predicate bits, and will also not be discussed
here.

Figure 3.4 gives a slightly more complicated example of using conditionals.
In this case the function between takes in three integers, a, b, c, and returns 1
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Original values Comparison is true Comparison is false

p6=0,p7=1
p6 = 0 ∧ 1

= 0
p7 = 1 ∨ (¬1)

= 1
p6 = 0 ∧ 0

= 0
p7 = 1 ∨ (¬0)

= 1

p6=1,p7=0
p6 = 1 ∧ 1

= 1
p7 = 0 ∨ (¬1)

= 0
p6 = 1 ∧ 0

= 0
p7 = 0 ∨ (¬0)

= 1

Table 3.3: The result of performing a parallel cmp.ge.and.orcm operation from
figure 3.4.

if and only if a ≤ c ≤ b. Skipping over the sub instruction for now, the cmp.le
instruction should be clear: it sets p6 to 1 if and only if in0 ≤ in2 and sets p7
to 1 if and only if in0 6≤ in2.

The cmp.ge.and.orcm is called a parallel comparison. It uses predicate
registers p6 and p7 as both input operands and output operands. We now return
to the sub instruction at the top of the function, which subtracts in1 from in2.
On most architectures, a compare instruction is syntactic sugar for a subtract
instruction: on IA-64 we sometimes need to explicitly simulate this fact. We
perform the subtraction so that we can compare our result to 0. If in1 ≥ in2,
then loc1 will take on a non-negative value; otherwise it will take on a negative
value. The reason we perform this explicit subtraction rather than comparing
directly is that parallel comparisons require one operand to be r0; i.e., they
require us to be comparing to 0.

The greater-than-or-equal comparison executes as usual. The result then is
combined with the old values of p6 and p7 according to the parallel comparison
type, in this case “and.orcm”. This says that the first predicate register, p6,
should be “and”ed with the result of the comparison and that the second pred-
icate register, p7, should be “or”ed with the logical complement of the result
of the comparison. This is explained in table 3.3. There are some things to
pay special attention to in table 3.3: firstly that p6 and p7 are always comple-
mentary, a property which would not be preserved under some other parallel
comparison types (e.g., plain “and” rather than “and.orcm”); secondly, and
most importantly, that the resulting table ends up looking exactly like a logical
“and” table, which is what we want, i.e., that p6 is true if and only if the original
comparison and current comparison are true.

Valid parallel comparison types, which are explained further in the IA-64
ISA [Int06b], are: or, and, or.andcm, orcm, andcm, and.orcm. Comparison
types with only one component, i.e., without a “dot”, apply the same logical
operator to both predicate registers.

Note that all comparison instructions, including parallel comparisons, can
themselves be predicated. However, for non-parallel comparisons, the output
predicates are set to 0 if the predicate is false, due to an oddity in the architec-
tural design. Parallel comparisons do not modify the output predicates if the
instruction predicate is false.
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cmp.lt p6 = 100,r14 // check if r14 < 100
(p6) br.dpnt.many else // if r14 ≥ 100, branch
...
do the “if” case
br.sptk.many a // finished with the “if” case

else:
...
do the “else” case

a: both cases have merged now

Figure 3.5: Using predicated branches for if-then-else constructs.

3.3.2 Conditionals

As we’ve seen in section 3.3.1, predicated instructions can be used to perform
conditionals. However, if two paths are greatly divergent in their execution,
it may be prudent to use a conventional conditional branch instead of a single
code path of predicated instructions.

Figure 3.5 gives an abstract example of using conditional branches to im-
plement if-then-else constructs. The trade-off between using a single predicated
code path or using two independent code paths depends on the lengths of each
code path. The branch shown above is a IP-relative branch, meaning the
target is fixed and relative to the instruction pointer. If the branch is predicted
correctly, this branch carries no penalty. If the branch is not predicted correctly,
the penalty is between 7 and 15 cycles, depending on depending on how many
branches have been introduced to the pipeline since the mispredicted branch.

This is also our first use of a branch prediction hint other than “sptk”.
For branches which are not predicted, “sptk” (statically predicted to be taken)
should be used. For predicted branches, the use of “dptk” (predicted to be
taken, but less confidently so, using dynamic run-time prediction information)
or “dpnt” (as dptk, but not taken) are generally recommended, unless the pro-
grammer has extreme confidence in whether a branch will be taken or not.

3.3.3 Loops

Conditional branches can be used to implement loops, as on conventional archi-
tectures. That is sometimes the best way to implement a loop, particularly a
nested loop, but it will not be discussed in this section. Regardless of the method
used to implement a loop, there are some guidelines that must be followed on
the Itanium 2 to produce efficient code.

• Single-cycle loops should be avoided. The branch prediction stage of the
Itanium 2 pipeline will stall for one cycle if it has seen 3 consecutive
branches, i.e., 3 branches within 3 cycles. This means it takes 4 cycles to
execute 3 iterations of a single-cycle loop. If a branch can be executed in
a single cycle, it should be unrolled into a 2-cycle loop, as described in
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section 5.1.

• Loops should generally use static prediction hints. For ctop and cloop
branches, explained below, this is the norm. For 2-cycle loops, even those
which do not use ctop or cloop branches, static branches are recommended:
using a dynamic branch within a 2-cycle loop will cause a one cycle stall
per iteration. I.e., it will take 3 cycles to execute each iteration of the
loop.

• Loops should start on 32-byte boundaries. Any branch to any target
which is not 32-byte–aligned will cause a stall of 2 cycles. This
stall is typically not important for branch targets which are not loops.
Guaranteeing this property will not be possible until we finish chapter 4
and can predict which instructions will be on 32-byte boundaries and
which won’t. We will revisit the issue at that point.

There are two classes of special loop instructions aimed at writing typical
loops.

Counted loops

Counted loops, roughly corresponding to for loops found in higher-level lan-
guages, use the special ar.lc (loop count) and ar.ec (epilogue count) registers.
Note that while the ar.ec register is part of the ar.pfs register and automatically
saved by an alloc instruction, the ar.lc register is not. It is a callee-saved register
and must be saved to a local register before being changed.
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Chapter 4

Bundles

4.1 Bundle formats

As mentioned prior, an instruction in IA-64 is typically 41 bits in length, al-
though a double-wide 82-bit “long” instruction can be used. Three 41-bit in-
structions (or one 41-bit instruction and one 82-bit instruction) are bundled
together into a single instruction “bundle”. An extra 5 bits are used to desig-
nate a template, making an instruction bundle 128 bits in length.

The 128-bit instruction bundle should be treated as atomic: it is not possible
for IA-64 processors to issue individual instructions within a bundle. It is not
specified how many bundles are issued at once: Itanium 2 processors issue
two bundles per clock cycle, though any assembly code written for the IA-64
architecture should not make any assumptions about how many bundles are
issued in parallel.

Table 4.1 lists the available bundle formats, simplified from table 3–10 in [Int06a].
The three letters stand for the execution unit associated with the instruction
in the given “slot” in the bundle. For instance, the bundle template MBB exe-
cutes one memory-unit instruction and two branch-unit instructions in parallel.
Specifically, the letters designate as follows:

0 MII 1 MII, 2 MI,I 3 MI,I,
4 MX 5 MX, 6 – 7 –
8 MMI 9 MMI, a M,MI b M,MI,
c MFI d MFI, e MMF f MMF,

10 MIB 11 MIB, 12 MBB 13 MBB,
14 – 15 – 16 BBB 17 BBB,
18 MMB 19 MMB, 1a – 1b –
1c MFB 1d MFB, 1e – 1f –

Table 4.1: Bundle formats defined by IA-64.

29
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M — Memory unit. Can be used for loads/stores and also ALU “A-unit”
integer instructions

I — Integer unit. Can be used for ALU “A-unit” integer instructions and also
non-ALU “I-unit” integer instructions

F — Floating-point unit. Used for some integer instructions, such as integer
multiplication

B — Branch unit. Used for branches and hinting instructions

X — Long double-wide instruction. Depending on the nature of the instruction
it consumes either an I-unit or a B-unit

A comma in a bundle template is a “stop”, an explicit serialization of execution
of instructions.

Every sequence of instructions must be packaged into bundles and executed
as bundles. The performance of IA-64 assembly code is directly dependent on
how the instructions are bundled: since Itanium processors contain no out-of-
order execution or implicit scheduling, the instructions are issue and executed
exactly as they are packaged. The assembler will automatically package in-
structions into bundles, but it will not do any reordering either. If three load
instructions are given in sequence, for instance, the assembler will näıvely break
them across two bundles, putting two in the first bundle with a no-op and the
remaining in the second bundle. This is not efficient and, consequently, it is
imperative that the programmer be aware of how instructions will be bundling
so that he or she can manually reorder instructions.

The assembler will allow the programmer to explicitly indicate which bundle
template to use by given a compiler directory such as, e.g., .mmi. We will not
explicitly use these except for pedagogical purposes, though we will from now
always be cognizant of how instructions will be bundled.

The list given in table 4.1 may be daunting as it must always be kept in
mind when writing assembly code, and especially as there are many template
combinations which are not available. There are a few simple rules to keep in
mind:

• Always mentally group instructions together in bundles of 3. You should
be able to determine where the start of a new bundle is by looking at a
sequence of instructions.

• Pursuant to the point above, avoid using long instructions. The use of a
long instruction allows only two instructions to be issued within a bundle,
which is not an efficient use of resources. Occassionally it is not reasonably
avoidable.

• Pure memory instructions (loads and stores) should always be given at
the very top of a bundle.



4.1. BUNDLE FORMATS 31

• ALU instructions should be given immediately after memory instructions.
These can be slotted either in M or I slots, which appear at the front of
the bundle templates.

• Branch instructions should always be given at the very end of a bundle.
Further, they should, if possible, be moved to the very end of a sequence
of bundles. The reason is that, if taken, the bundle introduces an implicit
stop, which has performance implications. It is efficient to move a branch
as far down as possible, right before an explicit stop, such that a sequence
of code contains only one stop rather than two stops.

The use of intra-bundle stops is only for code density: it offers absolutely
no performance benefit at all to have one bundle with a stop in it as opposed
to two bundles with some no-ops.
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Part II

Optimizations
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Chapter 5

Rotating registers

Figure 5.1 gives the source code to our first function using rotating registers.
In this case we implement the most literal definition of the Fibonacci function,
namely as follows:

fib(n) =

{
1, if n ≤ 1
fib(n− 1) + fib(n− 2), if n > 1

The first thing to note is the alloc instruction. The rightmost argument is
8, indicating that we are allocating 8 rotating general purpose registers. In
actuality we are only using 3, but the IA-64 architecture requires that they be
allocated in groups of 8. We are also allocating 7 local registers which we never
use. The assembler requires that the number of rotating registers allocated be
less than or equal to—actually a subset of—the input and local registers. As we
only have 1 input register, having any fewer than 7 local registers would cause
an error.

We then make assignments to some “application registers”, prefixed with
ar, in the same category as the ar.pfs register we have seen previously. The
ar.lc register is the “loop counter” and is required to use a rotating counted
loop. It is callee-saved, hence the requirement to save to ar lc out. ar.ec is the
“epilogue counter” and indicates how many iterations the loop will go through
after iteration has completed. For our simple loop we require no epilogue. For
reasons that are not clear, the epilogue counter is caller-saved, not callee-saved
like the loop counter.

Unlike with general-purpose registers, predicate registers—as well as floating-
point registers—have a fixed rotation size and thus the programmer is not al-
lowed to indicate how many predicate registers will rotate through the course
of a loop. Registers p16 through p63 are rotating. As we use p16 in the first
iteration of the loop, we clear out all the rotating registers. Then, to initialize
the loop, we set r32 and r33, our initial values for calculating Fibonacci.

The first iteration of the loop will do nothing since predicate register p16 is
set to false. However, the br.ctop instruction set p63 to be true. Immediately
after that, it will rotate all registers forwards: r32 becomes r33; r33 becomes

35
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define(ar pfs old, r9)
define(ar lc old, r10)

.proc fib
fib: .prologue

alloc ar pfs old = ar.pfs,1,7,0,8
mov ar lc old = ar.lc
mov ar.lc = in0 // set up the number of iterations
mov ar.ec = 0 // no epilogue needed
mov pr.rot = 0 // clear the rotating predicates
mov r32 = 1 // fib(0) = 1
mov r33 = 1 // fib(1) = 1
;;

loop: .body
(p16) add r32 = r33,r34 // fib(n) = fib(n− 1) + fib(n− 2)
br.ctop.sptk.few loop
;;
.restore sp
mov ret0 = r32
mov ar.lc = ar lc old
mov ar.pfs = ar pfs old
br.ret.sptk rp
.endp fib

Figure 5.1: The fib function of the source file fib.m, which computes the Fi-
bonacci number in the most näıve way.
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r34; and so on. Most importantly for our purposes, p63 wraps around to become
p16. This means that the next time through the loop, p16 will be true. It will
then add r33 and r34 together. These registers used to be called r32 and r33,
respectively, and were both initialized to the value of 1. Hence r32 will take on
a value of 2. The next time through the loop, r33 will thus have a value of 2, r34
will have a value of 1, and r35 (which will never be used) will have a value of 1.
Each iteration through the loop will decrement ar.lc: once it has reached 0, it
will set p63 to 0 and start decrementing ar.ec. Once ar.ec has reached 0 as well,
which it was initialized to in our case, the loop will finish. After n iterations of
the loop, it is clear to say that register r32 will have value fib(n), as desired.

The main function for the Fibonacci program is given in figure 5.2. The use
of quotes in the define macros is required to redefine macros that have already
been assigned. As we are using the 64-bit ABI, argv[1] is offset 8 bytes from
argv[0]. The rest of main should require no explanation.

Figure 5.3 gives the running times for three implementations of calculating
Fibonacci. Note that even in the most näıve assembly implementation we are
considerably faster than the C implementation compiled under maximum opti-
mization. All runs were timed on a 900MHz Itanium 2 processor. The figure
demonstrates the predictability of the IA-64 architecture. The gcc compiler
(version 4.2.3) foolishly produced a stop in the inner loop and thus we should
predict exactly 2 cycles per iteration—i.e., 2 seconds to perform 900 million it-
erations at 900MHz—which is exactly what was seen. Similarly, for fib2.m, we
predict 2 cycles per iteration with the number of iterations being half of n—i.e.,
1 second to perform 900 million iterations at 900MHz—which is exactly what
was seen.

As explained in section 5.1, fib.m theoretically requires 4
3 cycles per itera-

tion, which is what we see experimentally.

5.1 Loop unrolling

Normally we should expect that the inner loop of fib in figure 5.1 takes 1 cycle
per iteration. However, there is a restriction of the Itanium 2’s pipeline: should
the front-end encounter branches on three consecutive cycles, it will stall by one
cycle. In other words, the number of cycles it takes to perform n consecutive
branches is n+bn3 c. For a large n we take this to be 4

3 cycles per branch [Int04].
The solution to this is performance problem is partial loop unrolling, a com-

mon optimization technique. If we can restructure the code such that we perform
two cycles of work per iteration, but only half as many iterations, we hit our
minimum of time spent. Figure 5.4 provides the code for this.

We start with the original näıve loop, which contains only one instruction:
add r32=r33,r34. Due to how register rotation works, this iteration’s r33 is last
iteration’s r32, and this iteration’s r34 is last iteration’s r33 which was r32 two
iterations ago. We can rewrite this as fn = fn−1 + fn−2, where n is the current
iteration. Keeping in mind that the registers will rotate each iteration, we can
see the values of our registers through each iteration, shown in table 5.1.
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define(‘ar pfs old’, loc0)
define(‘ar lc old’, loc1)
define(‘gp old’, loc1)
define(‘rp old’, loc2)

.global main

.proc main
main: .prologue

alloc ar pfs old = ar.pfs,2,4,3,0
add in1 = 8,in1 // advance to argv[1]
mov out1 = 0
mov gp old = gp
mov rp old = rp
;;
.body
ld8 out0 = [in1] // n = strtol(argv[1], 0, 0)
mov out2 = 0
br.call.sptk rp = strtol
mov gp = gp old
mov out0 = ret0
br.call.sptk rp = fib // fib(n)
add out0 = @gprel(formatString),gp
mov out1 = ret0
br.call.sptk rp = printf
.restore sp
mov gp = gp old
mov rp = rp old
mov ar.pfs = ar pfs old
br.ret.sptk rp
.endp main
.sdata

formatString: stringz “%d\n”

Figure 5.2: The main function of the source file fib.m.

 0
 0.5

 1
 1.5

 2
 2.5

 0  100  200  300  400  500  600  700  800  900  1000Ru
nn

in
g 

tim
e 

(in
 s

ec
on

ds
)

n (in millions)

Running time for machine-word Fibonacci calculation

fib.m
fib2.m

fib.c with gcc -O3

Figure 5.3: Running times for three separate implementations of a simple Fi-
bonacci number calculator on a 900MHz Itanium 2.



5.1. LOOP UNROLLING 39

define(ar pfs old, r9)
define(ar lc old, r10)

.proc fib
fib: .prologue

alloc ar pfs old = ar.pfs,
mov ar lc old = ar.lc
mov ar.ec = 0
mov pr.rot = 0
cmp.eq p8,p9 = 0,in0
add in0 = -1,in0 // we need to calculate

// bn−1
2 c

;;
(p8) mov ret0 = 1 // if n = 0, return 1
shr.u r14 = in0,1 // n/2
and r15 = 1,in0 // not (n mod 2)
;;
(p8) mov ar.pfs = ar pfs old // if n = 0, return 1
(p9) mov ar.lc = r14 // otherwise do half the iterations
add r34 = 1,r15 // fn−3

add r33 = 2,r15 // fn−2

cmp.eq p6,p7 = 1,r15 // check if n is even or odd
;;
(p6) mov r32 = 8 // if odd, fn = 8
(p7) mov r32 = 5 // if even, fn = 5
;;

loop: .body
(p16) shl r14 = r33,1
(p16) add r34 = r34,r35 // fn−3 = fn−4 + fn−5

;;
(p16) add r32 = r14,r34 // fn = 2fn−2 + fn−3

br.ctop.sptk.few loop
;;
.restore sp
mov ret0 = r33
mov ar.lc = ar lc old
mov ar.pfs = ar pfs old
br.ret.sptk rp
.endp fib

Figure 5.4: The source file fib2.m, which performs two calculations per loop
and hence one cycle per n.
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Iteration 1 Rotation 1 Iteration 2 Rotation 2 Iteration 3

r35 − b b a a
r34 b a a a + b a + b
r33 a a + b a + b 2a + b 2a + b
r32 a + b − 2a + b − 3a + 2b

Table 5.1: Values of registers through a loop rotating registers, where each
iteration we execute the instruction add r32=r33,r34.
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