—— USBORNE INTRODUCTION TO—’-l

MACHINE CODE
fOR BEGINNERS

USBORNE INTRODUCTION TO

MIACHIINE COIDRE
rOR BEGININERS

Lisa Watts and Mike Wharton

Je=)

"# [E]
FI...._ ,“

lllustrated by Naomi Reed and Graham Round
Designed by Graham Round and Lynne Norman
6502 consultants: A. P. Stephenson and Chris Oxlade

Contents

4 What is machine code?
6 Getting to know your computer
8 The computer's memory
11 Hex numbers
12 Peeking and poking
14 Inside the CPU
16 Giving the CPU instructions
18 Translating a program into hex
20 Finding free RAM
23 Loading and running a program
21 Adding bytes from memory
28 Working with big numbers
29 The carry flag
30 Big number programs
32 Displaying a message on the screen
35 Jumping and branching
38 Screen flash program
40 Going further
4] Decimal’hex conversion charts
42 Z80 mnemonics and hex codes
45 6502 mnemonics and hex codes
46 Machine code words
48 Index

First published 1383 by Usborne Publishing Lid, 20 Garrick Street, London WC2E 9B], England

1983 Usborne Publishing
All nights reserved. No part of this publication may be reproduced, stored in a retrieval system or tansmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the publisher
The name Usborne and the device = are Trade Marks of Usborne Publishing Lid
Printed in Spain by Printer Industria Grifica, 5. A. - Depésito Legal B. 33,7585/1983

About this book

This book is a simple, step-by-step
guide to learning to programin
machine code. Machine code isthe
code inwhich the computer does allits
work and programs written in machine
code run much faster and take up less
memory space than programs in
BASIC. A machine code program,
though, is much more difficult to write
and less easy to understand thana
program in BASIC.

This book takes you in very easy
stages through the basic principles of
machine code. It shows youhowto
write simple machine code programs,
for example, to add two numbers or
flash a message on the screen, and how
toload and run a machine code
prograrn on your computer,

The book is specially written for
computers with a Z80 or 6502
microprocessor.* The microprocessor
isthe chip which containsthe
computer's central processing unit and
computers with different
microprocessors understand different
machine code. All computers with the
same type of microprocessor, though,
use the same machine code.

Machine code is difficult and very
laborious, with lots of rules to obeyand
small details to remember. Don't worry
if you find it very hard at first. It seems
confusing as you cannot read and
understand a program in machine code
- it's just a string of letters and numbers.
Bugs are very difficult to spot, too, and
have disastrous results if you miss them.
When you are working in machine code
you have to be very careful and
methodical and check everything two
orthree times.

Unless you are really dedicated there
is no point in writing long programsin
machine code - some things canbe
done just as well in BASIC. For certain
tasks, though, such as speeding up the
actionin games programs or creating
fantastic screen effects, youneed touse
machine code. This book shows you
how to make your programs more
exciting by using short machine code
subroutines in BASIC programs.

At the back of the book there are
some conversion charts to help you
when you are writing machine code,
and a list of machine code wordsto
explain all the jargon. There are also
lots of puzzles and ideas for short
programs to write, with answerson
page 44.

*The Spectrum and ZX81 (Timex 2000 and 1000) use the Z80 microprocessor and the VIC 20, the BEC,
the Atari computers and the Oric use the §502. The Commeodore 64 uses the 6510 and understands

6502 machine code.

Whatis machine code?

Machine code is the code in which the
computer does all its work. When yougive
acomputer a program in BASIC, allthe
instructions and data are translated into
machine code inside the computer.

Inside the computer, the binary numbers
are represented by pulses of electricity,
with a pulse for a 1 and no pulse fora 0. The
pulses and no-pulses are called "bits”, short
for binary digits.

In machine code, each instruction and
piece of informationisrepresented by a
binary number. Binary is a number system
which uses only two digits, l and 0. Youcan
write any number in binary using ls and
0s.”

The bits flow through the computer in
groups of eight and each group is called a
“byte". Each byte of pulses and no-pulses
represents the binary number for one
instruction or piece of informationin
machine code.

Eachtask the computer can carry out, such
as adding two numbers or clearing the
screen, involves a sequence of several
instructions in machine code. When you
give the computer a BASIC command. a
special program called the “interpreter”
translates your command into the machine
code instructions the computer

*¥ou can find out more about binary on page 28.

understands.

The term machine code is alsousedto
refer to programs written in a form which is
much closer to the computer’'s code than
BASIC is. In a machine code program you
have to give the computer all the separate
instructions it needs to carry out a task such
as clearing the screen.

Programming in machine code

There are several different ways of writing machine code programs. You could write allthe
nstructions in binary numbers, but this would be very tedious. Instead, you can use another
number system called hex, short for hexadecimal. Once you get used to it, hex is much
easier to work with than binary.

Machine code programs can also be written in a code called “assembly language”. In
assembly language each instruction to the computer is represented by a “mnemonic”
(pronounced nemonic) - a short word which sounds like the instruction it represents,

LD A isthe mnemonic
for an instruction.

3JEisthe hex code foran
nstruction.

Assembly
language

LD A, 02

ADp A 04:>-

oy 7F57) A programto
t-._____' F
RET

This is a program for

computers with a Z80 This o

microprocessor. You ad ¢
Hex can find out how the Computers rg;f:g Nithe
codes program works later in &

the book.

This is the same program in assembly

This is part of a machine code programin language. Each line contains the mnemonic
hex. The hex number system has sixteen for one instruction and is the equivalent of
digits and uses the symbols 0-9and A-Fto the hex number in the same line on the left.
represent the numbers 0to 15. (Youcanfind For example, the mnemonic LD A

out more about hex later in the book.) The (pronounced “load A") means the same as
hex number at the beginning of eachlineof the hex number 3E. In both these programs,
the program is an instruction (e.g. 3E). Itis each line contains an instruction whichis
the hex equivalent of the binary code for the equivalent of a single instruction inthe
that instruction. computer's own code.,

Togive a computer a programinassembly ~ mnemonics of assembly language (theyare
language you need a special program easier to remember than numbers), then
called an “assembler” which translatesthe translate them into hex before you give
mnemonics into the computer's code. Some them to the computer. Some computers will
computers have a built-in assembler; with accept hex numbers; with others you have

others, you can buy an assembler on to give them a short program, called a “hex
cassette and load it into the computer's loader”, which translates them for the
memory. Alternatively you can writea computer. There is a hex loader program
machine code program using the on page 24 which you can use to load the

machine code programs in this book.

Getting to know your computer

When you program a computer in
machine code you have to tell itexactly
what to do at each stage: where to find
and store data, how to printon the TONANSY
screenand soon. (When you are
working in BASIC, special programs

Inside a computer

Inside the computer take care of all this
for you.) Inorder to give the computer
the correct machine code instructions,
youneed a good 1dea of what isgoing
oninside your computer. The pictures Inside the keyboard of a microcomputer
onthese two pages show the parts there is a printed circuit board. This has
inside a home computer, and what they metal tracks printed on it, along which
are for. You can find out more about ?ﬂ:ﬁ;ﬁ?ﬂi;;ﬁicﬂhﬁz:ﬁf: o
£, i a
themon the next few pages. ey o Gl
Fat
What the chips do A

This picture shows the work carried out by PULSE
the different chips inside the computer.
Messages flow between the chips in the form
of bytes, .e. groups of eight pulse and no-
pulse signals representing data and
instructions.

The ROM chips

carries memory

s

Bytes of computer code flow
between the chips along the tracks
of the printed circuit board. There are three
separate systems of tracks for carrying bytes
for doing different jobs. Each system of

ROM stands for “read only memory". The tracks is called a "bus”.
machine code instructions which tell the
computer what to do are stored in the ROM "n’
chips. It is called a read only memory
because the computer can only read the
information in ROM, it cannot store
new information there. On most home
computers, the interpreter (the
program which translates BASIC
into computer code) is in the RO

The RAM chips
RAM stands for
“random access
memory”. This is where
the programs you give the
computer are stored while the
computer is working on them. It is .
called a random access memory
because the computer can find, or access,
any piece of information anywhere in the
memory. When you switch the computer off
the mformation stored in RAM is wiped out.

Printed
circuit board

The proper name for a chipisan
“integrated circuit” and inside each chip
there are microscopic electrical circuits.
Allthe computer's work is done by
streams of pulses representing

of circuits
inside chip.

Enlarged v'Le

instructions in binary code, flowing
through the circuits in the chips. There
are different chips for carrying out
different tasks. The work done by the
different kinds of chips isshown inthe
picture below.

Clock

This is a quartz crystal which pulses millions of
times a second and regulates the flow of pulses
inside the computer.

The microprocessor
The microprocessor chip holds the computer's

central processing unit, or CPU. This is where all

the computer's work is done. The CPU does
calculations, compares pieces of data, makes
decisions and also co-ordinates all the other
activities inside the computer. The information
telling the CPUwhattodoisinthe ROM.

The computer’'s memory

The easiest way to think of the computer's memory is as lots of little boxes, eachof
which can hold one byte, 1.e. one instruction or piece of information inmachine
code. Each box in the memory 1s called a "location”, and each location hasa
number, called its "address”, so the computer can find any box in the memory.

Different areas of the memory are used for storing information for different tasks
and a chart giving the address where each areastarts is called a ‘memorymap”.

When youare programming in machine code you have to tell the computer
where to find or store each instruction or piece of information. You do this by giving
it the address of a memory location. You even have to tell it where to storethe
machine code program itself, so you need to get to know the memory map of your
computer.

The memory map

The picture on the right shows the memory map of
a home computer. There should be a map for your |
computer in your manual. The memory is sl
organized differently in different makes of
computer, so your map will look different from this
one.

The memory map may be drawn as a column Variable storage
like this, or horizontally. The address at whicheach P '1' e
ofthe different areas in the memory starts is given A —
alongside the map and it may be a decimal number User RAM [CR
or a hex number, or both, as here. Inthis book hex
numbers are distinguished by a & sign
(ampersand) before the number. Your manual may
use a different symbol, e.q. 3, %, or #.

The boundary
between user
RAM and
variable storage

¥ moves up ordown
depending on

how much space is
needed for variables.

The highest address in user RAM
is called “RAMTOP", or on some
computers, “HIMEM™,

The memory map includes
both ROM and RAM. The
operating system and the
BASICinterpreterarein
ROM and the rest of the
areasonthe maparein
RAM.

Memory addresses

Inside the computer, memory addresses are
represented by two bytes of computer code, i.e. 16
pulse or no-pulse signals or “bits". The largest
possible memory youcan have ona
microcomputer which uses a 280 or 6502
microprocessor is 64K (ROM and RAM combined).
This is because the biggest number you can make
with 16 binary digits is 65535, so this is the highest
possible address. This gives 65536 locations,
numbered from 0 to 65535. Each location holds one
byte, 1024 bytes make a kilobyte (K) and 65536
bytes equal 64K (65536 + 1024 = 64).

Onthe ZX81 (Timex
1000) the boundary
between the screen
memaory and user
RAM changes
depending onthe
size of the program
inuser RAM,

FE BB R R B R R R

Py i ot o il

User RAM
This is where the programs youtype inare
stored. The data for variables and arraysis
stored at the top of user RAM.

&2E00

If you add extra memary
to your computer, the
addresses of some of the
areas may change. There
should be information
aboutthisinyourmanual.

Inside the computer’s workspace

This picture gives a closer view of the area of the computer's memory reserved for use by
the operating system. There may be a second detailed map of this area in your manual, ora
list of the various addresses and what they are used for. On some computers (e.g.
Sinclair/Timex), the locations used by the operating system are not in one group and are
distributed throughout the memery.

e
e &

B N

1 More about stacks

The computer uses the stacks to store
temporary data in a particular way. The last
itemto be stored must always be the firstto
o " | beretrieved. Thisis called LIFO storage:

o : AR R i i last in, first out.

Hex numbers

Ina machine code program, numbpers and addresses are always written in hex.
Below you can find out how to convert decimal numbers to hex, and vice versa.

Decimal 0 (1|2 |3|4|5 |6 |7|8|9(10/11(12(13|14]|15

Hex 0123455?89AB__CDEF
This chart shows the hex digits (0-9and digits, just as you do in the decimal system
A-F)and their decimal values. Tomake to write numbers over 9. The value of each
numbers over 15 (F) youuse two (or rnore) digit depends on 11s position in the number.

: ACA is hexyi
Decimal for 1226,

1000s | 100s ms! 1s'
1 2 . m

Inthe decimal system the first d1g1t on the In a hex number the first digit on the right
right of a number shows how many lsthere also shows the number of 1s but the next
are, the second shows the number of 10s, digit shows the number of 16s, and the third
the third, the number of 100s (10%), etc. digit shows the number of 256s (16%).

Canyou convert
&AT710decimal and
decimal 513 to hex?
(Answers pagedd.)
\-_-'N-_—-'\-.__

Decimal to hex
To convert a decimal number e.g. 1226, 10 1226 - 256=4................. 4isdinhex
hex, first you divide by 256 to find how many remainder 202

256s there are inthe number. Then you N
divide the remainder by 16 to find the 202 4 16=12..........cc... 12 !SC !‘nhex
number of 16s and the remainder fromthis ~ remainder10.................... 10is Ain hex
sum gives the number of 1s. Finally, convert . g

the answer to each sum to a hex digit.* 1226is4CAin hex

Converting hex addresses
Inahex address, e.g. 5C64, the two left-hand digits show which page (see opposite)the
location is on and the second pair of digits shows the position onthe page.

To convert a hex address to decimal, first To convert adecimal address to hex you
convert each pair of digits to adecimal have to divide by 256 to find the memory
number, as shown above. Then multiplythe page number. The remainder givesthe
page number by 256 (there are 256 position on the page. Then you convert the

locations in a page) and add the numberfor figures to hex digits as described above.
the position on the page.

11

*See page 41 for how to do this on a calculator.

12

Peeking and poking

Two BASIC words, PEEK and POKE *
enable you to lock at the bytes storedin
the computer's memory locationsand
change them. Youuse PEEK and POKE
with the decimal, or onsome
computers, hex, addressof amemory
location. Remember, to give the
computer hex numbers youmust typea
signsuchas &, # (called hash)or$
before the number. Check this in your
manual as it varies on different
computers and some computers will
accept only decimal numbers.

Using PEEK

8625 | {8626 |prl8627
8620 k862! il 8622 plb{ 8623
8els Bels POKE 8818, 50
74 WA
PEEK {BB1 -ﬁi

You can peek into any location in your
computer's memory, but you can only poke
new bytes into RAM locations because the
bytesin ROM cannot be changed.

PRINT PEEK (12345}

PRINT PEEK{720)
240

FRINT PEEK (B&43)
O

LET A=PEEK (1024}
PRINT A

- 4dh

30 NEXT J

10 FOR J=700 TO 725
46 20 PRINT PEEK(J};","s

~

—

These arethe
decimal equivalents
of bytes of

computer code.

Totell the computer to look in a memory
location youuse PEEK (or your computer's
command) with the address of that location.
To see the result on the screen, use PRINT
PEEK, or store the result in a variable using
LET and then print out the variable, as
shown above left.

Poking

Try writing a short programusing a FOR/
NEXT loop, like the one in the centre above,
to print out the bytes from a series of
locations. Look at your computer’'s memory
map and experiment with addressesin
different parts of the memory.

Thistellsthe
cormputer to put 60

inlocation 16763.

Use PRINT PEEK wi{" N
to see the result.

The picture above shows you how touse
POKE. You can pocke anywhere in RAM, but
if you poke new values into the area
reserved for use by the operating system
you may disrupt the workings of the
computer. You can restore it to normal by
switching off and on again. Try writinga

Thisputsa
number, N, {8
into ¥
location A.

) 1 T
short program like the one above topoke
several numbers into a series of locations in
user RAM.

The numbers you poke must be between
0 and 255, the highest number than can be
represented with eight binary digits (one
byte of computer code).

*Some computers use different commands, e.g. the BBC uses a ? mark. Check your manual.

What the numbers mean

When you tell the computer to print the
contents of a memory location on the
screern, the result is always a decimal
number from 0 to 255. This is because each
memory location can hold one byte, and the
highest value that can be represented with
eight binary digits is 255. There are only 256
(0to 255) possible different bytes of
computer code and each byte can have
several different meanings for the
computer.

For example, the binary number
00110000 (decimal 48) could be the code for
one of the instructions in the instruction set,
for a letter on the keyboard, or for part of
the address of another memory location
(each address consists of two bytes).

T'-,rpeinthe address for
yourcomputer's
operating system.

Look in your manual to find the address in
ROM of your computer’'s operating system
and then try this program. The numbers
which appear on the screen are the decimal
equivalents of bytes of machine code from
one of the programs in the operating
system.

FOKE screen

Use an address
inyour
computer’'s

sCcreen memory. 4

Now find the screen memory for your
computer, then try poking numbers into
screen memory locations. You do not need
touse PRINT PEEK because bytes stored in
the screen memory are automatically
displayed on the screen. Thistime the
computer interprets the number asthe
code for a character.*

Putan addressin
yourcomputer's
scregnmemaory
here,

20 LETHC=33

30 POKE 9,C
40 LET, J=d+4
S50 LET C=C+1
SO TPIC{=125

<THEN : GOTD 30
0 STOP e

Try ashort program like the one aboveto
print your computer's character set. The
program uses ASCII codes, starting with 33,
the code for |, and ending with code 80,
Other numbers in the range 0-255 are for
special keys such as SPACE and DELETE,
for printing the alphabet in inverse or
flashing characters, and for graphics
characters.

Thisisthe
ASCll code

address. 70

{pronounced “askey”), to decide which
numbers represent which characters, but
some, such as the ZX81 (Timex 1000) use
different numbers. The VIC 20 has aspecial
set of numbers, called screen codes, for
charactersto be displayed on the screen.
There should be a list of your computer's
character codes in your manual.

R R R
Rt T Lttt]
B SRR T
MMM N AR RN NN N

™ Location 1120.
First location in screen memory.

On most computers you can printa
character in a particular position onthe
screen by working out the address of the
location for that position. For example, ifthe
screen memory starts at location 1024 and

the computer can print 32 charactersona

line, the address for the first position onthe
fourth line will be 1024+ (32 = 3) whichis

1120. (Address 1024 is counted as zero.) 13

*On the Spectrum (Timex 2000) the information for each position on the screen is stored in several
different memory locations and you cannot primt characters by poking codes into the screen memory.

Inside the CPU

All the computer's work isdone by
fetching bytes of instructions and data
from the memory, then carrying out the
instructions in the CPU.

There are three main areas inside the

CPU: the registers where bytesof data
are held while they are processed; the
ALU, or arithmetic/logic unit where
bytes can be added, subtracted or
compared; and the control unit which
organizesall these activities.

The arrangement of the registers in
the Z80 and 6502 chips is different, as
shown in the pictures below.

The 280 registers

Fetch a byte
fromthe
memaory
~» and put it

the sort of
instructions
the CPU can
carry out,

which the CPU can carry out. They areall
very simple. It can fetch bytes fromthe
memory and put them in the registers, move
|bytes from one register to another, process
them in the ALU and store the results inthe
memory. Even the simplest task, such as

The main difference between the Z80 and the 6502 chips is that the Z80 has more registers.
This means that bytes can be stored temporarily in the CPU, whereas in the 6502 they haveto

be sent back to the memory.

A stands for “accumulator”.
Itisthe most important
register inthe CPU and
stores bytes on their wayto
and from the arithmetic/
logic unit. It can only hold
one byte atatime.

Fisthe "flags register”. It holds eight
bits but only six of them are used.
Eachbit acts as a signal. For
example, the carryflagissetto 1
when an answer is greater than 255
and will not fit in one byte and the
sign flag shows whether a number is
positive or negative.

IX and IY are called
“"index registers”.
They caneach hold
16 bits and they are
used In certain
instructions to work
out the addressofa
byte in the memory.

B,C,D,E,Hand L are general
purpose registers where bytes
can be stored ontheir way toor
from the memory. Each can hold
only one byte but they can be
grouped together in pairs, e.qg.
14 BC, DE or HL to hold two bytes.

SP stands for "stack
pointer”, Itisa 16-bit
register and storesthe
address of the last itemin
the machine stack - the
place where the CPU
stores temporary data.

PCisthe “programcounter”.
Itisa 16-bit register and it
holds the address of the next
byte to be fetched fromthe
memory. The number inthe
program counter increases
by one eachtime an
instruction is carried out.

o WP

Transfera R,
— Jumpto byte from one y ‘:Ilqtheb;:s”,
i registerto thatis, make
another. allthe 1sinto Move all the

7;’ instruction 6. bits one place

Os and all the to the right.

Osinto 1s.

Compare twg
bytes.

B . 5 VA

-1 - = 3 .l s - :
adding two numbers and displaying the RAM, loads a data byte into the registers
result on the screen, involves overa and then performs the operation specified
hundred simple steps like these and the by the instruction. In machine code, youcan
CPU can carry out over half a million each tell the CPUwhat to do with the bytesinthe
second. registers, but the ALU and control unit carry

For each operation the control unit out their work automatically and you cannot
fetches an instruction byte fromthe ROMor tellthem whattodo.
The 6502 registers
The main registers in the 6502 are the same as those in the Z80, but some of them are called
by different names.
A is the "accumulator” P stands for “processor
where bytes are stored on status register” and it has
their way to and fromthe the same function asthe

flags register in the Z80. It
contains eight bits, seven of
which are used. Eachhitis
setto | torecord a certain
condition, such as whethera
number is positive or
negative.

: ALU. Itisthe same asthe
accumulator in the Z80 and
can hold only one byte.

Xand Y are“index
registers”. They are used in
certain instructions to work
out the address of a byte of
data. They canalso beused
as general purpose
registers to hold bytes

temporarily. PCisthe
“program
Thisis the counter and it
ninth bit of works inthe
the stack same way asthe
pointer PCregister in
{register S). the 780.

Sisthe “stack pointer”. It stores the address of the last item onthe
stack - the special area in the RAM where the CPU stores data. Inthe
6502 the stack pointer is an eight-bit register. In order tostore
addresses a ninth bit kept permanently at 1 is wired up tothe S
register. This represents the page number of the address, so inthe
6502, the stack is always in page one of the memory. The numberin
the stack pointer gives the position on the page.

16

Giving the CPU instructions

A program in machine code consists
of a list of instructions telhng the CPU
exactly what to do with bytes inthe
registers. You can use only the
instructions that the CPU <
understands, so for computers witha A@ @
ZB0or ZB0A microprocessor you [4 i
must use instructions from the Z80
instruction set and for computers

OPERAND

witha 6502, 6502A 0r6510 Most machine code instructions consist of
microprocessor, you must use 6502 two parts: an “opcode” and an “operand”.
instructions. There isa listof Z80 and The opcode tells the CPU what to do and the

operand tells it where to find the data to
work on. (The word operand means “object
onwhich an operation is performed”.) Each
opcode is an instruction from the instruction
set.

6502 instructions at the back of this
book.

--‘-\-""\—""

WA

Opcodes can be written as mnemonics — Mnemonics are much easier to

short words which represent whattheydo- understand then hex, but you cannot type
or as the hex equivalents of the computer's them into your computer unless you have an
binary code for each instruction. For assembler (a program which translatesthe
example, LD A onthe Z80 and LDA onthe mnemonics into the computer's own

6502 are the mnemonics for "load abyteinto code).* Most people write machine code
the accumulator”. The same opcodesinhex programsin mnemonics and then translate
are 3E for the Z80 and A3 for the 6502. themto hex.

Here are two machine code instructionsin sign to indicate hex numbers). Numbers are
mnemonics, one for the Z80 and one forthe always written in hex in machine code. On
6502. They both tell the computer toload the the 6502 a number is preceded by a #
number 05 hex into the accumulator (&isthe (hash) sign to show that it is a piece of data.

*¥ou can find out about assemblers on page 40,

A simple program

Here are two programs, one for the Z80 and one for the 6502, which tell the CPUto addtwo
numbers. They are both written in mnemonics. Strictly speaking, a program in mnemonics
is called an assembly language program and one which uses hex codes is called machine
code. Over the page you can find out how to translate the programs to machine code, and
on the next few pages, how to load and run the version for your computer.

The Z80 and 6502 programs follow the same steps, although the actual instructions are
different.” In the 6502, data on which calculations are to be carried out must alwaysbe
placed in the accumulator. In the Z80 it is placed in the accumulator, or for big numbers, in
register pair HL.

To add two numbers you load the first accumulator and store the result inthe
number into the accumulator. Then youadd memory. The mnemonic opcodes for these
the second number to the one inthe instructions are given below.

; Opcodes and
Z80 mnemonics Meanrng

operands for the
ZB0 are separated
by commas.

| Load A with a number. A stands for “accumulator”
LD A, number and LD is short fcr Ioad

——— i

ADD A num ber | Add w.“l(the accumulatur} anumber.

| Load acertain address mlhthe contents ofA (the accurnulator)
LD faddress). A Addresses are always written in brackets.

6502 mnemonics | Meaning

e — e —

LDA number l;:tacéﬂ witha number. A stands for "ac:cn.um.dator and LD is short for
" oa ¥
' ADC s the mnemonic for the instruction “add with carry”. It tellsthe
ADC number computer to add a number to the accumulator and to set the carry flag in
the I]ags reglster 1[necessary You can find out more about this on page 29.

Store A (i.e. the contents of the accumulator) at a certain address. ST is
STA address short for “store” and A stands for “accumulater”,

—

This program uses

Z80 adding LD A The # sign indicates
program rtr):gafgcnoddes sty tf?:é;h{;afﬂgau?;andusa
LD A,&IJE LD[address.!—\. p o
ADD A, &04

D
LD (&7F57), A e

Now you can fill inthe data and addresses. and 4 decimal), and storing the resultin
Inthese examplesthe programs areadding memory location TF57 hex.
2hex and 4 hex (which are the same as 2 17

*From now on, if you have a Z80 you can skip over the 6502 programs and if your computer uses 6302
instructions, ignore the Z80 programs.

Translating a program into hex

The only way to translate the mnemonics into hex codesis to look upeach
mnemonic ina chart. There isa chart of mnemonics and hex codes at the back ofthis
book. You have to be careful, though, as there are several different hex codesfor
each instruction depending on whether the operand is a piece of data, anaddressor
thename of a register. For example, here are some different versions of the
opcodes for loading the accumulator, and their hex codes.

Whenthe operand is a piece of dataitis this book includes all the instructions

called “immediate addressing”. Whenitis covered in this book. If you want to write

the address where the data is stored itis more advanced programs you will need to
called “absolute addressing”. The list of get a complete list of Z80 or 6502 codes and
mnemonics and hex codes at the back of there are some suggested books on page 40.

Here are the hex codes for the Z80 and 6502 code and those in hex are called object
adding programs. Instructions in code.
mnemonics are sometimes called source

Now you can fill inthe data and addresses.
This is quite straightforward - except for
the addresses. In machine code you haveto
reverse the order of the two pairs of digits
which make up an address. You can find out
18 more about this on the opposite page.

You have loreverse
the two pairs of digits
in an address, like this.

You leave out the &
and # signsinthe hex
code version.

More about hex codes

Machine code programs are written in hex rather than decimal numbers because the
binary numbers used in the computer's own code translate more neatly to hexthan

For example, the highest address youcan ner that can be represented by one
have with sixteen binary digits is 65535 in byte (eight binary digits) is 255 decimal and
decimal and FFFF in hex and the highest FF hex.*

Most of the opcodes in the computer's though, take up two bytes so they need two
instruction set are one byte long, soinhex pairs of hex digits.
eachopcode is two digits. Addresses,

Position &57

(one page = 256 memory locations).
order byte and it is the page number inthe Because of the way the CPU handles

mermory on which the address is located addresses you must always give it the low
(see page 10). The second pair of digitsis order byte (position on page) first, followed
called the low order byte and it isthe by the high order byte (page number).

position of the memory location on the page

18

*You can find cut how to convert binary numbers to decimal on page 28.

Finding free RAM

There are several things to do before you can load and run the adding programon
page 18. First you need to choose an area in the memory in which to storethe
program. When you type in a BASIC program, the BASIC interpreter automatically
stores your program in user RAM. When you give the computer a machine code
program, you bypass the interpreter so you have to tell the computer whereto
store the program.

You need to choose an area in the RAM where your machine code will not
interfere with any other information stored in the memory. For instance, youmust
not store machine code in the areas reserved for use by the operating system, such
as the systems variables or the stacks. If you do the systemn will probably crashas
your machine code will have replaced vital information which the computer needs
to organize all its work. You also have to be careful to keep your machine code
separate from any BASIC program you may give the computer at the same time. If
the computer crashes the only way to restore it is to switch it off and on againand
youwlll lose your program.

How much memory will you need?

= = -— — -

¥ e B[F
s byte. €
.'-“-

|] B Each memory

ﬂ | location holds

one byte.

It is quite easy to work out the length of a Most machine code programs are quite
machine code program - you just countup short and to start with a hundred bytes of
the number of pairs of hex digits (each pair =~ memory space will probably be plenty for
takes up one byte). For example, the adding your machine code programs,

program has seven bytes.

Finding free RAM

The normal place to store machine code
programs is at the top of user RAM, the
place where BASIC programs are
stored. You have to make sure, though,
that the machine code will not get mixed
up with any BASIC programs. To avoid
this you can lower the top of the user
RAM area. This makes a “no-man's land"
above user RAM which the computer
will not use until you tell it to when you
load your machine code program.

The top of user RAM is called
RAMTQOP, or HIMEM, or just top of
memory. You can find out how to lower
RAMTOPF on the opposite page.

Lowering the top of user RAM

The computer keeps a record of the address of RAMTOP in the systems variables and you
can change RAMTOP by changing the address stored in the systems variables. The
instructions for doing this vary on different computers, but most follow the principles given
below. You should check how to change the top of RAM in your manual though, as your
computer may use different instructions, or may even have an easier way to make space
for machine code.

= —{ Position } - Page

"-" U = h Y o -g number,
P SYSTEMS VARIABLES V| B g ol e

Ny ey
%3 ‘m"]‘ C'P Y . e R

The address of R}&MTDP takesuptwo just top of user RAM). The computer stores

consecutive locations in the systems the two bytes of the address inreverse
variables, one for the page number of the order - first the position on the page, then
location and one for the position onthe the page number, so the first location inthe
page. Look up the addresses of these systems variables holds the position

systems variables locations in your manual number and the second, the page.
(they may be listed as RAMTOP, HIMEM, or

B |

PRINT PEEK (address 1) +PEEK
{address 2)#25&

A 4

You can use PRINT PEEK (or your This command automatically converts the

computer's command) likethistopeekinte twobytes of the RAMTOP addressintoa
the systems variables and print out the decimal address by multiplying the page
address of RAMTOP. Fill in the addresses number by 256, then adding the positionon
of your systems varables. the page.

CLEAR ramtop address - 100

\

HIMEM ramtop address = 100 et RAMTO
xoo] | L RAY
Most computers have their own special machine code as shown above left. Check
command for changing the address of the your computer's command in your manual.
top of user RAM. For instance, forthe These commands lower the top of user
Spectrum (Timex 2000) the command is RAM by 100 locations and sc reservean

CLEAR and for the QOricitis HIMEM. These area of 99 bytes for machine code starting at
commands are followed by the address of the address after RAMTOP. Youcan

the top of user RAM minus the number of change the figure 100 to reserve more space.,
bytes of memory you wish to reserve for 21

*See over the page for how to lower the top of RAM on the VIC 20, and where to store machine code
onthe ZX81 (Timex 1000).

22

VIC 20 tip

The VIC 20 has no special command for
changing the address stored inthe
systems variables. Here are the
instructions for lowering the address of
the top of user RAM on the VIC.

VF-.RmBLES

-wr

-i’ l FI

=113

-im- b__l b'_J pﬂ-’l

F

ﬂ;;_- =D

IR T ey W |

The address is held in systems variables
55 and 56. Remember, the second
location holds the page number.

: Fﬁéz:sa.FEEmsmﬂ]

To lower the top of user RAM by 256
locations, i.e. one page, use the direct
command shown above. This makesthe
computer peek into location 56 (the one
which holds the page number). It
subtracts 1 from the value held there and
then pokes the new value back into
location 56. In other words, it reducesthe
page number part of the addressby 1. To
see the new address of the top of user
RAM type this command:

PRINT PEEK(55)+ PEEK(56)* 256.

ZX81 tip

Onthe ZX81 the best place to store
machine code programsis atthe
beginning of user RAM. To do this you
type a REM statement as the first line of
the hex loader program given on page
24 and fill it with as many digits asthere
are bytes in your machine code
program.

Each of the digits in the REM statement
takes up one location in the memory.
Now you can poke your bytes of
machine code into the locations
reserved by the digits inthe REM

statement. The first byte :
of machine

codewill be
storedin
location 16514,

User RAM
starts at
location
16509.

To do this you need to know the address
where the first digit is stored. User RAM
starts at location 16509 and the computer
needs two bytes to hold the REM line
number, one for REM, one for NEWLINE
and one to record the length of the line,

so the first digit is in location 16514,

Other places to store

machine code

There are a few other placesinthe
memory where you can store machine
code, if youare not using them. For
instance, if you are not planning on
saving your program, you can store itin.
the cassette buffer, orifyouarenot
creating any user-defined graphics, you

User defined Cassette

graphics area.

could store it in the area set aside forthis. *.{

Look in your manual to find the
addresses of these areas inthe RAM.
Your manual may also suggest suitable
places in your computer's memory for
storing machine code. You should look

out, too, for tips in magazines mdm ;

Loading and running a program

The next few pages show you how to load and run the adding program on page 18
To give the computer a machine code program you have to poke each byte intothe
area of memory that you have chosen for storing machine code (e.g. above
RAMTOP). On most computers you can only poke decimal numbers so you use a
short BASIC program called a "hex loader" to do this for you. The hexloader
converts each byte of machine code to a decimal number, then pokes it intothe
memory. There is a hex loader program over the page. First, though, youneedto
change the address for the answer to the adding program, to an addresssuitable
for your computer. There 1s also one more instruction (see below) you mustaddto
the program.

Choosing an address for the answer

Data produced by a machine code
program, such as the answer to the sumin
the adding program, is called “data bytes”.
It is important to store data bytes where

they will not get mixed up with the program
itself. The best place isright at the
beginning of the area you have reserved for
machine code, in front of the program.

.

=L

g
For example, if you have lowered the top of
user RAM to, say, location 16000, the first
address of the area for machine code will
be location 16001, This is where you would

To convert the address to hex youdivide by
256. The answer is the decimal page
number and the remainder is the position
onthe page (see page 11).

The return instruction

Z80 mnemonics
LD A, &02

ADD A, &04

LD (&7F57),

3E, 02
C6, 04
32,57 7F

Hex codes

At the end of every machine code program
you must always have the instruction RET
(for the 280) or RTS (for the 6502). This
makes the computer stop running the
machine code program and return to where

store the data byte and the program would
startin location 16002, Youwill needto
convert the address for the data byte to hex
so you can insert it in the program.

Address
16001 is
3E81in hex.

To convert these to hex you divide by 16
and then convert the answers and
remainders to hex digits as shown above.

it left off. Without this command, the

computer would carry on atternpting to

follow an instruction for every byte it found

in the memory and the system would soon
crash.* 23

*There i1s more about the return instruction on page 35.

Hex Jol172)3sfalsle|7/8loflalBlC|D]E]F]
ASCII 484950 [51]52]53]54]55]56]57] 65] 66] 67] 68] 69] 70|

minus 48 — minus 55

nnn-nnn-unmmmmm

. Decimal
Hex ASCII 48 D:Céma.‘ vélsaf

-55 = [hex code

Using the loader

Now you can use the hex loader to try out the machine code adding program. This isnota
very exciting program, but it is simple and it shows you how machine code works. Typethe
hex loader into your computer. At line 160, replace the sample data with the hex codesfor
the adding program, as shown below.

Dataforthe hex loader e
Replace Ib and hb with the two ENDsignal
bytes of the address for the to computer.
answer.

150 DATA 3E.02,C6,04,32,1b,hb,.C%,END

These are the hex codes for the adding answer will be stored in your computer.

program. You need to replace the letterslb Remember to put the bytes inreverse
(low order byte) and hb (high order byte), order, i.e. low order byte (position on page)

withthe two bytes of the address wherethe followed by high order byte (page number).

Running the hex loader

Now type RUN to run the hex loader you are storing the answer. Type this
program. When it asks you for the address, addressasadecimal number as it willbe
type in the first location after the onewhere used with the POKE command.

Running the machine code program

These are some of the
commands used on
different computers.

The command to tell the computer to start first byte of the program is stored. Check
running a machine code program varieson this command in your manual. Whenthe
different computers. Some use CALL, computer receives this command it goesto
others use PRINT USR or SYS with the the address and starts carrying out the
decimal address of the location where the machine code instructions,

a5

Seeing theresult

_-"‘Fll:rﬁf PEI-:xumu _ PHINT PEEK(14001) = - WA
y m; m:, AT

The computer carries out the machinecode have to use PRINT PEEK with the address of

instructions and stores the answer inthe the answer. The result will be the answer in
location you told it to. To see the result you decimal.

Programs to write
You now know enough machine code to write some simple programs. Thereisa

checklist at the bottom of the page to help you remember all the things you have todo
when you write a machine code program. Answers page 44.

1. Try writing a programto add 25and 73
(decimal) and store the result inthe . :
The adding program will only add

memory. v A numberswhich total less than 255,

2. Seeif you can write a programtoadd 48\ On page 28 you can find out howto
64 and 12 and 14 (decimal) and store the : add larger numbers.

result in the memory.

Machine code checklist 6. Fill in the addresses in the program -

1. Write your program in assembly remember to put the two bytes inreverse
language and convert any datato hex. order. (See pages 18-19.)

2. Look up the hex code for each of the
mnemonics (there is a listof the
mnemonics and hex codes at the back of

‘Before running the hex s
check the hex codes in the data
very carefully.

7. Type inthe hex loader (you could save
i i this program on tape) and fill in the hex

i " codes in line 160 followed by the END

' signal. (See page 24.)

3. Add the return instruction to the end of
the program. (See page 23.)

4. Count up the number of bytesand
reserve your free RAM area. (See pages
20-22.)

B W

Make a note of the addresses of
data bytes and of the address

where you have stored the
program.

8. Run the hex loader and input the
decimal address of the first location
where you wish to store the machine
code. (See page 25.)

9, Run the machine code programusing
your computer's command with the
address (in decimal) of the first location
where the machine code is stored. (See
page 25.)

If you change the datain the hex
loaderyou have to runthe

program again to poke the new
bytes into the memaory.

5. Work out what memory locations you
need for data bytes and convert the
26 addressestohex.(Seepage23.)

Adding bytes from memory

In the previous program the data was included in the program itself. This iscalled
immediate addressing. Sometimes, though, you may want to tell the computer to
do something with data stored in its memory. In this case, the operand part ofan
instruction will be an address telling the computer where to find the data. Thisis
called absolute (or direct, or extended) addressing.

Immediate
addressing

Absolute
addressing

These are just two of the several different meodes”. There is a different hex code for
ways in which you cantell the computer each instruction depending on the
where to find the data to work on. The addressing mode you are using.

different ways are called "addressing

Program to add numbers from the memory

Here is a program to add two numbers stored in the memory. Compare the hex codes for
the instructions in this program, which uses absolute addressing, with those for the
previous adding program which used immediate addressing.

Z80 program
Mnemonics | Hex codes Meaning
LD A, (address 1) 3A, address 1 Put the number in address 1 into the accumulator,
LD B,A 47 | Putthe number in the accumulator into register B.
LD A,(address2) 3A, address 2 Put the number in address 2 into theaccu_rﬁl_ﬂator.
ADD AB 80 Add the number in register B to the accumulator.
LD (address 3), A 32, address 3 | Store the contents of the accumulator in address 3.
RET c9 | Retum
To add two numbers from memory you straight from the memory, though, so you
have to load them into the registers first. For have to put the first number into A and then
this you can use the accumulator (A)and transferittoB.

register B. You cannot load register B

Running the program

To run this program, follow the steps given in the checklist on the opposite page. First,

though, you will need to poke into the memory the two numbers to be added. Youshould

choose memory locations at the beginning of the area you have cleared for machine code, to
keep these data bytes separate from the instructions. Then convert the addresses to hexand
insert them in the program. You need a third address for the answer. To see the result, type
PRINT PEEK(address 3). 27

s | 307; 21214; 759; 1023. [

Working with big numbers

The programs on the previous few pages only work with numbers which add upto
2955 or less. This is the highest number that you can represent with the eight bitsin
one register or memory location. To work with larger numbers you need to knowa
little more about the binary number system, and how to use the carry flag. Overthe
page there isa machine code program to add larger numbers.

Binary numbers
The binary number system works like hex and decimal numbers except that there are only
two digits, 0and 1. To make numbers bigger than 1 you use several digits and the value of

each digit depends on its position in the number.
11111111 binary
is 255 decimal.
v,

128 + 64 + 32 +16 + B8 + 4 + 2 + 1 =255 7 o b

Inabinary number, eachdigit hastwice thethird, the number of fours; the fourth the
the value of the digit onits right. Thefirst number of eights and so on, as shownabove.
digit (the one on the right) shows how To convert a binary number to decimal you
many ones there are inthe number. The multiply each digit by the value of its position
second digit shows the number of twos; inthe number and add up the answers.

Canvyou cnnver‘tthe\s:t}

decimal? (Answer page
44,)

128 =64 x32 x16 * 8 w4 x 2 x1

%128 x64 =32 16 x8 xd x2 %1 =128 =64 %32 x16 %8B x4 x2 x1

0+ 0+32 + 0+B+4+240 128 + 0 + 0+ 0+ 0«4+ 24|
=46 =135

Here are some more examples which show how you
convert binary numbers to decimal.

Giving the computer big numbers

Inside the computer, numbers over 255 are stored in two bytes, called the “high order byte”
and the “low order byte", just like addresses. The high order byte shows how many 256s
there are in the number and the low order byte is the remainder. As with addresses, the
computer always deals with the low order byte before the high order byte and you haveto
store thern in that order in the memory.

’/ Number over 255
12420 - 256 = 48 remainder 132
High order byte

—
B8l owoensye (158
To give the computer a number over 255 If you want to use the number asdataina
you have to work out the value for each machine code program you have to convert

byte. To do this you divide the number by each byte to hex. To do this, divide each

256. The answer is the decimal value of the byte by 16, then convert the answers and
high order byte. The remainder is the low remainders to hex digits as described on
order byte. page 11.

What are the decimal high order and
low order bytes for these numbers?

Andwhat are they in hex? (Answers
on page 44.)
™

The carryflag

The carry flag is a single bit in the flags
register (also called the processor
status register), which isused to
indicate when the answer to a sumis
greater than 255 and will not fit intoone
byte (eight bits). Whenever this
happens the computer automatically

You can think of the carry flag as a ninth bit

putsa | inthe carry flag. Thisiscalled indicating that a binary 1 has been carried
setting the carry flagand making it O1s over from column eight of a number. For
called clearingit. example, look at the surn 164 + 240

(10100100+ 11110000 in binary), below.

Degmal Bi“aw To add binary numbers you carry 1

each time acolumntotals morethan
128 64 3216 8 4 2 1 1 justas you do in decimal addition
Ninth 1 0 1 00100 when a column totals more than 9.

bit +1 1 1 1000 0%
\-11 00 101008

‘Iﬁd

- .~ gl dane

The answerto tl'us sum is 404 whichtakes the computer it would be represented by
up nine bits in binary. The ninth bit shows the bit in the carry flag.
how many 256s there are in the number. In

Carrying inthe Z80

The Z80 has two different adding
instructions: ADD and ADC. ADD tellsthe
computer to add two numbers but to ignore
any carry over from previous calculations.
If the calculation results in a carry over, the i
computer will set the carry flag and if there ADC stands for “add with carry” and it

is no carry it will make the carry flag0. tells the computer to add two numbers plus
the carry flag, and to set or clear the carry
flag depending on the result. If you are
doing a series of calculations it is best touse
the ADD instruction for the first sum to make
sure you do not include a carry left over
from a previous operation, and thentouse
ADCin case there was a carry from the first
calculation.

You can see howthe
| carryflagworksin
the program over

The 6502 has only one adding instruction, itisimportant to clear the carry flagusing
ADC, soitalways includes the contents of the instruction CLC (clear carry flag) before
the carry flag in calculations. Because ofthis youdo any additions. 29

Big number programs

Before you can run the programs on these two pages you need to work out thehigh
and low byte for each of the numbers you want to add and poke them intothe

o Tt At i =) ple. s i W - \\?:H-;._'E" :
memory. For example, say you want to add 207 and 764 High order order
byte _JB 1

: i High
First number: 307 ey
307 + 256 = 1 remainder 51 byte

Second number: 764
764 = 256 = 2 remainder 252
High order

Low order

Next youneed to poke these bytesinto bytes for the first number are stored in
memory locations at the beginning of the locations W and W1 and the bytes forthe
area you have reserved for machine code. second number are inlocations X and X1.
For each number, the low order byte must Youneed three locations, Y, Y1 and Z forthe
be inthe first location, followed by the high answer (one for the low order byte, one for
order byte. Inthe picture above, thetwo the high order byte and one for a possible

; carry).
280 big number program

Adding the two numbers on the Z80 is quite easy as you can use the registers in pairs, with
each pair holding the two bytes for one number. You can use the H and Lregistersasone
pair and the B and C registers as another. When they are used like this they are referredto
as HL and BC. When you are not using the accumulator you use the HL registers foradding.
Here are the mnemonics and hex codes for the program. It may help youtolock atthe
picture at the top of the page when you study this program.

Mnemonics Hex codes | Meaning

LD HL,(addressW) | 2A,addressW Puts byte from address W (low order byte of
: first number) into register L and byte from
| address W1 (high order byte, irst number) into
register H.

LD BC,(addressX) = ED4B, address X Puts byte from address X (low order byte,
) second number) into register C and byte from
" This opcodeis address X1 (high order byte, second number)
twobyteslong. into registe_*r B.

ADD H Adds contents of HL and BC and leaves resultin |
DD.HLEE ; = HL. It does not add in the carry flag but it does set
[the carry flag if necessary.
Stores low order byte of answer in address
T a_nd highorder byte inaddress Y1

LD (address Y}, HL 22, address Y

g e ———
LD A, &0 3E.0 See opposite page forhowthe [See opposite for
ADC A, &0 CE.0 mmp?l?:rschee:algthecm flag. } howtodisplay
LD (address Z), A 32 address Z i the result of
= ! CQ__ - Rem-— ' this program.

l .

To run the program youneed tofill inthe specify one address for each pair. The

hex addresses for W, X, Y and Z. (Don't computer automatically puts the byte from

forget to reverse the pairs of digits.) When the next consecutive address into the other
30 youusetheregistersinpairsyouneedonly registerinthe pair.

Checking the carryflag

Lme-s 5-Tof the ZBO pmgram are for accumulator (5th line), then add 0, using the
checkingthe carry flag. Youcannot loadthe add with carry instruction. If the carry flag
contents of the carry flag straight into a was set by the previous calculation the
reqgister, or into the memory. The only way accumulator will now contain 1 (fromthe

to see if it has been set is to doanother carry flag) and this is stored in address Z
addition. To do this you put 0 into the (7thline).

6502 big number program

Here is the program for adding numbers greater than 255 on the 6502. Before you run ityou
need to work out the high order and low order bytes for the two numbers and pokethem

into the memory as described on the opposite page.

First the program Then it puts the low order bgne ofthefirst Ifthe resultis greater

clearsthe carry flag nurmber into the accumulator and adds
incase it was setby with carry the low order byte of the
a previous operation second nurn]:-er (End and Brd]mes]

It stores the result in location Y (4th line). Then it adds the two
high order bytes and the carry (if there was one) fromthe
previous sum. It stores the result in location Y1 (Tthline).

Seeing the result

The result is stored as three bytes. The low
order byte (location Y) shows the number of
units. The high order byte (location Y1)

than 255 it setsthe
carry flag.

Lines8-10 checkto
seeifthe carryflag
was set using the same
method as shown at
the top of the page.

shows the number of 256s. This time thecarry | Seeﬁyoucanadaptthepmgram

(location Z) shows the number of 65536s. To Ee“sgflggf;;‘;ffg;;} Y “ﬁiﬂf.“:gﬂ ,
see the result use the instruction shownonthe | 4 needto add lines to check the carryd

right. (Replace Y, Y1 and Z with your Bl flag. {Answer page 44

computer'saddresses.)

