
On the Complexity of Derivation in Propositional Calculus 

G. s. Tseitin 

1. For.mulation of the Problem and Principal Results 

The question of the minimum complexity of derivation of a given 

formula in classical propositional calculus is considered in this 

article and it is proved that estimates of complexity may vary 

considerably among the various forms of propositional calculus. The 

forms of propositional calculus used in the present article are some­

what unusual, t but the results obtained for them can, in principle, 

be extended to the usual forms of propositional calculus. 

The simplest objects in the calculi being considered are proposition­

al variables which we combine into pairs (each variable occurs in one 

pair only; the number of such pairs is unlimited). The variables 

forming one pair will be called conjugate variables; if ~ denotes a 

variable, then the variable conjugate to it will be denoted by €. Any 

finite set of variables will be called a disjunction; to represent 

a disjunction, we will write down all the variables contained in it on 

one line (in any order, without intervening signs); an empty disjunction 

will be denoted by A. Finally, we will be considering finite systems 

of disjunctions. 

Let us assign to each variable one of two values: (true) or O(false); 

the assignment must be such that opposite values are assigned to 

conjugate variables. The value 1 is assigned to a disjunction if this 

t An analogous system for predicate calculus has been introduced in [3]. 

* The contents of this article were presented at the Leningrad Seminar 

on Mathematical Logic held on September 8, 22, and 29, 1966. 
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value has been assigned to at least one of the variables contained in 

it, otherwise the value 0 is assigned to it; in particular, the empty 

disjunction is always assigned the value o. A system of disjunctions 

is said to be satisfiabZe if values can be assigned to variables in 

such a manner that all disjunctions of this system have the value 1; if 

a system of disjunctions is not satisfiable, we say that it is 

contradictory. 

The calculi we shall use are aimed at establishing that systems of 

disjunctions are contradictory. The concept of a contradictory system 

of disjunctions is here an analog of the concept of an identically true 

formula in the usual propositional calculus. The problem of determining 

whether a given formula of propositional calculus is identically true 

can be reduced to the problem of determining whether a system of 

disjunctions is contradictory by reducing the negation of the formula 

to a conjunctive normal form. A transformation of this type, however, 

may lead to a considerable increase in the length of the formula, so 

that we will consider another method for transforming a formula of the 

propositional calculus into a system of disjunctions. Each subformula 

of a given formula will be associated with its own variable; two sub­

formulas will be associated with conjugate variables if and only if 

one of the subformulas is a negation of the other. If a subformulaA 

is the conjunction of subformulas $ and e and these subformulas are 

associated with variables a, S, and y, respectively, then the system 

of disjunctions as, ay, a8y will be assigned to subformula ~. In an 

analogous manner we will assign systems of disjunctions to subformulas 

that are disjunctions and implications (as, ay, and aSY in the case 

of disjunctions and as, ay, a8y in the case of implications). Let us 

combine all of the systems of disjunctions obtained in this way and 

add the disjunction ~, where ~ is the variable associated with the 

whole of the given formula. It can be easily seen that the system of 

disjunctions will be contradictory if and only if the given formula 

is identically true. 

Let a system of disjunctions be given. We will add new disjunctions 

to the system in accordance with definite rules in such a manner that 

the satisfiability of the supplemented system would follow from the 

satisfiability of the original system. This operation can be repeated 

many times. If we finally obtain the empty disjunction, then this will 

mean that the original system of disjunctions is contradictory; indeed, 

a system of disjunctions containing the empty disjunction cannot be 

satisfiable. We will consider two rules for extending a system of 
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disjunctions without v.iolating its satisfiability. 

Rule 1 ("Annihilation"). If the system contains disjunctions At, 
and B~ (here t, is a variable, A and B are disjunctions), then we 

can add the disjunction AUB (here U is used as the sign of set-theoretic 

union) to the system. Indeed, if the disjunctions At, and B~ have both 

received the value 1 for some selection of variable values, then the 

disjunction AUB will also receive the value 1. 

Rule 2 ("Extension"). If a, S, and yare any variables and neither 

a nor a occurs in any disjunction of the system, then the system can 

be supplemented by the following list of disjunctions: as, ay, a8Y. 
Indeed, if the values assigned to the variables are such that all 

disjunctions of the original system have the value 1, then this is 

independent of the value of the variable ex; let us assign to a the 

value of the disjunction 8Y and then the newly introduced disjunctions 

will receive the value 1, whereas the values of the previous disjunctions 

will not be changed. 

In order to apply the annihilation rule we need only know that two 

definite disjunctions are contained in the system. Therefore, if we 

use only this rule, then we can consider that we are dealing with a 

calculus in which the derivable objects are the individual disjunctions: 

The disjunctions contained in the origina,l system play the part of 

axioms, the annihilation rule serves as a derivation rule, and the 

"aim" of the derivation is to obtain the empty disjunction. On the other 

hand, if we also make use of the extension rule for determining whether 

a system of disjunctions is contradictory, then we will consider that 

all applications of this rule precede all applications of the annihilat­

ion rule and the disjunctions obtained according to the extension rule 

will be equated to the axioms; thus, we consider that the extension 

rule is not a derivation rule, but a schema for the generation of new 

axioms. 

Thus, we will consider the following calculus (which will be denoted 

by the letter ct ): The objects to be derived are disjunctions, the 

number of axioms is not fixed, and the only derivation rule allows us 

to derive the disjunction AUB from the disjunctions At, and B~. An 

application of this rule will be called the annihilation of the 

variables t, and ~. If we are given a system of disjunctions L, taking 

all of the disjunctions of L as axioms (no applications of the ex­

tension rule are allowed), and we can derive disjunction A in calculus 
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a, then we will write 1: 1- A. The following theorem * concE7rning the 

completeness of at can be easily proved. 

Theorem 1. The system of disjunctions 1: is contradiatory if and 

onZy if 1: I- A. 

(The proof is by induction on the number of variables occurring in 

1:; see Lemma 2 in Section 2.) 

It can be seen from this theorem that the extension rule is not 

needed if we are merely interested in establishing that a given system 

of disjunctions is contradictory. However, as we shall see below, the 

use of this rule leads to a significant decrease in the complexity of 

derivations. 

A derivation in the calculus Gt (in the following we will simply 

say "derivation") can be represented either as a linear sequence of 

formulas or in the form of a tree. If the complexity of a derivation 

is measured by the number of occurrences of disjunctions in the 

derivation, then the linear and tree notations may lead to different 

values of the complexity because a given disjunction may appear more 

than once in a tree. We will always use the tree notation, but we will 

estimate complexity in two ways. The number of occurrences of axioms 

in a tree will be called L-aompZexity (since each occurrence of a 

disjunction, excluding axioms, has exactly two premises, the total 

number of occurrences of disjunctions in a tree is equal to two times 

the L-complexity minus 1). The number of distinct disjunctions 

occurring in a derivation will be called the N-aompZexity of this 

derivation (this obviously corresponds to the length of the derivation 

in linear notation). 

If 1: is a system of disjunctions and A a disjunction such that 1: I-A, 

then LA{1:) [NA{1:)] will denote the minimal L-complexity (N-complexity) 

of the derivation of disjunction A from 1:. We will be primarily 

interested in the case A = A and then we will write L (1:) and N (1:) • 

Theorem 2. For an arbitrary aontradiatory system of disjunctions 1:. 

we have 

* See also [3]. 
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Here, the upper bound on L(~) is obtained as follows. Linearnotation 

is used to write down the derivation of A from ~ with minimum N-carnplexity 

and induction on n is used to prove that if A is the n-th disjunction 

in this derivation, then LA(~) ~ [(~)n-l]i some rearrangement is 

possible within the given derivation. 

Each occurrence of a disjunction in a derivation corresponds to a 

subtree - the part of the complete tree forming the derivation of the 

given occurrence. We will say that a derivation is reguZar if each of 

its subtrees satisfies the following condition: The subtree does not 

contain any annihilations of variables occurring in the final 

disjunctions of the subtree. In the case of the derivation of the empty 

disjunction, the regularity condition is equivalent to the condition 

that an annihilation of the same variable does not occur twice on one 

branch of the derivation. 

If ~ is a system of disjunctions for which ~ I-A, then L(~)[N(~)] 

will denote the minimum L-complexity (N-complexity) of a regular 

derivation of A from ~. It is obvious that we have 

L(~) > L(~) and N(~) ~ N(~). Moreover, it is obvious that we have 

N(~)+1 
L (~) > 

2 

The following theorem also holds. 

Theorem 3. For an arbitrary contradictory system of disjunctions ~, 

we have 

L(~) = L(~) • 

In other words, L-complexity is always a minimum for regular 

derivations. The proof of this is based on the following assertion: 

If ~ 1- A, then from any disjunction B we can construct a disjunction 

C such that C C (AUB) and there exists a regular derivation of C from 

~ with an L-complexity not greater than LA(~) [proved by induction on 

LA (~) ] . 

Whether there exists a contradictory system of disjunctions ~ such 

that N(~) > N(~) remains an open question. 

Finally, let us define the quantities L*(~), N*(~) and N*(~) for an 

arbitrary contradictory system of disjunctions as the minimum values 

of the quantities L(~*), N(~*) and N(~*)' respectively, where ~* stands 

470 



for any systems of disjunctions obtained from ~ by the (repeated) 

application of the extension rule [to define these quantities, it is 

obviously sufficient to consider only those systems ~* for the 

construction of which not more than L(~) new variables have been in­

troduced]. It is obvious that L*(~) ~ L(~), etc. Finally we will denote 

the number of disjunctions in system ~ by A(~). 

The principal results of the present article refer to the connections 

between the various quantities. 

Theorem 4. For any number c "less than {. and (J.l·bitrary n. we can 

find a contradictory system of disjunctions ~ for which 

Theorem 5. There exists a positive number c such that for any n we 

can find a contradixtory system of disjunctions ~ for which 

- >~!~>n. "log 2N (~) ~ VN' \'-/ _ 

It follows from these theorems that, in particular, L(~) is not 

majorized by any power function of N(~) and L*(~), while N(~), in its 

turn, is not majorized by any power function of N*(~) and A(~) [and 

all the more so by L(~)]. It would be of great interest to establish 

the analogous relation between N*(~) and A(~), but we were unable to 

do this by the methods used in the present article. The method by 

which systems of disjunctions satisfying the conditions of Theorems 4 

and 5 can be constructed will be described in the following sections. 

We can establish some connections between the quantities being 

considered here and the properties of the derivations in the sequential 

form of the propositional calculus with the help of the following 

construction. Suppose we are given the derivation of a formula in 

sequential calculus. With each formula that is a member of some sequent 

of this derivation we associate a variable (conjugate variables are 

only associated with formulas that are negations of one another). 

Replacing all formulas in each sequent by the corresponding variables 

and transferring all terms into the succedent (obviously, replacing 
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all variables by conjugate variables), we obtain a tree consisting of 

disjunctions. If axioms are introduced in the same way as was done in 

the case of the transformation of a conventional formula into a system 

of disjunctions, then the tree we obtain can be easily transformed into 

the derivation of the empty disjunction from these axioms in the 

calculus Qt. If the original derivation was cut free, then the collection 

of axioms for derivation in ~ can only be constructed from the sub­

formulas of the final formula of the original derivation; this reveals 

the analogy between the use of the cut rule and the use of the rule 

for the extension of the axiom system preceding a derivation in ~. 

The analog of the concept of a regular derivation in Ct is the concept 

of a "weeded-out" derivation in sequential calculus introduced in [2] 

(this concept is formulated in terms of restrictions on the repetition 

of side formulas on a single branch of the derivation). 

A heuristic interpretation can also be given to various restrictions 

on a derivation described in terms of the calculus ct. Thus, the 

introduction of L-complexity instead of N-complexity obviously axresponds 

to a prohibition on the multiple use in a proof of a result once it is 

obtained (to use it a second time, we must repeat all of the proof of 

the intermediate result). The use of the extension rule corresponds to 

the admission of auxiliary constructions in the proof. Finally, the 

regularity condition can be interpreted as a requirement for not proving 

intermediate results in a form stronger than that in which they are 

later used {if A and B are disjunctions such that A c:; B, then A may be 

considered to be the stronger assertion of the two; if the derivation 

of a disjunction containing a variable ~ involves the annihilation of 

the latter, then we can avoid this annihilation, some of the disjunctions 

in the derivation being replaced by "weaker" disjunctions containing 

~. * The theorems proved above throw some light on the influence of the 

above restrictions on the complexity of a proof. 

2. Systems of Disjunations Conneated with Graphs 

By a graph** we here mean a finite symmetric (i.e. unoriented) graph 

without loops (not necessarily connected). We will assume, in addition, 

that each edge of the graph is associated with a pair of conjugate 

.variables (distinct pairs being associated with distinct edges). 

* In addition to the appearance of ~, the disappearance of other 

variables is possible in the course of such a rearrangement. 

** The termini logy of [1] is used in this article. 
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A labeled graph is a graph supplied with the following additional 

information: Each vertex is assigned one of two logical values (0 or 1) 

and for each edge we select one of the corresponding pair of conjugate 

variables. If ~ is a labeled graph, then the original (unlabeled) graph 

will be denoted by I ~I • 

Suppose that the variables ~1""'~k (wit k ~ 0) are all distinct 

and among them there are no conjugate-variable pairs; let E denote 

either 0 or 1. We will use [~1'" ~k]E to denote a system of disjunctions 

constructed from the variables ~1""'~k and variables conjugate to 

them, the disjunctions of this system satisfying the following 

conditions: 1) for each i (where 1 :: i::: k), the disjunction contains 

either ~. or ~., but not both of these variables, 2) the number of 
~ ~ 

values of i which correspond to occurrences of ~. in the disjunction is 
~ 

of opposite parity to the number E. When k > 0, the system [~1" '~k]E 
obviously consists of 2k - 1 disjunctions. Further, if the logical values 

E1 , .•. ,Ek are assigned to the variables ~1""'~k' then for all 

disjunctions of [~1"'~k]E to be true it is necessary and sufficient 

that 

(here, the sign e denotes addition modulo 2). 

Let ~ be a labeled graph. Let us construct for each vertex of ~ a 

system of disjunctions [~1"'~k]E, where E is th~ logical value 

assigned to the given vertex and ~1 ""'~k are the variables that have 

been selected for the edges that are incident to the given vertex. The 

union of all such systems of disjunctions for all vertices of ~ will be 

denoted by a(~). We will denote the sum modulo 2 of the logical values 

assigned to all vertices of ~ by a(~). 

Let us establish the extent to which the properties of the system 

of disjunctions a(~) depend on the graph I~I. Let us first of all note 

that if in ~ we change the labeling of one edge (i.e. if we select 

for it a variable conjugate to the original variable) and simultaneously 

change the logical values at the ends of this edge, then a(~) will 

remain unchanged. Analogously, if two vertices of ~ are connected by 

a (simple) chain, then, without changing a(~), we can interchange the 

logical values at both of these vertices and simultaneously change the 

labeling of all edges forming this chain. It follows from this that if 

I~I is a connected graph, then any change of logical values at the 

473 



vertices i preserving cr(~) can be compensated by a suitable change of 

the edge labeling so that ~(~) does not change. We see from this thatli 

the graph I~I is connected and cr(~) = 0, then the system of disjunctions 

~(~) is satisfiable. Indeed, in this case we can consider that all 

vertices have been assigned the logical value ° and to make all 

disjunctions belonging to ~(~) true, it is sufficient to assign the 

value ° to all the variables selected for the edges. On the other hand, 

if cr(~) = 1, then the system of disjunctions ~(~) is contradictory. 

Indeed, if we could assign values to variables in such a manner that 

all disjunctions belonging to ~(~) were true, then for each vertex the 

sum modulo 2 of the values of the variables assigned to the edges 

incident to this vertex would be equal to the logical value assigned 

to the given vertex; if we sum these equalities modulo 2 for all 

variables, we will obtain a for the left-hand side, since the value of 

the variable for each edge enters the sum exactly twice, whereas the 

right-hand side will be equal to cr(~), i.e. 1. 

Thus, if we are given a connected graph f, then a contradictory 

system of disjunctions ~(~) corresponds to every labeled graph ~ such 

that I~I =f and cr(~) = 1. Moreover, the systems of disjunctions 

corresponding to various graphs of this type can be inter converted by 

a renaming of variables, so that the properties of the system of dis­

junctions ~(T) are in essence completely determined by the graph f. The 

values of the functions L, N, N, L*, N*, N* and A introduced in Section 

1 will depend only on f for the system of disjunctions ~(~), where 

I~I = f and cr(~) = 1, in view of which we will denote them by L(r), 
N(f), N(f), L*(f) N*(f), N*(f) and A(f), re~pectively. , 

A(f) can be easily calculated directly. An upper bound to N*(f) can 

be obtained on the basis of the fact that the discussion given above 

for proving that the system of disjunctions ~(~) is contradictory by 

means of modulo 2 addition can be formalized in the calculus ~ by 

means of the rule for extending the axiom system; this yields for N*(f) 

an upper bound in the form of a linear function of A(f) and the product 

of the number of vertices of f times the number of its edges. The upper 

bound to L*(f) obtained in the same way is found to be considerably 

worse: in the general case it contains the number of edges as an 

exponent of 2. It can also be noted that each of the above quantities 

is not less than the number of vertices of f, since in any derivation 

of A from a(~) at least one axiom is used for each vertex of ~. 

In the case of L(f) and N(f), it is possible to write exact re­

currence formulas for them. 
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We will use the letter a as a variable for edges of a graph; letters 

r and ~ (possibly subscripted) will be used as variables for connected 

graphs. If a is an edge of graph r (we write a E r), then the partial 

graph obtained by the removal of this edge from r (the number of 

vertices being unchanged) either remains a connected graph and we will 

then denote it by r , or it splits into two connected components which a 
we will denote (in arbitrary order) by r' and r" (in this case we will a a 
say that the edge a ruptures r). 

Theorem 6. The foLLowing reaurrenae reLation hoLds: 

where 

1 if r consists of one vertex only, 

min La(r) otherwise, 
aEr 

{ 

2L(r a ), if a ruptures r, 

La (r) = 

L (r ~) + L (r ~) , if a does not rupture r. 

Let us introduce the following terminology to assist us in obtaining 

a recurrence relation for N(r). The ayaLomatia number of graph ~ 

[denoted by v(~)l is the number of edges of the graph minus the number 

of vertices plus the number of connected components (i.e. the cyclomatic 

number is the rank of the one-dimensional group of cycles). Let ~ be a 

partial subgroup of graph r. We will say that edge a of r emerges from 

~ if a does not belong to ~, but has at least one vertex in common with 

~. Let r~~ denote the subgraph of r obtained by the r.emoval of all 

vertices of ~ (together with all edges incident to these vertices). Let 

us take 

sr(ll) = v(r) - v(~) - v(N'~). 

It can be easily seen that Sr(~) is the maximum number of edges emerging 

from ~ that can be removed without disrupting the connectedness of r. 
Let us define a function Zr on the partial subgraphs of graph r as 

follows: 
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Sr(6) 
2 , if 6 consists of one vertex only, 

Zr (6) 
Sr(6) 

2 +min Z~ (6) otherwise, 
aE6 

where Zr (6 a ), if a does not rupture 6, 

Z~(6) 

Zr (6~) + Zr (6~), if a ruptures 6. 

Theorem 7. For any connected graph r, we have 

N(r) Zr(r)· 

Let us outline the main stages of the proofs of Theorems 6 and 7. 

In the following, we will only be considering disjunctions which do 

not simultaneously contain two conjugate variables; the letters A, B, 

and C will be used as variables for such disjunctions. The letter L 

will be used as a variable for systems of disjunctions, the letters ~, 

~ will be used for connected labeled graphs, and the letters ~, n for 

propositional variables. 

We will use L"'" ~ to denote the system of disjunctions obtained from 

L as follows: The disjunctions belonging to L and containing ~ are 

removed, while ~ (if it occurs) is deleted from the other disjunctions. 

Lemma 1. If we are given a reguLar derivation of a one-eLement dis­

junction ~ from the system of disjunctions L, then by deLeting aLL oc­

currences of ~ in this derivation we obtain a reguLar derivation of A 
from L""'~. 

Lemma 2. If we have L""'~ I-A, then one of the fonowing cases hoLds: 

1) L I- ~ and 

2) L I- A and 

We will use ~ ..... ~ to denote the labeled graph obtained from ~ as 

follows: 1) If the variable ~ has been selected for one edge of ~, then 

this edge is removed from ~ (all vertices being left intact); 2) if 

the variable ~ has been selected for one of the edges of ~, then this 

edge is removed from ~ and simultaneously the logical values assigned 
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to the ends of this edge are inverted; 3) in all other cases .p, I; = .p. 

It should be noted that for alII;, n such that n t ~, and for arbitrary 

P, we have 

In view of this, we can def ine ip' A for any ip and A by induction on the 

number of variables in A; thus 

We define a system of disjunctions L' A for any L and A in an 

analogous manner. 

Lemma 3. a (.p) 

Lemma 4. cdip'A) = a(ip) 'A. 

Lemma 5. If = is an unconnected labeled graph and we are given a 

derivation of a disjunction from a(=) then we can identify a connected 

component ~ such that the given derivation is a derivation from a(~). 

The proof of Theorem 6 is based on Lemma 1 - 5, Lemmas 3 and 4 being 

only used for one-element disjunctions. 

In the following, .p will be taken to be a fixed labeled graph such 

that l.pl = rand a(.p) = 1. If for some edge of .p we select a variable 

I; or~, then this edge will be denoted by 11;1. We will say that a 

disjunction A is admissible (for .p) if the labeled graph ip'A contains 

exactly one connected component ~ for which a(~) = 1. This component 

will be denoted by <PA. 

Lemma 6. If a disjunction A is admissible and II;IEI<PAI. then the 

disjunction AI; is also admissible and <PAl; is a connected component of 

<PA' E,. 

Let 0 be a fixed regular derivation of A from a(.p). The index of 

occurrence of subtree 2) I in the tree 21 is the disjunction defined as 

follows: 1) The index of occurrence of 0 in ~ is A; 2) if A is the 

index of occurrence of Z> I in !Z>, the premises of the last step in 0 I 

are of the form BI; and C~, and their subtrees are ZJ 1 and :J 2' then the 
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index of the corresponding occurrence of ~1 will be As (and the index 

of occurrence of ~ 2 will be A~). The term index of oeeurrenee of a 

disjunetion in Q) will be used for the index of occurrence of the 

corresponding subtree. 

Lemma 7. If A is the index of oeeurrenee of subtree Z>' in ZJ, 
then 1) disjunetion A is admissibLe, 

2) if we detete from 1>' att oeeurrenees of variabtes appearing in the 

eonetusion of 2) " we obtain a regutar derivation of ~ from a(PA). 

This lemma is proved by induction on A with the use of Lemmas 1 and 

4 - 6. 

Lemma 8. If A is the index of oeeurrenee in 0 of a subtree eon­

sisting of a singte axiom, then ~A eonsists of onty one vertex. 

This is a consequence of Lemma 7. 

Let A be an admissible disjunction. Let o(A) denote the set of 

variables s such that sEA and the edge lsi has a vertex in common with 

~A [o(A) contains as many variables as there are edges emerging from 

I~AI considered as a partial subgraph of r]. The following lemma shows 

that this disjunction can be found from the index of occurrence of the 

disjunction in Zl without any knowledge of :0 itself. 

Lemma 9. If A is the index of oeeurrenee of a disjunetion B in~ 
then B = 0 (A) • 

The proof of this lemma is based on Lemma 7. 

Lemma 10. If A is an admissibte disjunetion and orA) = B = A, then 

B is atso an admissibte disjunetion, ~B = ~A and orB) = o(A)· 

Lemma 11. Let A be the index of oeeurrenee of some subtree ~, in 

~ . Then, for any distanee B we have 

L2v(I~'CI) < 2v (liF' (A U B) I) 

C 

whers the summation extends over the indiees C of atl oeeurrenees of B 
in ~ referring to subtree ~ , 
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This lemma is proved by induction on the L-complexity of ~I. Lemmas 

9 and 10, as well as the following fact are used: When an edge is 

deleted from a graph, the cyclomatic number remains unchanged if the 

deleted edge ruptures one of the connected components, otherwise the 

cyclomatic number decreases by one (see [1], Theorem 1 of Chapter 4). 

Lemma 12. For any disjunation B. we have 

.... 2v {IT'CI)-v{IT'BI) 1 
L. < , 
C 

where the summation extends over the indiaes C of aLL oaaurrenaes of 

disjunation B in £J. 

Lemma 13. The N-aompLexity of derivation ~ is not Less than 

1:2 v (I T' C I) -v (I T' cS (C) I) 

C 

where the summation extends over the indiaes C of aLL oaaurrenaes of 

disjunations in 2. 

Lemma 14. If A is the index of oaaurrenae of a subtree 2) I in :(). 

then we have 

where the summation extends over the indiaes C of aLL oaaurrenaes in 

~ of disjunations referring to the subtree ~'. 

It can be easily proved with the help of Lemmas 13 and 14 that 

N{r) ~ Zr{r). In order to prove the inverse inequality, let us select 

in each partial subgraph ~ of graph r with more that one vertex, an 

edge a which minimizes Z~{~). Let us introduce the concept of a reguLar 

partiaL subgraph of graph r as follows: r is regular; if ~ is regular 

and an edge a has been selected in ~, then ~a is regular (if a does 

not rupture ~) or ~~ and ~~ are regular (if a ruptures ~). We will say 

that a disjunction A beLongs toa partial subgraph ~ of graph r if A is 

admissible disjunction, cS{A) = A and ITAI = ~. The inequality 

N{r) ~Zr{r) then follows immediately from the following three assertions. 

479 



Lemma 15. We can construct a reguLar derivation of A from a(~) 

which contains onLy disjunctions beLonging to the reguLar partiaL 

subgraphs of graph r. 

Lemma 16. The number of distinct disjunctions belonging to the 

partiaL subgraph 6 of graph r is equaL to 

2 
8 r (6) 

Lemma 17. We have 

Zr (r) 

where the summation extends over aLL reguLar partiaL subgraphs 6 of 

graph r. 

3. Bounds for Concrete Graphs 

We will consider graphs Pkl (where k and 1 are positive integers) 

defined as follows: the vertices of graph Pkl are points on a plane 

with integer coordinates x,y such that 1 S x S k and 1 S y S 1 (in all 

there are kl vertices) and the edges of Pkl are segments of unit length 

drawn parallel to the coordinate axes. We will usually assume that k > 1. 

Theorem 8. There exist positive constants c 1 and c 2 such that for 

arbitrary integer's k and 1 we have 

Let us give the principal stages in the proof of this theorem. 

Lemma 18. Let r ' be a connected partial subgraph of graph rand 6 

a connected partial subgraph of r'. We then have 

Sr (6) :: Sr ,(6) 

Let us fix a value for 1 greater than one and also a sufficiently 

large m; we assume that r 
of r. Let w(~) denote the 

Pml . Let 6 be a connected partial subgraph 

number of distinct abscissas of vertices of 

6. We will call 6 an internal graph if 6 does not contain vertices 
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with abscissas 1 and m. 

Lemma 19. Let a be an internal graph and let a be an edge that 

ruptures a. Then, we have 

1-1, if a" contains vertices a 
with all integer ordinates from 

1 to l 

w ( a ) -w (a ') otherwise. 
a 

The proof of this lemma is based on Lemma 18, as well as the relation 

Lemma 20. If the aonstant c is suah that the inequality 

is satisfied for all internal graphs a satisfying the aondition 

w(a) < 21, then it is satisfied for all internal graphs a. 

The proof of this lemma is by induction on the number of edges of a, 
together with the use of Theorem 6 and Lemma 19. 

Having chosen a suitable value for c, we obtain the required lower 

bound to L(Pk1 ) (for k ~ m-2) with the help of Lemma 20. The upper 

bound to L(Pk1 ) is obtained directly from Theorem 6: We must successively 

remove edges from Pk1 until the'graph Pk1 is found to be cut into 

approximately two equal parts by the axis of abscissas. 

The following bounds are also obtained by direct counting: 

N(Pk1) ~ ck1.21 

L * (Pk1) ~ ck1.21 

'N*(Pkl ) ~ ck12 

(here c is a constant). We can make use of Theorem 7 to obtain the 
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bound on iii (Pkl) ; in this case, we must remove "exterior" edges from 

Pkl in such a manner that vertices are "lost" one by one in order of 

increasing abscissas. In order to construct sufficiently simple 

derivations involving the use of the rule for the extension of the 

axiom system, we can make use of the following idea (in fact, the 

bounds given below were obtained with the help of a slightly different 

construction). Additional axioms are constructed in such a manner that 

for each integer m such that 1 < m < k we define a new variable ~m 

whose value is equal to the sum modulo 2 of the values of all variables 

selected for the edges that join vertices with abscissas m and m+1; we 

then, first of all, derive simple relations between ~m and ~m+1 (the 

complexity of such a derivation depends only on 1) and only then 

derive A from them. 

To prove Theorem 4, it is now sufficient to consider the graph Pkl 
with k = 1.21 . Theorem 5 can be obtained if we set k = 1 and make use 

of the following theorem. 

Theorem 9. For any positive integer k, we have 

To prove this theorem, let us set r = Pkk and once more make use of 

the concept of a regular partial subgraph introduced to prove Theorem ~ 

In view of Theorem 7 and Lemma 17, our assertion will be proved if we 

can find a regular partial subgraph A of graph r such that Sr(A) ~ k-1. 

To find such a A, we will construct regular partial subgraphs of r by 

successively deleting edges of r; each time that the deleted edge 

ruptures the partial subgraph being considered, we will select that 

component which has more vertices in cornmon with the "perimeter" 

(either one, if the numbers of common vertices are equal). By this 

method we will construct a regular partial subgraph in which the number 

of vertices in common with the "perimeter" is greater than j-(k-1), but 

not greater than ~(k-1); this will be the required subgraph. 
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