
DEGREE PROJECT, IN , FIRST LEVELCOMPUTER SCIENCE

STOCKHOLM, SWEDEN 2015

Factoring integers with parallel SAT
solvers

AN EFFICIENCY AND EFFECTIVENESS
EVALUATION OF PARALLEL VERSUS
SEQUENTIAL SAT SOLVERS FOR INTEGER
FACTORIZATION.

ERIK F, DANIEL L

KTH ROYAL INSTITUTE OF TECHNOLOGY

CSC SCHOOL

Factoring integers with parallel SAT solvers

An efficiency and effectiveness evaluation of parallel versus sequential SAT solvers
for integer factorization.

Erik Forsblom
Daniel Lundén

Degree Project in Computer Science, DD143X
Supervisor: Per Austrin
Examiner: Örjan Ekeberg

CSC, KTH May 7, 2015

Abstract

Factoring integers is a well known problem that at present cannot be solved in
polynomial time. Therefore, other approaches for solving factorization problems
are of interest. One such approach is to reduce factorization to SAT and solve
it with a dedicated SAT solver. In this study, parallel SAT solvers are examined
in this context and evaluated in terms of speedup, efficiency and effectiveness
versus sequential SAT solvers. The methodology used was an experimental ap-
proach where different parallel and sequential solvers were benchmarked on dif-
ferent reductions from integer factorization to SAT. The benchmarks concluded
that parallel SAT solvers are not better suited for solving factorization problems
than sequential solvers. The performance boosts achieved by the fastest parallel
solver barely corresponded to the extra amount of available parallel resources
over the fastest sequential solver.

Sammanfattning

Att faktorisera heltal är ett välkänt problem som för närvarande inte kan lösas
i polynomisk tid. Därför är andra tillvägagångssätt för att lösa faktorisering
av intresse. Ett sådant tillvägagångssätt är att reducera faktorisering till SAT
och sedan lösa problemet med en dedikerad SAT-lösare. I denna studie un-
dersöks parallella SAT-lösare i detta sammanhang och utvärderas i förhållande
till uppsnabbning, effektivitet och ändamålsenlighet jämfört med sekventiella
SAT-lösare. Den metod som användes var en experimentell sådan där olika pa-
rallella och sekventiella lösare jämfördes på olika reduktioner från heltalsfaktori-
sering till SAT. Genom testerna erhölls slutsatsen att parallella SAT-lösare inte
är bättre lämpade för att lösa heltalsfaktorisering än sekventiella lösare. Pre-
standavinsterna som uppnåddes av den snabbaste parallella lösaren motsvarade
knappt den extra mängd parallella resurser som denna hade över den snabbaste
sekventiella lösaren.

Contents

1 Introduction 3
1.1 Problem Statement . 4
1.2 Purpose . 4
1.3 Delimitations . 5
1.4 Outline of report . 5

2 Background 6
2.1 Integer factorization problem (FACT) 6
2.2 Boolean satisfiability problem (SAT) 7
2.3 Reductions from FACT to SAT 7
2.4 Solving SAT sequentially . 8

2.4.1 DPLL algorithm . 8
2.4.2 Conflict-Driven Clause Learning 8
2.4.3 Look-ahead . 9
2.4.4 Stochastic Local Search 9

2.5 Solving SAT in parallel . 9
2.5.1 Divide and conquer . 9
2.5.2 Portfolio . 10

2.6 SAT performance for solving FACT 10
2.7 Speedup, efficiency and effectiveness 11

3 Method 13
3.1 Testing environment . 13
3.2 Problem instance generation . 14

3.2.1 Generating semiprimes . 14
3.2.2 Reductions to CNF instances 14

3.3 Problem instance solving . 15
3.3.1 Precautions . 15
3.3.2 Assumptions . 15
3.3.3 Calibration test . 15
3.3.4 Solvers and algorithms . 16
3.3.5 Measuring performance 17

3.4 Aggregating test data . 17
3.5 Analyzing results . 17

1

4 Results 18
4.1 Calibration test . 18
4.2 Effectiveness . 18

4.2.1 MiniSat . 20
4.2.2 ManySAT . 21
4.2.3 Lingeling . 21
4.2.4 Plingeling . 23
4.2.5 Treengeling . 24
4.2.6 Trial division . 25

4.3 Summarized effectiveness . 25
4.4 Speedup and efficiency for parallel solvers 26

5 Discussion 27
5.1 General . 27
5.2 Solvers . 28
5.3 Reductions . 28
5.4 Trial division . 29
5.5 Error sources . 29

6 Conclusions 31
6.1 Problem statement conclusion . 31
6.2 Significance of results . 32
6.3 Further research . 32

A Source code 37
A.1 Trial division . 37
A.2 Calibration test . 38
A.3 Semiprime generator . 39
A.4 Test generator . 40
A.5 Test runner . 42

2

Chapter 1

Introduction

The Integer factorization problem (FACT) is a well known computational prob-
lem for which no polynomial time algorithm is yet known. This fact is exploited
extensively in cryptography to provide secure communication of data. For ex-
ample, in the popular cryptosystem RSA, this is achieved through encryption
using the product of two large prime numbers. To decrypt a message, knowledge
of these prime numbers is required. If only their product is known – as is the
case if a malicious user tries to decrypt an encrypted message – it is believed
to be computationally infeasible to find the prime factors given that they are
sufficiently large, rendering the communication secure. Currently, specialized
sub-exponential time algorithms such as the general number field sieve are be-
ing used to factorize integers. These algorithms are however not even remotely
capable of breaking cryptosystems such as RSA due to their sub-exponential
time complexity and the size of numbers used [1].

This leads to another well known computational problem – the Boolean
satisfiability problem (SAT). It was the first computational problem proved
to be NP-complete in 1971 by Stephen Cook [2] and many other well known
problems have in turn been proved to be NP-complete through reductions to
SAT. Due to its age and status as a fundamental problem in computer science,
algorithms for solving SAT have been improved substantially over the years.
Because FACT is known to be in NP and SAT is known to be NP-complete,
there exist reductions from the former to the latter. One such possible reduction
is simple boolean circuit reductions enabling the use of SAT solvers for problem
instances generated by FACT. This leads to the thematic question for this study,
which is whether it is possible, by reducing FACT to SAT, to solve FACT
fast enough with a SAT solver to be deemed an improvement over specialized
algorithms for the problem.

Previous studies [3, 4, 5] show that this approach for solving FACT cannot
yet compete with specialized FACT algorithms such as the general number field
sieve mentioned above. The most central aim of this study is therefore not to
directly compare SAT solvers to FACT algorithms. Instead, the focus will lie
on evaluating parallel SAT solvers on the specific problem instances generated

3

by reductions from FACT. The evaluation will be made with respect to the
performance of sequential SAT solvers and the very simple FACT algorithm
trial division as a reference point.

1.1 Problem Statement
The formal problem statements for this study follow below. They are presented
in descending order of importance.

• Are parallel SAT solvers better suited for solving problem instances gen-
erated by FACT than sequential SAT solvers?

• What solving technique(s) used for parallel SAT solvers has the biggest
performance impact for solving SAT instances generated by reductions
from FACT?

• Are there any reduction technique(s) from FACT to SAT that are better
suited when solving problem instances with parallel SAT solvers?

• Can parallel SAT solvers compete with standard trial division for solving
FACT?

The last statement is included entirely for good measure and for providing a
reference point to the parallel solvers in the study. It is already established [5]
that it is not possible for solvers to compete with trial division for the relatively
small numbers used here (See delimitations below).

1.2 Purpose
The research topics presented above are of interest due to the fact that it may
be the case that SAT instances generated by reductions from FACT are par-
ticularly well suited for being solved with parallel SAT solvers. This is hinted
at in a report by Hamadi and Wintersteiger from 2013 [6] and a presentation
by Srebrny in 2004 [7]. The indicative measurements of speedup, efficiency and
effectiveness [6] used in this study are the tools used for determining if current
parallel solvers are in fact more suited for integer factorization than current se-
quential solvers. Hopefully, the results of this study will enable further research
in this specific area by individuals that possess more in-depth knowledge of SAT
solvers. For example, an optimal future result would be the development of new
parallel SAT solvers performing competitively against specialized algorithms for
FACT. An estimation by Hamadi and Wintersteiger suggests that designing and
implementing such a specialized SAT solver for FACT would require about ten
years of research [6].

4

1.3 Delimitations
Due to the nature of the available reductions from FACT to SAT, the problem
instances used for the experiments of this study will consist of composite num-
bers being a product of exactly two primes of equal bit length (explained further
in background section). Technically, solving FACT where composite numbers
are built by more than two primes are also desirable, but the most practical
application of FACT is breaking common cryptosystems where the composite
numbers are of the form described above (product of two primes).

Since algorithms with sub-exponential worst case performance will be exam-
ined in this study, extra caution will have to be taken as to not exaggerate the
size of the problem instances. As is written in the method section, the maximum
problem instance size chosen for the integers used was 32-bits. This size limit
was mainly acquired by own experiments prior to the execution of the method,
but also from examining a similar recent study [5].

The development of SAT solvers is such a large research topic that if a specific
solver for this study were to be developed either by implementing solvers from
scratch or by tweaking existing solvers, it could not hope to rival already existing
solvers. Therefore, this study will only use common publicly available solvers
with default parameter settings.

1.4 Outline of report
In the the background chapter, relevant background information for the problem
at hand can be found. Here, preliminaries and required definitions for the study
will be described alongside a description of modern approaches for solving SAT
instances. This provides all necessary background information for the reader to
fully understand the contents of the thesis.

Following this, the method chapter provides a detailed description of the
execution of the study as well as justifications for the choice of methodology.

Next, the results chapter presents the data obtained during testing.
Following this, the results are discussed with regard to the methodology

used, as well as potential error sources during the experimentation.
Finally, conclusions based on the result and discussion are presented, and

the problem statements are dealt with.

5

Chapter 2

Background

In this section, a brief overview of the fundamentals relevant for this study will
first be given. This will be followed by a background for both sequential and
parallel SAT solving. Lastly, relevant performance measurements used will be
explained in detail.

2.1 Integer factorization problem (FACT)
By the fundamental theorem of arithmetic, every integer n > 1 is either prime
itself or a unique product of primes of arbitrary powers.

n = pα1
1 pα2

2 pα3
3 . . . pαn

n =
n∏
i=1

pαi
i (2.1)

Integers that are the product of two primes are called semiprimes. These integers
are used as problem instances for factorization in this study.

Current algorithms for finding the factors of an arbitrary integer take, in
the worst case, sub-exponential time in the number of bits for the integer being
factored. Thus, for very large numbers, finding the factors will take a very
long time. This is, as mentioned in the introduction, the foundation in many
cryptosystems where the security of communication is guaranteed based on this
simple principle.

The most trivial approach for factoring integers is by trial division. Simply
divide the number to be factored by all numbers greater than 1 and less than
or equal to the square root of the number1. When the remainder of the division
evaluates to zero, a factor has been found. Remove the factor from the number
and iteratively repeat the above to find the remaining factors.

State-of-the-art software for factoring integers use a combination of different
algorithms, but the common denominator for factoring large integers is the
general number field sieve. The general number field sieve is the major algorithm

1If composite, a number n always has a factor less than or equal to
√

n.

6

used to factor the largest integers, such as the ones seen in the RSA factoring
challenges [1]. The execution process of the algorithm will not be covered here
as it is not used for this study.

2.2 Boolean satisfiability problem (SAT)
The boolean satisfiability problem was the first problem proven to be NP-
complete. The problem is, given a formula expressed in propositional calcu-
lus, to determine if there exists an assignment of variables for the formula
such that the formula as a whole evaluates to true. For example, the below
formula expressed in propositional calculus is satisfiable since the assignment
a = true, b = true, c = false evaluates the whole formula to being true.

(a ∨ b)→ (c ∧ ¬a) ∨ b (2.2)

Variations for this problem exists, restricting the usage of propositional calculus
in the formula. The most common variation, which will be used in this study,
is the problem of finding an assignment for a formula expressed in Conjunctive
normal form (CNF). CNF is, as above, a formula expressed in propositional cal-
culus but with the restriction that it has to be a conjunction of clauses. A clause
is a disjunction of literals, and a literal can either be a variable or the negation of
a variable. One important property of CNF is that every propositional formula
can be converted to an equivalent CNF formula. Another important property
is the plain structure of the CNF formulas, which lead to easier implementation
of algorithms taking propositional formulas as input. In the cause of this study,
these algorithms are the SAT solvers. The following formula is an example of a
SAT formula expressed in CNF.

(¬a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b ∨ ¬c) (2.3)

2.3 Reductions from FACT to SAT
The most basic reduction from FACT to SAT is based on the elementary school
multiplication algorithm, known as long multiplication. The product n of two
given numbers p and q can easily be calculated with this method in polynomial
time. If the multiplication is carried out in base 2, it is possible to express
the multiplication as a formula in propositional calculus, where the bits of the
numbers are encoded as variables in the formula. This is done by modelling
binary multipliers in propositional calculus. Binary multipliers are used in the
arithmetic logic unit of modern computers for multiplication of integers. A
starter friendly description of how one can perform this reduction and obtain a
propositional formula in CNF for solving an instance of FACT has been written
by Mateusz Srebrny [7].

Through the propositional formula obtained, given a known product n, find-
ing the factors of n now simply reduces to plugging the bits of n into the propo-

7

sitional formula and finding an assignment of the bits for p and q so that the
formula is satisfied. If one such assignment can be found, the assignment vari-
ables represents the factors p and q of n. Necessary restrictions are of course
needed for practical application. For example, every number has a factor 1
which is not an acceptable solution for the problem.

The SAT instances obtained by the above method can be considered “hard”,
especially if p and q are both prime and are of equal bit length (as is the case
in this study). This is a result of the presumed hardness of FACT itself, but it
also follows intuitively since the solution space is very sparse. In fact, only a
single solution exists if p and q are prime.

2.4 Solving SAT sequentially
Solving SAT is a large research topic, well beyond the scope of this study. Still,
certain techniques are more commonly used than others. In this section, the
most common approaches for sequential SAT solving will be described very
briefly.

2.4.1 DPLL algorithm
The Davis-Putnam-Logemann-Loveland (DPLL) [8] algorithm is a chronological
backtracking search algorithm introduced in 1962 for solving the satisfiability
problem, where the propositional logic formula is in CNF. It works by initially
choosing – or ”guessing” – a value for a literal, and then finding all unit clauses
that resulted from assigning the given boolean value to the chosen literal. A
unit clause is a clause where exactly one literal in the clause is still unassigned
[8]. For each found unit clause, the last unassigned literal is assigned such
that the clause evaluates to true. If the resulting assignment of literals cannot
satisfy all clauses, the algorithm will backtrack recursively and try a different
assignment. The algorithm terminates either when all clauses are satisfied, i.e.
when a solution has been found, or when the algorithm has tried all assignment
combinations without finding a solution.

Most modern SAT solvers are still based on this over 50 years old algorithm
[9].

2.4.2 Conflict-Driven Clause Learning
Building on the DPLL algorithm, Conflict-Driven Clause Learning (CDCL) is a
more modern and effective approach to solving the SAT problem [10]. CDCL is a
substantially more complex method than DPLL, which besides just implement-
ing the basic DPLL functionality also includes techniques such as learning new
clauses from conflicts during backtracking, exploiting the structure of conflicts
during clause learning, using lazy data structures for formula representation,

8

ensuring branching heuristics have low overhead2, periodically restarting back-
track searches and several others [10].

There exists a vast amount of CDCL SAT solvers, where the main difference
lies in the usage and parameters of the above mentioned techniques.

2.4.3 Look-ahead
Look-ahead is another technique commonly used by SAT solvers. It consists
of a basic DPLL algorithm with the addition of a more complicated look-ahead
procedure that is used to determine the most effective choice of the next branch-
ing variable in the DPLL algorithm [11]. This effectiveness is determined by
evaluating the result of the look-ahead procedure on different variables. The
evaluation is performed with a look-ahead evaluation function [11], whose im-
plementation varies between solvers.

2.4.4 Stochastic Local Search
The general concept of stochastic local search can be described as follows [12]:
for a given instance of a combinatorial problem, the local search process is
started by selecting an initial candidate solution (often randomly) from the
search space. Following this initialization, the process then iteratively moves to
neighboring candidate solutions, where the decision in each iteration is based on
a limited amount of local information. In stochastic local search, both decisions
and initialization can be randomized.

2.5 Solving SAT in parallel
Parallel SAT solvers have emerged, as many other parallel algorithms, due to
the thermal wall being hit for development of sequential hardware [6]. Because
of this, it has become a necessity to develop algorithms for parallel hardware
(i.e. multi core CPUs) to achieve faster run times. Compared to sequential
algorithms, parallel algorithms have to take additional problematic factors into
account such as load balancing, non determinism and effective communication
between the parallel units executing the algorithm. Analogous with sequen-
tial solvers, parallel solving of SAT is naturally an equally large research topic
outside the scope of this study. Therefore, only an overview will be presented
here.

2.5.1 Divide and conquer
The very first implementations of parallel SAT solvers took a divide and con-
quer approach, splitting the search space into smaller subspaces that could be
assigned to parallel working units. This intuitively seems like the natural choice

2Computational overhead is the excess use of resources during computation time, such as
invoking functions or methods, which causes the setup of a stack frame.

9

for a parallel SAT algorithm based on CDCL/DPLL, since the sequential ver-
sion of the algorithm is indeed traversing a tree of possible variable assignments.
However, in recent years portfolio-based parallel SAT solvers (described next)
have become prominent.

2.5.2 Portfolio
Hamadi and Winterstiger [6] mention in their report from 2013 that the most
recently developed parallel SAT solver with a divide and conquer approach
was developed in 2008. A long time ago considering the development rate of
SAT solvers. The phasing out of these solvers was not accomplished because
they were inherently bad. Instead, portfolio-based solvers directly utilize the
characteristics of sequential solvers in a way that divide and conquer solvers
cannot. This fact combined with tricky implementation details regarding load
balancing for divide and conquer algorithms have lead to portfolio-based solvers
becoming easier to implement and optimize, and therefore more popular.

Current state-of-the-art parallel SAT solvers all use variations of the port-
folio approach. The basic functionality of portfolio-based solvers utilize one
sequential solver on each available working unit. The speedup is achieved by
differentiating the individual sequential solvers on their parameters [6], or even
using altogether different type of solvers. This enables the different solvers to
act in a complementary manner, which results in the individual solvers com-
peting for solving the problem instance. Sharing of learned clauses between the
different solvers is also an important technique that is frequently used.

The rise of portfolio solvers began with an observation regarding the tech-
nique of restarts for sequential solvers. Researchers noticed that frequent restarts
of sequential solvers led to performance improvements [13]. Since restarts im-
proved performance, starting many solvers in parallel would doubtlessly also
improve performance. Hence, portfolio solvers were implemented to take full
advantage of these noticed performance gains.

2.6 SAT performance for solving FACT
Several earlier studies [3, 4, 5] have shown that approaching FACT by first
reducing it to SAT and then utilizing existing (sequential) SAT solvers appears
to be substantially inferior to simply approaching the problem with standard
FACT algorithms.

Schoenmackers and Cavender [3] demonstrated this inferiority in 2004 through
experimentation by implementing reductions from a delimited version of FACT
to SAT and converting the resulting boolean formula to conjunctive normal form
before using the SAT solver zChaff to solve the CNF-SAT instance. With their
specific test instances, they concluded that a brute force FACT algorithm was
in fact faster than the reduction and SAT solving approach.

A previous bachelor thesis [4] from 2014 hints at the same result by com-
paring different reductions from FACT to CNF-SAT and solving with the SAT

10

solver MiniSat – however, it was also noted that the choice of full adder design
used in the reduction may have a sizable impact on the runtime.

Another previous bachelor thesis [5] from 2014 found that FACT reductions
to SAT followed by the application of SAT solvers was slower than the applica-
tion of actual FACT solvers for the generalized FACT problem.

2.7 Speedup, efficiency and effectiveness
When comparing the performance of a parallel SAT solver to a sequential SAT
solver, Hamadi and Wintersteiger [6] present three measurements. Firstly, the
most obvious measurement, known as effectiveness, is simply the time required
for the SAT solver to solve a problem.

Next, the speedup S of a parallel solver that runs in time Tp over a sequential
solver that runs in time Ts is defined as follows.

S = Ts
Tp

(2.4)

This fraction often does not provide an indicative measure of performance, be-
cause it does not account for the additional resources available to the parallel
SAT solver. Therefore the run-time efficiency of a parallel solver is considered,
where E is the efficiency of the solver and r represents the number of resources
available to the solver. The efficiency is relevant because a very efficient solver
may often be preferable to an inefficient solver, even if the speedup of the effi-
cient solver is somewhat lower than that of the inefficient solver. The efficiency
is defined as follows.

E = S

r
= Ts

r · Tp
(2.5)

As for the availability of resources, r, Hamadi and Wintersteiger [6] suggest
that it can be computed in a calibration test, prior to measuring the main
experiment. Assume that the hardware on which the testing is performed has
n cores. Then n copies of a sequential SAT solver can be run simultaneously,
independent of each other. Let Tns be the observed runtime that is required
for them to complete their computation. Then r, the resource availability to a
parallel solver, may be calculated as follows.

r = n · Ts
Tns

(2.6)

For instance, when running a single sequential SAT solver on a single core
machine (that is, n = 1), Ts would equal Tns since only one core is available
and no parallelism is possible. Thus the value r would equal 1. If instead four
sequential SAT solvers were run on a quad-core machine (n = 4) – and say the
calibration experiment still resulted in Ts = Tns – this would result in r = 4,
meaning that the machine was able to perfectly utilize its parallel resources.
Generally, as n increases, so does the value Tns (due to all cores sharing the

11

same memory) making it greater than Ts. Thus the value r will usually be
slightly lower than the number of cores n.

12

Chapter 3

Method

The problem statements introduced previously were explored by running bench-
marks where different parallel SAT solvers were tested and compared to sequen-
tial SAT solvers and FACT algorithms based on the same input. The input for
the SAT solvers were problem instances generated by different available reduc-
tions from FACT.

As such, this study uses an experimental approach rather than a theoretical
one [14]. The main reason for this is the relative infancy of the problem context
(factoring integers with SAT), which can be seen by the lack of research papers
on the subject. Another reason is the purely general knowledge base, which
lacks a detailed understanding of modern SAT solving, that the writers have
attained for the subject during the short interval of time in which this study
was performed. In fact, even with a deeper understanding of the implementation
of SAT algorithms, a theoretical approach to the problem statement would still
be an extremely hard and complicated undertaking due to the heuristic nature
and exponential worst case time complexity of SAT algorithms.

By using an experimental approach, the main benefit is that the research
process is simplified greatly. The disadvantage with this approach, as is the case
for experimental approaches in general, is also quite obvious - the reliability of
the results have to be questioned in much greater detail.

3.1 Testing environment
For reproducibility purposes, here follows the relevant specifications for the ma-
chine on which the experiments were run.

Operating System Ubuntu 14.04 LTS, 64-bit

CPU Intel Core i5-2500K CPU @ 3.30GHz x 4

Memory 2x 4096 MB DDR3, 1600 MHz

Motherboard ASUS P8P67 PRO

13

3.2 Problem instance generation
3.2.1 Generating semiprimes
For the purposes of this project, SAT problem instances had to meet certain
requirements in order to be potential test instances. As mentioned in the back-
ground section, the hardest problem instances are generally semiprimes where
the factors are of equal or similar bit length. Therefore all SAT instances used
in this project are the results of reductions from FACT using these specific types
of semiprimes.

The problem instances for this study were generated by first finding all prime
numbers having a bit length lower than 16. This was done simply by using the
sieve of Eratosthenes. After this step, tough semiprimes were generated by
multiplying primes of equal bit length. The amount of semiprimes generated
for each bit length was set to 100, and the semiprimes generated had a bit
length between 17 and 32. This produced a grand total of 1600 semiprimes.
The problem instances produced were also sorted by size. The algorithm itself
was programmed in C++ and can be found in appendix A.3.

The reason for using input of the above specified bit length as a maximum
input size was to limit the required time for running multiple SAT solvers on a
large sample of inputs for several different bit lengths. This is also mentioned
in the Delimitations section found in the Introduction chapter.

3.2.2 Reductions to CNF instances
The generation of corresponding SAT instances for the semiprimes were per-
formed using two different reduction tools, in order to ensure that the results
were not be subject to a specific bias or tendency of one certain reduction from
FACT to SAT. The tools used are Tough SAT Project [15] and CNF Gen-
erator for Factoring Problems [16], both of which enable generation of SAT
instances using boolean circuit reductions based on an integer to be factored.
The CNF Generator for Factoring Problems allows several different variations
in reductions – all of which have been used when generating SAT instances.
It was not clear what kind of formula simplifications were made regarding the
two tools used, so additional measures was required. To render the reductions
unbiased with respect to simplification, a popular SAT simplifier/preprocessor
named SatELite [17] was used. Because of this, a total of 14 reductions were
generated:

• N-Bit Carry-save (CNF Generator)

• N-Bit Wallace (CNF Generator)

• N-Bit Recursive (CNF Generator)

• Fast Carry-save (CNF Generator)

• Fast Wallace (CNF Generator)

14

• Fast Recursive (CNF Generator)

• Tough SAT (Tough SAT project)

• Simplified versions of the above

The naming of the 6 first reductions above refers to the type of adder used for
the multiplication circuit and the multiplication circuit itself. The first part
is the adder type, and the second is the multiplicator type. More information
regarding the different reductions can be found on the respective web pages for
the tools used.

The generation itself was carried out using Haskell (CNF Generator) and
Python (ToughSAT) source code freely available from respective web pages
[15, 16]. Both tools generate CNF in the DIMACS format [18]. DIMACS
is the de-facto standard input format for most SAT solvers. The shell script
demonstrating how these tools were used is available in appendix A.4.

3.3 Problem instance solving
3.3.1 Precautions
All user started active programs were terminated and the network connection
was disabled before running any tests. This was to ensure that no user programs
or network communications stole computing resources from the solvers, which
could result in biased results.

3.3.2 Assumptions
It was assumed that all of the solvers and algorithms were correctly imple-
mented, as in that they would never return an incorrect result under normal
execution conditions. In other words, since all of the problem instances used
were satisfiable, it was assumed that if a solver had finished running, it had
successfully solved the problem instance.

It was also assumed that all the used reductions were in fact correct re-
ductions that only had one possible satisfying variable assignment that corre-
sponded to the true solution.

Based on these assumptions, no verification that the solver output did indeed
conform to the sought factors were performed.

3.3.3 Calibration test
To get correct values for the efficiency of a parallel solver, an estimated available
resource value r was required (See background section). The estimation was
performed by running a simple bash script that measured the time it took (Ts)
for MiniSat to solve a single problem instance of suitable difficulty, and the
time it took (T4s) to solve four (the number of available CPU cores, see testing

15

environment) instances of the same problem in parallel. The available resources
r was then calculated as r = 4·(Ts/T4s). The script is available in appendix A.2.

3.3.4 Solvers and algorithms
A number of SAT solvers and one FACT algorithm were examined. This was,
as with the different reductions, to ensure unbiased results.

Sequential solvers

• MiniSat 2.2.0 [19]

• Lingeling ayv-86bf266-140429 [20]

MiniSat was chosen since it is a popular and accessible sequential CDCL solver.
It is also used as a basis for many other well known solvers. For example, the
most prominent portfolio-based parallel SAT solver ManySAT below is based
on MiniSat.

Lingeling is another popular CDCL solver [21, 22, 23, 24, 25] recognized
from its participation in the SAT competitions [26] and it is therefore included
here. Another reason for its inclusion is because of its affinity with the parallel
solvers Plingeling and Treengeling which are included below.

Parallel solvers

• ManySAT 2.0 [27]

• Plingeling ayv-86bf266-140429 [20]

• Treengeling ayv-86bf266-140429 [20]

ManySAT is a popular parallel SAT solver. It is a standard portfolio solver
which smart differentiation regarding restart policies, clause learning, clause
sharing and branching heuristics for the sequential solvers. ManySAT is de-
signed to run on up to 4 CPU cores and as the creators of the solver mentions
in their initial technical report [28], super-linear speedups1 are indeed achieved
on average when compared to the top performing sequential solvers [28].

Plingeling and Treengeling are the parallel versions of Lingeling [21, 22,
23, 24, 25]. As Lingeling, these two are regular participators in SAT Compe-
titions. Plingeling is a portfolio-based CDCL solver comparable to ManySAT
[21] whereas Treengeling is implemented by combining the best aspects of CDCL
and look-ahead solving [24] in a portfolio solver. The Plingeling and Treengeling
versions from the 2014 SAT competition that are used in this study interestingly
enough also incorporates a new local search solver called YalSAT [25] in their
solving procedure.

1A speedup greater than a factor r, where r is the amount of available parallel resources
(most commonly CPU cores)

16

FACT algorithm

• Trial division

The source code for the trial division algorithm used can be found in ap-
pendix A.1.

3.3.5 Measuring performance
All of the measures used for this study are based on wall clock time. Therefore,
only time was measured during the benchmarking. The tool used for this was
the date utility in Ubuntu. The raw data for the benchmarks was measured in
nanoseconds. Each solver was run on all of the 1600 problem instances for all
of the 14 reductions.

To ensure that the benchmarking would terminate at some point, the timeout
utility was also used as a precaution. To see details about how the benchmarking
was executed, see the shell script in appendix A.5.

3.4 Aggregating test data
For each SAT solver and the trial division algorithm, the measurement data
produced during testing was aggregated on the mean value based on bit length.
Because there were 100 test instances per used bit length, the aggregations were
assessed to provide a sufficiently smooth result. Categorizing input instances
based on bit length is also a logical approach because of the reductions used,
which are based on the bit configuration of the product and the factors. The bit
length is also the general focus of the problem in the RSA factoring challenges
[1] and it is the measurement used when analyzing time complexity for factoring.

3.5 Analyzing results
The results acquired by running the tests gave the effectiveness of each exam-
ined solver for each reduction. The examination of the parallel solvers however
required both the speedup and efficiency compared to some sequential solver.
The sequential solver chosen for this purpose was simply the one with the lowest
total running time.

The speedup and the efficiency were then calculated by S = Ts/Tp and
E = S/r.

17

Chapter 4

Results

In this section, the results achieved by applying the previously explained method
are given. Firstly, the supporting results of the calibration test are presented.
After this, the effectiveness (raw data) results are presented with a summarizing
table and graphs for each solver comparing different reductions. A summarizing
graph and table with the best solver/reduction combinations in terms of effec-
tiveness are also presented. Lastly, the speedup and efficiency for the parallel
solvers are listed in a table.

4.1 Calibration test
The execution of the calibration test concluded that an estimation for the
amount of available parallel resources r in the testing environment with a 4-
core processor was r ≈ 3.91.

4.2 Effectiveness
Table 4.1 shows the total effectiveness (running time) results for all combinations
of solvers and reductions. The green cells show the fastest reduction per solver
and the red cells the slowest. To compress the table, abbreviations are used in
place of the real solver and reduction names. The names for the reductions are
represented as follows:

• S - Simplified

• N - N-bit

• F - Fast

• C - Carry-save

• W - Wallace

18

• R - Recursive

• TS - ToughSAT

The abbreviations for the solvers are self-explanatory.
Further below, figures 4.1-4.10 show more detailed graphs demonstrating

how the run time increases with bit length for each solver and reduction. To
make the result more comprehensible, there are two graphs for each solver. One
shows the ordinary reductions, and the other shows their simplified versions.
The graphs are meant to visualize the results shown in table 4.1.

Lastly in figure 4.11, the running times for trial division are demonstrated
analogous with the style used for the solver graphs.

Table 4.1: All solvers combined with all reductions.
Mini Many Ling Pling Tree Total

NC 715 s 205 s 637 s 390 s 787 s 2734 s
SNC 629 s 185 s 717 s 395 s 866 s 2792 s
FC 780 s 224 s 754 s 389 s 934 s 3081 s
SFC 666 s 208 s 762 s 382 s 914 s 2932 s
NW 852 s 245 s 1360 s 600 s 1357 s 4414 s
SNW 789 s 217 s 1383 s 624 s 1374 s 4387 s
FW 876 s 262 s 1475 s 663 s 1455 s 4731 s
SFW 789 s 233 s 1384 s 634 s 1437 s 4477 s
NR 737 s 225 s 1474 s 619 s 1496 s 4551 s
SNR 676 s 196 s 1498 s 623 s 1544 s 4537 s
FR 877 s 264 s 6969 s 713 s 1798 s 10621 s
SFR 759 s 223 s 4490 s 800 s 1792 s 8064 s
TS 1379 s 350 s 2407 s 1326 s 2390 s 7852 s
STS 895 s 208 s 2514 s 1360 s 2413 s 7390 s
Total 11419 s 3245 s 27824 s 9518 s 20557 s

19

4.2.1 MiniSat

18 20 22 24 26 28 30 320

1

2

3

4

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.1: MiniSat with default reductions

18 20 22 24 26 28 30 320

1

2

3

4

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.2: MiniSat with simplified reductions

20

4.2.2 ManySAT

18 20 22 24 26 28 30 320

0.2

0.4

0.6

0.8

1

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.3: ManySAT with default reductions

18 20 22 24 26 28 30 320

0.2

0.4

0.6

0.8

1

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.4: ManySAT with simplified reductions

4.2.3 Lingeling
In figure 4.5 and 4.6, a strange behaviour can be observed for the Fast Recursive
reduction. To ensure this was not caused by a temporarily unstable testing

21

environment, the tests were run twice for this reduction. Equal results were
obtained.

18 20 22 24 26 28 30 320

10

20

30

40

50

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.5: Lingeling with default reductions

18 20 22 24 26 28 30 320

10

20

30

40

50

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.6: Lingeling with simplified reductions

22

4.2.4 Plingeling

18 20 22 24 26 28 30 320

1

2

3

4

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.7: Plingeling with default reductions

18 20 22 24 26 28 30 320

1

2

3

4

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.8: Plingeling with simplified reductions

23

4.2.5 Treengeling

18 20 22 24 26 28 30 320

1

2

3

4

5

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.9: Treengeling with default reductions

18 20 22 24 26 28 30 320

1

2

3

4

5

Bit length

M
ea
n
se
co
nd

s

N-Bit Carry-save
N-Bit Wallace
N-Bit Recursive
Fast Carry-save
Fast Wallace
Fast Recursive
Tough SAT

Figure 4.10: Treengeling with simplified reductions

24

4.2.6 Trial division

18 20 22 24 26 28 30 320

1 · 10−3

2 · 10−3

3 · 10−3

4 · 10−3

5 · 10−3

Bit length

M
ea
n
se
co
nd

s

Original input

Figure 4.11: Trial division

4.3 Summarized effectiveness
In figure 4.12, a comparison graph consisting of all the solvers using their best
performing reductions can be found. Further below in table 4.2 follows the total
running time for the same optimal solver-reduction combinations shown in the
graph.

25

18 20 22 24 26 28 30 320

0.5

1

1.5

2

Bit length

M
ea
n
se
co
nd

s

MiniSat
ManySAT
Lingeling
Plingeling
Treengeling
Trial division

Figure 4.12: All solvers with their top performing reductions

Table 4.2: All solvers total time with their top performing reductions
Solver Reduction Total time
Trial division Original indata 6 s
ManySAT Simplified N-bit Carry-save 185 s
Plingeling Simplified Fast Carry-save 382 s
MiniSat Simplified N-bit Carry-save 629 s
Lingeling N-bit Carry-save 637 s
Treengeling N-bit Carry-save 787 s

4.4 Speedup and efficiency for parallel solvers
Table 4.3 lists the speedup and efficiency1 for all of the parallel solvers compared
to MiniSat, which achieved the lowest total running time of the two sequential
solvers.

Table 4.3: The efficiency for the parallel solvers compared to MiniSat, the fastest
sequential solver.
Solver Speedup Efficiency
ManySAT 3.39 0.87
Plingeling 1.65 0.42
Treengeling 0.89 0.20

1An efficiency of 1 means that the parallel solver performed in line with its available
resources compared to MiniSat. A lower score indicates problems utilizing the extra resources
available.

26

Chapter 5

Discussion

5.1 General
One major purpose of this thesis was to evaluate whether parallel SAT solvers
were particularly well suited for solving SAT instances generated by reductions
from FACT. Based on the results in the experiments carried out in this study,
it is clear that there is no major advantage to parallel SAT solving compared
to sequential SAT solving other than the natural benefits of parallelism. It also
appears that there are no major downsides to parallel SAT solving. No partic-
ular reason to suspect that there would be any such downside was identified,
but it could still have been the case that the SAT instances generated for this
study could have given particularly poor results for parallel solving.

In the experiments performed in this study, no parallel SAT solver achieved a
speedup greater than or equal to that of the available resources1 when compared
to the fastest sequential SAT solver, MiniSat. This indicates that the parallel
SAT solvers used were not able to fully utilize the resources available to them.

An interesting trend in the results for all SAT solvers used – both sequential
and parallel – is that input of odd bit length appears to be more difficult to solve
than input of even bit length. This can be seen in the diagrams in the results
section. The impact of this supposed difficulty with odd numbers decreases as
input size increases, because the time complexity with respect to input size is
exponential. However, there appears to be an upper limit around the bit lengths
of 26 and 28 – which differs for different solvers – under which the input sizes of
odd bit lengths require longer solving times than the successive even bit length
input.

1Recall that the available resources were calculated to be r ≈ 3.91 using 4 cores. ManySAT
was most efficient in terms of using parallel resources, with a speedup of 3.39 and efficiency
of 0.87.

27

5.2 Solvers
Another goal for this thesis was to determine if any particular technique(s)
used by parallel SAT solvers was more efficient for solving FACT reductions
than others. Of the three parallel solvers used in this study, ManySAT was
the clear winner. This is most likely due to ManySAT being more of a general
purpose solver than the other two, which are tailored for being competitive on
the instances used in the SAT competitions. ManySAT also performed far more
stable in general on all of the used reductions, further proving its more general
purpose nature over the other two.

Of the two other parallel solvers, Plingeling did much better than Treen-
geling. Since Plingeling had more in common with ManySAT than with Lin-
geling, one possibility is that portfolio-based CDCL solvers currently are the
most effective parallel solvers for SAT instances generated by reductions from
FACT. In fact, Treengeling actually performed worse than both of the sequen-
tial solvers, achieving a speedup (slowdown) factor of 0.89. This hints at the
conclusion that the combination of look-ahead and CDCL is not very effective
for the problem instances found in this study. This could however also be the
result of Treengeling specifically performing badly, other similar solvers may of
course perform better.

The two corresponding sequential solvers MiniSat and Lingeling did not at
a first glance follow the pattern of the parallel solvers, since the total running
times for these two were quite equal. This was most likely caused by Lingeling
agreeing strongly with the reduction named N-bit Carry-save, since MiniSat
showed stable results for a far wider range of reductions than Lingeling. To be
precise, MiniSat had an astounding 13/14 reductions completing in under 1000
seconds. Lingeling on the other hand, only had 4/14 reductions under 1000
seconds, which all used the Carry-save multiplier. This demonstrates the more
general purpose nature of MiniSat.

5.3 Reductions
Yet another goal for the study was to determine if any reduction(s) performed
better than the others. From the results it is clearly distinguishable that N-bit
Carry-save is the most promising reduction. It and its simplified version gave
the fastest total running times for all solvers except for Plingeling, where the
Fast Carry-save reductions (simplified and unsimplified) achieved a marginally
faster run time. The reductions using Carry-save was overall found at the top
of the tables showing running times. This is most likely due to the straight-
forward nature of these reductions combined with the relatively small numbers
used in this study. It is quite likely that the Wallace and especially the Recursive
multipliers [16] performs better for larger numbers (i.e. larger bit lengths) than
the ones used. To examine this thoroughly, more computational power than
what was available would be required. This delimitation was mentioned in the
introduction.

28

A very strange oddity found in the result was the extremely long running
times (which occurred consistently) for the Fast Recursive reductions on odd
bit lengths when paired with Lingeling. The same behaviour could also be seen
for Treengeling, however not at all in the same magnitude. As mentioned in the
General section above, this anomaly was also to some extent true in general.
Plingeling, which is also related to the above two, did however not suffer from
this anomaly.

Some other interesting results already partly mentioned in the solver section
above were the stable overall performance for all reductions when paired with
MiniSat and ManySat. The performance of Nbit Recursive for both of these
solvers was especially interesting, as well as the performance for the simplified
version of ToughSAT paired with ManySAT. In general, ToughSAT and the
Recursive multipliers were otherwise found in the bottom of the tables showing
total running times.

Simplifying the formulas with SATELite achieved mixed results regarding
performance. For certain combinations of reductions and solvers, the gains
were large, and for others the simplification instead resulted in a slower running
time. Not much can therefore be said about SATELite. One thing that may
explain the varied results is that most solvers themselves incorporate simplifying
techniques in their solving process.

5.4 Trial division
Not surprisingly, due to the results achieved by previous studies, simple trial
division outperformed all parallel solvers by a huge margin. It also performed
quite stable for all problem instances, only increasing in run time slightly for
the larger instances.

5.5 Error sources
One potential error source is the variability of resources in the testing environ-
ment in which the SAT solvers were run. Although actions were taken to avoid
any major exposure to this, as mentioned in the Method section, the environ-
ment used (Ubuntu 14.04) of course still has scheduled background processes
that vary in resource usage. This may have minor impacts of varying size on
the results.

An aspect that potentially misleads results may be the bit lengths used in
this study. Although not quite an error source, it could have an impact on the
result with regards to the purpose of the study. The purpose of using reductions
from FACT to SAT is of course that SAT solvers should eventually be able to
compete with specialized integer factorization algorithms. For this purpose,
input of vastly greater size than 32 bits would have to be used in order to
study the behavior of SAT solvers used on such large input. It may be the case
that the results presented in this thesis do not demonstrate sufficient patterns

29

or tendencies with regard to larger input sizes. As mentioned in the previous
section, greater computing power would be required in order to carry out this
study in a reasonable time frame with larger input.

Another aspect which may make the results misleading is the fact that re-
ductions from FACT to SAT took a considerable amount of time – but this was
not taken into account when measuring the time for the SAT solving process. In
a completely fair comparison, the starting point for measuring runtime should
perhaps begin upon receiving the input in the form of a semiprime integer and
end when a solution has been found. In the experiments performed for this
thesis, the input integer was first reduced to a SAT instance – and time mea-
surement started only as the SAT solver began solving the given SAT instance,
and ended when a solution was found (or time limit exceeded).

30

Chapter 6

Conclusions

6.1 Problem statement conclusion
Below follows the conclusions to the initial problem statements.

For the first problem statement – regarding whether parallel SAT solvers are
better suited than sequential SAT solvers for solving integer factorization – it
can be concluded that for the generated input used in this study, parallel solvers
were only superior to sequential solvers in terms of the expected performance
increase from parallelism. The only noted speedup for parallel SAT solvers
was in fact, as mentioned, lower than the amount of resources available to the
parallel SAT solvers.

The second problem statement – regarding which technique(s) used for par-
allel SAT solving has the biggest performance impact for solving the generated
input for this study – can not be answered properly because of the insufficient
sample size of different parallel SAT solvers. The observation which can be made
for this study is that the portfolio-based CDCL parallel SAT solver ManySAT1

was the highest performing parallel SAT solver amongst the tested solvers, with
another portfolio-based CDCL solver Plingeling taking second place. Thus,
portfolio-based CDCL techniques seemed to have the biggest impact on perfor-
mance in the context of this study.

As for the third problem statement – regarding whether there are any re-
ductions techniques from FACT to SAT particularly well suited when solving
problem instances with parallel SAT solvers – it appeared that the N-bit Carry-
save reduction yielded the highest performance for both parallel and sequential
SAT solvers. The N-bit Carry-save was however closely followed by the Fast
Carry-save reduction. This superiority to other tested reductions was quite
consistent.

Finally, the last problem statement – regarding whether parallel SAT solvers
can compete with standard (sequential) trial division for solving FACT – it can
be stated with certainty that parallel SAT solvers are not yet able to perform

1See method section for a summary of techniques used in ManySAT.

31

anywhere near as well as the standard trial division algorithm, at least for the
relatively low bit lengths examined here.

6.2 Significance of results
The results of this thesis align well with previous results of similar theses [3, 4, 5]
in the sense that the approach of reducing FACT to SAT remains an inferior
method to simply using specialized FACT algorithms. This result holds for
parallel SAT solvers, for which the best contender (ManySAT) only experienced
a speedup of slightly less than the amount of available resources to the parallel
solvers.

It has also been shown that for the selection of SAT solvers and the input size
range used in this study, the overall best reduction method is the N-bit Carry-
save [16] technique – and this knowledge may be advantageous for further testing
within this area.

6.3 Further research
The most straightforward extension of this study is to create a larger statistical
basis by increasing the amount of solvers tested, choosing multiple ones for
each specific solving technique (such as CDCL, look-ahead and stochastic local
search) used in different portfolio solvers. This may provide more insight into
the second problem statement of this thesis, of which the goal was to identify
what parallel solving techniques were best fitted for handling FACT problem
instances. This thesis was almost entirely devoted to portfolio CDCL solvers,
which, since most widely used, were believed to provide the best results. This
may however not be the case. Note that it would probably be best to first
examine solving techniques found in sequential solvers independently and then
move on to parallel techniques, since parallel portfolio solving techniques are
built upon these. The most efficient solution would probably be to separate
these two undertakings into different studies.

Another possibility for a further study would be to examine larger problem
instances. This especially with regard to the Wallace and Recursive multipli-
ers which were inferior to the more basic reductions for the smaller problem
instances found in this study. They may very likely prove to be superior on
larger instances since this is their main purpose in other applications. It may
even be that these reductions (or others) can compete with trial division for
larger bit lengths. This approach was not doable within reasonable time with
the hardware available for this study.

Yet another interesting topic to explore is how difficult it is to solve other
kinds of SAT instances compared to SAT instances generated by reductions from
hard FACT instances (semiprimes). For instance, comparisons could be made
to some of the problem groups found in the SAT competitions. It could perhaps
be assumed that SAT instances derived from hard FACT instances would also

32

be hard – but this is not necessarily true.
It is also worth mentioning that many other more complicated multiplica-

tion algorithms and binary multipliers could potentially be used as a means
to achieve a suitable SAT formula. This is definitely an area worthy of more
in-depth studies.

33

Bibliography

[1] RSA Laboratories - The RSA Factoring Challenge FAQ.
http://www.emc.com/emc-plus/rsa-labs/historical/
the-rsa-factoring-challenge-faq.htm. Accessed: May 7,
2015.

[2] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM, 1971.

[3] Stefan Schoenmackers and Anna Cavender. Satisfy This: An At-
tempt at Solving Prime Factorization using Satisfiability Solvers.
http://courses.cs.washington.edu/courses/cse573/04au/
Project/mini1/TheS&Ateam/SATeamFinalPaper.pdf. Accessed:
May 7, 2015.

[4] John Eriksson and Jonas Höglund. A comparison of reductions from FACT
to CNF-SAT, 2014.

[5] Jonatan Asketorp. Attacking RSA moduli with SAT solvers, 2014.

[6] Youssef Hamadi and Christoph Wintersteiger. Seven challenges in parallel
sat solving. AI Magazine, 34(2):99, 2013.

[7] Mateusz Srebrny. Factorization with SAT – classical propositional calculus
as a programming environment. http://www.mimuw.edu.pl/~mati/
fsat-20040420.pdf, 2004. Accessed: May 7, 2015.

[8] Adnan Darwiche and Knot Pipatsrisawat. Complete Algorithms. http://
reasoning.cs.ucla.edu/fetch.php?id=97&type=pdf, 2008. Ac-
cessed: May 7, 2015.

[9] Vladimir Lifschitz. The Davis-Putnam-Logemann-Loveland Proce-
dure. http://www.cs.utexas.edu/users/vl/teaching/lbai/
dpll.pdf, 2011. Accessed: May 7, 2015.

[10] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven
Clause Learning SAT Solvers. http://www.cs.utexas.edu/~isil/
cs395t/CDCL.pdf, 2008. Accessed: May 7, 2015.

34

http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge-faq.htm
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge-faq.htm
http://courses.cs.washington.edu/courses/cse573/04au/Project/mini1/TheS&Ateam/SATeamFinalPaper.pdf
http://courses.cs.washington.edu/courses/cse573/04au/Project/mini1/TheS&Ateam/SATeamFinalPaper.pdf
http://www.mimuw.edu.pl/~mati/fsat-20040420.pdf
http://www.mimuw.edu.pl/~mati/fsat-20040420.pdf
http://reasoning.cs.ucla.edu/fetch.php?id=97&type=pdf
http://reasoning.cs.ucla.edu/fetch.php?id=97&type=pdf
http://www.cs.utexas.edu/users/vl/teaching/lbai/dpll.pdf
http://www.cs.utexas.edu/users/vl/teaching/lbai/dpll.pdf
http://www.cs.utexas.edu/~isil/cs395t/CDCL.pdf
http://www.cs.utexas.edu/~isil/cs395t/CDCL.pdf

[11] Marijn Heule, Mark Dufour, Joris Van Zwieten, and Hans Van Maaren.
March_eq: implementing additional reasoning into an efficient look-ahead
sat solver. In Theory and Applications of Satisfiability Testing, pages 345–
359. Springer, 2005.

[12] Holger Hoos H. and Thomas Stützle. Stochastic Local Search, Foundations
and Applications. Morgan Kaufman / Elsevier.

[13] Steffen Hölldobler, Norbert Manthey, V Nguyen, J Stecklina, and P Steinke.
A short overview on modern parallel sat-solvers. In Proceedings of the
International Conference on Advanced Computer Science and Information
Systems, pages 201–206, 2011.

[14] Gordana Dodig-Crnkovic. Scientific methods in computer science. In Pro-
ceedings of the Conference for the Promotion of Research in IT at New
Universities and at University Colleges in Sweden, Skövde, Suecia, pages
126–130, 2002.

[15] Henry Yuen and Joseph Bebel. ToughSAT Generation. https://
toughsat.appspot.com/, 2011. Accessed: May 7, 2015.

[16] Paul Purdom and Amr Sabry. CNF Generator for Factoring Prob-
lems. http://www.cs.indiana.edu/cgi-pub/sabry/cnf.html.
Accessed: May 7, 2015.

[17] SATELite. http://minisat.se/SatELite.html. Accessed: May 7,
2015.

[18] Benchmarks submission guidelines. http://www.satcompetition.
org/2009/format-benchmarks2009.html. Accessed: May 7, 2015.

[19] Niklas Eén and Niklas Sörensson. MiniSat Page. http://minisat.se/.
Accessed: May 7, 2015.

[20] Armin Biere. Lingeling, Plingeling and Treengeling . http://fmv.jku.
at/lingeling/. Accessed: May 7, 2015.

[21] Armin Biere. Lingeling, plingeling, picosat and precosat at sat race 2010.

[22] Armin Biere. Lingeling and friends at the sat competition 2011.

[23] Armin Biere. Lingeling and friends entering the sat challenge 2012.

[24] Armin Biere. Lingeling, plingeling and treengeling entering the sat compe-
tition 2013.

[25] Armin Biere. Yet another local search solver and lingeling and friends
entering the sat competition 2014.

[26] SAT Competitions. http://www.satcompetition.org/. Accessed:
May 7, 2015.

35

https://toughsat.appspot.com/
https://toughsat.appspot.com/
http://www.cs.indiana.edu/cgi-pub/sabry/cnf.html
http://minisat.se/SatELite.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
http://minisat.se/
http://fmv.jku.at/lingeling/
http://fmv.jku.at/lingeling/
http://www.satcompetition.org/

[27] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a Par-
allel SAT Solver. http://www.cril.univ-artois.fr/~jabbour/
manysat.htm. Accessed: May 7, 2015.

[28] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a parallel
SAT solver. Journal on Satisfiability, Boolean Modeling and Computation,
6:245–262, 2008.

36

http://www.cril.univ-artois.fr/~jabbour/manysat.htm
http://www.cril.univ-artois.fr/~jabbour/manysat.htm

Appendix A

Source code

A.1 Trial division

1 /**
2 * A simple trial division algorithm.
3 *
4 * Author: Daniel Lundén
5 */
6
7 #include <string>
8 #include <stdexcept>
9 #include <iostream>
10 #include <vector>
11 #include <cmath>
12 #include <fstream>
13
14 using namespace std;
15
16 int main(int argc, char *argv[]) {
17 if(argc == 1) {
18 cout << "Error, file name needed as first parameter" << endl;
19 return 0;
20 }
21 unsigned long number;
22
23 try {
24 ifstream in;
25 in.open(argv[1]);
26 string tmp;
27 in >> tmp;
28 number = stoul(tmp);
29 in.close();
30 } catch (const exception& ia) {
31 cout << "Invalid file name" << endl;
32 return 0;
33 }
34
35 if(number == 1) {

37

36 cout << "Factors: 1" << endl;
37 return 0;
38 }
39
40 vector<unsigned long> factors;
41 for(unsigned long l = 2;; ++l) {
42 if(l > number/2) {
43 if(number != 1) {
44 factors.push_back(number);
45 }
46 break;
47 } else if (number == l) {
48 factors.push_back(l);
49 break;
50 }
51
52 if(number % l == 0) {
53 factors.push_back(l);
54 number = number / l;
55 while(number % l == 0) {
56 factors.push_back(l);
57 number = number / l;
58 }
59 }
60 }
61
62 cout << "Factors: ";
63 for(int i = 0; i < factors.size(); ++i) {
64 cout << factors[i];
65 if(i != factors.size()-1) {
66 cout << ", ";
67 }
68 }
69 cout << endl;
70 }

A.2 Calibration test

1 #!/bin/bash
2
3 TS_SUM=0
4 TN_SUM=0
5
6 for i in $(seq 30); do
7 START1=$(date +%s%N)
8 ../minisat/core/minisat_static sample.in &> /dev/null
9 END1=$(date +%s%N)
10
11 START2=$(date +%s%N)
12 ../minisat/core/minisat_static sample.in &> /dev/null &
13 ../minisat/core/minisat_static sample.in &> /dev/null &
14 ../minisat/core/minisat_static sample.in &> /dev/null &
15 ../minisat/core/minisat_static sample.in &> /dev/null &
16 wait

38

17 END2=$(date +%s%N)
18
19 let TS_SUM=TS_SUM+$((END1 - START1))
20 let TN_SUM=TN_SUM+$((END2 - START2))
21 done
22
23 echo $(echo "4*$TS_SUM/$TN_SUM" | bc -l)

A.3 Semiprime generator

1 /**
2 * Generate semiprimes with specified bit lengths.
3 * The prime factors are generated with the sieve of Eratosthenes.
4 *
5 * Author: Daniel Lundén
6 *
7 */
8
9 #include <fstream>
10 #include <iostream>
11 #include <cmath>
12 #include <vector>
13 #include <cstdlib>
14 #include <ctime>
15 #include <algorithm>
16 #include <string>
17 #include <sstream>
18
19 #define MAX_PRODUCT_BIT_LENGTH 32
20 #define MIN_PRODUCT_BIT_LENGTH 17
21 #define PRODUCTS_PER_BIT_LENGTH 100
22 #define OUTPUT_PATH "base/"
23
24 using namespace std;
25
26 int main() {
27 const unsigned long max = 1ul << (MAX_PRODUCT_BIT_LENGTH + 1)/2;
28 vector<bool> primetable(max);
29 primetable[0] = false;
30 primetable[1] = false;
31 for(unsigned long i = 2; i < max; ++i) {
32 primetable[i] = true;
33 }
34
35 // Sieve
36 unsigned long p = 2;
37 const unsigned long limit = sqrt(max);
38 while(p <= limit) {
39 // Remove multiples of current prime
40 for(unsigned long mult = 2; mult*p < max; ++mult) {
41 primetable[mult*p] = false;
42 }
43
44 // Find next prime

39

45 ++p;
46 for(;primetable[p] == false; ++p) {}
47 }
48
49 // Bucket primes by their bit lengths
50 vector<vector<unsigned long>> primes((MAX_PRODUCT_BIT_LENGTH + 1)/2 +

1);
51 for(unsigned long i = 2; i < max; ++i) {
52 if(primetable[i]) {
53 int bits = log2(i) + 1;
54 primes[bits].push_back(i);
55 }
56 }
57
58 // Produce semiprimes to files
59 srand(time(NULL));
60 vector<unsigned long> semiprimes;
61 for(int i = MIN_PRODUCT_BIT_LENGTH; i <= MAX_PRODUCT_BIT_LENGTH; ++i)

{
62 int factor_bitlength = (i+1)/2;
63 for(int j = 0; j < PRODUCTS_PER_BIT_LENGTH; ++j) {
64 unsigned long prod = 0;
65 int bitlength;
66 do {
67 unsigned long f1 = primes[factor_bitlength][rand() % primes[

factor_bitlength].size()];
68 unsigned long f2 = primes[factor_bitlength][rand() % primes[

factor_bitlength].size()];
69 prod = f1*f2;
70 bitlength = log2(prod) + 1;
71 } while (bitlength != i);
72 semiprimes.push_back(prod);
73 }
74 }
75 sort(semiprimes.begin(), semiprimes.end());
76
77 ofstream out;
78 for(int i = 0; i < semiprimes.size(); ++i) {
79 stringstream ss;
80 ss << OUTPUT_PATH << (i+1) << ".in";
81 out.open(ss.str());
82 out << semiprimes[i];
83 out.close();
84 }
85 }

A.4 Test generator

1 #!/bin/bash
2
3 echo "Setting up folders..."
4 mkdir base &> /dev/null
5
6 mkdir fast_carry &> /dev/null

40

7 mkdir fast_recursive &> /dev/null
8 mkdir fast_wallace &> /dev/null
9 mkdir nbit_carry &> /dev/null
10 mkdir nbit_recursive &> /dev/null
11 mkdir nbit_wallace &> /dev/null
12 mkdir tough_sat &> /dev/null
13 mkdir s_fast_carry &> /dev/null
14 mkdir s_fast_recursive &> /dev/null
15 mkdir s_fast_wallace &> /dev/null
16 mkdir s_nbit_carry &> /dev/null
17 mkdir s_nbit_recursive &> /dev/null
18 mkdir s_nbit_wallace &> /dev/null
19 mkdir s_tough_sat &> /dev/null
20 echo "Done!"
21
22 ghc --make cnf1.hs &> /dev/null
23
24 echo "Generating semiprimes..."
25 g++ -std=c++0x -O3 semiprime_generator.cpp
26 ./a.out
27 echo "Done!"
28
29 generate() {
30 for i in $(ls base); do
31 ./cnf1 $(cat base/$i) $1 > $2/$i
32 ./SatELite_v1.0_linux $2/$i s_$2/$i &> /dev/null
33 done
34 }
35
36 echo "Generating fast carry CNF..."
37 generate "fast carry-save" fast_carry
38 echo "Done!"
39
40 echo "Generating fast recursive CNF..."
41 generate "fast recursive" fast_recursive
42 echo "Done!"
43
44 echo "Generating fast wallace CNF..."
45 generate "fast wallace" fast_wallace
46 echo "Done!"
47
48 echo "Generating n-bit carry CNF..."
49 generate "n-bit carry-save" nbit_carry
50 echo "Done!"
51
52 echo "Generating n-bit recursive CNF..."
53 generate "n-bit recursive" nbit_recursive
54 echo "Done!"
55
56 echo "Generating n-bit wallace CNF..."
57 generate "n-bit wallace" nbit_wallace
58 echo "Done!"
59
60 echo "Generating ToughSAT CNF..."
61 for i in $(ls base); do
62 python -c "from factoring_j import *; print generate_instance2($(cat

base/$i), False)" > tough_sat/$i

41

63 ./SatELite_v1.0_linux tough_sat/$i s_tough_sat/$i &> /dev/null
64 done
65 echo "Done!"
66
67 echo "Removing executables..."
68 rm a.out
69 rm factoring_j.pyc
70 rm cnf1
71 rm cnf1.hi
72 rm cnf1.o
73 echo "Done!"
74
75 echo "All operations completed!"

A.5 Test runner

1 #!/bin/bash
2
3 # Function for running tests. The parameters are:
4 # $1 = Solver path
5 # $2 = Indata type
6 # $3 = Output file name
7 runtests() {
8 echo "$1 - $2"
9 rm results/$2/$3 &> /dev/null
10 echo -e ’instance_num\ttime’ >> results/$2/$3;
11 for i in $(seq $(ls -1 indata/base | wc -l)); do
12 START=$(date +%s%N)
13 timeout 10m solvers/$1 indata/$2/$i.in 1> /dev/null
14 TIMEOUT="$?"
15 END=$(date +%s%N)
16
17 if [["$TIMEOUT" = "124"]]; then
18 # echo timeout >> results/$2/$3
19 echo "$i / $(ls -1 indata/base | wc -l)"
20 return
21 else
22 echo -n $i >> results/$2/$3
23 echo -en ’\t’ >> results/$2/$3
24 echo $((END - START)) >> results/$2/$3
25 fi
26
27 echo -ne "$i / $(ls -1 indata/base | wc -l) \r"
28 done
29 echo "$(ls -1 indata/base | wc -l) / $(ls -1 indata/base | wc -l)"
30 }
31
32 echo "Setting up folders..."
33 mkdir results/base &> /dev/null
34 mkdir results/fast_carry &> /dev/null
35 mkdir results/fast_recursive &> /dev/null
36 mkdir results/fast_wallace &> /dev/null
37 mkdir results/nbit_carry &> /dev/null
38 mkdir results/nbit_recursive &> /dev/null

42

39 mkdir results/nbit_wallace &> /dev/null
40 mkdir results/tough_sat &> /dev/null
41 mkdir results/s_fast_carry &> /dev/null
42 mkdir results/s_fast_recursive &> /dev/null
43 mkdir results/s_fast_wallace &> /dev/null
44 mkdir results/s_nbit_carry &> /dev/null
45 mkdir results/s_nbit_recursive &> /dev/null
46 mkdir results/s_nbit_wallace &> /dev/null
47 mkdir results/s_tough_sat &> /dev/null
48 echo "Done!"
49
50 # Compile trial division
51 g++ -std=c++0x -O3 solvers/trial_division.cpp
52
53 # ----------------------- TEST RUNNING AREA -------------
54
55 # Trial division
56 runtests ./a.out base trial_division.raw
57
58 # MiniSAT
59 runtests minisat/core/minisat_static fast_carry minisat.raw
60 runtests minisat/core/minisat_static fast_recursive minisat.raw
61 runtests minisat/core/minisat_static fast_wallace minisat.raw
62 runtests minisat/core/minisat_static nbit_carry minisat.raw
63 runtests minisat/core/minisat_static nbit_recursive minisat.raw
64 runtests minisat/core/minisat_static nbit_wallace minisat.raw
65 runtests minisat/core/minisat_static tough_sat minisat.raw
66 runtests minisat/core/minisat_static s_fast_carry minisat.raw
67 runtests minisat/core/minisat_static s_fast_recursive minisat.raw
68 runtests minisat/core/minisat_static s_fast_wallace minisat.raw
69 runtests minisat/core/minisat_static s_nbit_carry minisat.raw
70 runtests minisat/core/minisat_static s_nbit_recursive minisat.raw
71 runtests minisat/core/minisat_static s_nbit_wallace minisat.raw
72 runtests minisat/core/minisat_static s_tough_sat minisat.raw
73
74 # ManySAT
75 runtests manysat2.0/core/manysat2.0_static fast_carry manysat.raw
76 runtests manysat2.0/core/manysat2.0_static fast_recursive manysat.raw
77 runtests manysat2.0/core/manysat2.0_static fast_wallace manysat.raw
78 runtests manysat2.0/core/manysat2.0_static nbit_carry manysat.raw
79 runtests manysat2.0/core/manysat2.0_static nbit_recursive manysat.raw
80 runtests manysat2.0/core/manysat2.0_static nbit_wallace manysat.raw
81 runtests manysat2.0/core/manysat2.0_static tough_sat manysat.raw
82 runtests manysat2.0/core/manysat2.0_static s_fast_carry manysat.raw
83 runtests manysat2.0/core/manysat2.0_static s_fast_recursive manysat.raw
84 runtests manysat2.0/core/manysat2.0_static s_fast_wallace manysat.raw
85 runtests manysat2.0/core/manysat2.0_static s_nbit_carry manysat.raw
86 runtests manysat2.0/core/manysat2.0_static s_nbit_recursive manysat.raw
87 runtests manysat2.0/core/manysat2.0_static s_nbit_wallace manysat.raw
88 runtests manysat2.0/core/manysat2.0_static s_tough_sat manysat.raw
89
90 # Lingeling
91 runtests lingeling-ayv-86bf266-140429/binary/lingeling fast_carry

lingeling.raw
92 runtests lingeling-ayv-86bf266-140429/binary/lingeling fast_recursive

lingeling.raw

43

93 runtests lingeling-ayv-86bf266-140429/binary/lingeling fast_wallace
lingeling.raw

94 runtests lingeling-ayv-86bf266-140429/binary/lingeling nbit_carry
lingeling.raw

95 runtests lingeling-ayv-86bf266-140429/binary/lingeling nbit_recursive
lingeling.raw

96 runtests lingeling-ayv-86bf266-140429/binary/lingeling nbit_wallace
lingeling.raw

97 runtests lingeling-ayv-86bf266-140429/binary/lingeling tough_sat
lingeling.raw

98 runtests lingeling-ayv-86bf266-140429/binary/lingeling s_fast_carry
lingeling.raw

99 runtests lingeling-ayv-86bf266-140429/binary/lingeling s_fast_recursive
lingeling.raw

100 runtests lingeling-ayv-86bf266-140429/binary/lingeling s_fast_wallace
lingeling.raw

101 runtests lingeling-ayv-86bf266-140429/binary/lingeling s_nbit_carry
lingeling.raw

102 runtests lingeling-ayv-86bf266-140429/binary/lingeling s_nbit_recursive
lingeling.raw

103 runtests lingeling-ayv-86bf266-140429/binary/lingeling s_nbit_wallace
lingeling.raw

104 runtests lingeling-ayv-86bf266-140429/binary/lingeling s_tough_sat
lingeling.raw

105
106 # Plingeling
107 runtests plingeling-ayv-86bf266-140429/binary/plingeling fast_carry

plingeling.raw
108 runtests plingeling-ayv-86bf266-140429/binary/plingeling fast_recursive

plingeling.raw
109 runtests plingeling-ayv-86bf266-140429/binary/plingeling fast_wallace

plingeling.raw
110 runtests plingeling-ayv-86bf266-140429/binary/plingeling nbit_carry

plingeling.raw
111 runtests plingeling-ayv-86bf266-140429/binary/plingeling nbit_recursive

plingeling.raw
112 runtests plingeling-ayv-86bf266-140429/binary/plingeling nbit_wallace

plingeling.raw
113 runtests plingeling-ayv-86bf266-140429/binary/plingeling tough_sat

plingeling.raw
114 runtests plingeling-ayv-86bf266-140429/binary/plingeling s_fast_carry

plingeling.raw
115 runtests plingeling-ayv-86bf266-140429/binary/plingeling

s_fast_recursive plingeling.raw
116 runtests plingeling-ayv-86bf266-140429/binary/plingeling s_fast_wallace

plingeling.raw
117 runtests plingeling-ayv-86bf266-140429/binary/plingeling s_nbit_carry

plingeling.raw
118 runtests plingeling-ayv-86bf266-140429/binary/plingeling

s_nbit_recursive plingeling.raw
119 runtests plingeling-ayv-86bf266-140429/binary/plingeling s_nbit_wallace

plingeling.raw
120 runtests plingeling-ayv-86bf266-140429/binary/plingeling s_tough_sat

plingeling.raw
121
122 # Treengeling

44

123 runtests treengeling-ayv-86bf266-140429/binary/treengeling fast_carry
treengeling.raw

124 runtests treengeling-ayv-86bf266-140429/binary/treengeling
fast_recursive treengeling.raw

125 runtests treengeling-ayv-86bf266-140429/binary/treengeling fast_wallace
treengeling.raw

126 runtests treengeling-ayv-86bf266-140429/binary/treengeling nbit_carry
treengeling.raw

127 runtests treengeling-ayv-86bf266-140429/binary/treengeling
nbit_recursive treengeling.raw

128 runtests treengeling-ayv-86bf266-140429/binary/treengeling nbit_wallace
treengeling.raw

129 runtests treengeling-ayv-86bf266-140429/binary/treengeling tough_sat
treengeling.raw

130 runtests treengeling-ayv-86bf266-140429/binary/treengeling s_fast_carry
treengeling.raw

131 runtests treengeling-ayv-86bf266-140429/binary/treengeling
s_fast_recursive treengeling.raw

132 runtests treengeling-ayv-86bf266-140429/binary/treengeling
s_fast_wallace treengeling.raw

133 runtests treengeling-ayv-86bf266-140429/binary/treengeling s_nbit_carry
treengeling.raw

134 runtests treengeling-ayv-86bf266-140429/binary/treengeling
s_nbit_recursive treengeling.raw

135 runtests treengeling-ayv-86bf266-140429/binary/treengeling
s_nbit_wallace treengeling.raw

136 runtests treengeling-ayv-86bf266-140429/binary/treengeling s_tough_sat
treengeling.raw

137
138 # ---
139
140 # Remove trial division executable
141 rm solvers/a.out &> /dev/null

45

www.kth.se

	Introduction
	Problem Statement
	Purpose
	Delimitations
	Outline of report

	Background
	Integer factorization problem (FACT)
	Boolean satisfiability problem (SAT)
	Reductions from FACT to SAT
	Solving SAT sequentially
	DPLL algorithm
	Conflict-Driven Clause Learning
	Look-ahead
	Stochastic Local Search

	Solving SAT in parallel
	Divide and conquer
	Portfolio

	SAT performance for solving FACT
	Speedup, efficiency and effectiveness

	Method
	Testing environment
	Problem instance generation
	Generating semiprimes
	Reductions to CNF instances

	Problem instance solving
	Precautions
	Assumptions
	Calibration test
	Solvers and algorithms
	Measuring performance

	Aggregating test data
	Analyzing results

	Results
	Calibration test
	Effectiveness
	MiniSat
	ManySAT
	Lingeling
	Plingeling
	Treengeling
	Trial division

	Summarized effectiveness
	Speedup and efficiency for parallel solvers

	Discussion
	General
	Solvers
	Reductions
	Trial division
	Error sources

	Conclusions
	Problem statement conclusion
	Significance of results
	Further research

	Source code
	Trial division
	Calibration test
	Semiprime generator
	Test generator
	Test runner

