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Abstract

Several standard cryptographic hash functions were broken in 2005. Some essential building
blocks of these attacks lend themselves well to automation by encoding them as CNF formulas,
which are within reach of modern SAT solvers. In this paper we demonstrate effectiveness of
this approach. In particular, we are able to generate full collisions for MD4 and MD5 given only
the differential path and applying a (minimally modified) off-the-shelf SAT solver. To the best
of our knowledge, this is the first example of a SAT-solver-aided cryptanalysis of a non-trivial
cryptographic primitive. We expect SAT solvers to find new applications as a validation and
testing tool of practicing cryptanalysts.

1 Introduction

Boolean Satisfiability (SAT) solvers have achieved remarkable progress in the last decade [MSS99,
MMZ+01, ES03]. The record-breaking performance of the state-of-the-art SAT solvers opens new
vistas for their applications beyond what conventionally has been thought feasible. Still, most of
the successful real world applications of SAT solvers belong to the traditional domains of formal
verification and AI. In this paper we explore applications of SAT solvers to cryptanalysis of hash
functions.

Several applications of SAT solvers to cryptanalysis have been described in the literature [Mas99,
MM00, FMM03, JJ05]. Their strategy can be regarded as a “head-on” approach, in the sense that
they are not using any new or existing cryptanalytic methods in their attacks. Unsurprisingly,
these efforts failed to produce any attacks of interest to cryptologists.

Despite the previous (arguably unsuccessful) attempts, we are convinced that SAT solvers
could be of use in practical cryptanalysis. Our strategy may be described as “meet-in-the-middle”:
after initial, highly creative work of cryptanalysts, we are able to delegate the more laborious parts
of the attack to the SAT solver.

Recently, several important cryptographic hash functions were shown to be vulnerable to
collision-finding attacks [WY05, WYY05b]. The original attacks consisted of several steps each
of which involves a lot of bit-tweaking and manual work. It suffices to say that the attack on the
simplest function of the family, MD4, requires keeping track of as many as 122 boolean conditions.

In this paper, we show that SAT solvers can be used to automate certain elements of these
attacks. In particular, we demonstrate that SAT solvers may obviate the need for compiling tables
of sufficient conditions and designing clever message-modifications techniques. Our successful
attacks on MD4 and MD5 suggest that SAT solvers could be a valuable addition to cryptanalysts’
toolkit.
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The paper is structured as follows. Section 2 is a short primer on theory and practical con-
structions of hash functions. Section 3 covers recent attacks on hash functions; Section 4 presents
experimental results of applying SAT solvers to automation of these attacks. We conclude in
Section 5.

2 Theory and Constructions of Hash Functions

Cryptographic hash functions are essential for security of many protocols. Early applications of
hash functions in systems security include password tables [JKW74] and signature schemes [RSA78,
Lam79]; since then virtually any cryptographic protocol uses directly or indirectly a secure hash
function as a building block.

The properties required of a secure hash function differ and often depend on the protocol in
question. Still, the property of being collision-resistant is recognized as the “gold standard” of
security of hash function. The first formal definition of collision-resistant hash functions (CRHF)
was given by Damg̊ard [Dam88]. A function H is said to be collision-resistant if it is infeasible
to find two different inputs x, y such that H(x) = H(y). Since any compressing function has
collisions, a guarantee of collision-resistance may only be computational.

A first standard hash function, MD4, was designed by Ron Rivest [Riv91]; its strengthened
version MD5 followed shortly thereafter [Riv92]. A first NIST-approved hash function, SHA (Se-
cure Hash Algorithm), adopted the general structure (and even some constants!) of MD4 [NIS93];
it was withdrawn in 1995 and replaced with a new version, dubbed SHA-1 [NIS95], that differed
in one additional instruction. To avoid confusion, the original SHA is commonly referred to as
SHA-0. As of 2004, two hash functions were in wide-spread (and almost exclusive) use: MD5 and
SHA-1. It is fair to say that all of these functions belong to one family that shares similar design
principles.

Compression function. The basic construction block of CRHFs is a collision-resistant com-
pression function, which maps a fixed-length input into a shorter fixed-length output.

The heart of the construction is a block cipher, which is defined as a function of two inputs
E : {0, 1}k × {0, 1}n 7→ {0, 1}n. Although E(·, ·) compresses its input by mapping k + n bits
into k bits, as is it is trivially invertible. However, the following trick, called the Davies-Meyer
construction, results in a CRHF F under the assumption that E is an ideal block cipher (i.e.,
E(x, ·) is an indexed collection of random permutations on {0, 1}n):

F (M,x) = E(x,M)⊕M.

Among several methods for constructing block ciphers, the Feistel ladder is by far the best-
known, being the method of choice for DES. The (unbalanced) Feistel ladder is a foundation of
all block ciphers inside MDx and SHAx families. It is an iterative method, which consists of two
separate components, a key-expansion algorithm and a collection of round functions. The ladder
is parameterized by the number of rounds r and the size of the state. Assume for concreteness
that the state consists of four 32-bit words (as the case of MD4 and MD5). The state goes
through r rounds of transformation; let the initial, intermediate, and final states be (ai, bi, ci, di)
for i ∈ {0, . . . , r}. The key-expansion algorithm K maps M to r round keys denoted K(M) =
w0,. . . ,wr−1:

K : {0, 1}n 7→ {0, 1}32 × · · · × {0, 1}32
︸ ︷︷ ︸

r times

.

Round functions fi : {0, 1}128 7→ {0, 1}32 for i ∈ {0, . . . , r−1} are used to update the state. MD5’s

2



IV

M1 M2 Mm

. . . FFF Hm(M)

Figure 1: One round of Feistel ladder for MD5 and the Merkle-Damg̊ard construction.

transformation is one example (ki and si are constants):

(ai+1, bi+1, ci+1, di+1)←

(di, bi + (ai + f(bi, ci, di) + wi + ki) ≪ si, bi, ci).

Notice that the transformation is reversible if the round key wi is known.

Merkle-Damg̊ard paradigm. CRHFs are expected to take inputs of arbitrary length.
A composition of fixed-length compression functions, discussed above, preserves the collision-
resistance property. This method is called the Merkle-Damg̊ard construction [Mer90, Dam90]
(see Figure 1).

Generic Attacks. Generic attacks against hash functions are oblivious to the particulars of
their constructions—they treat hash functions as black-boxes and in general provide an upper
bound on security of different cryptographic properties.

We contrast two generic attacks on hash functions. Both attacks find two messages x 6= y

such that H(x) = H(y). In the first attack the two messages are unrestricted, and thanks to the
birthday paradox its generic complexity is 2n/2, where the output length of H is n bits. The goal
of the second attack is to find colliding x and y such that x = y⊕ δ for some fixed δ. The generic
complexity of this attack is 2n.

Practical hash functions. Following the nomenclature developed above, designs of MD4,
MD5, SHA-0, and SHA-1 hash functions follow the Merkle-Damg̊ard paradigm, making use of a
compression function built via the Davies-Meyer construction from block ciphers of the unbalanced
Feistel ladder-type.

The internal state of the compression function consists of four 32-bit words (ai, bi, ci, di) for
MD4 and MD5 and five 32-bit words (ai, bi, ci, di, ei) for SHA-0 and SHA-1. Since the size of
the internal state is also the size of the output of the hash function, the output length of MD4
and MD5 is 128 bits; SHA-0 and SHA-1 produce 160-bit outputs. MD4 applies 48 rounds of the
Fiestel transform, MD5 has 64, and SHA-0,1 both use 80 rounds. For details of the constructions,
including the round functions, the key expansion algorithms, and the constants, omitted in the
interest of brevity, we refer the reader to [MvOV96] or corresponding standards.

Commonly held belief in security of MD5 and SHA-1 had been supported by a relative ab-
sence of attacks on these and related functions. Although a collision in MD4 was discovered in
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1996 [Dob96a], some weaknesses were identified in MD5 and SHA-0 [dBB94, Dob96b, BC04] and a
theoretical attack was known on SHA-0 [CJ98], no collisions had been found for MD5 and SHA-1
despite more than ten years of intense scrutiny.

The year 2005 brought about a sea change in our understanding of hash functions. A new
and improved attack on MD4 [WLF+05], collisions for MD5 and SHA-0 [WY05, WYY05b], and
a theoretical attack on SHA-1 [WYY05a] were announced by a group of Chinese researchers led
by Xiaoyun Wang in two consecutive conferences. Independently of them, attacks on SHA-0 and
reduced-round SHA-1 were discovered by Biham et al. [BCJ+05].

Most of these attacks are conceptually simple but their implementations tend to be extremely
laborious. Although there is considerable interest in generalizing the attacks and applying them
in other contexts, the required amount of manual work may be unsurmountable. We observe
that some components of the attacks may be expressed as CNF formulas and be rather efficiently
solved by advanced SAT solvers.

3 Attacks on Hash Functions

In this section we develop notation and a common framework describing collision-finding attacks
on hash functions.

3.1 Notation

Throughout this section and in the rest of the paper, whenever we are trying to find a collision
between M = (m0, . . . ,m15) and M ′ = (m′

0, . . . ,m
′
15), variables wi, ai, bi, ci, di, ei refer to the

computation of the compression function on input M and their primed counterparts w′
i, a′

i, b′i,
c′i, d′i, e′i to the computation of the same function on M ′.

We will be interested in two types of differentials: in respect to XOR and in respect to
difference modulo 232. Define

∆+ai = ai − a′

i (mod 232) and similarly ∆+wi,∆
+mi,∆

+bi, . . . [,∆
+ei]

and
∆⊕ai = ai ⊕ a′

i and similarly ∆⊕wi,∆
⊕mi,∆

⊕bi, . . . , [∆
⊕ei].

Let
∆⊕

i = (∆⊕ai,∆
⊕bi,∆

⊕ci,∆
⊕di, [∆

⊕ei]), and similarly∆+
i .

The sequence ∆⊕

0 ,∆⊕

1 ,∆⊕

2 , . . . (resp., ∆+
0 , . . . ) is a called a differential path in respect to the

XOR differential (resp., to the difference modulo 232). In the rest of the paper, ◦ stands for both
+ and ⊕.

Strictly speaking, the attacks due to Wang et al. fix the exact settings for most of the differing
bits, subsuming both differentials. Our encodings fully use this information.

3.2 Overview of the attacks

Conceptually, the attacks on MDx and SHA-0,1 have a lot in common. Most remarkably, the
attacks solve a seemingly harder problem, i.e., finding a 512-bit message such that H(IV,M) =
H(IV,M ◦ δ), where H is the compression function and δ is fixed.1 As observed earlier, the
generic complexity of this attack (the one that uses the function as a black-box) is 2n, where
n = 128 or 160. A judicious choice of δ and a collection of clever techniques for finding M that

1Some attacks solve the problem in two steps: they seek to find two messages M0 and M1, and differences δ, δ0,
and δ1 such that H(IV, M0) = H(IV, M0 ◦ δ0) ◦ δ and H(H(IV, M0), M1) = H(H(IV, M0 ◦ δ0), M1 ◦ δ1).
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take advantage of the weaknesses of the compression function bring the complexity of the attack
to fewer than 242 evaluations of the hash function.

Conceptually, the attacks consist of four distinct stages.

Stage I. Choose ∆◦m0,. . . ,∆
◦m15.

Stage II. Choose a differential path ∆◦
0,. . . ,∆

◦
r−1, where r is the number of rounds (r = 48, 64

or 80).

Stage III. Find a set of sufficient conditions on the message M = (m0, . . . ,m15) and the
intermediate variables ai,. . . ,di that guarantee (with high probability) that the message pair
M , M ′ = (m0 ◦∆◦m0, . . . ,m15 ◦∆◦m15) follows the differential path ∆◦

0,. . . ,∆
◦
r−1.

Stage IV. Choose a message M such that all sufficient conditions hold.

The attacks may seem counter-intuitive: rather than finding any two messages that collide under
the hash function, we first severely constrain the space of possible message-pairs by fixing their
difference, and by choosing the differential path we restrict the space of possible solutions even
further.

There are two reasons that make this approach work. First, the differential path is carefully
chosen to maximize the probability of a collision. Second, by deliberately constraining the solution
space, we know some important properties of the solution, which allow us to construct one by an
iterative process.

The first stage of the attack is usually done by hand or by applying some heuristics, such as
trying to find a difference with low Hamming weight.

The second stage is the most creative stage of all four. There is fair amount of flexibility in it,
for the curios reason that, as the round functions are non-linear, a given difference in the input may
result in many possible differences in the output. Ironically, the attack turns the very foundation
of security of hash functions—non-linearity of the round transformation—to its advantage. There
are several constraints imposed on the differential path. First, it must be feasible. Further, it
must be likely, and finally, it should facilitate the third stage of the attack.

The third stage is tightly coupled with the previous one. Most sufficient conditions naturally
follow from the properties of the round function.

The fourth stage is computationally most intensive. Spectacular attacks due to Wang et al.
would not be possible with a breakthrough in this stage. Indeed, a random pair of messages M

and M ′ is very unlikely to follow the differential path. This is where the recent attacks depart
most radically from earlier work. The idea is to start with an arbitrary message M and then
carefully “massage” it into the differential path. The crucial contribution of Wang et al. was to
come up with a set of tools of fixing errors in the differential path one by one.

We claim that SAT solvers might be very helpful in automating the third and the fourth stages
of the attack. Since the actual attack requires a lot of iterations between the second stage and the
next two, any method that would speed up testing and validation of differential paths becomes a
useful cryptanalytic tool.

3.3 Attacks on MD4 and MD5

The terse exposition of the attacks due to Wang et al. was lacking some details and very short
on intuition. Several papers attempted to explain, fill in omitted details, correct, improve, and
automate these attacks [HPR04, Kli05, Dau05, BCH06, SO06]. In particular, we refer to Black
et al. and Oswald et al. [BCH06, SO06] for intuition on the discovery process of the differential
path for MD4 and MD5 (Stages I and II of our framework).

For ease of exposition, examples below are given for the attack on MD5 [WLF+05]. Attacks
on MD4, SHA-0 and (reduced-round) SHA-1 are similar, with the main difference being usage
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of XOR differentials for the SHAx functions instead of differentials in respect to subtraction for
MDx.

Stage III of the attacks produces a list of probabilistically sufficient conditions on the internal
variables for the differential path to hold (of the type: lsb of c7 is 0 and the 11th bit of a7 is 1).
There are as many as 310 of them; fortunately, most of these conditions appear in the first 25
rounds. If all conditions are met, the differential path is very likely to hold as well.

Successful completion of Stage IV of the attack is ensured by a combination of single-message
and multi-message modification techniques and a probabilistic argument. More precisely, condi-
tions in the first 16 rounds of MD5 can be fixed by going from bi+1, chosen to satisfy all conditions,
to mi, as follows:

mi ← ((bi+1 − bi) ≫ si)−K
(5)
i − ai − f(bi, ci, di).

This operation is called a single-message modification as it only affects one block of the message.
Unfortunately, if we try to apply this method to correcting errors in later rounds, we are most
likely to introduce new errors in earlier rounds.

Multi-message modifications do just that—they correct errors in the differential path in rounds
beyond 16, by changing several blocks of the message at a time. The example given in [WY05]
and discussed in more details in [BCH06] is (roughly) the following.

Suppose, we would like to force the msb of b17 be 1. This can be achieved by modifying w16 =
m∗

1 ← m1 + 226. This modification changes the value of b2 to b∗2 (and, since b2 = c3 = d4 = a5,
other values as well), which is where m1 was used for the first time. To absorb the change, we
modify

m∗

2 ← ((b3 − b∗2) ≫ 17)− a2 − f(b∗2, c2, d2)−K
(5)
2 ,

m∗

3 ← ((b4 − b∗3) ≫ 22)− a3 − f(b3, c
∗
3, d3)−K

(5)
3 ,

m∗

4 ← ((b5 − b∗4) ≫ 7)− a4 − f(b4, c4, d
∗
4)−K

(5)
4 ,

m∗

5 ← ((b6 − b∗5) ≫ 12)− a∗
5 − f(b5, c5, d5)−K

(5)
5 .

As a result, none of the values computed in rounds 1–5 got changed; only the message blocks
m1,. . . ,m5, intermediate variables b2 = c3 = d4 = a5 and b17 = c18 = d19 = a20 did.

This is a representative example of a multi-message modification method, although by no
means the trickiest. None of this methods expand beyond round 22, and they become progressively
more complicated as more message blocks get affected.

Since as many as 37 conditions cannot be fixed using message modifications, Wang et al. fall
back on the probabilistic method. Since all conditions are satisfied (heuristically) with probability
2−37, it suffices to apply known message modifications to random messages 237 times to have a
non-trivial chance of generating a collision. Subsequent papers enriched the toolkit of message
modifications, reducing the number of conditions that need to be satisfied probabilistically to
around 30 [Kli05, BCH06].

4 Automation via SAT Solvers

Arguably, the most annoying aspects of the attacks due to Wand et al. is the need to keep
track of hundreds of conditions with a corresponding code to take care of them by means of
message modifications. Our approach completely eliminates this difficulty, as we encode the
entire differential path and leave the task of finding a message satisfying it to the SAT solver.

In this section, we report our preliminary results on using SAT solvers to implement the
attacks due to Wang et al.

6



Figure 2: Comparison of Different Solvers on MD5 Instances.

To apply SAT solver to cryptanalysis of hash functions, we need to transform the hash func-
tions’ code into boolean circuits and perform CNF clausification. We experimented with several
boolean circuit implementations for the adders and multiplexors, and found that different imple-
mentations of these primitives may have some tangible effect on the size of the resulting CNFs
and efficiency of SAT solvers applied to these formulas. In this section, we report results on using
a simple full-adder implementation and a multiplexer implemented with two AND gate and one
OR gate. We found that this combination works reasonably well in our experiments. For clausi-
fication, currently we use the straightforward Tseitin transformation [Tse68] on the propositional
formulas. We believe that more optimization can be obtained from careful examination of the
encoding process [ES06].

Since we are dealing exclusively with satisfiable instances, we evaluated a number of stochastic
and complete SAT solvers. We found that stochastic methods were not suitable for this task,
which was unsurprising because the instances were highly structured with complicated interactions
among the variables. For the complete solvers, we experimented with several state-of-the-art
DLL search-based solvers, including the latest versions of ZChaff [MMZ+01], MiniSAT [ES03],
BerkMin [GN02], and Siege [Rya04]. Each solver was tested by itself and with the SatELite

preprocessor [EB05]. Figure 2 gives the average runtime of these solvers for finding a first solution
of MD5. Each data point is the average of 30 runs with randomly generated IV vectors. The
SatELite preprocessor followed by MiniSat (collectively known as SatELiteGTI) produced
best results, which are reported in this section.

Wang et al.’s attacks on MD4 and MD5. The sizes of the resulting formulas appear
in Table 1.

Hash Total Modifications Formula

Rnd Manual SAT Vars. Cls

MD4 48 all all 53228 221440
MD5 64 22 46 89748 375176
SHA-0 80 20 35 114809 486185

Table 1: Applying SAT solvers to MD4, MD5, and SHA-0.
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Figure 3: Normalized performance of SatELiteGTI on reduced-round MD5 (axis x—number of rounds;
y—“yield”, defined here as the number of solutions for 50-round differential per hour).

Another information given in Table 1 is the number of rounds for which SatELiteGTI can
find a message satisfying the differential in the median time of less than 15 min on a PC (3.2GHz
PIV, 1Gb RAM) versus the number of rounds for which manual message modifications techniques
are known.

As implied by Table 1, finding a collision in MD4 is easy and usually takes less than 10 minutes
(the median value is approximately 500 s).

Making SatELiteGTI work for the full MD5 is less straightforward. Recall that for rounds
beyond the limits of the message modifications techniques, Wang et al. use a probabilistic argu-
ment, whose running time increases exponentially with the number of sufficient conditions in the
additional rounds. Although the behavior of SatELiteGTI is more complex, we discover that
the best mode of operation for the solver is to follow exactly the same paradigm! The slowdown
experienced by SatELiteGTI as a function of the number of rounds makes it more economical
to run the solver for n < 64 rounds and than screen the results for solutions that hold for more
rounds. The optimal value for n is 25 rounds. In other words, n = 25 maximizes the “yield”—the
number of solutions for the n-round MD5 produced in one unit of time multiplied by the proba-
bility that a solution for n rounds will be a solution for the full MD5 (see Figure 3 where a proxy
for the yield is plotted for rounds 16–42).

We modified SatELiteGTI to produce multiple solutions for a single SAT instance, since
finding subsequent solutions is much faster than finding the first solution. In Figure 5, we plot the
number of conflicts encountered between the first and the 10000th solution. This graph illustrates
the inverse density of solutions in the boolean space as explored by the SAT solver. For example,
at round 25, on the average the solver encounters about 15 conflicts before finding a solution.
We can generate around 350 solutions per second on our machine. The probability that one
solution that follows the differential path for 25 rounds will lead to a collision is approximately
2−27. Finding a solution for the full MD5 (first block of the attack) takes approximately 100
hours, which is comparable, albeit slower than an hour on an IBM supercomputer required by
the original attack (the best known attack takes approximately 8 minutes [BCH06]). Finding
solutions for the second block is significantly faster (less than an hour on our PC).

An interesting result of our experiments with SAT solvers is the importance of having a
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Figure 4: Normalized performance of SatELiteGTI on reduced-round SHA0 (axis x—number of rounds;
y—“yield”, defined here as the number of solutions for 35-round differential per hour).

differential path encoded in the formula. Discovering a differential part is a difficult process
(Stage II of the framework), which ideally should be automated. Currently, the only method of
automatic enumeration of differential paths is known for MD4 [SO06], extending it to other hash
functions is an open problem. Our experiments with applying SAT solvers to this task were not
very encouraging. Specifically, absent restrictions imposed by the differential path the SAT solver
performs much worse than in the presence of these restrictions.

Dobbertin’s attack on MD4. We automated Dobbertin’s attack on MD4 [Dob96a], which
is considerably weaker than the more recent attacks. The reader is referred to Dobbertin’s paper
for details of the attack. The most difficult part of Dobbertin’s method is finding a solution to
a non-linear system of equations defined by rounds 12–19 of the hash function. He describes an
ad hoc iterative process that starts with a random assignment and then fixes errors four bits at a
time. We observe that this part may be encoded as a CNF formula without doing any additional
transformations. Namely, we translate the rounds 12–19 of the compression function of MD4 into
a CNF formula with 10364 variables and 39482 clauses. In fact, we may do it in more generality
than Dobbertin, by accepting any initial value for (a12, b12, c12, d12), which simplifies Part 2 of his
attack.

SatELiteGTI finds 222 solutions to the resulting formula in less than one hour on a PC. This
attack is again slower than the original attack, but has the added benefit of being substantially
simpler and conceptually simpler.

Wang et al.’s attack on SHA-0. Translating the first two stages of the attack due to
Wang et al. on SHA-0 into a CNF formula is analogous to the similar task for MD4 and MD5.
The optimal number of rounds after which the probabilistic method outdoes the solver is 20, after
which the probability that a solution results in a collision is 2−42 (see Figure 4 for comparative
performance of SatELiteGTI on reduced-round SHA-0). The size of the formula for 20 rounds
is 29217 variables and 117169 clauses. Based on several test runs, we estimate that generating a
full collision using SatELiteGTI would require approximately 3 million CPU hours.
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Figure 5: Number of conflicts for finding 10000 solutions in reduced-round MD5.

5 Conclusion and Directions for Future Work

In this work, we describe our initial results on using SAT solvers to automate certain components
of cryptanalysis of hash functions of the MDx and SHAx families. Our implementations are
considerably easier (but also slower) than the originals, since we delegate many minute details of
the attacks to the SAT solver.

In particular, our method has no use for sufficient conditions and message-modification tech-
niques, which are automatically (and implicitly) discovered by the SAT solver. We conjecture
that finding a differential path, a formidable problem in itself, may be simplified if one is able to
quickly test feasibility of the path without having to compile and consult tables with sufficient
conditions.

Our results can be summarized as follows. We are able to launch a complete attack on MD4
by applying SatELiteGTI to the most straightforward encoding of a differential path as a CNF
formula, finding a solution in less than 10 minutes. Finding a collision in MD5 follows closely the
probabilistic method of Wang et al.: the SAT solver generates a lot of solutions for truncated MD5,
which are then filtered in order to find a solution for the full hash function. This attack generates
one collision in approximately 100 hours. A successful SAT-solver-aided attack on SHA-0 is still
a theoretical possibility.

We rely in our experiments on an off-the-shelf SAT solver, SatELiteGTI, with a simple
modification to allow generation of multiple solutions. To the extent of our knowledge, this is a
first work that demonstrates the practicality of using SAT solvers for real cryptanalysis.

This work opens many intriguing possibilities. First, we currently use general-purpose SAT
solvers. Optimizing and specializing them for cryptographic applications are interesting research
directions. For example, one optimization may take advantage of the fact that many internal
signals are likely to be correlated between the two input messages. Faster SAT solvers may
directly translate into better cryptanalyses.

Second, the primitives studied in this work are restricted to modular addition and bit-wise
boolean operations, which allow simple translation into CNF formulas. Multiplications and table
lookups are widely used in construction of other cryptographic primitives. It is well known these
operations pose a challenge for SAT solvers. There are some known methods for tackling such
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operations in a SAT solver. One approach is to use CAD tools to synthesize lookup table before
translation into CNF [MM00]. Another method consists of rearranging signals during search to
handle arithmetic operations more efficiently [WSK04]. The effectiveness of these approaches in
cryptanalytic context is largely unexplored.

Finally, we observe that the probabilistic method of generating solutions for truncated hash
function and screening them for a complete solution, a necessity in the case of Wang et al. attacks,
might be avoidable in the case of a SAT solver. Indeed, there are no reasons why SAT solvers
should experience a dramatic slowdown on large formulas compared to the method that uses the
same SAT solver to produce multiple solutions for a shorter formula and test them by substitution
into the longer formula. We find the current behavior counter-intuitive and amusing.
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