Quick introduction to reverse engineering for beginners

Dennis Yurichev <dennis@yurichev.com>

March 4, 2018

Contents

Preface iv
2 Compiler’s patterns 1
2.1 Hello, world! 2
2.2 Stack . ..o 4
2.2.1 Save return address where function should return control after execution 4
2.2.2 Function arguments passingo)
2.2.3 Local variable storage 5
224 (Windows) SEH o 6
2.2.5 Buffer overflow protection 6

2.3 printf() with several arguments Lo 7
24 scanf() 9
2.4.1 Global variables 10
2.4.2 scanf() result checking Lo 12

2.5 Passing arguments via stack 0.0 oL L L 14
2.6 One more word about results returning. 0oL 16
2.7 Conditional jumpso 17
2.8 switch()/case/default 19
2.8.1 Few number of cases Lo e 19
2.82 Alotofcases e 20

2.9 Loops e 24
2,10 strlen() 27
2.11 Division by 9 30
2.12 Work with FPU o o 32
2.12.1 Simple example e 32
2.12.2 Passing floating point number via argumentso 34
2.12.3 Comparison example 34

2013 AITAYS o 40
2.13.1 Buffer overflow 41
2.13.2 One more word about arrays 45
2.13.3 Multidimensional arrays 45

2.14 Bit fields e 47
2.14.1 Specific bit checking L 47
2.14.2 Specific bit setting/clearing L 49
2.14.3 Shifts 51
2.14.4 CRC32 calculation example 53

2.15 Structures 56
2.15.1 SYSTEMTIME example 56
2.15.2 Let’s allocate place for structure using malloc() 57
2.15.3 Linuxo 58
2.15.4 Fields packing in structure 59
2.15.5 Nested structures L 61
2.15.6 Bit fields in structure L 62

2.16 CH+4 classes e
2.16.1 GCC . . .
2.17 Pointers to functions L. L
2171 GCC . . .
2.18 SIMD . . . e
2.18.1 Vectorization e e e e e e e
2.18.2 SIMD strlen() () implementation L.
2.19 X86-64 e

3 Couple things to add
3.1 LEA instruction. e
3.2 Function prologue and epilogue
3.3 mpad . .o e
3.4 Signed number representations
3.4.1 Integer overflow
3.5 Arguments passing methods (calling conventions),
3.5.1 cdecl . . .o e
3.5.2 stdcall e
3.5.3 fastcall oL
3.5.4 thiscall e
355 xX86-64o
3.5.6 Returning values of float and double type

4 Finding important/interesting stuff in the code
4.1 Communication with the outer world
4.2 String . ..o
4.3 Constants e
4.3.1 Magic numbers L e
4.4 Finding the right instructions
4.5 Suspicious code patterns e

5 Tasks
5.1 Easylevel o
5. 1.1 Task 1.1 . . . o o e e e e e
5.1.2 Task 1.2
5.1.3 Task 1.3 e
51.4 Task 1.4
5.1.5 Task 1.5 e
5.1.6 Task 1.6 o e
5.1.7 Task 1.7
5. 1.8 Task 1.8 o e e e e
5.1.9 Task 1.9 L e
5.1.10 Task 1.10
5.2 Middle level L e
5.2.1 Task 2.1 . . . o e e e e e e
5.3 crackme / keygenme

6 Tools
6.0.1 Debugger e

ii

94
95
96
97
99
99
100
100
100
100
101
101
101

102
102
103
103
103
104
105

106
106
106
107
109
110
112
113
114
115
115
116
116
116
123

124

7 Books/blogs worth reading 125

7.1 Books e e 125
711 WiIndows e 125

7.1.2 C/CH+ . oo 125
713 x86 / x86-64 125

7.2 Blogs e 125
721 Windows e e 125

8 Other things 126
8.1 More examples 126
8.2 Compiler’s anomalies L 126
9 Tasks solutions 128
9.1 Easylevel e 128
9.1.1 Task 1.1 o e 128
9.1.2 Task 1.2 e 128
9.1.3 Task 1.3 o L e 128
9.1.4 Task 1.4 L e 129
9.1.5 Task 1.5 e 129
9.1.6 Task 1.6 e 130
9.1.7 Task 1.7 o e 130
9.1.8 Task 1.8 L e 131
9.1.9 Task 1.9 131

9.2 Middle level L 132
9.2.1 Task 2.1 L 132

iii

Preface

Here (will be) some of my notes about reverse engineering in English language for those beginners who like
to learn to understand x86 code created by C/C-++ compilers (which is a most large mass of all executable
software in the world).

There are two most used compilers: MSVC and GCC, these we will use for experiments.

There are two most used x86 assembler syntax: Intel (most used in DOS/Windows) and AT&T (used in
*NIX) !. Here we use Intel syntax. IDA 6 produce Intel syntax listings too.

"http://en.wikipedia.org/wiki/X86_assembly_language#Syntax

iv

http://en.wikipedia.org/wiki/X86_assembly_language#Syntax

Chapter 2

Compiler’s patterns

When I first learn C and then C++, I was just writing small pieces of code, compiling it and see what is
producing in assembler, that was an easy way to me. I did it a lot times and relation between C/C++ code
and what compiler produce was imprinted in my mind so deep so that I can quickly understand what was
in C code when I look at produced x86 code. Perhaps, this method may be helpful for anyone other, so I'll
try to describe here some examples.

2.1 Hello, world!

Let’s start with famous example from the book "The C programming Language"!:

#include <stdio.h>

int main ()

{
printf ("hello, world");
return O;

T8

Let’s compile it in MSVC 2010: c1 1.cpp /Fal.asm
(/Fa option mean generate assembly listing file)

CONST SEGMENT

$SG3830 DB ‘hello, world’, OOH
CONST ENDS

PUBLIC _main

EXTRN _printf :PROC

; Function compile flags: /0dtp
_TEXT SEGMENT

_main PROC

push ebp

mov ebp, esp

push OFFSET $SG3830
call _printf

add esp, 4

xor eax, eax

pop ebp

ret 0

_main ENDP
_TEXT ENDS

Compiler generated 1.o0bj file which will be linked into 1.exe.

In our case, the file contain two segments: CONST (for data constants) and _TEXT (for code).

The string "hello, world" in C/C++ has type const char*, however hasn’t its own name.

But compiler need to work with this string somehow, so it define internal name $SG3830 for it.

As we can see, the string is terminated by zero byte — this is C/C++ standard of strings.

In the code segment _TEXT there are only one function so far — _main.

Function _main starting with prologue code and ending with epilogue code, like almost any function.

Read more about it in section about function prolog and epilog 3.2.

After function prologue we see a function printf () call: CALL _printf.

Before the call, string address (or pointer to it) containing our greeting is placed into stack with help of
PUSH instruction.

When printf () function returning control flow to main() function, string address (or pointer to it) is
still in stack.

Because we do not need it anymore, stack pointer (ESP register) is to be corrected.

ADD ESP, 4 mean add 4 to the value in ESP register.

Since it is 32-bit code, we need exactly 4 bytes for address passing through the stack. It’s 8 bytes in
x64-code

Some compilers like Intel C++ Compiler, at the same point, could emit POP ECX instead of ADD (for
example, this can be observed in Oracle RDBMS code, compiled by Intel compiler), and this instruction has
almost the same effect, but ECX register contents will be rewritten.

Probably, Intel compiler using POP ECX because this instruction’s opcode is shorter then ADD ESP, x (1
byte against 3).

More about stack in relevant section 2.2.

After printf () call, in original C/C++ code was return 0 — return zero as a main() function result.

In the generated code this is implemented by instruction XOR EAX, EAX

http://en.wikipedia.org/wiki/The_C_Programming_Language

http://en.wikipedia.org/wiki/The_C_Programming_Language

XOR, in fact, just "eXclusive OR" 2, but compilers using it often instead of MOV EAX, 0 — slightly shorter
opcode again (2 bytes against 5).

Some compilers emitting SUB EAX, EAX, which mean SUBtract EAX value from EAX, which is in any case
will result zero.

Last instruction RET returning control flow to calling function. Usually, it’s C/C++ CRT? code, which,
in turn, return control to operation system.

Now let’s try to compile the same C/C-++ code in GCC 4.4.1 compiler in Linux: gcc 1.c -o 1

After, with the IDA 6 disassembler assistance, let’s see how main() function was created.

Note: we could also see GCC assembler result applying option -S -masm=intel)

main proc near
var_10 = dword ptr -10h
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov eax, offset aHelloWorld ; "hello, world"
mov [esp+10h+var_10], eax
call _printf
mov eax, O
leave
retn
main endp

Almost the same, only sole exception that in function prologue we see AND ESP, OFFFFFFFOh — this
instruction aligning ESP value on 16-byte border, resulting some values in stack aligned too.

SUB ESP, 10h allocate 16 bytes in stack, although, as we could see below, we need only 4.

This is because the size of allocated stack is also aligned on 16-byte border.

String address (or pointer to string) is then writing directly into stack space without PUSH instruction
use.

Then printf () function is called.

Unlike MSVC, GCC while compiling without optimization turned on, emitting MOV EAX, O instead of
shorter opcode.

The last instruction LEAVE — is MOV ESP, EBP and POP EBP instructions pair equivalent — in other
words, this instruction setting back stack pointer (ESP) and EBP register to its initial state.

This is necessary because we modified these register values (ESP and EBP) at the function start (executing
MOV EBP, ESP / AND ESP, ...).

Zhttp://en.wikipedia.org/wiki/Exclusive_or
3C Run-Time Code

http://en.wikipedia.org/wiki/Exclusive_or

2.2 Stack

Stack — is one of the most fundamental things in computer science.?.

Technically, this is just piece of process memory + ESP register as a pointer within piece of memory.

Most frequently used stack access instructions are PUSH and POP. PUSH subtracting ESP by 4 and then
writing contents of its sole operand to the memory address pointing by ESP.

POP is reverse operation: get a data from memory pointing by ESP and then add 4 to ESP. Of course, this
is for 32-bit environment. 8 will be here instead of 4 in x64 environment.

After stack allocation, ESP pointing to the end of stack. PUSH increasing ESP, and POP decreasing. The
end of stack is actually at the beginning of allocated memory block. It seems strange, but it is so.

What stack is used for?

2.2.1 Save return address where function should return control after execution

While calling another function by CALL instruction, the address of point exactly after CALL is saved to stack,
and then unconditional jump to the address from CALL operand is executed.
CALL is PUSH address_after_call / JMP operand instructions pair equivalent.
RET is fetching value from stack and jump to it — it is POP tmp / JMP tmp instructions pair equivalent.
Stack overflow is simple, just run eternal recursion:

void £ ()
{

£0;
};

MSVC 2008 reporting about problem:

c:\tmp6>cl ss.cpp /Fass.asm
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

Ss.cpp
c:\tmp6\ss.cpp(4) : warning C4717: ’f’ : recursive on all control paths, function will

cause runtime stack overflow

... but generates right code anyway:

7fQ@YAXXZ PROC g i
; File c:\tmp6\ss.cpp
; Line 2

push ebp

mov ebp, esp
; Line 3

call 7fQQYAXXZ g it
; Line 4

pop ebp

ret 0
?fQQYAXXZ ENDP g it

>

. Also, if we turn on optimization (/0x option), the optimized code will not overflow stack, but will
work correctly®:

?fQQYAXXZ PROC
; File c:\tmp6\ss.cpp
; Line 2
$LL30f :
; Line 3
jmp SHORT $LL3ef

7?fQQYAXXZ ENDP ; £

GCC 4.4.1 generating the same code in both cases, although not warning about problem.

‘http://en.wikipedia.org/wiki/Call_stack
Sirony here

http://en.wikipedia.org/wiki/Call_stack

2.2.2 Function arguments passing

push arg3
push arg2
push argil
call f£

add esp, 4x*3

CalleeS function get its arguments via ESP ponter.

See also section about calling conventions 3.5.

It is important to note that no one oblige programmers to pass arguments through stack, it is not
prerequisite.

One could implement any other method not using stack.

For example, it is possible to allocate a place for arguments in heap, fill it and pass to a function via
pointer to this pack in EAX register. And this will work

However, it is convenient tradition to use stack for this.

2.2.3 Local variable storage

A function could allocate some space in stack for its local variables just shifting ESP pointer deeply enough
to stack bottom.
It is also not prerequisite. You could store local variables wherever you like. But traditionally it is so.

alloca() function

It is worth noting alloca() function.”.

This function works like malloc (), but allocate memory just in stack.

Allocated memory chunk is not needed to be freed via free() function call because function epilogue 3.2
will return ESP back to initial state and allocated memory will be just annuled.

It is worth noting how alloca() implemented.

This function, if to simplify, just shifting ESP deeply to stack bottom so much bytes you need and set
ESP as a pointer to that allocated block. Let’s try:

void f()
{
char *buf=(charx*)alloca (600);
_snprintf (buf, 600, "hi! %d, %d, %d\a", 1, 2, 3);

puts (buf);
}s

Let’s compile (MSVC 2010):

mov eax, 600 ; 00000258H
call __alloca_probe_16

mov esi, esp

push 3

push 2

push 1

push OFFSET $SG2672

push 600 ; 00000258H
push esi

call __snprintf

push esi

SFunction being called
"Function implementation can be found in allocal6.asm and chkstk.asm in C:\Program Files (x86)\Microsoft Visual
Studio 10.0\VC\crt\src\intel

call _puts
add esp, 28 ; 0000001cH

The sole alloca() argument passed via EAX (but not via stack).

After alloca() call, ESP is not pointing to the block of 600 bytes and we can use it as memory for buf
array.

GCC 4.4.1 can do the same without calling external functions:

public f
£ proc near ; CODE XREF: main+6
s = dword ptr -10h
var_C = dword ptr -0Ch
push ebp
mov ebp, esp
sub esp, 38h
mov eax, large gs:14h
mov [ebp+var_C]l, eax
xor eax, eax
sub esp, 624
lea eax, [esp+18h]
add eax, OFh
shr eax, 4 ; align pointer
shl eax, 4 ; by 16-byte border
mov [ebp+s], eax
mov eax, offset format ; "hi! %d, %d, %d\n"
mov dword ptr [esp+14h], 3
mov dword ptr [esp+10h], 2
mov dword ptr [esp+0Ch], 1
mov [esp+8], eax ; format
mov dword ptr [esp+4], 600 ; maxlen
mov eax, [ebp+s]
mov [esp]l, eax ;s
call _snprintf
mov eax, [ebp+s]
mov [esp]l, eax ; s
call _puts
mov eax, [ebp+var_Cl]
xor eax, large gs:14h
jz short locret_80484EB
call ___stack_chk_fail
locret_80484EB: ; CODE XREF: £+70
leave
retn
£ endp

2.2.4 (Windows) SEH

SEH (Structured Exception Handling) records are also stored in stack (if needed). .

2.2.5 Buffer overflow protection

More about it here 2.13.1.

8Classic Matt Pietrek article about SEH: http://www.microsoft.com/msj/0197/Exception/Exception.aspx

6

http://www.microsoft.com/msj/0197/Exception/Exception.aspx

2.3 printf() with several arguments

Now let’s extend Hello, world! 2.1 example, replacing printf () in main() function body by this:

printf ("a=%d; b=%d; c=kd", 1, 2, 3);

Let’s compile it by MSVC 2010 and we got:

$SG3830 DB >a=%d; b=%d; c=%d’, OOH
push 3
push 2
push 1
push OFFSET $S5G3830
call _printf
add esp, 16 ; 00000010H

Almost the same, but now we can see that printf () arguments are pushing into stack in reverse order:
and the first argument is pushing in as the last one.

Here 4 arguments. 4*4 = 16 — exactly 16 byte they occupy in stack: 32-bit pointer to string and 3
number of int type.

Variables of int type in 32-bit environment has 32-bit width.

When stack pointer (ESP register) is corrected by ADD ESP, X instruction after some function call, often,
the number of function arguments could be deduced here: just divide X by 4.

Of course, this is related only to cdecl calling convention.

See also section about calling conventions 3.5.

It is also possible for compiler to merge several ADD ESP, X instructions into one, after last call:

push a1l
push a2
call

push ail
call

push ail
push a2
push a3

call ...
add esp, 24

Now let’s compile the same in Linux by GCC 4.4.1 and take a look in IDA 6 what we got:

main proc near

var_10 = dword ptr -10h

var_C = dword ptr -0Ch

var_8 = dword ptr -8

var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov eax, offset aADBDCD ; "a=%d; b=%d; c=%d"
mov [esp+10h+var_4], 3
mov [esp+10h+var_8], 2
mov [esp+10h+var_C], 1
mov [esp+10h+var_10], eax
call _printf
mov eax, O
leave
retn

main endp

It can be said, the difference between code by MSVC and GCC is only in method of placing arguments
into stack. Here GCC working directly with stack without PUSH/POP.

By the way, this difference is a good illustration that CPU is not aware of how arguments is passed to
functions. It is also possible to create hypothetical compiler which is able to pass arguments via some special
structure not using stack at all.

2.4 scanf()

Now let’s use scanf().

int main ()

{
int x;
printf ("Enter X:\n");
scanf ("%d4d", &x);
printf ("You entered %d...\n", x);
return O;
}s
OK, I agree, it is not clever to use scanf () today. But I wanted to illustrate passing pointer to int.
What we got after compiling in MSVC 2010:
CONST SEGMENT
$SG3831 DB ’Enter X:’, OaH, OOH
ORG $+2
$5G3832 DB >%d’, OOH
ORG $+1
$s5G3833 DB ’You entered %d...°, OaH, OOH
CONST ENDS
PUBLIC _main
EXTRN _scanf : PROC
EXTRN _printf :PROC
; Function compile flags: /0dtp
_TEXT SEGMENT
_x$ = -4 ; size = 4
_main PROC
push ebp
mov ebp, esp
push ecx
push OFFSET $5G3831
call _printf
add esp, 4
lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET $SG3832
call _scanf
add esp, 8
mov ecx, DWORD PTR _x$[ebpl]
push ecx
push OFFSET $SG3833
call _printf
add esp, 8
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP
_TEXT ENDS

Variable x is local.

C/C++ standard tell us it must be visible only in this function and not from any other place. Tra-
ditionally, local variables are placed in the stack. Probably, there could be other ways, but in x86 it is
SO.

Next after function prologue instruction PUSH ECX is not for saving ECX state (notice absence of corre-
sponding POP ECX at the function end).

In fact, this instruction just allocate 4 bytes in stack for x variable storage.

x will be accessed with the assistance of _x$ macro (it equals to -4) and EBP register pointing to current
frame.

Over a span of function execution, EBP is pointing to current stack frame and it is possible to have an
access to local variables and function arguments via EBP+offset.

It is also possible to use ESP, but it’s often changing and not very handy.

Function scanf () in our example has two arguments.

First is pointer to the string containing "%d" and second — address of variable x.

Second argument is prepared as: mov ecx, [ebp-4], this instruction placing to ECX not address of (x)
variable but its contents.

After, ECX value is placing into stack and last printf () called.

Let’s try to compile this code in GCC 4.4.1 under Linux:

main proc near

var_20 = dword ptr -20h

var_1C = dword ptr -1Ch

var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov [esp+20h+var_20], offset aEnterX ; "Enter X:"
call _puts
mov eax, offset aD ; "%d"
lea edx, [esp+20h+var_4]
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax
call ___iso0c99_scanf
mov edx, [esp+20h+var_4]
mov eax, offset aYouEnteredD___ ; "You entered %d...\n"
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax
call _printf
mov eax, O
leave
retn

main endp

GCC replaced first printf() call to puts(). Indeed: printf() with only sole argument is almost
analogous to puts ().

Almost, because we need to be sure that this string will not contain printf-control statements starting
with %: then effect of these two functions will be different.

Bauem GCC 3amenun oqun BbI30B Ha Apyroit? Iloromy uto puts() paboraer 6nicTpee .

It working faster because just passes characters to stdout not comparing each with % symbol.

Why scanf () is renamed to ___isoc99_scanf, I do not know yet.

As before — arguments are placed into stack by MOV instruction.

2.4.1 Global variables

What if x variable from previous example will not local but global variable? Then it will be accessible from
any place but not only from function body. It is not very good programming practice, but for the sake of
experiment we could do this.

_DATA SEGMENT
COMM _x:DWORD
$SG2456 DB ’Enter X:’, OaH, OOH
ORG $+2
$SG2457 DB >%d’, OOH
ORG $+1
$SG2458 DB ’You entered %d...’, OaH, OOH
_DATA ENDS

“http://www.ciselant.de/projects/gcc_printf/gec_printf.html

10

http://www.ciselant.de/projects/gcc_printf/gcc_printf.html

PUBLIC _main

EXTRN _scanf : PROC
EXTRN _printf : PROC
; Function compile flags: /0dtp
_TEXT SEGMENT
_main PROC
push ebp
mov ebp, esp
push OFFSET $5G2456
call _printf
add esp, 4

push OFFSET _x
push OFFSET $SG2457

call _scanf
add esp, 8
mov eax, DWORD PTR _x
push eax
push OFFSET $5G2458
call _printf
add esp, 8
xor eax, eax
pop ebp
ret 0
_main ENDP
_TEXT ENDS

Now x variable is defined in _DATA segment. Memory in local stack is not allocated anymore. All accesses
to it are not via stack but directly to process memory. Its value is not defined. This mean that memory
will be allocated by operation system, but not compiler, neither operation system will not take care about
its initial value at the moment of main() function start. As experiment, try to declare large array and see
what will it contain after program loading.

Now let’s assign value to variable explicitly:

int x=10; // default value

We got:
_DATA SEGMENT
X DD OaH

Here we see value 0xA typed as DWORD (DD meaning DWORD = 32 bit).

If you will open compiled .exe in IDA 6, you will see z placed at the beginning of _DATA segment, and
after you'll see text strings.

If you will open compiled .exe in IDA 6 from previous example where z value is not defined, you’ll see
something like this:

.data:0040FA80 _x dd 7 ; DATA XREF: _main+10
.data:0040FA80 ; _main+22

.data:0040FA84 dword_40FA84 dd 7 ; DATA XREF: _memset+1E
.data:0040FA84 ; unknown_libname_1+28
.data:0040FA88 dword_40FA88 dd 7 ; DATA XREF: ___sbh_find_block+5
.data:0040FA88 ; ___sbh_free_block+2BC
.data:0040FA8C ; LPVOID 1lpMem

.data:0040FA8C 1lpMem dd 7 ; DATA XREF: ___sbh_find_block+B
.data:0040FA8C ; ___sbh_free_block+2CA
.data:0040FA90 dword_40FA90 dd 7 ; DATA XREF: _V6_HeapAlloc+13
.data:0040FA90 ; __calloc_impl+72

.data:0040FA94 dword_40FA94 dd 7 ; DATA XREF: ___sbh_free_block+2FE

_x marked as 7 among another variables not required to be initialized. This mean that after loading .exe
to memory, place for all these variables will be allocated and some random garbage will be here. But in .exe
file these not initialized variables are not occupy anything. It is suitable for large arrays, for example.

11

It is almost the same in Linux, except segment names and properties: not initialized variables are located
in _bss segment. In ELF! file format this segment has such attributes:

; Segment type: Uninitialized
; Segment permissions: Read/Write

If to assign some value to variable, it will be placed in _data segment, this is segment with such attributes:

; Segment type: Pure data
; Segment permissions: Read/Write

2.4.2 scanf() result checking

As T said before, it is not very clever to use scanf () today. But if we have to, we need at least check if
scanf () finished correctly without error.

int main ()

{
int x;
printf ("Enter X:\n");
if (scanf ("%d4d", &x)==1)
printf ("You entered %d...\n", x);
else
printf ("What you entered? Huh?\n");
return O;
};

By standard, scanf()!! function returning number of fields it successfully read.

In our case, if everything went fine and user entered some number, scanf () will return 1 or 0 or EOF in
case of error.

We added C code for scanf () result checking and printing error message in case of error.

What we got in assembler (MSVC 2010):

; Line 8
lea eax, DWORD PTR _x$[ebpl
push eax
push OFFSET $SG3833 ; ’%d’, OOH
call _scanf
add esp, 8
cmp eax, 1
jne SHORT $LN2@main
; Line 9
mov ecx, DWORD PTR _x$[ebpl
push ecx
push OFFSET $SG3834 ; ’You entered %d...’, 0OaH, OOH
call _printf
add esp, 8
; Line 10
jmp SHORT $LN1@main
$LN2@main :
; Line 11
push OFFSET $SG3836 ; ’What you entered? Huh?’, OaH, OOH
call _printf
add esp, 4
$LN1@main:
; Line 13
Xor eax, eax

Caller function (main()) must have access to result of callee function (scanf ()), so callee leave this value
in EAX register.

0Executable file format widely used in *NIX system including Linux
UNSDN: scanf, wscanf

12

http://msdn.microsoft.com/en-us/library/9y6s16x1(VS.71).aspx

After, we check it using instruction CMP EAX, 1 (CoMPare), in other words, we compare value in EAX
with 1.

JNE conditional jump follows CMP instruction. JNE mean Jump if Not Fqual.

So, if EAX value not equals to 1, then the processor will pass execution to the address mentioned in
operand of JNE, in our case it is $LN2@main. Passing control to this address, microprocesor will execute
function printf () with argument "What you entered? Huh?". But if everything is fine, conditional jump
will not be taken, and another printf () call will be executed, with two arguments: >You entered %d...’
and value of variable x.

Because second subsequent printf () not needed to be executed, there are JMP after (unconditional jump)
it will pass control to the place after second printf () and before XOR EAX, EAX instruction, which implement
return O.

So, it can be said that most often, comparing some value with another is implemented by CMP/Jcc
instructions pair, where cc is condition code. CMP comparing two values and set processor flags'?. Jcc check
flags needed to be checked and pass control to mentioned address (or not pass).

But in fact, this could be perceived paradoxial, but CMP instruction is in fact SUB (subtract). All
arithmetic instructions set processor flags too, not only CMP. If we compare 1 and 1, 1-1 will result zero, ZF
flag will be set (meaning that last result was zero). There are no any other circumstances when it’s possible
except when operands are equal. JNE checks only ZF flag and jumping only if it is not set. JNE is in fact a
synonym of JNZ (Jump if Not Zero) instruction. Assembler translating both JNE and JNZ instructions into
one single opcode. So, CMP can be replaced to SUB and almost everything will be fine, but the difference is
in that SUB alter value at first operand. CMP is "SUB without saving result”.

Code generated by GCC 4.4.1 in Linux is almost the same, except differences we already considered.

12 About x86 flags, see also: http://en.wikipedia.org/wiki/FLAGS_register_(computing).

13

http://en.wikipedia.org/wiki/FLAGS_register_(computing)

2.5 Passing arguments via stack

Now we figured out that caller function passing arguments to callee via stack. But how callee'? access them?

#include <stdio.h>

int f (int a, int b, int c¢)
{
return a*b+c;
};
int main ()
{
printf ("%d\n", £(1, 2, 3));
return O;
};
What we have after compilation (MSVC 2010 Express):
_TEXT SEGMENT
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
_f PROC
; File c:\...\1l.c
; Line 4
push ebp
mov ebp, esp
; Line 5
mov eax, DWORD PTR _a$[ebp]
imul eax, DWORD PTR _b$[ebpl]
add eax, DWORD PTR _c$[ebpl
; Line 6
pop ebp
ret 0
_f ENDP
_main PROC
; Line 9
push ebp
mov ebp, esp
; Line 10
push 3
push 2
push 1
call _f
add esp, 12 ; 0000000cH
push eax
push OFFSET $SG2463 ; ’%d’, OaH, OOH
call _printf
add esp, 8
; Line 11
xXor eax, eax
; Line 12
pop ebp
ret 0
_main ENDP

What we see is that 3 numbers are pushing to stack in function _main and f (int,int,int) is called
then. Argument access inside f () is organized with help of macros like: _a$ = 8, in the same way as local
variables accessed, but difference in that these offsets are positive (addressed with plus sign). So, adding _a$
macro to EBP register value, outer side of stack frame is addressed.

Then a value is stored into EAX. After IMUL instruction execution, EAX value is product'® of EAX and what

Bfunction being called
Myesult of multiplication

14

is stored in _b. After IMUL execution, ADD is summing EAX and what is stored in _c. Value in EAX is not
needed to be moved: it is already in place it need. Now return to caller — it will take value from EAX and
used it as printf () argument. Let’s compile the same in GCC 4.4.1:

public £
f proc near ; CODE XREF: main+20
arg_O = dword ptr 8
arg_4 = dword ptr OCh
arg_38 = dword ptr 10h
push ebp
mov ebp, esp
mov eax, [ebp+arg_O]
imul eax, [ebptarg_4]
add eax, [ebp+targ_8]
pop ebp
retn
£ endp

public main

main proc near ; DATA XREF: _start+17
var_10 = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h ; char x*
mov [esp+10h+var_8], 3
mov [esp+10h+var_C], 2
mov [esp+10h+var_10], 1
call f
mov edx, offset aD ; "%d\n"
mov [esp+10h+var_C], eax
mov [esp+10h+var_10], edx
call _printf
mov eax, O
leave
retn
main endp

Almost the same result.

15

2.6 One more word about results returning.

Function execution result is often returned'® in EAX register. If it’s byte type — then in lowest register EAX
part — AL. If function returning float number, FPU register ST(0) will be used instead.

That is why old C compilers can’t create functions capable of returning something not fitting in one
register (usually type int), but if one need it, one should return information via pointers passed in function
arguments. Now it is possible, to return, let’s say, whole structure, but its still not very popular. If function
should return a large structure, caller must allocate it and pass pointer to it via first argument, hiddenly
and transparently for programmer. That is almost the same as to pass pointer in first argument manually,
but compiler hide this.

Small example:

struct s

{
int a;
int b;
int c;
};
struct s get_some_values (int a)
{
struct s rt;
rt.a=a+1;
rt.b=a+2;
rt.c=a+3;
return rt;
I3
. what we got (MSVC 2010 /0x):
$T3853 = 8 ; size = 4
_a$ = 12 ; size = 4
7get_some_values@Q@YA?AUs@@H@Z PROC ; get_some_values
mov ecx, DWORD PTR _a$[esp-4]
mov eax, DWORD PTR $T3853[esp-4]
lea edx, DWORD PTR [ecx+1]
mov DWORD PTR [eax], edx
lea edx, DWORD PTR [ecx+2]
add ecx, 3
mov DWORD PTR [eax+4], edx
mov DWORD PTR [eax+8], ecx
ret 0
?get_some_valuesQQ@YA?AUsQQH@Z ENDP ; get_some_values

Macro name for internal variable passing pointer to structure is $T3853 here.

5See also: MSDN: Return Values (C+4+)

16

http://msdn.microsoft.com/en-us/library/7572ztz4.aspx

2.7 Conditional jumps

Now about conditional jumps.

void f_signed (int a, int b)
{
if (a>b)
printf ("a>b\n");
if (a==b)
printf ("a==b\n");
if (a<b)
printf ("a<b\n");
+s

void f_unsigned (unsigned int a, unsigned int b)
{
if (a>b)
printf ("a>b\n");
if (a==b)
printf ("a==b\n");
if (a<b)
printf ("a<b\n");
+;

int main ()

{
f_signed (1, 2);
f_unsigned (1, 2);
return O;

What we have in f_signed() function:

_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f_signed PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebpl
jle SHORT $LN3@f_signed
push OFFSET $SG737 ; ’a>b’, 0aH, OOH
call _printf
add esp, 4
$LN3@f _signed:
mov ecx, DWORD PTR _a$[ebpl]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN2@f_signed
push OFFSET $SG739 ; ’a==b’, 0aH, OOH
call _printf
add esp, 4
$LN2@f _signed:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jge SHORT $LN4@f_signed
push OFFSET $SG741 ; ’a<b’, 0OaH, OOH
call _printf
add esp, 4
$LN4@f _signed:
pop ebp
ret 0
_f_signed ENDP

First instruction JLE mean Jump if Larger or Equal. In other words, if second operand is larger than
first or equal, control flow will be passed to address or label mentioned in instruction. But if this condition
will not trigger (second operand less than first), control flow will not be altered and first printf () will be

17

called. The second check is JNE: Jump if Not Equal. Control flow will not altered if operands are equals to
each other. The third check is JGE: Jump if Greater or Equal — jump if second operand is larger than first
or they are equals to each other. By the way, if all three conditional jumps are triggered, no printf () will
be called at all. But, without special intervention, it is nearly impossible.

GCC 4.4.1 produce almost the same code, but with puts() 2.4 instead of printf ().

Now let’s take a look of f_unsigned() produced by GCC:

.globl f_unsigned

.type f_unsigned, @function
f_unsigned:
push ebp
mov ebp, esp
sub esp, 24
mov eax, DWORD PTR [ebp+8]
cmp eax, DWORD PTR [ebp+12]
jbe .L7
mov DWORD PTR [esp]l, OFFSET FLAT:.LCO ; "a>b"
call puts
LL7:
mov eax, DWORD PTR [ebp+8]
cmp eax, DWORD PTR [ebp+12]
jne .L8
mov DWORD PTR [esp]l, OFFSET FLAT:.LC1 ; "a==b"
call puts
SESE
mov eax, DWORD PTR [ebp+8]
cmp eax, DWORD PTR [ebp+12]
jae .L10
mov DWORD PTR [espl, OFFSET FLAT:.LC2 ; "a<b"
call puts
.L10:
leave
ret

Almost the same, with exception of instructions: JBE — Jump if Below or Equal and JAE — Jump if
Above or Equal. These instructions (JA/JAE/JBE/JBE) is different from JG/JGE/JL/JLE in that way, it works
with unsigned numbers.

See also section about signed number representations 3.4. So, where we see usage of JG/JL instead of
JA/JBE or otherwise, we can almost be sure about signed or unsigned type of variable.

Here is also main() function, where nothing new to us:

main:
push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov DWORD PTR [esp+4], 2
mov DWORD PTR [espl, 1
call f_signed
mov DWORD PTR [esp+4], 2
mov DWORD PTR [espl, 1
call f_unsigned
mov eax, O
leave
ret

18

2.8 switch()/case/default

2.8.1 Few number of cases

void f (int a)

{
switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
default: printf ("something unknown\n"); break;
»g
};
Result (MSVC 2010):
tved = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC
push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebpl, eax
cmp DWORD PTR tv64[ebpl, O
je SHORT $LN4Qf
cmp DWORD PTR tv64[ebpl, 1
je SHORT $LN3e@f
cmp DWORD PTR tv64[ebpl, 2
je SHORT $LN2e@f
jmp SHORT $LN1@f
$LN4Qf :
push OFFSET $SG739 ; ’zero’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LNT7e@f
$LN3@f :
push OFFSET $SG741 ; ’one’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN7@f
$LN2@f :
push OFFSET $SG743 ; ’two’, OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN7e@f
$LN1Qf :
push OFFSET $SG745 ; ’something unknown’, OaH, OOH
call _printf
add esp, 4
$LN7@Qf :
mov esp, ebp
pop ebp
ret 0
f ENDP

Nothing specially new to us, with the exception that compiler moving input variable a to temporary local
variable tv64.

If to compile the same in GCC 4.4.1, we’ll get alsmost the same, even with maximal optimization turned
on (-03 option).

Now let’s turn on optimization in MSVC (/0x): ¢l 1.c /Fal.asm /0Ox

_a$ = 8 ; size = 4
_f PROC

19

mov eax, DWORD PTR _a$[esp-4]

sub eax, O
je SHORT $LN4ef
sub eax, 1
je SHORT $LN3@f
sub eax, 1
je SHORT $LN2@f
mov DWORD PTR _a$[esp-4], OFFSET $SG791 ; ’something unknown’, OaH, OOH
jmp _printf
$LN20f :
mov DWORD PTR _a$[esp-4], OFFSET $SG789 ; ’two’, OaH, OOH
jmp _printf
$LN3Qf :
mov DWORD PTR _a$[esp-4], OFFSET $SG787 ; ’one’, OaH, OOH
jmp _printf
$LN4Qf :
mov DWORD PTR _a$[esp-4], OFFSET $SG785 ; ’zero’, OaH, OOH
jmp _printf
f ENDP

Here we can see even dirty hacks.

First: ais placed into EAX and 0 subtracted from it. Sounds absurdly, but it may need to check if 0 was in
EAX before? If yes, flag ZF will be set (this also mean that subtracting from zero is zero) and first conditional
jump JE (Jump if Equal or synonym JZ — Jump if Zero) will be triggered and control flow passed to $LN4@f
label, where ’zero’ message is begin printed. If first jump was not triggered, 1 subtracted from input value
and if at some stage 0 will be resulted, corresponding jump will be triggered.

And if no jump triggered at all, control flow passed to printf () with argument ’something unknown’.

Second: we see unusual thing for us: string pointer is placed into a variable, and then printf () is called
not via CALL, but via JMP. This could be explained simply. Caller pushing to stack some value and via
CALL calling our function. CALL itself pushing returning address to stack and do unconditional jump to our
function address. Our function at any place of its execution (since it do not contain any instruction moving
stack pointer) has the following stack layout:

e ESP — pointing to return address

e ESP+4 — pointing to a variable

On the other side, when we need to call printf () here, we need exactly the same stack layout, except of
first printf () argument pointing to string. And that is what our code does.

It replaces function’s first argument to different and jumping to printf (), as if not our function f () was
called firstly, but immediately printf (). printf() printing some string to stdout and then execute RET
instruction, which POPping return address from stack and control flow is returned not to £ (), but to £()’s
callee, escaping £ ().

All it’s possible because printf () is called right at the end of £() in any case. In some way, it’s all
similar to longjmp()!%. And of course, it’s all done for the sake of speed.

2.8.2 A lot of cases

If switch() statement contain a lot of case’s, it is not very handy for compiler to emit too large code with
a lot JE/JNE instructions.

void f (int a)

{
switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
case 3: printf ("three\n"); break;

http://en.wikipedia.org/wiki/Setjmp.h

20

http://en.wikipedia.org/wiki/Setjmp.h

case 4: printf ("four\n"); break;
default: printf ("something unknown\n"); break;

i
};
We got (MSVC 2010):
tved = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC
push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebpl
mov DWORD PTR tv64[ebpl, eax
cmp DWORD PTR tv64[ebpl, 4
ja SHORT $LN1@f
mov ecx, DWORD PTR tv64 [ebpl]
jmp DWORD PTR $LN11@f [ecx*4]
$LN6@f :
push OFFSET $SG739 ; ’zero’, OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN5Qf :
push OFFSET $SG741 ; ’one’, 0aH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN4Qf :
push OFFSET $SG743 ; ’two’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN3@f :
push OFFSET $SG745 ; ’three’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN2Qf :
push OFFSET $SG747 ; ’four’, 0OaH, OOH
call _printf
add esp, 4
jmp SHORT $LN9@f
$LN1Qf :
push OFFSET $SG749 ; ’something unknown’, OaH, OOH
call _printf
add esp, 4
$LNOQf :
mov esp, ebp
pop ebp
ret 0
npad 2
$LN11Qf:
DD $LN6C@f ; O
DD $LN@f ; 1
DD $LN4Qf ; 2
DD $LN3@f ; 3
DD $LN2@f ; 4
£ ENDP

OK, what we see here is: there are a set of printf() calls with various arguments. All them has not
only addresses in process memory, but also internal symbolic labels generated by compiler. All these labels
are also places into $LN11@f internal table.

At the function beginning, if a is greater than 4, control flow is passed to label $LN1@f, where printf ()
with argument ’something unknown’ is called.

21

And if a value is less or equals to 4, let’s multiply it by 4 and add $LN1@f table address. That is how
address inside of table is constructed, pointing exactly to the element we need. For example, let’s say a is
equal to 2. 2*4 = 8 (all table elements are addresses within 32-bit process, that is why all elements contain
4 bytes). Address of $LN11@f table + 8 = it will be table element where $LN4@f label is stored. JMP fetch
$LN4@f address from the table and jump to it.

Then corresponding printf () is called with argument >two’. Literally, jmp DWORD PTR $LN11@f [ecx*4]
instruction mean jump to DWORD, which is stored at address $LN11@f + ecx * 4.

npad 3.3 is assembler macro, aligning next label so that it will be stored at address aligned by 4 bytes (or
16). This is very suitable for processor, because it can fetch 32-bit value from memory through bus, through
cache memory, etc, in much effective way if it is aligned.

Let’s see what GCC 4.4.1 generate:

public £
£ proc near ; CODE XREF: main+10
var_18 = dword ptr -18h
arg_O = dword ptr 8
push ebp
mov ebp, esp
sub esp, 18h ; char *
cmp [ebp+targ_0], 4
ja short loc_8048444
mov eax, [ebp+arg_0]
shl eax, 2
mov eax, ds:off_804855C[eax]
jmp eax
loc_80483FE: ; DATA XREF: .rodata:off_804855C
mov [esp+18h+var_18], offset aZero ; "zero"
call _puts
jmp short locret_8048450
loc_804840C: ; DATA XREF: .rodata:08048560
mov [esp+18h+var_18], offset alne ; "one"
call _puts
jmp short locret_8048450
loc_804841A: ; DATA XREF: .rodata:08048564
mov [esp+18h+var_18], offset aTwo ; "two"
call _puts
jmp short locret_8048450
loc_8048428: ; DATA XREF: .rodata:08048568
mov [esp+18h+var_18], offset aThree ; "three"
call _puts
jmp short locret_8048450
loc_8048436: ; DATA XREF: .rodata:0804856C
mov [esp+18h+var_18], offset aFour ; "four"
call _puts
jmp short locret_8048450
loc_8048444: ; CODE XREF: f+A
mov [esp+18h+var_18], offset aSomethingUnkno ; "something unknown"
call _puts
locret_8048450: ; CODE XREF: f+26
; £+34. ..
leave
retn
£ endp
off_804855C dd offset loc_80483FE ; DATA XREF: f+12

22

dd offset 10c_804840C
dd offset 1loc_804841A
dd offset loc_8048428
dd offset 10c_8048436

It is almost the same, except little nuance: argument arg_0 is multiplied by 4 with by shifting it to left
by 2 bits (it is almost the same as multiplication by 4) 2.14.3. Then label address is taken from off_804855C
array, address calculated and stored into EAX, then JMP EAX do actual jump.

23

2.9 Loops

There is a special LOOP instruction in x86 instruction set, it is checking ECX register value and if it is not
zero, do ECX decrement and pass control flow to label mentioned in LOOP operand. Probably, this instruction
is not very handy, so, I didn’t ever see any modern compiler emitting it automatically. So, if you see the
instruction somewhere in code, it is most likely this is hand-written piece of assembler code.

By the way, as home exercise, you could try to explain, why this instruction is not very handy.

In C/C++ loops are defined by for(), while(), do/while() statements.

Let’s start with for().

This statement defines loop initialization (set loop counter to initial value), loop condition (is counter is
bigger than a limit?), what is done at each iteration (increment/decrement) and of course loop body.

{
for (initialization; condition; at each iteration)
loop_body;
}

So, generated code will be consisted of four parts too.
Let’s start with simple example:

int main ()

{
int 1i;
for (i=2; i<10; i++)
f(i);
return O;
}s
Result (MSVC 2010):
_i¢ = -4
_main PROC
push ebp
mov ebp, esp
push ecx
mov DWORD PTR _i$[ebpl, 2 ; loop initialization
jmp SHORT $LN3@main
$LN2Q@main:
mov eax, DWORD PTR _i$[ebp] ; here is what we do after each iteration:
add eax, 1 ; add 1 to i value
mov DWORD PTR _i$[ebpl, eax
$LN3@main:
cmp DWORD PTR _i$[ebpl, 10 ; this condition is checked *before* each iteration
jge SHORT $LN1@main ; if 1 is biggest or equals to 10, let’s finish loop
mov ecx, DWORD PTR _i$[ebp]l ; loop body: call £(i)
push ecx
call _f
add esp, 4
jmp SHORT $LN2@main ; jump to loop begin
$LN1@Gmain: ; loop end
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP
Nothing very special, as we see.
GCC 4.4.1 emitting almost the same code, with small difference:
main proc near ; DATA XREF: _start+17
var_20 = dword ptr -20h
var_4 = dword ptr -4

24

push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov [esp+20h+var_4], 2 ; i initializing
jmp short 1loc_8048476
loc_8048465:
mov eax, [esp+20h+var_4]
mov [esp+20h+var_20], eax
call £
add [esp+20h+var_4], 1 ; i increment
loc_8048476:
cmp [esp+20h+var_4], 9
jle short loc_8048465 ; if i<=9, continue loop
mov eax, O
leave
retn
main endp

Now let’s see what we will get if optimization is turned on (/0x):

_main PROC
push esi
mov esi, 2
$LL3@main:
push esi
call _f
inc esi
add esp, 4
cmp esi, 10 ; 0000000aH
jl SHORT $LL3@main
Xor eax, eax
pop esi
ret 0
_main ENDP

What is going on here is: place for ¢ variable is not allocated in local stack anymore, but even individual
register: ESI. This is possible in such small functions where not so much local variables are used.

One very important property is that £ () function should not change ESI value, in fact, it should not use
that register at all. Our compiler is sure here. And if compiler decided to use ESI in £() too, it would be
saved then at £() function prologue and restored at £() epilogue. Almost like in our listing: please note
PUSH ESI/POP ESI at the function begin and end.

Let’s try GCC 4.4.1 with maximal optimization turned on (-03 option):

main proc near 8
var_10 = dword ptr -10h
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
mov [esp+10h+var_10],
call £
mov [esp+10h+var_10],
call £
mov [esp+10h+var_10],
call £
mov [esp+10h+var_10],
call £
mov [esp+10h+var_10],
call b
mov [esp+10h+var_10],

DATA XREF: _start+17

25

main

call f
mov
call f
mov
call f
Xor

leave
retn
endp

eax,

[esp+10h+var_10],

[esp+10h+var_10],

eax

8

9

Huh, GCC just unwind our loop.
Loop unwinding has advantage in that cases when there are not so much iterations and we could economy
some execution speed by removing all loop supporting instructions. On the other side, resulting code is

obviously larger.

OK, let’s increase maximal value of ¢ to 100 and try again. GCC resulting:

main

var_20

1oc_80484DO0:

main

public main
proc near

= dword ptr
push ebp
mov ebp,
and esp,
push ebx
mov ebx,
sub esp,
nop

begin) by 16-byte border

mov [esp+20h+var_2017,
add ebx, 1

call £

cmp ebx, 64h

jnz short 1loc_80484D0O
add esp, 1Ch

xor eax, eax

pop ebx

mov esp, ebp

pop ebp

retn

endp

-20h

esp

OFFFFFFFOh

2
1Ch

ebx

aligning label 1loc_80484D0 (loop body

pass i as first argument to f()
i++

i==1007

if not, continue

return O

It’s quite similar to what MSVC 2010 with optimization (/0x) produce. With the exception that EBX

register will be fixed to i variable.

GCC is sure this register will not be modified inside of £() function,

and if it will, it will be saved at the function prologue and restored at epilogue, just like here in main().

26

2.10 strlen()

Now let’s talk about loops one more time.

7

Often, strlen() function'” is implemented using while()

statement. Here is how it done in MSVC standard libraries:

int strlen (const char * str)

{
const char *eos
while(*eos++)
return(eos

}

str;

>

- str - 1);

Let’s compile:

n»i_eos$ = -4 ; size = 4
_str$ = 8 ; size = 4
_strlen PROC
push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _str$[ebp] ; place pointer to string from str
mov DWORD PTR _eos$[ebpl, eax ; place it to local varuable eos
$LN2@strlen_:
mov ecx, DWORD PTR _eos$[ebp] ; ECX=eos

; take 8-bit byte from address in ECX and place it as 32-bit value to EDX with sign

extension

movsx edx, BYTE PTR [ecx]

mov eax, DWORD PTR _eos$[ebp] ; EAX=eos

add eax, 1 ; increment EAX

mov DWORD PTR _eos$[ebpl, eax ; place EAX back to eos

test edx, edx ; EDX is zero?

je SHORT $LN1@strlen_ ; yes, then finish loop

jmp SHORT $LN2@strlen_ ; continue loop
$LN1@strlen_:

; here we calculate the difference

between two pointers

mov eax, DWORD PTR _eos$[ebpl
sub eax, DWORD PTR _str$[ebpl
sub eax, 1 ; subtract 1 and return result
mov esp, ebp
pop ebp
ret 0
_strlen ENDP

Two new instructions here: MOVSX 2.10 and TEST.

About first: MOVSX 2.10 is intended to take byte from some place and store value in 32-bit register.
MOVSX 2.10 meaning MOV with Sign-Fxtent. Rest bits starting at 8th till 31th MOVSX 2.10 will set to 1 if

source byte in

memory has minus sign or to 0 if plus.

And here is why all this.

C/C++ standard defines char type as signed. If we have two values, one is char and another is int,
(int is signed too), and if first value contain -2 (it is coded as OxFE) and we just copying this byte into int
container, there will be 0x000000FE, and this, from the point of signed int view is 254, but not -2. In signed
int, -2 is coded as OxFFFFFFFE. So if we need to transfer OxFE value from variable of char type to int, we

need to identify its sign and extend it. That is what MOVSX 2.10 does.
See also more in section Signed number representations 3.4.

I'm not sure if compiler need to store char variable in EDX, it could take 8-bit register part (let’s say DL).

But probably,

compiler’s register allocator works like that.

17

counting characters in string in C language

27

Then we see TEST EDX, EDX. About TEST instruction, read more in section about bit fields 2.14. But
here, this instruction just checking EDX value, if it is equals to 0.
Let’s try GCC 4.4.1:

public strlen

strlen proc near
eos = dword ptr -4
arg_O = dword ptr 8
push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_O]
mov [ebpt+eos], eax
loc_80483F0:
mov eax, [ebp+eos]
movzx eax, byte ptr [eax]
test al, al
setnz al
add [ebp+teos], 1
test al, al
jnz short loc_80483F0
mov edx, [ebp+eos]
mov eax, [ebp+arg_0]
mov ecx, edx
sub ecx, eax
mov eax, ecx
sub eax, 1
leave
retn
strlen endp

The result almost the same as MSVC did, but here we see MOVZX isntead of MOVSX 2.10. MOVZX mean
MOV with Zero-Eztent. This instruction place 8-bit or 16-bit value into 32-bit register and set the rest bits
to zero. In fact, this instruction is handy only because it is able to replace two instructions at once: xor
eax, eax / mov al, [...].

On other hand, it is obvious to us that compiler could produce that code: mov al, byte ptr [eax] /
test al, al — it is almost the same, however, highest EAX register bits will contain random noise. But let’s
think it is compiler’s drawback — it can’t produce more understandable code. Strictly speaking, compiler
is not obliged to emit understandable (to humans) code at all.

Next new instruction for us is SETNZ. Here, if AL contain not zero, test al, al will set zero to ZF flag,
but SETNZ, if ZF==0 (NZ mean not zero) will set 1 to AL. Speaking in natural language, if AL is not zero,
let’s jump to loc_ 80483F0. Compiler emitted slightly redundant code, but let’s not forget that optimization
is turned off.

Now let’s compile all this in MSVC 2010, with optimization turned on (/0x):

n»i_str$ = 8 ; size = 4
_strlen PROC
mov ecx, DWORD PTR _str$[esp-4] ; ECX -> pointer to the string
mov eax, ecx ; move to EAX
$LL2@strlen_:
mov dl, BYTE PTR [eax] ; DL = *xEAX
inc eax ; EAX++
test dl, dl ; DL==07
jne SHORT $LL2@strlen_ ; no, continue loop
sub eax, ecx ; calculate pointers difference
dec eax ; decrement EAX
ret 0

_strlen ENDP

Now it’s all simpler. But it is needless to say that compiler could use registers such efficiently only in
small functions with small number of local variables.

28

INC/DEC — are increment/decrement instruction, in other words: add 1 to variable or subtract.
Let’s check GCC 4.4.1 with optimization turned on (-03 key):

public strlen

strlen proc near
arg_O = dword ptr 8
push ebp
mov ebp, esp
mov ecx, [ebp+arg 0]
mov eax, ecx

loc_8048418:

movzx edx, byte ptr [eax]
add eax, 1
test dl, dl
jnz short loc_8048418
not ecx
add eax, ecx
pop ebp
retn
strlen endp

Here GCC is almost the same as MSVC, except of MOVZX presence.

However, MOVZX could be replaced here to mov d1, byte ptr [eax].

Probably, it is simpler for GCC compiler’s code generator to remember that whole register is allocated
for char variable and it can be sure that highest bits will not contain noise at any point.

After, we also see new instruction NOT. This instruction inverts all bits in operand. It can be said, it
is synonym to XOR ECX, Offffffffh instruction. NOT and following ADD calculating pointer difference and
subtracting 1. At the beginning ECX, where pointer to str is stored, inverted and 1 is subtracted from it.

See also: Signed number representations 3.4.

In other words, at the end of function, just after loop body, these operations are executed:

ecx=str;
eax=eos;
ecx=(-ecx) -1;
eax=eax+ecx
return eax

. and this is equivalent to:

ecx=str;
eax=eos;
eax=eax-ecXx;
eax=eax-1;
return eax

Why GCC decided it would be better? I cannot be sure. But I'm assure that both variants are equivalent
in efficiency sense.

29

2.11 Division by 9

Very simple function:

int f(int a)

{
return a/9;
s
Is compiled in a very predictable way:
_a$ = 8 ; size = 4
_f PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebpl
cdq ; sign extend EAX to EDX:EAX
mov ecx, 9
idiv ecx
pop ebp
ret 0
f ENDP

IDIV divides 64-bit number stored in EDX:EAX register pair by value in ECX register. As a result, EAX
will contain quotient!® and EDX — remainder. Result is returning from f() function in EAX register, so, that
value is not moved anymore after division operation, it is in right place already. Because IDIV require value
in EDX:EAX register pair, CDQ instruction (before IDIV) extending EAX value to 64-bit value taking value sign
into account, just as MOVSX 2.10 does. If we turn optimization on (/0x), we got:

_a$ = 8 ; size = 4
_f PROC
mov ecx, DWORD PTR _a$[esp-4]
mov eax, 954437177 ; 38e38e39H
imul ecx
sar edx, 1
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx
ret 0
f ENDP

This is — division using multiplication. Multiplication operation working much faster. And it is possible
to use that trick ! to produce a code which is equivalent and faster. GCC 4.4.1 even without optimization
turned on, generate almost the same code as MSVC with optimization turned on:

public f£
f proc near
arg_0 = dword ptr 8
push ebp
mov ebp, esp
mov ecx, [ebp+targ_0]
mov edx, 954437177
mov eax, ecx
imul edx
sar edx, 1
mov eax, ecx
sar eax, 1Fh
mov ecx, edx
sub ecx, eax
mov eax, ecx

18 result of division

9More about division by multiplication: MSDN: Integer division by constants, http://www.nynaeve.net/?p=115

30

http://blogs.msdn.com/b/devdev/archive/2005/12/12/502980.aspx
http://www.nynaeve.net/?p=115

pop
retn
endp

ebp

31

2.12 Work with FPU

FPU (Floating-point unit) — is a device within main CPU specially designed to work with floating point
numbers.

It was called coprocessor in past. It looks like programmable calculator in some way and stay aside of
main processor.

It is worth to study stack machines?’before FPU studying, or learn Forth language basics?!.

It is interesting to know that in past (before 80486 CPU) coprocessor was a separate chip and it was not
always settled on motherboard. It was possible to buy it separately and install.

From the 80486 CPU, FPU is always present in it.

FPU has a stack capable to hold 8 80-bit registers, each register can hold a number in IEEE 754??*format.

C/C++ language offer at least two floating number types, float (single-precision®, 32 bits) 24 and double
(double-precision®®, 64 bits).

GCC also supports long double type (estended precision®®, 80 bit) but MSVC is not.

float type require the same number of bits as int type in 32-bit environment, but number representation
is completely different.

Number consisting of sign, significand (also called fraction) and exponent.

Function having float or double among argument list is getting that value via stack. If function is
returning float or double value, it leave that value in ST(0) register — at top of FPU stack.

2.12.1 Simple example

Let’s consider simple example:

double f (double a, double b)

{
return a/3.14 + bx4.1;
T8
Compile it in MSVC 2010:

n»iICONST SEGMENT
__real@4010666666666666 DR 04010666666666666r ; 4.1
CONST ENDS
CONST SEGMENT
__real@40091eb851eb851f DR 040091eb851eb851fr ; 3.14
CONST ENDS
_TEXT SEGMENT
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f PROC

push ebp

mov ebp, esp

f1d QWORD PTR _a$[ebp]
; current stack state: ST(0) = _a

fdiv QWORD PTR __real@40091eb851eb851f

; current stack state: ST(0) = result of _a divided by 3.13
f1d QWORD PTR _b$ [ebpl]

; current stack state: ST(0) = _b; ST(1) = result of _a divided by 3.13

Onttp://en.wikipedia.org/wiki/Stack_machine

http://en.wikipedia.org/wiki/Forth_(programming_language)

http://en.wikipedia.org/wiki/IEEE_754-2008
Bnttp://en.wikipedia.org/wiki/Single-precision_floating-point_format

2single precision float numbers format is also addressed in Working with the float type as with a structure 2.15.6 section
*http://en.wikipedia.org/wiki/Double-precision_floating-point_format
2onttp://en.wikipedia.org/wiki/Extended_precision

32

http://en.wikipedia.org/wiki/Stack_machine
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Single-precision_floating-point_format
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Extended_precision

fmul QWORD PTR __real@4010666666666666

; current stack state: ST(0) result of _b * 4.1; ST(1) = result of _a divided by 3.13

faddp ST(1), ST(0)

; current stack state: ST (0) result of addition

pop ebp
ret 0
_f ENDP

FLD takes 8 bytes from stack and load the number into ST(0) register, automatically converting it into
internal 80-bit format extended precision).

FDIV divide value in register ST(0) by number storing at address __real@40091eb851eb851f — 3.14
value is coded there. Assembler syntax missing floating point numbers, so, what we see here is hexadecimal
representation of 3.14 number in 64-bit IEEE 754 encoded.

After FDIV execution, ST(0) will hold quotient?”.

By the way, there are also FDIVP instruction, which divide ST(1) by ST(0), popping both these values
from stack and then pushing result. If you know Forth language®®, you will quickly understand that this is
stack machine?®”.

Next FLD instruction pushing b value into stack.

After that, quotient is placed to ST(1), and ST(0) will hold b value.

Next FMUL instruction do multiplication: b from ST(0) register by value at __real@4010666666666666
(4.1 number is there) and leaves result in ST(0).

Very last FADDP instruction adds two values at top of stack, placing result at ST(1) register and then
popping value at ST(1), hereby leaving result at top of stack in ST(0).

The function must return result in ST(0) register, so, after FADDP there are no any other code except of
function epilogue.

GCC 4.4.1 (with -03 option) emitting the same code, however, slightly different:

m»i public f
£ proc near
arg_O = gqword ptr 8
arg_8 = qword ptr 10h
push ebp
fld ds:dbl_8048608 ; 3.14

; stack state now: ST(0) = 3.13

mov ebp, esp
fdivr [ebp+targ_0]

; stack state now: ST(0) = result of division
f1d ds:dbl1_8048610 ; 4.1

; stack state now: ST(0) = 4.1, ST(1) = result of division
fmul [ebp+arg_8]

; stack state now: ST(0) = result of multiplication, ST(1) = result of division
pop ebp

faddp st (1), st

7 division result
2nttp://en.wikipedia.org/wiki/Forth_(programming_language)
nttp://en.wikipedia.org/wiki/Stack_machine

33

http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/Stack_machine

; stack state now: ST(0) = result of addition

retn
£ endp

The difference is that, first of all, 3.14 is pushing to stack (into ST(0)), and then value in arg_0 is dividing
by what is in ST(0) register.

FDIVR meaning Reverse Divide — to divide with divisor and dividend swapped with each other. There
are no such instruction for multiplication, because multiplication is commutative operation, so we have just
FMUL without its -R counterpart.

FADDP adding two values but also popping one value from stack. After that operation, ST(0) will contain
sum.
This piece of disassembled code was produced using IDA 6 which named ST(0) register as ST for short.

2.12.2 Passing floating point number via arguments

int main ()

{
printf ("32.01 -~ 1.54 = %1f\n", pow (32.01,1.54));
return O;
}
Let’s see what we got in (MSVC 2010):
n»ICONST SEGMENT
__real@40400147ael47ael DQ 040400147aeldT7aelr ; 32.01
__real@3ff8a3d70a3d70a4 DQ 03ff8a3d70a3d70adr ; 1.54
CONST ENDS
_main PROC
push ebp
mov ebp, esp
sub esp, 8 ; allocate place for the first variable
fld QWORD PTR __real@3ff8a3d70a3d70a4
fstp QWORD PTR [esp]
sub esp, 8 ; allocate place for the second variable
fld QWORD PTR __real@40400147aeld7ael
fstp QWORD PTR [esp]
call _pow
add esp, 8 ; "return back" place of one variable.

; in local stack here 8 bytes still reserved for us.
; result now in ST (0)

fstp QWORD PTR [esp] ; move result from ST(0) to local stack for printf ()
push OFFSET $SG2651

call _printf
add esp, 12
xor eax, eax
pop ebp
ret 0

_main ENDP

FLD and FSTP are moving variables from/to data segment to FPU stack. pow()3? taking both values from
FPU-stack and returning result in ST(0). printf () takes 8 bytes from local stack and interpret them as
double type variable.

2.12.3 Comparison example

Let’s try this:

3%tandard C function, raises a number to the given power

34

double d_max (double a, double b)
{
if (a>b)
return a;

return b;

Despite simplicity of that function, it will be harder to understand how it works.
MSVC 2010 generated:

n»iPUBLIC _d_max
_TEXT SEGMENT
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC

push ebp

mov ebp, esp

fld QWORD PTR _b$[ebp]
; current stack state: ST(0) = _b

; compare _b (ST(0)) and _a, and pop register
fcomp QWORD PTR _a$[ebpl]

; stack is empty here
fnstsw ax
test ah, 5

jp SHORT $LN1@d_max

; we are here only if a>b

fld QWORD PTR _a$[ebpl]

jmp SHORT $LN2@d_max
$LN1@d_max:

fld QWORD PTR _b$[ebpl
$LN2@d _max:

pop ebp

ret 0
_d_max ENDP

So, FLD loading _b into ST(0) register.

FCOMP compares ST(0) register state with what is in _a value and set C3/C2/CO bits in FPU status word
register. This is 16-bit register reflecting current state of FPU.

For now C3/C2/C0 bits are set, but unfortunately, CPU before Intel P6 3! have not any conditional jumps
instructions which are checking these bits. Probably, it is a matter of history (remember: FPU was separate
chip in past). Modern CPU starting at Intel P6 has FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions — which
does that same, but modifies CPU flags ZF /PF/CF.

After bits are set, the FCOMP instruction popping one variable from stack. This is what differentiate if
from FCOM, which is just comparing values, leaving the stack at the same state.

FNSTSW copies FPU status word register to AX. Bits C3/C2/C0 are placed at positions 14/10/8, they will
be at the same positions in AX registers and all them are placed in high part of AX — AH.

e If b>a in our example, then C3/C2/CO bits will be set as following: 0, 0, 0.
e If a>b, then bits will be set: 0, 0, 1.

e If a=b, then bits will be set: 1, 0, 0.

31ntel P6 is Pentium Pro, Pentium II, etc

35

After test ah, 5 execution, bits C3 and C1 will be set to 0, but at positions 0 u 2 (in AH registers) CO
and C2 bits will be leaved.
Now let’s talk about parity flag. Yet another notable epoch rudiment.

One common reason to test the parity flag actually has nothing to do with parity. The
FPU has four condition flags (CO to C3), but they can not be tested directly, and must instead
be first copied to the flags register. When this happens, C0 is placed in the carry flag, C2 in
the parity flag and C3 in the zero flag. The C2 flag is set when e.g. incomparable floating
point values (NaN or unsupported format) are compared with the FUCOM instructions.>2

This flag is to be set to 1 if ones number is even. And to zero if odd.

Thus, PF flag will be set to 1 if both CO and C2 are set to zero or both are ones. And then following JP
(jump if PF==1) will be triggered. If we remembered values of C3/C2/C0 for different cases, we will see that
conditional jump JP will be triggered in two cases: if b>a or a==Db (C3 bit is already not considering here,
because it was cleared while execution of test ah, 5 instruction).

It is all simple thereafter. If conditional jump was triggered, FLD will load _b value to ST(0), and if it’s
not triggered, _a will be loaded.

But it is not over yet!

Now let’s compile it with MSVC 2010 with optimization option /0x

n»i_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC
f1d QWORD PTR _b$[esp-4]
fld QWORD PTR _a$[esp-4]
; current stack state: ST(0) = _a, ST(1) = _b
fcom ST(1) ; compare _a and ST(1) = (_b)
fnstsw ax
test ah, 65 ; 00000041H
jne SHORT $LN5@d_max
fstp ST(1) ; copy ST(0) to ST(1) and pop register, leave (_a) on top
; current stack state: ST(0) = _a
ret 0
$LN5@d_max:
fstp ST(0) ; copy ST(0) to ST(0) and pop register, leave (_b) on top
; current stack state: ST(0) = _b
ret 0
_d_max ENDP

FCOM is different from FCOMP is that sense that it just comparing values and leave FPU stack in the same
state. Unlike previous example, operands here in reversed order. And that is why result of comparision in
C3/C2/C0 will be different:

e If a>b in our example, then C3/C2/CO bits will be set as: 0, 0, 0.
e If b>a, then bits will be set as: 0, 0, 1.

e If a—b, then bits will be set as: 1, 0, 0.

36

It can be said, test ah, 65 instruction just leave two bits — C3 u CO. Both will be zeroes if a>b: in
that case JNE jump will not be triggered. Then FSTP ST(1) is following — this instruction copies ST(0)
value into operand and popping one value from FPU stack. In other words, that instruction copies ST(0)
(where _a value now) into ST(1). After that, two values of _a are at the top of stack now. After that, one
value is popping. After that, ST(0) will contain _a and function is finished.

Conditional jump JNE is triggered in two cases: of b>a or a==Db. ST(0) into ST(0) will be copied, it
is just like idle (NOP) operation, then one value is popping from stack and top of stack (ST(0)) will contain
what was in ST(1) before (that is _b). Then function finishes. That instruction used here probably because
FPU has no instruction to pop value from stack and not to store it anywhere.

Well, but it is still not over.

GCC 4.4.1
n»id_max proc near
b = gqword ptr -10h
a = qword ptr -8
a_first_half = dword ptr 8
a_second_half = dword ptr OCh
b_first_half = dword ptr 10h
b_second_half = dword ptr 14h
push ebp
mov ebp, esp
sub esp, 10h

; put a and b to local stack:

mov eax, [ebp+ta_first_half]
mov dword ptr [ebp+tal, eax
mov eax, [ebpt+ta_second_half]
mov dword ptr [ebp+a+4], eax
mov eax, [ebp+b_first_half]
mov dword ptr [ebp+b]l, eax
mov eax, [ebpt+b_second_half]
mov dword ptr [ebp+b+4], eax

; load a and b to FPU stack:

f1d [ebp+al
f1d [ebp+b]
; current stack state: ST(0) - b; ST(1) - a
fxch st (1) ; this instruction swapping ST (1) and ST(O0)
; current stack state: ST(0) - a; ST(1) - b
fucompp ; compare a and b and pop two values from stack, i.e.,
a and b
fnstsw ax ; store FPU status to AX
sahf ; load SF, ZF, AF, PF, and CF flags state from AH
setnbe al ; store 1 to AL if CF=0 and ZF=0
test al, al ; AL==0 7?7
jz short 1loc_8048453 ; yes
f1d [ebp+al
jmp short locret_8048456
loc_8048453:
fld [ebp+Db]
locret_8048456:
leave

37

retn
d_max endp

FUCOMPP — is almost like FCOM, but popping both values from stack and handling "not-a-numbers"
differently.

More about not-a-numbers:

FPU is able to work with special values which are not-a-numbers or NaNs>3. These are infinity, result of
dividing by zero, etc. Not-a-numbers can be "quiet" and "signalling". It is possible to continue to work with
"quiet" NaNs, but if one try to do some operation with "signalling" NaNs — an exception will be raised.

FCOM will raise exception if any operand — NalN. FUCOM will raise exception only if any operand —
signalling NaN (SNAN).

The following instruction is SAHF — this is rare instruction in the code which is not use FPU. 8 bits from
AH is movinto into lower 8 bits of CPU flags in the following order: SF:ZF:-:AF:-:PF:-:CF <- AH.

Let’s remember that FNSTSW is moving interesting for us bits C3/C2/CO into AH and they will be in
positions 6, 2, 0 in AH register.

In other words, fnstsw ax / sahf instruction pair is moving C3/C2/C0 into ZF, PF, CF CPU flags.

Now let’s also remember, what values of C3/C2/C0 bits will be set:

e If a is greater than b in our example, then C3/C2/C0 bits will be set as: 0, 0, 0.
e if a is less than b, then bits will be set as: 0, 0, 1.

e If a=b, then bits will be set: 1, 0, 0.

In other words, after FUCOMPP /FNSTSW/SAHF instructions, we will have these CPU flags states:
e If a>b, CPU flags will be set as: ZF=0, PF=0, CF=0.

e If a<b, then CPU flags will be set as: ZF=0, PF=0, CF=1.

e If a=b, then CPU flags will be set as: ZF=1, PF=0, CF=0.

How SETNBE instruction will store 1 or 0 to AL: it is depends of CPU flags. It is almost JNBE instruction
counterpart, with exception that uro SETcc?? is storing 1 or 0 to AL, but Jecc do actual jump or not. SETNBE
store 1 only if CF=0 and ZF=0. If it is not true, zero will be stored into AL.

Both CF is 0 and ZF is 0 simultaneously only in one case: if a>b.

Then one will be stored to AL and the following JZ will not be triggered and function will return _a. On
all other cases, b will be returned.

But it is still not over.

GCC 4.4.1 with -03 optimization turned on

o»i public d_max
d_max proc near
arg_O = gqword ptr 8
arg_8 = gqword ptr 10h
push ebp
mov ebp, esp
f1d [ebp+arg_0] ; _a
fld [ebpt+targ_8] ; _Db
; stack state now: ST(0) = _b, ST(1) = _a
fxch st (1)

33http://en.wikipedia.org/wiki/NaN
34¢cc is condition code

38

http://en.wikipedia.org/wiki/NaN

; stack state now: ST(0) = _a, ST(1) = _b

fucom st (1) ; compare _a and _b
fnstsw ax
sahf
ja short 1loc_8048448
fstp st ; store ST(0) to ST(0) (idle operation), pop value at top of
stack, leave _b at top
jmp short loc_804844A
loc_8048448:
fstp st (1) ; store _a to ST(0), pop value at top of stack, leave _a at
top
loc_804844A:
pop ebp
retn
d_max endp

It is almost the same except one: JA usage instead of SAHF. Actually, conditional jump instructions
checking "larger", "lesser" or "equal" for unsigned number comparison (JA, JAE, JBE, JBE, JE/JZ, JNA, JNAE,
JNB, JNBE, JNE/JNZ) are checking only CF and ZF flags. And C3/C2/CO bits after comparison are moving into
these flags exactly in the same fashion so conditional jumps will work here. JA will work if both CF are ZF
Zero.

Thereby, conditional jumps instructions listed here can be used after FNSTSW/SAHF instructions pair.

It seems, FPU C3/C2/C0 status bits was placed there deliberately so to map them to base CPU flags
without additional permutations.

39

2.13 Arrays

Array is just a set of variables in memory, always lying next to each other, always has same type.

#include <stdio.h>

int main ()

{

int a[20];
int i;
for (i=0; i<20; i++)
alil=i*2;
for (i=0; i<20; i++)
printf ("al/%d]l=Yd\n", i, alil);
return O;
};
Let’s compile:
_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC
push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebpl, O
jmp SHORT $LN6@main
$LN5@main :
mov eax, DWORD PTR _i$[ebpl
add eax, 1
mov DWORD PTR _i$[ebpl, eax
$LN6@main :
cmp DWORD PTR _i$[ebp]l, 20 ; 00000014H
jge SHORT $LN4@main
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN5@main
$LN4@main :
mov DWORD PTR _i$[ebp]l, O
jmp SHORT $LN3@main
$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebpl, eax
$LN3@main:
cmp DWORD PTR _i$[ebpl, 20 ; 00000014H
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebpl]
mov edx, DWORD PTR _a$[ebptecx*4]
push edx
mov eax, DWORD PTR _i$[ebp]
push eax
push OFFSET $SG2463
call _printf
add esp, 12 ; 0000000cH
jmp SHORT $LN2@main
$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0

40

_main ENDP

Nothing very special, just two loops: first is filling loop and second is printing loop. shl ecx, 1 instruc-
tion is used for ECX value multiplication by 2, more about below 2.14.3.

80 bytes are allocated in stack for array, that’s 20 elements of 4 bytes.

Here is what GCC 4.4.1 does:

public main

main proc near ; DATA XREF: _start+17
var_70 = dword ptr -70h
var_6C = dword ptr -6Ch
var_68 = dword ptr -68h
i_2 = dword ptr -54h
i = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 70h
mov [esp+70h+i], O ; i=0
jmp short loc_804840A

loc_80483F7:

mov eax, [esp+70h+i]
mov edx, [esp+70h+i]
add edx, edx ; edx=1%2
mov [espteax*4+70h+i_2], edx
add [esp+70h+i], 1 s i+
loc_804840A:
cmp [esp+70h+i], 13h
jle short loc_80483F7
mov [esp+70h+i], O
jmp short loc_8048441
loc_804841B:
mov eax, [esp+70h+i]
mov edx, [espteax*4+70h+i_2]
mov eax, offset aADD ; "al[%dl=%d\n"
mov [esp+70h+var_68], edx
mov edx, [esp+70h+i]
mov [esp+70h+var_6C], edx
mov [esp+70h+var_70], eax
call _printf
add [esp+70h+i], 1
loc_8048441:
cmp [esp+70h+i], 13h
jle short loc_804841B
mov eax, O
leave
retn
main endp

2.13.1 Buffer overflow

So, array indexing is just arrayfindez/. If you study generated code closely, you'll probably note missing
index bounds checking, which could check index, if it is less than 20. What if index will be greater than 207
That’s the one C/C++ feature it’s often blamed for.

Here is a code successfully compiling and working:

#include <stdio.h>

41

int main ()

{
int al[20];
int i;
for (i=0; i<20; i++)
alil=i*2;
printf ("a[100]=%d\n", a[100]);
return O;
T8
Compilation results (MSVC 2010):
_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC
push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebp]l, O
jmp SHORT $LN3@main
$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebpl, eax
$LN3@main:
cmp DWORD PTR _i$[ebpl, 20 ; 00000014H
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebpl
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN2@main
$LN1@main:
mov eax, DWORD PTR _a$[ebp+400]
push eax
push OFFSET $SG2460
call _printf
add esp, 8
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

I’'m running it, and I got:

a[100]=760826203

It is just something, lying in the stack near to array, 400 bytes from its first element.

Indeed, how it could be done differently? Compiler may incorporate some code, checking index value
to be always in array’s bound, like in higher-level programming languages®®, but this makes running code
slower.

OK, we read some values in stack illegally, but what if we could write something to it?

Here is what we will write:

#include <stdio.h>

int main ()

{
int al[20];

35 Java, Python, etc

42

int i;

for (i=0; i<30; i++)
alil=i;

return O;

};
And what we’ve got:
n»I_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC
push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebpl, O
jmp SHORT $LN3@main
$LN2Q@main:
mov eax, DWORD PTR _i$[ebpl
add eax, 1
mov DWORD PTR _i$[ebpl, eax
$LN3@main:
cmp DWORD PTR _i$[ebpl, 30 ; 0000001eH
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebpl
mov edx, DWORD PTR _i$[ebp] ; that insruction is obviously redundant
mov DWORD PTR _a$[ebp+ecx*4], edx ; ECX could be used as second operand here
instead
jmp SHORT $LN2@main
$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

Run compiled program and its crashing. No wonder. Let’s see, where exactly it’s crashing.

I’'m not using debugger anymore, because I tired to run it each time, move mouse, etc, when I need just to
spot some register’s state at specific point. That’s why I wrote very minimalistic tool for myself, tracer 6.0.1,
which is enough for my tasks.

I can also use it just to see, where debuggee is crashed. So let’s see:

generic tracer 0.4 (WIN32), http://conus.info/gt

New process: C:\PRJ\...\1l.exe, PID=7988

EXCEPTION_ACCESS_VIOLATION: 0x15 (<symbol (0x15) is in unknown module>),
ExceptionInformation [0]=8

EAX=0x00000000 EBX=0x7EFDE0OOO ECX=0x0000001D EDX=0x0000001D

ESI=0x00000000 EDI=0x00000000 EBP=0x00000014 ESP=0x0018FF48

EIP=0x00000015

FLAGS=PF ZF IF RF

PID=7988| Process exit, return code -1073740791

So, please keep an eye on registers.

Exception occured at address 0x15. It’s not legal address for code — at least for win32 code! We trapped
there somehow against our will. It’s also interesting fact that EBP register contain 0x14, ECX and EDX — 0x1D.

Let’s study stack layout more.

After control flow was passed into main(), EBP register value was saved into stack. Then, 84 bytes was
allocated for array and ¢ variable. That’s (20+1)*sizeof (int). ESP pointing now to _i variable in local
stack and after execution of next PUSH something, something will be appeared next to _i.

That’s stack layout while control is inside _main:

ESP: 4 bytes for i

43

ESP+4: 80 bytes for a[20] array
ESP+84: saved EBP value
ESP+88: returning address

Instruction a[19]=something writes last int in array bounds (yet!)

Instruction a[20]=something writes something to the place where EBP value is saved.

Please take a look at registers state at the crash moment. In our case, number 20 was written to 20th
element. By the function ending, function epilogue restore EBP value. (20 in decimal system is 0x14 in
hexadecimal). Then, RET instruction was executed, which is equivalent to POP EIP instruction.

RET instruction taking returning adddress from stack (that’s address in some CRT3¢-function, which was
called _main), and 21 was stored there (0x15 in hexadecimal). The CPU trapped at the address 0x15, but
there are no executable code, so exception was raised.

Welcome! It’s called buffer overflow”.

Replace int array by string (char array), create a long string deliberately, pass it to the program, to
the function which is not checking string length and copies it to short buffer, and you’ll able to point to a
program an address to which it should jump. Not that simple in reality, but that’s how it was started?®.

There are several methods to protect against it, regardless of C/C++ programmers’ negligence. MSVC
has options like3?:

/RTCs Stack Frame runtime checking
/GZ Enable stack checks (/RTCs)

One of the methods is to write random value among local variables to stack at function prologue and
to check it in function epilogue before function exiting. And if value is not the same, do not execute last
instruction RET, but halt (or hang). Process will hang, but that’s much better then remote attack to your
host.

Let’s try the same code in GCC 4.4.1. We got:

public main
main proc near

[V
|

= dword ptr -54h
dword ptr -4

e
]

push ebp

mov ebp, esp

sub esp, 60h

mov [ebp+i]l, O

jmp short loc_80483D1
loc_80483C3:

mov eax, [ebp+il

mov edx, [ebp+il

mov [ebp+teax*4+al, edx

add [ebp+il, 1
loc_80483D1:

cmp [ebp+il, 1Dh

jle short loc_80483C3

mov eax, O

leave

retn
main endp

Running this in Linux will produce: Segmentation fault.
If we run this in GDB debugger, we getting this:

(gdb) r
Starting program: /home/dennis/RE/1

36C Run-Time
3"http://en.wikipedia.org/wiki/Stack_buffer_overflow
38(Classic article about it: Smashing The Stack For Fun And Profit
39Wikipedia: compiler-side buffer overflow protection methods

44

http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://www.phrack.com/issues.html?issue=49&id=14
http://en.wikipedia.org/wiki/Buffer_overflow_protection

Program received signal SIGSEGV, Segmentation fault.
0x00000016 in 77 ()
(gdb) info registers

eax 0x0 0

ecx 0xd2f96388 -755407992
edx 0x1d 29

ebx 0x26effd4d 2551796

esp Oxbfff£f4b0 Oxbfff£f4b0
ebp 0x15 0x15

esi 0x0 0

edi 0x0 0

eip 0x16 0x16

eflags 0x10202 [IF RF 1]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb)

Register values are slightly different then in win32 example, that’s because stack layout is slightly different
too.

2.13.2 One more word about arrays

Now we understand, why it’s not possible to write something like that in C/C-++ code °:

void f(int size)
{

int alsizel;

};

That’s just because compiler should know exact array size to allocate place for it in local stack layout or
in data segment (in case of global variable) on compiling stage.

If you need array of arbitrary size, allocate it by malloc(), then access allocated memory block as array
of variables of type you need.

2.13.3 Multidimensional arrays

Internally, multidimensional array is essentially the same thing as linear array.
Let’s see:

#include <stdio.h>
int a[10][20] [30];

void insert(int x, int y, int z, int value)

{
alx][yl[zl=value;
};
We got (MSVC 2010):
_DATA SEGMENT
COMM _a:DWORD:01770H
_DATA ENDS
PUBLIC _insert
_TEXT SEGMENT
_x$ = 8 ; size = 4
_y$ = 12 ; size = 4

“0GCC can actually do this by allocating array dynammically in stack (like alloca()), but it’s not standard langauge extension

45

_z$ = 16 ; size = 4

_value$ = 20 ; size = 4
_insert PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _x$[ebp]
imul eax, 2400 ; 00000960H
mov ecx, DWORD PTR _y$[ebpl]
imul ecx, 120 ; 00000078H
lea edx, DWORD PTR _al[eax+ecx]
mov eax, DWORD PTR _z$[ebpl
mov ecx, DWORD PTR _value$[ebp]
mov DWORD PTR [edx+eax*4], ecx
pop ebp
ret 0
_insert ENDP
_TEXT ENDS

Nothing special. For index calculation, three input arguments are multiplying in such way to represent
array as multidimensional.

GCC 4.4.1:

public insert

insert proc near

X = dword ptr 8

y = dword ptr OCh

z = dword ptr 10h

value = dword ptr 14h
push ebp
mov ebp, esp
push ebx
mov ebx, [ebp+x]
mov eax, [ebp+yl
mov ecx, [ebp+z]
lea edx, [eax+eax]
mov eax, edx
shl eax, 4
sub eax, edx
imul edx, ebx, 600
add eax, edx
lea edx, [eax+ecx]
mov eax, [ebp+valuel
mov dword ptr ds:aledx*4], eax
pop ebx
pop ebp
retn

insert endp

46

2.14 Bit fields

A lot of functions defining input flags in arguments using bit fields. Of course, it could be substituted by
bool-typed variables set, but it’s not frugally.

2.14.1 Specific bit checking
Win32 API example:

HANDLE f£fh;

fh=CreateFile ("file", GENERIC_WRITE | GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

We got (MSVC 2010):

push 0

push 128 ; 00000080H
push 4

push 0

push 1

push -1073741824 ; c0000000H
push OFFSET $S5G78813

call DWORD PTR __imp__CreateFileA@28

mov DWORD PTR _fh$[ebp]l, eax

Let’s take a look into WinNT.h:

#define GENERIC_READ (0x80000000L)
#define GENERIC_WRITE (0x40000000L)
#define GENERIC_EXECUTE (0x20000000L)
#define GENERIC_ALL (0x10000000L)

Everything is clear, GENERIC_READ | GENERIC_WRITE = 0x80000000 | 0x40000000 = 0xC0000000, and
that’s value is used as second argument for CreateFile ()*! function.

How CreateFile() will check flags?

Let’s take a look into KERNEL32.DLL in Windows XP SP3 x86 and we’ll find this piece of code in the
function CreateFileW:

.text:7C83D429 test byte ptr [ebp+dwDesiredAccess+3], 40h
.text :7C83D42D mov [ebp+var_8], 1

.text :7C83D434 jz short loc_7C83D417

.text :7C83D436 jmp loc_7C810817

Here we see TEST instruction, it takes, however, not the whole second argument, but only most significant
byte (ebp+dwDesiredAccess+3) and checks it for 0x40 flag (meaning GENERIC_WRITE flag here)

TEST is merely the same instruction as AND, but without result saving (recall the fact CMP instruction is
merely the same as SUB, but without result saving 2.4.2).

This piece of code logic is as follows:

if ((dwDesiredAccess&0x40000000) == 0) goto loc_7C83D417

If AND instruction leaving this bit, ZF flag will be cleared and JZ conditional jump will not be triggered.
Conditional jump is possible only if 0x40000000 bit is absent in dwDesiredAccess variable — then AND result
will be 0, ZF flag will be set and conditional jump is to be triggered.

Let’s try GCC 4.4.1 and Linux:

#include <stdio.h>
#include <fcntl.h>

void main ()

{
int handle;

HMSDN: CreateFile function

47

http://msdn.microsoft.com/en-us/library/aa363858(VS.85).aspx

handle=open ("file", O_RDWR | O_CREAT);

};
We got:
public main
main proc near
var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_4 = dword ptr -4
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov [esp+20h+var_1C], 42h
mov [esp+20h+var_20], offset aFile ; "file"
call _open
mov [esp+20h+var_4], eax
leave
retn
main endp
Let’s take a look into open() function in libc.so.6 library, but there is only syscall calling:
.text :000BE69B mov edx, [esp+4+mode] ; mode
.text :000BE69F mov ecx, [esp+4+flags] ; flags
.text :000BE6A3 mov ebx, [esp+4+filename] ; filename
.text :000BE6GA7 mov eax, 5
.text :000BE6GAC int 80h ; LINUX - sys_open

So, open() bit fields are probably checked somewhere in Linux kernel.

Of course, it is easily to download both Glibc and Linux kernel source code, but we are interesting to
understand the matter without it.

So, as of Linux 2.6, when sys_open syscall is called, control eventually passed into do_sys_open kernel
function. From there — to do_filp_open() function (this function located in kernel source tree in the file
fs/namei.c).

Important note. Aside from usual passing arguments via stack, there are also method to pass some of
them via registers. This is also called fastcall 3.5.3. This works faster, because CPU not needed to access a
stack in memory to read argument values. GCC has option regparm??, and it’s possible to set a number of
arguments which might be passed via registers.

Linux 2.6 kernel compiled with -mregparm=3 option

What it means to us, the first 3 arguments will be passed via EAX, EDX and ECX registers, the other ones
via stack. Of course, if arguments number is less than 3, only part of registers will be used.

So, let’s download Linux Kernel 2.6.31, compile it in Ubuntu: make vmlinux, open it in IDA 6, find the
do_filp_open() function. At the beginning, we will see (comments are mine):

43 44

do_filp_open proc near
push ebp
mov ebp, esp
push edi
push esi
push ebx
mov ebx, ecx
add ebx, 1
sub esp, 98h
mov esi, [ebptarg_4] ; acc_mode (5th arg)

“Inttp://ohse.de/uwe/articles/gcc-attributes.html#func-regparm
“*http://kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0a1942bbf5bb9adaccbc8f

*4See also arch\x86\include\asm\calling.h file in kernel tree

48

http://ohse.de/uwe/articles/gcc-attributes.html#func-regparm
http://kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0a1942bbf5bb9a4accbc8f

test bl, 3

mov [ebp+var_80], eax ; dfd (1th arg)

mov [ebp+var_7C], edx ; pathname (2th arg)
mov [ebp+var_78], ecx ; open_flag (3th arg)
jnz short loc_CO1EF684

mov ebx, ecx ; ebx <- open_flag

GCC saves first 3 arguments values in local stack. Otherwise, if compiler would not touch these registers,
it would be too tight environment for compiler’s register allocator.
Let’s find this piece of code:

loc_CO1EF6B4: ; CODE XREF: do_filp_open+4F
test bl, 40h ; O_CREAT
jnz loc_CO1EF810
mov edi, ebx
shr edi, 11ih
Xor edi, 1
and edi, 1
test ebx, 10000h
jz short loc_CO1EF6D3
or edi, 2

0x40 — is what O_CREAT macro equals to. open_flag checked for 0x40 bit presence, and if this bit is 1,
next JNZ instruction is triggered.

2.14.2 Specific bit setting/clearing

For example:

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT (var, bit) ((var) &= ~(bit))

int f(int a)

{
int rt=a;
SET_BIT (rt, 0x4000);
REMOVE_BIT (rt, 0x200);
return rt;

}s

We got (MSVC 2010):

_rt$ = -4 ; size = 4

_a$ = 8 ; size = 4

_f PROC
push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR _rt$[ebpl, eax
mov ecx, DWORD PTR _rt$[ebpl
or ecx, 16384 ; 00004000H
mov DWORD PTR _rt$[ebpl, ecx
mov edx, DWORD PTR _rt$[ebpl
and edx, -513 ; fffffdffH
mov DWORD PTR _rt$[ebpl, edx
mov eax, DWORD PTR _rt$[ebpl
mov esp, ebp
pop ebp
ret 0

f ENDP

OR instruction adding one more bit to value, ignoring others.

49

AND resetting one bit. It can be said, AND just copies all bits except one. Indeed, in the second AND
operand only those bits are set, which are needed to be saved, except one bit we wouldn’t like to copy (which
is 0 in bitmask). It’s easier way to memorize the logic.

If we compile it in MSVC with optimization turned on (/0x), the code will be even shorter:

_a$ = 8 ; size = 4
_f PROC
mov eax, DWORD PTR _a$[esp-4]
and eax, -513 ; fffffdffH
or eax, 16384 ; 00004000H
ret 0
f ENDP

Let’s try GCC 4.4.1 without optimization:

public f

f proc near

var_4 = dword ptr -4

arg_O = dword ptr 8
push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebptarg_O]
mov [ebp+tvar_4], eax
or [ebp+var_4], 4000h
and [ebp+var_4], OFFFFFDFFh
mov eax, [ebp+var_4]
leave
retn

£ endp

There are some redundant code present, however, it’s shorter then MSVC version without optimization.
Now let’s try GCC with optimization turned on -03:

public f

f proc near

arg_O = dword ptr 8
push ebp
mov ebp, esp
mov eax, [ebpt+targ_0]
pop ebp
or ah, 40h
and ah, OFDh
retn

£ endp

That’s shorter. It is important to note that compiler works with EAX register part via AH register —
that’s EAX register part from 8th to 15th bits inclusive.

Important note: 16-bit CPU 8086 accumulator was named AX and consisted of two 8-bit halves — AL
(lower byte) and AH (higher byte). In 80386 almost all regsiters were extended to 32-bit, accumulator was
named EAX, but for the sake of compatibility, its older parts may be still accessed as AX/AH/AL registers.

Because all x86 CPUs are 16-bit 8086 CPU successors, these older 16-bit opcodes are shorter than newer
32-bit opcodes. That’s why or ah, 40h instruction occupying only 3 bytes. It would be more logical way
to emit here or eax, 04000h, but that’s 5 bytes, or even 6 (if register in first operand is not EAX).

It would be even shorter if to turn on -03 optimization flag and also set regparm=3.

public £
£ proc near
push ebp
or ah, 40h
mov ebp, esp

50

and ah, OFDh

pop ebp
retn
£ endp
Indeed — first argument is already loaded into EAX, so it’s possible to work with it in-place. It’s worth

noting that both function prologue (push ebp / mov ebp,esp) and epilogue can easily be omitted here, but
GCC probably isn’t good enough for such code size optimizations. However, such short functions are better

to be inlined functions®.

2.14.3 Shifts

Bit shifts in C/C++ are implemented via « and » operators.
Here is a simple example of function, calculating number of 1 bits in input variable:

#define IS_SET(flag, bit) ((flag) & (bit))

int f(unsigned int a)

{
int i;
int rt=0;
for (i=0; i<32; i++)
if (IS_SET (a, 1<<i))
rt++;
return rt;
};

In this loop, iteration count value 4 counting from 0 to 31, 1«i statement will be counting from 1 to
0x80000000. Describing this operation in naturaul language, we would say shift 1 by n bits left. In other
words, 1«i statement will consequentially produce all possible bit positions in 32-bit number. By the way,
freed bit at right is always cleared. IS_SET macro is checking bit presence in a.

The IS_SET macro is in fact logical and operation (AND) and it returns zero if specific bit is absent
there, or bit mask, if the bit is present. if() operator triggered in C/C++ if expression in it isn’t zero, it
might be even 123, that’s why it always working correctly.

Let’s compile (MSVC 2010):

_rt$ = -8 ; size = 4
_i$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC
push ebp
mov ebp, esp
sub esp, 8
mov DWORD PTR _rt$[ebp]l, O
mov DWORD PTR _i$[ebpl, O
jmp SHORT $LN4ef
$LN3Qf :
mov eax, DWORD PTR _i$[ebp] ; increment of 1
add eax, 1
mov DWORD PTR _i$[ebpl, eax
$LN4eOf :
cmp DWORD PTR _i$[ebpl, 32 ; 00000020H
jge SHORT $LN2@f ; loop finished?
mov edx, 1
mov ecx, DWORD PTR _i$[ebp]
shl edx, cl ; EDX=EDX<<CL
and edx, DWORD PTR _a$[ebpl
je SHORT $LN1@f ; result of AND instruction was 07
; then skip next instructions
mov eax, DWORD PTR _rt$[ebpl ; no, not zero

“nttp://en.wikipedia.org/wiki/Inline_function

o1

http://en.wikipedia.org/wiki/Inline_function

add eax, 1 ; increment rt

mov DWORD PTR _rt$[ebpl, eax
$LN1@f :
jmp SHORT $LN3@f
$LN20Qf :
mov eax, DWORD PTR _rt$[ebpl
mov esp, ebp
pop ebp
ret 0
f ENDP

That’s how SHL (SHift Left) working.
Let’s compile it in GCC 4.4.1:

public f
f proc near
rt = dword ptr -0Ch
i = dword ptr -8
arg_O = dword ptr 8
push ebp
mov ebp, esp
push ebx
sub esp, 10h
mov [ebp+rt], O
mov [ebp+i]l, O
jmp short loc_80483EF
1oc_80483D0:
mov eax, [ebp+il
mov edx, 1
mov ebx, edx
mov ecx, eax
shl ebx, cl
mov eax, ebx
and eax, [ebp+targ_0]
test eax, eax
jz short loc_80483EB
add [ebp+rt], 1
loc_80483EB:
add [ebp+i], 1
loc_80483EF:
cmp [ebp+i], 1Fh
jle short 1loc_80483D0
mov eax, [ebp+rt]
add esp, 10h
pop ebx
pop ebp
retn
£ endp

Shift instructions are often used in division and multiplications by power of two numbers (1, 2, 4, 8, etc).
For example:

unsigned int f (unsigned int a)

{
return a/4;
};
We got (MSVC 2010):
_a$ = 8 ; size = 4
_f PROC
mov eax, DWORD PTR _a$[esp-4]
shr eax, 2
ret 0
f ENDP

52

SHR (SHift Right) instruction is shifting a number by 2 bits right. Two freed bits at left (e.g., two most
significant bits) are set to zero. Two least significant bits are dropped. In fact, these two dropped bits —
division operation remainder.

It can be easily understood if to imagine decimal numeral system and number 23. 23 can be easily divided
by 10 just by dropping last digit (3 will be division remainder). 2 is leaving after operation as a quotient 6.

The same story about multiplication. Multiplication by 4 is just shifting the number to the left by 2 bits,
inserting 2 zero bits at right (as the last two bits).

2.14.4 CRC32 calculation example
This is very popular table-based CRC32 hash calculation method?”.

/* By Bob Jenkins, (c) 2006, Public Domain */

#include <stdio.h>
#include <stddef.h>
#include <string.h>

typedef unsigned long ub4;
typedef wunsigned char ubl;

static const ub4 crctab[256] = {
0x00000000, 0x77073096, Oxeeleb612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963ab35, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4d4, O0xeOdbe9le, 0x97d2d988,
0x09b64c2b, 0x7ebl7cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84bedlde, Oxladad47d, Ox6dddedeb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4dl, 0x4b04d447, 0xd20d85fd, Oxab0abb56b, 0x35b5a8fa, 0x42b2986c,
O0xdbbbc9d6 , Oxacbcf940, 0x32d86ce3, 0x45df5c75, Oxdcd60dcf, Oxabd13db9,
0x26d930ac, 0x51de003a, 0xc8d75180, Oxbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89%e, 0x5f058808, 0xc60cd9b2, 0xbl0be924,
0x2f6f7c87, 0x58684c11, Oxcl6lldab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, Oxefdb5102a, 0x71b18589, 0x06b6b51f, 0x9fbfedab, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xel0e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, Oxlc6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4cl, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62ddiddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3abbblce, 0xa3bc0074, 0xd4bb30e2, Ox4adfab4l, 0x3dd895d7,
O0xad4dlc46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, Oxaalad4chbf, 0xdd0d7cc9, 0x5005713c, 0x270241laa,
0xbeO0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, Oxceble4d9f,
0xb5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d481,
0xb7bd5c3b, OxcObab6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74bld29a,
Oxeadb54739, 0x9dd277af, 0x04db2615, 0x73dcl1683, 0xe3630bl12, 0x94643b84,
0x0d6d6a3e, Ox7a6abaa8, 0xed40ecfOb, 0x9309ff9d, 0x0a0Oae27, 0x7d079ebl,
0xf00£f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, O0xfed41b76, 0x89d32be0, Ox10da7aba, O0x67dd4acc,
0xf9b9df6f, O0x8ebeeff9, 0x17b7bed3, 0x60b08edb5, 0xd6d6a3e8, 0xaldl937e,
0x38d8c2c4, 0x4fdff252, O0xdlbb67f1, O0xabbcb5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, OxafOalb4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, O0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, Oxbb0b4703, 0x220216b9, 0x5505262f, Oxcbba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, Oxbbdeaeld,
0x9b64c2b0, Oxec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87ald4d, 0x7bbl2bae, 0x0cb61b38,
0x92d28e9b, 0xebdb5beOd, 0x7cdcefb7, 0xObdbdf21, 0x86d3d2d4, Oxfl1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81lbelbcd, 0xf6b9265b, 0x6fb077el, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010bbc, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016£f7, 0x4969474d, 0x3e6e77db, Oxaedl6ada, 0xd9d65adc,
0x40df0b66 , 0x37d83bf0, Oxa9bcaeb53, Oxdebb9ecH, 0x47b2cf7f, 0x30b5ffe9,

46 division result
“TSource code was taken here: http://burtleburtle.net/bob/c/crc.c

93

http://burtleburtle.net/bob/c/crc.c

0xbdbdf21c, Oxcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, O0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8eal, 0x5a05dfib, 0x2d02ef8d,

};

/* how to derive the values in crctab[] from polynomial 0xedb88320 x/
void build_table ()

{
ub4 i, j;
for (i=0; i<256; ++i) {
=i
j = (j>>1) =~ ((j&1) ? 0xedb88320 : 0);
j = (3j>>1) =~ ((j&1) 7 0xedb88320 : 0);
j = (§j>>1) =~ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) =~ ((j&1) ? 0xedb88320 : 0);
j = (3j>>1) =~ ((j&1) 7 0xedb88320 : 0);
j = (§j>>1) =~ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) =~ ((j&1) ? 0xedb88320 : 0);
j = (3j>>1) =~ ((j&1) 7 0xedb88320 : 0);
printf ("0x%.81x, ", j);
if (i%6 == 5) printf ("\n");
}
}

/* the hash function x*/
ub4 crc(const void *key, ub4 len, ub4 hash)
{
ub4 i;
const ubl *k = key;
for (hash=len, i=0; i<len; ++i)
hash = (hash >> 8) -~ crctab[(hash & Oxff) ~ k[il];
return hash;

}

/* To use, try "gcc -0 crc.c -o crc; crc < crc.c" */

int main ()

{
char s[1000];
while (gets(s)) printf ("%.81lx\n", crc(s, strlen(s), 0));
return O;

}

We are interesting in crc () function only. By the way, please note: programmer used two loop initializers
in for() statement: hash=len, i=0. C/C++ standard allows this, of course. Emited code will contain two
operations in loop initialization part instead of usual one.

Let’s compile it in MSVC with optimization (/0x). For the sake of brevity, only crc() function is listed
here, with my comments.

_key$ = 8 ; size = 4
_len$ = 12 ; size = 4
_hash$ = 16 ; size = 4
_crc PROC
mov edx, DWORD PTR _len$[esp-4]
xXor ecx, ecx ; 1 will be stored in ECX
mov eax, edx
test edx, edx
jbe SHORT $LN1@crc
push ebx
push esi
mov esi, DWORD PTR _key$[esp+4] ; ESI = key
push edi
$LL3G@crc:

; work with bytes using only 32-bit registers. byte from address key+i we store into EDI

o4

movzx edi, BYTE PTR [ecx+esil
mov ebx, eax ; EBX = (hash = len)
and ebx, 255 ; EBX = hash & Oxff

; XOR EDI, EBX (EDI=EDI"EBX) - this operation uses all 32 bits of each register
; but other bits (8-31) are cleared all time, so it’s 0K

; these are cleared because, as for EDI, it was done by MOVZX instruction above
; high bits of EBX was cleared by AND EBX, 255 instruction above (255 = Oxff)

Xor edi, ebx
shr eax, 8 ; EAX=EAX>>8; bits 24-31 taken "from nowhere"
will be cleared
Xor eax, DWORD PTR _crctabl[edi*4] ; EAX=EAX~-crctab[EDI*4] - choose EDI-th element
from crctab[] table
inc ecx ; i++
cmp ecx, edx ; i<len 7
jb SHORT $LL3@crc ; yes
pop edi
pop esi
pop ebx
$LN1@crc:
ret 0
_G®E ENDP

Let’s try the same in GCC 4.4.1 with -03 option:

public crc
GG proc near

key dword ptr 8

hash = dword ptr OCh
push ebp
Xor edx, edx
mov ebp, esp
push esi
mov esi, [ebp+key]
push ebx
mov ebx, [ebp+hash]
test ebx, ebx
mov eax, ebx
jz short 1loc_80484D3
nop ; padding
lea esi, [esi+O0] ; padding; ESI doesn’t changing here
loc_80484B8:
mov ecx, eax ; save previous state of hash to ecx
Xor al, [esi+edx] ; al=x(key+i)
add edx, 1 ; it++
shr ecx, 8 ; ecx=hash>>8
movzx eax, al ; eax=x*(key+i)
mov eax, dword ptr ds:crctabl[eax*4] ; eax=crctab[eax]
Xor eax, ecx ; hash=eax~ecx
cmp ebx, edx
ja short 1loc_80484B8
loc_80484D3:
pop ebx
pop esi
pop ebp
retn
crc endp

GCC aligned loop start by 8-byte border by adding NOP and lea esi, [esi+0] (that’s idle operation
too). Read more about it in npad section 3.3.

95

2.15 Structures

It can be defined that C/C++ structure, with some assumptions, just a set of variables, always stored in
memory together, not necessary of the same type.
2.15.1 SYSTEMTIME example

Let’s take SYSTEMTIME**win32 structure describing time.
That’s how it’s defined:

typedef struct _SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

Let’s write a C function to get current time:

#include <windows.h>
#include <stdio.h>

void main ()

{
SYSTEMTIME t;
GetSystemTime (&t);
printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t.wYear, t.wMonth, t.wDay,
t.wHour, t.wMinute, t.wSecond);
return;
};
We got (MSVC 2010):
_t$ = -16 ; size = 16
_main PROC
push ebp
mov ebp, esp
sub esp, 16 ; 00000010H
lea eax, DWORD PTR _t$[ebpl]
push eax

call DWORD PTR imp__GetSystemTime@4

movzx ecx, WORD PTR _t$[ebp+12] ; wSecond

push ecx

movzx edx, WORD PTR _t$[ebp+10] ; wMinute
push edx

movzx eax, WORD PTR _t$[ebp+8] ; wHour
push eax

movzx ecx, WORD PTR _t$[ebp+6] ; wDay
push ecx

movzx edx, WORD PTR _t$[ebp+2] ; wMonth
push edx

movzx eax, WORD PTR _t$[ebp] ; wYear

push eax

push OFFSET $SG78811 ; °%04d4-%02d-%02d4 %02d:%02d4:%02d4°, OaH, OOH
call _printf

add esp, 28 ; 0000001cH

xXor eax, eax

BNSDN: SYSTEMTIME structure

o6

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx

mov esp, ebp

pop ebp
ret 0
_main ENDP

16 bytes are allocated for this structure in local stack — that’s exactly sizeof (WORD)*8 (there are 8
WORD variables in the structure).

Take a note: the structure beginning with wYear field. It can be said, an pointer to SYSTEMTIME
structure is passed to GetSystemTime ()*°, but it’s also can be said, pointer to wYear field is passed, and
that’s the same! GetSystemTime () writting current year to the WORD pointer pointing to, then shifting 2
bytes ahead, then writting current month, etc, etc.

2.15.2 Let’s allocate place for structure using malloc()

However, sometimes it’s simpler to place structures not in local stack, but in heap:

#include <windows.h>
#include <stdio.h>

void main ()
{
SYSTEMTIME *t;
t=(SYSTEMTIME *)malloc (sizeof (SYSTEMTIME)) ;
GetSystemTime (t);
printf ("%04d-%02d4-%02d %02d:%02d4:%02d\n",
t->wYear, t->wMonth, t->wDay,
t->wHour , t->wMinute, t->wSecond);

free (t);

return;

Let’s compile it now with optimization (/0x) so to easily see what we need.

_main PROC
push esi
push 16 ; 00000010H
call _malloc
add esp, 4
mov esi, eax
push esi
call DWORD PTR __imp__GetSystemTime@4
movzx eax, WORD PTR [esi+12] ; wSecond

movzx ecx, WORD PTR [esi+10] ; wMinute
movzx edx, WORD PTR [esi+8] ; wHour
push eax

movzx eax, WORD PTR [esi+6] ; wDay
push ecx

movzx ecx, WORD PTR [esi+2] ; wMonth
push edx

movzx edx, WORD PTR [esi] ; wYear

push eax

push ecx

push edx

push OFFSET $SG78833

call _printf

push esi

call _free

add esp, 32 ; 00000020H

49MSDN: SYSTEMTIME structure

o7

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx

xXor eax, eax

pop esi
ret 0
_main ENDP

So, sizeof (SYSTEMTIME) = 16, that’s exact number of bytes to be allocated by malloc(). It return the
pointer to freshly allocated memory block in EAX, which is then moved into ESI. GetSystemTime () win32
function undertake to save ESI value, and that’s why it is not saved here and continue to be used after
GetSystemTime () call.

New instruction — MOVZX (Move with Zero eXtent). It may be used almost in those cases as MOVSX 2.10,
but, it clearing other bits to 0. That’s because printf () require 32-bit int, but we got WORD in structure
— that’s 16-bit unsigned type. That’s why by copying value from WORD into int, bits from 16 to 31 should
be cleared, because there will be random noise otherwise, leaved from previous operations on registers.

2.15.3 Linux

As of Linux, let’s take tm structure from time.h for example:

#include <stdio.h>
#include <time.h>

void main ()

{
struct tm t;
time_t unix_time;
unix_time=time (NULL) ;
localtime_r (&unix_time, &t);
printf ("Year: %d\n", t.tm_year+1900);
printf ("Month: %d\n", t.tm_mon);
printf ("Day: %d\n", t.tm_mday);
printf ("Hour: %d\n", t.tm_hour);
printf ("Minutes: %d\n", t.tm_min);
printf ("Seconds: %d\n", t.tm_sec);
+s
Let’s compile it in GCC 4.4.1:
main proc near
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 40h
mov dword ptr [esp]l, O ; first argument for time ()
call time
mov [esp+3Ch], eax
lea eax, [esp+3Ch] ; take pointer to what time() returned
lea edx, [esp+10h] ; at ESP+10h struct tm will begin
mov [esp+4], edx ; pass pointer to the structure begin
mov [esp]l, eax ; pass pointer to result of time ()
call localtime_r
mov eax, [esp+24h] ; tm_year
lea edx, [eax+76Ch] ; edx=eax+1900
mov eax, offset format ; "Year: %d\n"
mov [esp+4], edx
mov [esp]l, eax
call printf
mov edx, [esp+20h] ; tm_mon
mov eax, offset aMonthD ; "Month: %d\n"
mov [esp+4], edx
mov [espl, eax
call printf
mov edx, [esp+1Chl] ; tm_mday

o8

mov eax, offset aDayD ; "Day: %d\n"

mov [esp+4], edx
mov [esp]l, eax
call printf
mov edx, [esp+18h] ; tm_hour
mov eax, offset aHourD ; "Hour: %d\n"
mov [esp+4], edx
mov [espl, eax
call printf
mov edx, [esp+14h] ; tm_min
mov eax, offset aMinutesD ; "Minutes: %d\n"
mov [esp+4], edx
mov [esp]l, eax
call printf
mov edx, [esp+10h]
mov eax, offset aSecondsD ; "Seconds: %d\n"
mov [esp+4], edx ; tm_sec
mov [esp]l, eax
call printf
leave
retn
main endp

Somehow, IDA 6 didn’t created local variables names in local stack. But since we already experienced
reverse engineers :-) we may do it without this information in this simple example.

Please also pay attention to lea edx, [eax+76Ch] — this instruction just adding 0x76C to EAX, but not
modify any flags. See also relevant section about LEA 3.1.

2.15.4 Fields packing in structure

One important thing is fields packing in structures®.

Let’s take a simple example:

#include <stdio.h>

struct s
{
char a;
int b;
char c;
int d;
}s
void f(struct s s)
{
printf ("a=%d; b=%d; c=%d; d=%d\n", s.a, s.b, s.c, s.d);
};
As we see, we have two char fields (each is exactly one byte) and two more — int (each - 4 bytes).
That’s all compiling into:
_s$ = 8 ; size = 16
?7fQ@YAXUs@@@Z PROC ; £
push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebp+12]
push eax
movsx ecx, BYTE PTR _s$[ebp+8]
push ecx
mov edx, DWORD PTR _s$[ebp+4]

push edx
movsx eax, BYTE PTR _s$[ebp]
push eax

0See also: Data structure alignment

99

http://en.wikipedia.org/wiki/Data_structure_alignment

push OFFSET $SG3842

call _printf
add esp, 20 ; 00000014H
pop ebp
ret 0
7fQQYAXUs@@Q@Z ENDP g o
_TEXT ENDS

As we can see, each field’s address is aligned by 4-bytes border. That’s why each char using 4 bytes here,
like int. Why? Thus it’s easier for CPU to access memory at aligned addresses and to cache data from it.

However, it’s not very economical in size sense.

Let’s try to compile it with option (/Zpl) (/Zp[n/ pack structs on n-byte boundary).

_TEXT SEGMENT
_s$ = 8 ; size = 10
7fQQYAXUs@@@Z PROC g i
push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebp+6]
push eax
movsx ecx, BYTE PTR _s$[ebp+5]
push ecx
mov edx, DWORD PTR _s$[ebp+1]
push edx
movsx eax, BYTE PTR _s$[ebpl
push eax
push OFFSET $SG3842
call _printf
add esp, 20 ; 00000014H
pop ebp
ret 0
7fQQYAXUs@Q@@Z ENDP 5 &

Now the structure takes only 10 bytes and each char value takes 1 byte. What it give to us? Size
economy. And as drawback — CPU will access these fields without maximal performance it can.

As it can be easily guessed, if the structure is used in many source and object files, all these should be
compiled with the same convention about structures packing.

Aside from MSVC /Zp option which set how to align each structure field, here is also #pragma pack
compiler option, it can be defined right in source code. It’s available in both MSVC®'and GCC®2,

Let’s back to SYSTEMTIME structure consisting in 16-bit fields. How our compiler know to pack them on
1-byte alignment method?

WinNT.h file has this:

#include "pshpackl.h"

And this:

#include "pshpack4.h" // 4 byte packing is the default

The file PshPackl.h looks like:

#if ! (defined(lint) || defined (RC_INVOKED))

#if (_MSC_VER >= 800 && 'defined(_M_I86)) || defined (_PUSHPOP_SUPPORTED)
#pragma warning(disable:4103)

#if !(defined(MIDL_PASS)) || defined(__midl)
#pragma pack(push,1)

#else

#pragma pack (1)

#endif

#else

#pragma pack (1)

#endif

#endif /* ! (defined(lint) || defined (RC_INVOKED)) */

S'MSDN: Working with Packing Structures
528tructure-Packing Pragmas

60

http://msdn.microsoft.com/en-us/library/ms253935.aspx
http://gcc.gnu.org/onlinedocs/gcc/Structure_002dPacking-Pragmas.html

That’s how compiler will pack structures defined after #pragma pack.

2.15.5 Nested structures

Now what about situations when one structure define another structure inside?

#include <stdio.h>

struct inner_struct

{
int a;
int b;
};
struct outer_struct
{
char a;
int b;
struct inner_struct c;
char d;
int e;
}s
void f(struct outer_struct s)
{
printf ("a=%d; b=%d; c.a=%d; c.b=d; d=%d; e=%d\n",
s.a, s.b, s.c.a, s.c.b, s.d, s.e);
};
. in this case, both inner_struct fields will be placed between a,b and d,e fields of outer_struct.
Let’s compile (MSVC 2010):
_s$ = 8 ; size = 24
_f PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebp+20] ; e
push eax
movsx ecx, BYTE PTR _s$[ebp+16] ; d
push ecx
mov edx, DWORD PTR _s$[ebp+12] ; c.b
push edx
mov eax, DWORD PTR _s$[ebp+8] ; c.a
push eax
mov ecx, DWORD PTR _s$[ebp+4] ; b
push ecx
movsx edx, BYTE PTR _s$[ebp] ;a
push edx
push OFFSET $S5SG2466
call _printf
add esp, 28 ; 0000001cH
pop ebp
ret 0
f ENDP

One curious point here is that by looking onto this assembler code, we do not even see that another
structure was used inside of it! Thus, we would say, nested structures are finally unfolds into linear or
one-dimensional structure.

Of course, if to replace struct inner_struct c; declaration to struct inner_struct *c; (thus mak-
ing a pointer here) situation will be significally different.

61

2.15.6 Bit fields in structure
CPUID example

C/C++ language allow to define exact number of bits for each structure fields. It’s very useful if one need to
save memory space. For example, one bit is enough for variable of bool type. But of course, it’s not rational
if speed is important.
Let’s consider CPUID*?instruction example. This instruction return information about current CPU and

its features.
If EAX is set to 1 before instruction execution, CPUID will return this information packed into EAX register:

3:0 Stepping

7:4 Model

11:8 | Family

13:12 | Processor Type

19:16 | Extended Model

27:20 | Extended Family
MSVC 2010 has CPUID macro, but GCC 4.4.1 — hasn’t. So let’s make this function by yourself for GCC,
using its built-in assembler®®.

#include <stdio.h>

#ifdef __GNUC__
static inline void cpuid(int code, int *a, int *b, int *c, int *d) {
asm volatile ("cpuid":"=a"(*a) ,"=b"(xb),"=c"(*c) ,"=d"(xd):"a"(code));

}
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

struct CPUID_1_EAX

{
unsigned int stepping:4;
unsigned int model :4;
unsigned int family_id:4;
unsigned int processor_type:2;
unsigned int reservedl:2;
unsigned int extended_model_id:4;
unsigned int extended_family_id:8;
unsigned int reserved2:4;

int main ()

struct CPUID_1_EAX x*tmp;
int b[4];

#ifdef _MSC_VER
__cpuid(b,1);
#endif

#ifdef __GNUC__
cpuid (1, &b[0], &b[1]l, &b[2], &b[3]1);
#endif

tmp=(struct CPUID_1_EAX *)&b[0];
printf ("stepping=%d\n", tmp->stepping);

printf ("model=%d\n", tmp->model);
printf ("family_id=%d\n", tmp->family_id);

®http://en.wikipedia.org/wiki/CPUID
54More about internal GCC assembler

62

http://en.wikipedia.org/wiki/CPUID
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

printf
printf
printf

return

};

("processor_type=%d\n", tmp->processor_type);

("extended_model_id=%d\n",

0;

tmp->extended_model_id) ;
("extended_family_id=%d\n", tmp->extended_family_id);

After CPUID will fill EAX/EBX/ECX/EDX, these registers will be reflected in b[] array.
pointer to CPUID_1_EAX structure and we point it to EAX value from b[] array.

In other words, we treat 32-bit int value as a structure.
Then we read from the stucture.
Let’s compile it in MSVC 2008 with /0x option:

Then, we have a

_b$ = -16 ; size = 16

_main PROC
sub esp, 16 ; 00000010H
push ebx
Xor ecx, ecx
mov eax, 1
cpuid
push esi
lea esi, DWORD PTR _b$[esp+24]
mov DWORD PTR [esi], eax
mov DWORD PTR [esi+4], ebx
mov DWORD PTR [esi+8], ecx
mov DWORD PTR [esi+12], edx
mov esi, DWORD PTR _b$[esp+24]
mov eax, esi
and eax, 15 ; 0000000fH
push eax
push OFFSET $SG15435 ; ’stepping=J%d’, OaH, OOH
call _printf
mov ecx, esi
shr ecx, 4
and ecx, 15 ; 0000000fH
push ecx
push OFFSET $SG15436 ; ’model=%d°’, OaH, O0OOH
call _printf
mov edx, esi
shr edx, 8
and edx, 15 ; 0000000fH
push edx
push OFFSET $SG15437 ; ’family_id=%d’, OaH, O0O0H
call _printf
mov eax, esi
shr eax, 12 ; 0000000cH
and eax, 3
push eax
push OFFSET $SG15438 ; ’processor_type=%d’, 0OaH, OOH
call _printf
mov ecx, esi
shr ecx, 16 ; 00000010H
and ecx, 15 ; 0000000fH
push ecx
push OFFSET $SG15439 ; ’extended_model_id=%d’, OaH,
call _printf
shr esi, 20 ; 00000014H
and esi, 255 ; 000000ffH
push esi

63

00H

push OFFSET $SG15440 ; ’extended_family_id=%d’, OaH, OOH

call _printf
add esp, 48 ; 00000030H
pop esi
xor eax, eax
pop ebx
add esp, 16 ; 00000010H
ret 0
_main ENDP

SHR instruction shifting value in EAX by number of bits should be skipped, e.g., we ignore some bits at
right.

AND instruction clearing not needed bits at left, or, in other words, leave only those bits in EAX we need
now.

Let’s try GCC 4.4.1 with -03 option.

main proc near ; DATA XREF: _start+17
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
push esi
mov esi, 1
push ebx
mov eax, esi
sub esp, 18h
cpuid
mov esi, eax
and eax, OFh
mov [esp+8], eax
mov dword ptr [esp+4], offset aSteppingD ; "stepping=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 4
and eax, OFh
mov [esp+8], eax
mov dword ptr [esp+4], offset aModelD ; "model=%d\n"
mov dword ptr [espl, 1
call ___printf_chk
mov eax, esi
shr eax, 8
and eax, OFh
mov [esp+8], eax
mov dword ptr [esp+4], offset aFamily_idD ; "family_id=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, OCh
and eax, 3
mov [esp+8], eax
mov dword ptr [esp+4], offset aProcessor_type ; "processor_type=/d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 10h
shr esi, 14h
and eax, OFh
and esi, OFFh
mov [esp+8], eax
mov dword ptr [esp+4], offset aExtended_model ; "extended_model_id=%d\
nll
mov dword ptr [espl, 1
call ___printf_chk
mov [esp+8], esi

64

mov dword ptr [esp+4], offset unk_80486DO

mov dword ptr [espl, 1
call ___printf_chk
add esp, 18h
xor eax, eax
pop ebx
pop esi
mov esp, ebp
pop ebp
retn
main endp

Almost the same. The only thing to note is that GCC somehow united calculation of extended_model_id
and extended_family_id into one block, instead of calculating them separately, before corresponding each
printf () call.

Working with the float type as with a structure

As it was already noted in section about FPU 2.12, both float and double types consisted of sign, significand
(or fraction) and exponent. But will we able to work with these fields directly? Let’s try with float.

sign exponent (8 hits) fraction (23 hits)
I I

| 1
[o]o]1]a]1]1]a]o]ofo]1] o[o] o] o] o] o] o] o] o] o] o] o]] o] o] e[o]] 0] o]0] = 0.15625
31 30 2332 (bit index) 0

Figure 2.1: float value format (illustration taken from wikipedia)

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <memory.h>

struct float_as_struct

{
unsigned int fraction : 23; // fractional part
unsigned int exponent : 8; // exponent + Ox3FF
unsigned int sign : 1; // sign bit
};
float f(float _in)
{
float f=_in;
struct float_as_struct t;
assert (sizeof (struct float_as_struct) == sizeof (float));
memcpy (&t, &f, sizeof (float));
t.sign=1; // set negative sign
t.exponent=t.exponent+2; // multiple d by 2°n (n here is 2)
memcpy (&f, &t, sizeof (float));
return f£f;
};
int main ()
{
printf ("%f\n", £(1.234));
};

float_as_struct structure occupies as much space is memory as float, e.g., 4 bytes or 32 bits.

65

Now we setting negative sign in input value and also by addding 2 to exponent we thereby multiplicating
the whole number by 22, e.g., by 4.
Let’s compile in MSVC 2008 without optimization:

_t$ = -8 ; size = 4
_f$ = -4 ; size = 4
__in$ = 8 ; size = 4
7fQQYAMM@Z PROC ; £

push ebp

mov ebp, esp

sub esp, 8

fld DWORD PTR __in$ [ebp]

fstp DWORD PTR _f$[ebp]

push 4
lea eax, DWORD PTR _f$[ebp]
push eax
lea ecx, DWORD PTR _t$[ebpl]
push ecx
call _memcpy
add esp, 12 ; 0000000cH
mov edx, DWORD PTR _t$[ebp]
or edx, -2147483648 ; 80000000H - set minus sign
mov DWORD PTR _t$[ebpl, edx
mov eax, DWORD PTR _t$[ebpl]
shr eax, 23 ; 00000017H - drop significand
and eax, 255 ; 000000ffH - leave here only exponent
add eax, 2 ; add 2 to it
and eax, 255 ; 000000ffH
shl eax, 23 ; 00000017H - shift result to place of bits 30:23
mov ecx, DWORD PTR _t$[ebpl]
and ecx, -2139095041 ; 807fffffH - drop exponent
or ecx, eax ; add original value without exponent with new calculated
explonent
mov DWORD PTR _t$[ebpl, ecx
push 4
lea edx, DWORD PTR _t$[ebp]
push edx
lea eax, DWORD PTR _f$[ebp]
push eax
call _memcpy
add esp, 12 ; 0000000cH
f1d DWORD PTR _f$[ebp]
mov esp, ebp
pop ebp
ret 0
?7fQQYAMM@Z ENDP g &

Redundant for a bit. If it compiled with /0x flag there are no memcpy () call, f variable is used directly.
But it’s easier to understand it all considering unoptimized version.
What GCC 4.4.1 with -03 will do?

; £(float)

public _Z1ff
_Z1ff proc near
var_4 = dword ptr -4
arg_O = dword ptr 8

push ebp

66

mov ebp, esp

sub esp, 4
mov eax, [ebp+arg_0]
or eax, 80000000h ; set minus sign
mov edx, eax
and eax, 807TFFFFFh ; leave only significand and exponent in EAX
shr edx, 23 ; prepare exponent
add edx, 2 ; add 2
movzx edx, dl ; clear all bits except 7:0 in EAX
shl edx, 23 ; shift new calculated exponent to its place
or eax, edx ; add newe exponent and original value without
exponent
mov [ebp+var_4], eax
fld [ebp+var_4]
leave
retn
_Z1ff endp

public main

main proc near ; DATA XREF: _start+17
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 10h
fld ds:dword_8048614 ; -4.936
fstp gqword ptr [esp+8]
mov dword ptr [esp+4], offset asc_8048610 ; "%f\n"
mov dword ptr [esp], 1
call ___printf_chk
xor eax, eax
leave
retn
main endp

The £() function is almost understandable. However, what is interesting, GCC was able to calculate
£(1.234) result during compilation stage despite all this hodge-podge with structure fields and prepared
this argument to printf () as precalculated!

67

2.16 C++ classes

I placed a C++ classes description here intentionally after structures description, because internally, C++
classes representation is almost the same as structures representation.
Let’s try an example with two variables, couple of constructors and one method:

#include <stdio.h>

class c
{
private:
int vi;
int v2;
public:
c() // ctor
{
v1=667;
v2=999;
i
c(int a, int b) // ctor
{
vi=a;
v2=b;
i
void dump ()
{
printf ("%d; %d\n", vi, v2);
g
};
int main ()
{
class ¢ c1;
class ¢ c2(5,6);
cl.dump) ;
c2.dump () ;
return O;
};
Here is how main() function looks like translated into assembler:
_c2$ = -16 ; size = 8
_cl1$ = -8 ; size = 8
_main PROC
push ebp
mov ebp, esp
sub esp, 16 ; 00000010H
lea ecx, DWORD PTR _c1$[ebpl
call ?70cQ@Q@QAEQXZ § ©88G
push 6
push 5
lea ecx, DWORD PTR _c2$[ebpl
call 770c@Q@QAEQHHQZ ; ci:cC
lea ecx, DWORD PTR _c1$[ebpl
call ?7dump@c@Q@QAEXXZ ; c::dump
lea ecx, DWORD PTR _c2$[ebpl
call ?dump@cQQ@QAEXXZ ; c::dump
Xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

68

So what’s going on. For each object (instance of class ¢) 8 bytes allocated, that’s exactly size of 2 variables
storage.

For ¢! a default argumentless constructor ?770c@@QAECXZ is called. For c2 another constructor ??70c@@QAEQHHGZ
is called and two numbers are passed as arguments.

A pointer to object (this in C++ terminology) is passed in ECX register. This is called thiscall 3.5.4 —
a pointer to object passing method.

MSVC doing it using ECX register. Needless to say, it’s not a standardized method, other compilers could
do it differently, for example, via first function argument (like GCC).

Why these functions has so odd names? That’s name mangling®.

C++ class may contain several methods sharing the same name but having different arguments — that’s
polymorphism. And of course, different classes may own methods sharing the same name.

Name mangling allows to encode class name + method name + all method argument types in one ASCII-
string, which will be used as internal function name. That’s all because neither linker, nor DLL operation
system loader (mangled names may be among DLL exports as well) knows nothing about C++ or OOP.

dump () function called two times after.

Now let’s see constructors’ code:

_this$ = -4 ; size = 4
?70c@Q@QAEQXZ PROC ; c::c, COMDAT
; _this$ = ecx

push ebp

mov ebp, esp

push ecx

mov DWORD PTR _this$[ebpl, ecx

mov eax, DWORD PTR _this$[ebp]

mov DWORD PTR [eax], 667 ; 0000029DbH

mov ecx, DWORD PTR _this$[ebp]

mov DWORD PTR [ecx+4], 999 ; 000003e7H

mov eax, DWORD PTR _this$[ebp]

mov esp, ebp

pop ebp

ret 0
?7?70c@Q@QAEQXZ ENDP 8 @88¢@
_this$ = -4 ; size = 4
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
??70c@Q@QAEQHHQ@Z PROC ; c::c, COMDAT
; _this$ = ecx

push ebp

mov ebp, esp

push ecx

mov DWORD PTR _this$[ebpl, ecx

mov eax, DWORD PTR _this$[ebp]

mov ecx, DWORD PTR _a$[ebp]

mov DWORD PTR [eax], ecx

mov edx, DWORD PTR _this$[ebp]

mov eax, DWORD PTR _b$[ebp]

mov DWORD PTR [edx+4], eax

mov eax, DWORD PTR _this$[ebp]

mov esp, ebp

pop ebp

ret 8
??70c@Q@QAEQHHQ@Z ENDP 8 @838€@

Constructors are just functions, they use pointer to structure in ECX, moving the pointer into own local
variable, however, it’s not necessary.
Now dump () method:

_this$ = -4 ; size = 4
?7dump@c@Q@QAEXXZ PROC ; c::dump, COMDAT

S5Wikipedia: Name mangling

69

http://en.wikipedia.org/wiki/Name_mangling

; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp]l, ecx
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR [eax+4]
push ecx
mov edx, DWORD PTR _this$[ebp]
mov eax, DWORD PTR [edx]
push eax
push OFFSET 7?7 _C@_O7NJBDCIEC@?$CFA?$DL?57$CFA767$AAQ
call _printf
add esp, 12 ; 0000000cH
mov esp, ebp
pop ebp
ret 0

?7dump@c@@QAEXXZ ENDP ; c::dump

Simple enough: dump () taking pointer to the structure containing two int’s in ECX, takes two values from
it and passing it into printf ().
The code is much shorter if compiled with optimization (/0x):

770c@@QAEQXZ PROC ; c::c, COMDAT
; _this$ = ecx
mov eax, ecx
mov DWORD PTR [eax], 667 ; 0000029bH
mov DWORD PTR [eax+4], 999 ; 000003e7H
ret 0
770c@@QAEQXZ ENDP ; ci:cC
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
7?70c@@QAEQHH@Z PROC ; c::c, COMDAT
; _this$ = ecx
mov edx, DWORD PTR _b$[esp-4]
mov eax, ecx
mov ecx, DWORD PTR _a$[esp-4]
mov DWORD PTR [eax], ecx
mov DWORD PTR [eax+4], edx
ret 8
770c@Q@QAEQHH@Z ENDP ; c:i:cC
?7dump@c@Q@QAEXXZ PROC ; c::dump, COMDAT
; _this$ = ecx
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push eax
push ecx
push OFFSET 77_C@_O7NJBDCIEC@?$CFA?$DL7?57$CFA767$AAQ
call _printf
add esp, 12 ; 0000000cH
ret 0
?7dump@c@@QAEXXZ ENDP ; c::dump

That’s all. One more thing to say is that stack pointer after second constructor calling wasn’t corrected
with add esp, X. Please also note that, constructor has ret 8 instead of RET at the end.

That’s all because here used thiscall 3.5.4 calling convention, the method of passing values through the
stack, which is, together with stdcall 3.5.2 method, offers to correct stack to callee rather then to caller. ret
x instruction adding X to ESP, then passes control to caller function.

See also section about calling conventions 3.5.

It’s also should be noted that compiler deciding when to call constructor and destructor — but that’s
we already know from C+- language basics.

70

2.16.1 GCC

It’s almost the same situation in GCC 4.4.1, with few exceptions.

public main

main proc near ; DATA XREF: _start+17

var_20 = dword ptr -20h

var_1C = dword ptr -1Ch

var_18 = dword ptr -18h

var_10 = dword ptr -10h

var_8 = dword ptr -8
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1cC1lEv
mov [esp+20h+var_18]1, 6
mov [esp+20h+var_1C], 5
lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1cC1lEii
lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv
lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv
mov eax, O
leave
retn

main endp

Here we see another name mangling style, specific to GNU®0 standards. It’s also can be noted that
pointer to object is passed as first function argument — hiddenly from programmer, of course.

First constructor:

public _ZN1cClEv ; weak

_ZN1cC1lEv proc near ; CODE XREF: main+10
arg_O = dword ptr 8
push ebp
mov ebp, esp
mov eax, [ebptarg_0]
mov dword ptr [eax], 667
mov eax, [ebp+targ_0]
mov dword ptr [eax+4], 999
pop ebp
retn
_ZN1cC1lEv endp

What it does is just writes two numbers using pointer passed in first (and sole) argument.

Second constructor:

public _ZN1cClEii

_ZN1cClEii proc near

arg_O = dword ptr 8
arg_4 = dword ptr OCh
arg_8 = dword ptr 10h

%0One more document about different compilers name mangling types: http://www.agner.org/optimize/calling_

conventions.pdf

71

http://www.agner.org/optimize/calling_conventions.pdf
http://www.agner.org/optimize/calling_conventions.pdf

push ebp

mov ebp, esp
mov eax, [ebp+arg_O]
mov edx, [ebptarg_4]
mov [eax], edx
mov eax, [ebp+arg_O]
mov edx, [ebptarg_8]
mov [eax+4] , edx
pop ebp
retn

_ZN1cC1lEii endp

This is a function, analog of which could be looks like:

void ZN1cC1lEii (int *obj, int a, int b)

{
*obj=a;
*(obj+1)=b;
};
. and that’s completely predictable.
Now dump () function:
public _ZN1c4dumpEv
_ZN1c4dumpEv proc near
var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
arg_0O = dword ptr 8
push ebp
mov ebp, esp
sub esp, 18h
mov eax, [ebp+arg_O]
mov edx, [eax+4]
mov eax, [ebpt+arg_0]
mov eax, [eax]
mov [esp+18h+var_10], edx
mov [esp+18h+var_14], eax
mov [esp+18h+var_18], offset aDD ; "%d; %d\n"
call _printf
leave
retn
_ZN1c4dumpEv endp

This function in its internal representation has sole argument, used as pointer to the object (this).

Thus, if to base our judgment on these simple examples, the difference between MSVC and GCC is style
of function names encoding (name mangling) and passing pointer to object (via ECX register or via first
argument).

72

2.17 Pointers to functions

Pointer to function, as any other pointer, is just an address of function beginning in its code segment.
It is often used in callbacks °7.
Well-known examples are:

e gsort()?®, atexit ()°? from the standard C library;
e signals in *NIX OS%;

e thread starting: CreateThread() (win32), pthread_create() (POSIX);
e a lot of win32 functions, for example EnumChildWindows ().

So, gsort () function is a C/C++ standard library quicksort implemenation. The functions is able to
sort anything, any types of data, if you have a function for two elements comparison and gsort () is able to
call it.

The comparison function can be defined as:

int (*compare) (const void *, const void x*)

Let’s use slightly modified example I found here:

/* ex3 Sorting ints with gsort */

#include <stdio.h>
#include <stdlib.h>

int comp(const void * _a, const void * _b)

{
const int *a=(const int *) _a;
const int *b=(const int *) _b;
if (*a==%b)
return O;
else
if (xa < *b)
return -1;
else
return 1;
}
int main(int argc, char* argv[])
{
int numbers[10]={1892,45,200,-98,4087,5,-12345,1087,88,-100000};
int i;
/* Sort the array */
gsort (numbers ,10, sizeof (int) ,comp) ;
for (i=0;i<9;i++)
printf ("Number = %d\n",numbers[i 1) ;
return O;
}
Let’s compile it in MSVC 2010 (I omitted some parts for the sake of brefity) with /0x option:
__a$ = 8 ; size = 4
__b$ = 12 ; size = 4
_comp PROC

*Thttp://en.wikipedia.org/wiki/Callback_(computer_science)
*8http://en.wikipedia.org/wiki/Qsort_(C_standard_library)
"http://www.opengroup.org/onlinepubs/009695399/functions/atexit.html
5Onttp://en.wikipedia.org/wiki/Signal.h
Sttp://msdn.microsoft.com/en-us/library/ms633494 (VS.85) .aspx

73

http://cplus.about.com/od/learningc/ss/pointers2_8.htm
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Qsort_(C_standard_library)
http://www.opengroup.org/onlinepubs/009695399/functions/atexit.html
http://en.wikipedia.org/wiki/Signal.h
http://msdn.microsoft.com/en-us/library/ms633494(VS.85).aspx

mov eax, DWORD PTR __a$[esp-4]

mov ecx, DWORD PTR __b$[esp-4]
mov eax, DWORD PTR [eax]
mov ecx, DWORD PTR [ecx]
cmp eax, ecx
jne SHORT $LN4Q@comp
x0T eax, eax
ret 0

$LN4@comp:
Xor edx, edx
cmp eax, ecx
setge dl
lea eax, DWORD PTR [edx+edx-1]
ret 0

_comp ENDP

_numbers$ = -44 ; size = 40

_i$ = -4 ; size = 4

_argc$ = 8 ; size = 4

_argv$ = 12 ; size = 4

_main PROC
push ebp
mov ebp, esp
sub esp, 44 ; 0000002cH
mov DWORD PTR _numbers$ [ebp]l, 1892 ; 00000764H
mov DWORD PTR _numbers$ [ebp+4], 45 ; 0000002dH
mov DWORD PTR _numbers$ [ebp+8], 200 ; 000000c8H
mov DWORD PTR _numbers$ [ebp+12], -98 ; ffffff9eH
mov DWORD PTR _numbers$ [ebp+16], 4087 ; 00000ff7H
mov DWORD PTR _numbers$[ebp+20], 5
mov DWORD PTR _numbers$[ebp+24], -12345 ; ffffcfcT7H
mov DWORD PTR _numbers$ [ebp+28], 1087 ; 0000043fH
mov DWORD PTR _numbers$ [ebp+32], 88 ; 00000058H
mov DWORD PTR _numbers$[ebp+36], -100000 ; fffe7960H
push OFFSET _comp
push 4
push 10 ; 0000000aH
lea eax, DWORD PTR _numbers$ [ebp]
push eax
call _gsort
add esp, 16 ; 00000010H

Nothing surprising so far. As a fourth argument, an address of label _comp is passed, that’s just a place
where function comp() located.

How gsort () calling it?

Let’s take a look into this function located in MSVCR80.DLL (a MSVC DLL module with C standard
library functions):

.text :7816CBFO0 ; void __cdecl gsort(void *, unsigned int, unsigned int, int (__cdecl x*)(

const void *, const void *))

.text : 7816 CBFO public _gsort
.text :7816CBF0 _qgsort proc near
.text : 7816 CBFO

.text :7816CBFO0 1lo = dword ptr -104h
.text :7816CBFO0 hi = dword ptr -100h
.text :7816CBF0 var_FC = dword ptr -OFCh
.text :7816CBFO stkptr = dword ptr -O0F8h
.text :7816CBFO0 lostk = dword ptr -0F4h
.text :7816CBFO0 histk = dword ptr -7Ch
.text :7816CBFO0 base = dword ptr 4
.text :7816CBFO num = dword ptr 8
.text :7816CBFO0 width = dword ptr OCh

74

.text :7816CBFO0 comp = dword ptr 10h
.text : 7816 CBFO
.text :7816CBFO sub esp, 100h
.text :7816CCEO0 loc_7816CCEO: ; CODE XREF: _qgsort+Bl1
.text :7816CCEOQ shr eax, 1
.text : 7816 CCE2 imul eax, ebp
.text :7816CCEb add eax, ebx
.text : 7816 CCE7 mov edi, eax
.text : 7816 CCE9 push edi
.text : 7816 CCEA push ebx
.text : 7816 CCEB call [esp+118h+comp]
.text : 7816 CCF2 add esp, 8
.text :7816CCF5 test eax, eax
.text : 7816 CCF7 jle short loc_7816CD04
comp — is fourth function argument. Here the control is just passed to the address in comp. Before it,

two arguments prepared for comp (). Its result is checked after its execution.
That’s why it’s dangerous to use pointers to functions. First of all, if you call gsort() with incorrect
pointer to function, gsort() may pass control to incorrect place, process may crash and this bug will be

hard to find.

Second reason is that callback function types should comply strictly, calling wrong function with wrong
arguments of wrong types may lead to serious problems, however, process crashing is not a big problem —
big problem is to determine a reason of crashing — because compiler may be silent about potential trouble

while compiling.

2.17.1

GCC

Not a big difference:

lea eax, [esp+40h+var_28]

mov [esp+40h+var_40], eax

mov [esp+40h+var_28], 764h

mov [esp+40h+var_24], 2Dh

mov [esp+40h+var_20], 0C8h

mov [esp+40h+var_1C], OFFFFFF9Eh
mov [esp+40h+var_18], OFF7h

mov [esp+40h+var_14], 5

mov [esp+40h+var_10], OFFFFCFCT7h
mov [esp+40h+var_C], 43Fh

mov [esp+40h+var_8], 58h

mov [esp+40h+var_4], OFFFE7960h
mov [esp+40h+var_34], offset comp
mov [esp+40h+var_38], 4

mov [esp+40h+var_3C], OAh

call _qgsort

comp () function:

comp

arg_O
arg_4

public comp
proc near

dword ptr 8
= dword ptr OCh
push ebp
mov ebp, esp
mov eax, [ebp+targ_4]
mov ecx, [ebp+arg_0]
mov edx, [eax]
xor eax, eax
cmp [ecx], edx

75

jnz short loc_8048458

pop ebp
retn
loc_8048458:
setnl al
movzx eax, al
lea eax, [eax+eax-1]
pop ebp
retn
comp endp

gsort () implementation is located in libc.so.6 and it is in fact just a wrapper for gsort_r(Q).
It will call then quicksort (), where our defined function will be called via passed pointer:
(File libe.so.6, glibc version — 2.10.1)

.text :0002DDF6 mov edx, [ebp+arg_10]
.text :0002DDF9 mov [esp+4], esi
.text :0002DDFD mov [espl, edi

.text :0002DEO0O mov [esp+8], edx
.text :0002DE04 call [ebp+targ_C]

76

2.18 SIMD

SIMD is just acronym: Single Instruction, Multiple Data.

As it’s said, it’s multiple data processing using only one instruction.

Just as FPU, that CPU subsystem looks like separate processor inside x86.

SIMD began as MMX in x86. 8 new 64-bit registers appeared: MMO-MMT.

Each MMX register may hold 2 32-bit values, 4 16-bit values or 8 bytes. For example, it is possible to
add 8 8-bit values (bytes) simultaneously by adding two values in MMX-registers.

One simple example is graphics editor, representing image as a two dimensional array. When user change
image brightness, the editor should add some coefficient to each pixel value, or to subtract. For the sake of
brevity, our image may be grayscale and each pixel defined by one 8-bit byte, then it’s possible to change
brightness of 8 pixels simultaneously.

When MMX appeared, these registers was actually located in FPU registers. It was possible to use either
FPU or MMX at the same time. One might think, Intel saved on transistors, but in fact, the reason of
such symbiosis is simpler — older operation system may not aware of additional CPU registers wouldn’t
save them at the context switching, but will save FPU registers. Thus, MMX-enabled CPU -+ old operation
system + process using MMX = that all will work together.

SSE — is extension of SIMD registers up to 128 bits, now separately from FPU.

AVX — another extension to 256 bits.

Now about practical usage.

Of course, memory copying (memcpy), memory comparing (memcmp) and so on.

One more example: we got DES encryption algorithm, it takes 64-bit block, 56-bit key, encrypt block
and produce 64-bit result. DES algorithm may be considered as a very large electronic circuit, with wires
and AND/OR/NOT gates.

Bitslice DES%? — is an idea of processing group of blocks and keys simultaneously. Let’s say, variable of
type unsigned int on x86 may hold up to 32 bits, so, it’s possible to store there intermediate results for 32
blocks-keys pairs simultaneously, using 64-+56 variables of unsigned int type.

I wrote an utility to brute-force Oracle RDBMS passwords/hashes (ones based on DES), slightly modified
bitslice DES algorithm for SSE2 and AVX — now it’s possible to encrypt 128 or 256 block-keys pairs
simultaneously.

http://conus.info/utils/ops_SIMD/

2.18.1 Vectorization

Vectorization®?, for example, is when you have a loop taking couple of arrays at input and producing one
array. Loop body takes values from input arrays, do something and put result into output array. It’s
important that there is only one single operation applied to each element. Vectorization — is to process
several elements simultaneously.

/IFRUHamnpumep:For example:

for (i = 0; i < 1024; i++)
{

C[i] = A[i]=*BI[i];
}

This piece of code takes elements from A and B, multiplies them and save result into C.

If each array element we have is 32-bit int, then it’s possible to load 4 elements from A into 128-bit XMM-
register, from B to another XMM-registers, and by executing PMULLD (Ilepemmnootcums 3anaxosarvie
anakosvie DWORD u coxparumov maadwyro wacmo pesysvmama)and PMULHW ([Iepemmootcumsb anakosamiivie
anaxoevie DWORD u coxpanums cmapwio wacms pesyavmama), it’s possible to get 4 64-bit products®* at
once.

Thus, loop body count is 1024 /4 instead of 1024, that’s 4 times less and, of course, faster.

52http://www.darkside.com.au/bitslice/
53Wikipedia: vectorization
54multiplication result

7

http://conus.info/utils/ops_SIMD/
http://www.darkside.com.au/bitslice/
http://en.wikipedia.org/wiki/Vectorization_(computer_science)

Some compilers can do vectorization automatically in some simple cases, for example, Intel C++55.
I wrote tiny function:

int £ (int sz, int *arl, int *ar2, int *ar3)

{
for (int i=0; i<sz; i++)
ar3[i]l=ari1[i]l+ar2[i];
return O;
};
Intel C++

Let’s compile it with Intel C++ 11.1.051 win32:
icl intel.cpp /QaxSSE2 /Faintel.asm /0x

We got (in IDA 6):

; int __cdecl f(int, int *, int *, int x*)
public ?f@@YAHHPAHOOQZ
?fQQYAHHPAHOOQZ proc near

var_10 = dword ptr -10h
sz = dword ptr 4
arl = dword ptr 8
ar2 = dword ptr OCh
ar3 = dword ptr 10h
push edi
push esi
push ebx
push esi
mov edx, [esp+10h+sz]
test edx, edx
jle loc_15B
mov eax, [esp+10h+ar3]
cmp edx, 6
jle loc_143
cmp eax, [esp+10h+ar2]
jbe short loc_36
mov esi, [esp+10h+ar2]
sub esi, eax
lea ecx, ds:0[edx*4]
neg esi
cmp ecx, esi
jbe short loc_55
loc_36: ; CODE XREF: f(int,int *,int *,int *)+21
cmp eax, [esp+10h+ar2]
jnb loc_143
mov esi, [esp+10h+ar2]
sub esi, eax
lea ecx, ds:0[edx*4]
cmp esi, ecx
jb loc_143
loc_55: ; CODE XREF: f(int,int *,int *,int *)+34
cmp eax, [esp+10h+ari]
jbe short loc_67
mov esi, [esp+10Oh+ari]
sub esi, eax
neg esi

55 More about Intel C++ automatic vectorization: Excerpt: Effective Automatic Vectorization

78

http://www.intel.com/intelpress/sum_vmmx.htm

loc_67:

loc_T7F:

loc_9A:

loc_C1:

loc_D6:

loc_ED:

cmp ecx, esi

jbe short loc_T7F
; CODE XREF: f(int,int *,int *,int =x)+59
cmp eax, [esp+10h+ari]
jnb loc_143
mov esi, [esp+10h+ari]
sub esi, eax
cmp esi, ecx
jb loc_143
; CODE XREF: f(int,int *,int *,int *)+65
mov edi, eax ; edi = aril
and edi, OFh ; is arl 16-byte aligned?
jz short loc_9A ; yes
test edi, 3
jnz loc_162
neg edi
add edi, 10h
shr edi, 2
; CODE XREF: f(int,int *,int *,int *)+84
lea ecx, [edi+4]
cmp edx, ecx
jl loc_162
mov ecx, edx
sub ecx, edi
and ecx, 3
neg ecx
add ecx, edx
test edi, edi
jbe short loc_D6
mov ebx, [esp+10h+ar2]
mov [esp+10h+var_10], ecx
mov ecx, [esp+10h+ari]
Xor esi, esi
; CODE XREF: f(int,int *,int *,int *)+CD
mov edx, [ecx+esix4]
add edx, [ebx+esix4]
mov [eax+esi*4], edx
inc esi
cmp esi, edi
jb short loc_C1
mov ecx, [esp+10h+var_10]
mov edx, [esp+10h+sz]
; CODE XREF: f(int,int *,int *,int *)+B2
mov esi, [esp+10h+ar2]
lea esi, [esitedi*4] ; is ar2+i*4 16-byte aligned?
test esi, OFh
jz short loc_109 ; yes!
mov ebx, [esp+10h+ari]
mov esi, [esp+10h+ar2]
; CODE XREF: f(int,int *,int #*,int *)+105
movdqu xmml, xmmword ptr [ebx+edix*4]
movdqu xmmO, xmmword ptr [esi+tedi*4] ; ar2+ix*4 is not 16-byte aligned,

load it to xmmO

paddd xmml , xmmO

movdqa xmmword ptr [eax+edi*4], xmml
add edi, 4

cmp edi, ecx

jb short loc_ED

jmp short loc_127

SO

loc_109: ; CODE XREF: f(int,int *,int *,int *)+E3

mov ebx, [esp+10h+ari]
mov esi, [esp+10h+ar2]
loc_111: ; CODE XREF: f(int,int *,int *,int *)+125
movdqu xmmO, xmmword ptr [ebx+edix*4]
paddd xmm0 , xmmword ptr [esi+edix4]
movdga xmmword ptr [eax+edi*4], xmmO
add edi, 4
cmp edi, ecx
jb short loc_111
loc_127: ; CODE XREF: f(int,int *,int *,int *)+107
; £(int,int *,int *,int *)+164
cmp ecx, edx
jnb short loc_15B
mov esi, [esp+10h+ari]
mov edi, [esp+10h+ar2]
loc_133: ; CODE XREF: f(int,int *,int *,int *)+13F
mov ebx, [esi+ecx*4]
add ebx, [edi+ecx*4]
mov [eax+ecx*4] , ebx
inc ecx
cmp ecx, edx
jb short loc_133
jmp short loc_15B
loc_143: ; CODE XREF: f(int,int *,int *,int *)+17
; £(int,int *,int *,int *)+3A
mov esi, [esp+10h+ari]
mov edi, [esp+10h+ar2]
xor ecx, ecx
loc_14D: ; CODE XREF: f(int,int *,int *,int *)+159
mov ebx, [esi+tecx*4]
add ebx, [edi+ecx*4]
mov [eax+ecx*x4] , ebx
inc ecx
cmp ecx, edx
jb short loc_14D
loc_15B: ; CODE XREF: f(int,int *,int *,int *)+A
; f(int,int *,int *,int =*)+129
xor eax, eax
pop ecx
pop ebx
pop esi
pop edi
retn
loc_162: ; CODE XREF: f(int,int *,int *,int *)+8C
; £(int,int *,int *,int *)+9F
xor ecx, ecx
jmp short loc_127

?7fQQYAHHPAHOOQ@Z endp

SSE2-related instructions are:

MOVDQU (Move Unaligned Double Quadword) — it just load 16 bytes from memory into XMM-register.

PADDD (Add Packed Integers) — adding 4 pairs of numbers and leaving result in first operand. By the
way, no exception raised in case of overflow and no flags will be set, just low 32-bit of result will be stored.
If one of PADDD operands — address of value in memory, address should be aligned by 16-byte border. If it’s

80

not aligned, exception will be raised 6.

MOVDQA (Mowve Aligned Double Quadword) — the same as MOVDQU, but requires address of value in memory
to be aligned by 16-bit border. If it’s not aligned, exception will be raised. MOVDQA works faster than MOVDQU,
but requires aforesaid.

So, these SSE2-instructions will be executed only in case if there are more 4 pairs to work on plus pointer
ar3 is aligned on 16-byte border.

More than that, if ar2 is aligned on 16-byte border too, this piece of code will be executed:

movdqu xmmO, xmmword ptr [ebx+edi*4] ; arl+ix4
paddd xmm0 , xmmword ptr [esi+edi*4] ; ar2+ix*4
movdqa xmmword ptr [eax+edi*4], xmmO ; ar3+ix*4

Otherwise, value from ar2 will be loaded to XMMO using MOVDQU, it doesn’t require aligned pointer, but
may work slower:

movdqu xmml, xmmword ptr [ebx+tedi*4] ; arl+ix4

movdqu xmmO, xmmword ptr [esi+edi*4] ; ar2+i*4 is not 16-byte aligned, so
load it to xmmO

paddd xmml , xmmO

movdqa xmmword ptr [eax+edix*4], xmml ; ar3+ix*4

In all other cases, non-SSE2 code will be executed.

GCC

GCC may also vectorize in some simple cases®’, if to use -03 option and to turn on SSE2 support: -msse2.
What we got (GCC 4.4.1):

; £(int, int *, int *, int *)
public _Z1fiPiS_S_

_Z1fiPiS_S_ proc near
var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
arg_0O = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
push ebp
mov ebp, esp
push edi
push esi
push ebx
sub esp, OCh
mov ecx, [ebpt+arg_0]
mov esi, [ebptarg_4]
mov edi, [ebp+targ_8]
mov ebx, [ebpt+arg_C]
test ecx, ecx
jle short loc_80484D8
cmp ecx, 6
lea eax, [ebx+10h]
ja short loc_80484E8
loc_80484C1: ; CODE XREF: f(int,int *,int *,int *)+4B
; £f(int,int *,int *,int *)+61
xor eax, eax
nop
lea esi, [esi+O0]

56More about data aligning: Wikipedia: data structure alignment
5"More about GCC vectorization support: http://gcc.gnu.org/projects/tree-ssa/vectorization.html

81

http://en.wikipedia.org/wiki/Data_structure_alignment
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

loc_80484C8:

loc_80484D8:

loc_80484ES8:

loc_80484F8:

loc_8048503:

loc_8048520:

loc_8048547:

mov
add
mov
add
cmp
jnz

test
jnz
lea
cmp
jbe

lea
cmp
ja

cmp
jbe

mov
shr
mov
shl
test
mov
jz
mov
mov
Xor
Xor
nop

movdqu
movdqu
add
paddd
movdga
add
cmp

jb

mov
mov
cmp

jz

lea
add
add

edx, [edi+eaxx*4]

edx, [esi+eaxx*4]

[ebx+eax*4] , edx

eax, 1

eax, ecx

short loc_80484C8

esp, OCh

eax, eax

ebx

esi

edi

ebp

bl, OFh

short loc_80484C1
edx, [esi+10h]

ebx, edx
loc_8048578

edx, [edi+10h]
ebx, edx

short l1loc_8048503
edi, eax

short loc_80484C1

eax, ecx

eax, 2
[ebp+var_14], eax
eax, 2

eax, eax
[ebp+var_10], eax
short loc_8048547
[ebp+var_18], ecx
[ebp+var_14]
eax, eax

edx, edx

ecx,

>

xmml, xmmword ptr
xmm0 , xmmword ptr
edx, 1

xmmO , xmml

xmmword ptr [ebx+eax],

eax, 10h
edx, ecx
short l1lo0c_8048520
ecx, [ebptvar_18]
eax, [ebp+var_10]
ecx, eax
short loc_80484D8

edx, ds:0[eax*4]
esi, edx
edi, edx

CODE XREF:

CODE XREF:
f(int,int *,int *,int =*)+A5

f(int, int

f(int, int

CODE XREF: f(int,int
CODE XREF: f(int,int
CODE XREF: f(int,int
CODE XREF: f (int,int
[edi+eax]
[esi+eax]

xmmO
CODE XREF: f(int,int

82

*,int *,int *)+36

*,int *,int *)+17

*,int *,int *)+1F

*,int *,int *)+EO

*,int *,int *)+5D

*,int *,int *)+9B

*,int *,int *)+73

add ebx, edx

lea esi, [esi+0]
loc_8048558: ; CODE XREF: f(int,int *,int *,int *)+CC

mov edx, [edil

add eax, 1

add edi, 4

add edx, [esil

add esi, 4

mov [ebx], edx

add ebx, 4

cmp ecx, eax

jig short 1loc_8048558

add esp, OCh

xor eax, eax

pop ebx

pop esi

pop edi

pop ebp

retn
loc_8048578: ; CODE XREF: f(int,int *,int *,int *)+52

cmp eax, esi

jnb loc_80484C1

jmp loc_80484F8
_Z1£fiPiS_S_ endp

Almost the same, however, not as meticulously as Intel C++ doing it.

2.18.2 SIMD strlen() () implementation

It is possible to implement strlen() function®® using SIMD-instructions, working 2-2.5 times faster than

usual implementation. This function will load 16 characters into XMM-register and check each against zero.

size_t strlen_sse2(const char *str)
{
register size_t len = O0;
const char *s=str;
bool str_is_aligned=(((unsigned int)str)&OxFFFFFFFO) == (unsigned int)str;

if (str_is_aligned==false)
return strlen (str);

__m128i xmm0 = _mm_setzero_sil28();
__m128i xmmil;
int mask = 0;

for (;3;)
{
xmml = _mm_load_si128((__m128i *)s);
xmml = _mm_cmpeq_epi8 (xmml, xmmO) ;
if ((mask = _mm_movemask_epi8 (xmml)) != 0)
{
unsigned long pos;
_BitScanForward (&pos, mask);
len += (size_t)pos;

break;
}
s += sizeof(__m128i);
len += sizeof(__m128i);

};

%8strlen() — standard C library function for calculating string length

83

return 1len;

(the example is based on source code from there).
Let’s compile in MSVC 2010 with /0x option:

_pos$75552 = -4 ; size = 4
_str$ = 8 ; size = 4
7strlen_sse2Q@Q@YAIPBD@Z PROC ; strlen_sse?2

push ebp
mov ebp, esp
and esp, -16 ; fTffff£fO0H
mov eax, DWORD PTR _str$[ebpl
sub esp, 12 ; 0000000cH
push esi
mov esi, eax
and esi, -16 ; ffff£f£ff0H
Xor edx, edx
mov ecx, eax
cmp esi, eax
je SHORT $LN4@strlen_sse
lea edx, DWORD PTR [eax+1]
npad 3
$LL110@strlen_sse:
mov cl, BYTE PTR [eax]
inc eax
test cl, cl
jne SHORT $LL11@strlen_sse
sub eax, edx
pop esi
mov esp, ebp
pop ebp
ret 0

$LN4@strlen_sse:

movdga xmml, XMMWORD PTR [eax]

pxor xmmO , xmmO

pcmpegb xmml, xmmO

pmovmskb eax, xmml

test eax, eax

jne SHORT $LN9@strlen_sse
$LL30@strlen_sse:

movdga xmml , XMMWORD PTR [ecx+16]

add ecx, 16 ; 00000010H
pcmpegqb xmml, xmmO
add edx, 16 ; 00000010H
pmovmskb eax, xmml
test eax, eax
je SHORT $LL3@strlen_sse
$LN9@strlen_sse:
bsf eax, eax
mov ecx, eax
mov DWORD PTR _pos$75552[esp+16], eax
lea eax, DWORD PTR [ecx+edx]
pop esi
mov esp, ebp
pop ebp
ret 0
7strlen_sse2@Q@YAIPBD@Z ENDP ; strlen_sse2

First of all, we check str pointer, if it’s aligned by 16-byte border. If not, let’s call usual strlen()
implementation.

Then, load next 16 bytes into XMM1 register using MOVDQA instruction.

Observant reader might ask, why MOVDQU cannot be used here, because it can load data from the memory
regardless the fact if the pointer aligned or not.

84

http://www.strchr.com/sse2_optimised_strlen

Yes, it might be done in this way: if pointer is aligned, load data using MOVDQA, if not — use slower
MOVDQU.

But here we are may stick into hard to notice problem:

In Windows NT line of operation systems, but not limited to it, memory allocated by pages of 4 KiB
(4096 bytes). Each win32-process have ostensibly 4 GiB, but in fact, only some parts of address space are
connected to real physical memory. If the process accessing to the absent memory block, exception will be
raised. That’s how virtual memory works®’.

So, some function loading 16 bytes at once, may step over a border of allocated memory block. Let’s
consider, OS allocated 8192 (0x2000) bytes at the address 0x008c0000. Thus, the block is the bytes starting
from address 0x008c0000 to 0x008c1fff inclusive.

After that block, that is, starting from address 0x008c2008 there are nothing at all, e.g., OS not allocated
any memory there. Attempt to access a memory starting from that address will raise exception.

And let’s consider, the program holding some string containing 5 characters almost at the end of block,
and that’s not a crime.

0x008c1ff8 | 'h’

0x008c1ff9 | ’e’

0x008clffa | T’

0x008c1ftb | T

0x008clffc | 'o’

0x008c1ffd | "\x00’
0x008cl1ffe | random noise
0x008c1fff | random noise

So, in usual conditions the program calling strlen() passing it a pointer to string hello’ lying in
memory at address 0x008c1ff8. strlen() will read one byte at a time until 0x008c1ffd, where zero-byte, and
so here it will stop working.

Now if we implement own strlen() reading 16 byte at once, starting at any address, will it be alligned
or not, MOVDQU may attempt to load 16 bytes at once at address 0x008c1ff8 up to 0x008¢2008, and then
exception will be raised. That’s the situation to be avoided, of course.

So then we’ll work only with the addresses aligned by 16 byte border, what in combination with a
knowledge of operation system page size is usually aligned by 16 byte too, give us some warranty our
function will not read from unallocated memory.

Let’s back to our function.

_mm_setzero_sil128() — is a macro generating pxor xmm0, xmm0 — instruction just clear / XMMZERO
register

_mm_load_sil28() — is a macro for MOVDQA4, it just loading 16 bytes from the address in XMM1.

_mm_cmpeq_epi8() — is a macro for PCMPEQB, is an instruction comparing two XMM-registers bytewise.

And if some byte was equals to other, there will be 0xff at this place in result or 0 if otherwise.

For example.

XMM1: 11223344556677880000000000000000
XMMO: 11ab3444007877881111111111111111

After pcmpegb xmml, xmm0O execution, XMM1 register will contain:
XMM1: ££0000££0000££££0000000000000000

In our case, this instruction comparing each 16-byte block with the block of 16 zero-bytes, was set in
XMMO by pxor xmm0O, xmmO.

The next macro is _mm_movemask_epi8() — that is PMOVMSKB instruction.

It is very useful if to use it with PCMPEQB.

pmovmskb eax, xmml

%9nttp://en.wikipedia.org/wiki/Page_(computer_memory)

85

http://en.wikipedia.org/wiki/Page_(computer_memory)

This instruction will set first EAX bit into 1 if most significant bit of the first byte in XMM1 is 1. In other
words, if first byte of XMM1 register is Oxff, first EAX bit will be set to 1 too.

If second byte in XMM1 register is Oxff, then second EAX bit will be set to 1 too. In other words, the
instruction is answer to the question which bytes in XMM1 are Oxff? And will prepare 16 bits in EAX. Other
EAX bits will be cleared.

By the way, do not forget about this feature of our algorithm:

There might be 16 bytes on input like hello\x00garbage\x00ab

It’s a *hello’ string, terminating zero after and some random noise in memory.

If we load these 16 bytes into XMM1 and compare them with zeroed XMMO, we will get something like (I
use here order from MSB™to LSB™!):

XMM1: 0000££00000000000000££0000000000

This mean, the instruction found two zero bytes, and that’s not surprising.

PMOVMSKB in our case will prepare EAX like (in binary representation): 0010000000100000b.

Obviously, our function should consider only first zero and ignore others.

The next instruction — BSF (Bit Scan Forward). This instruction find first bit set to 1 and stores its
position into first operand.

EAX=0010000000100000b

After bsf eax, eax instruction execution, EAX will contain 5, this mean, 1 found at 5th bit position
(starting from zero).

MSVC has a macro for this instruction:_BitScanForward.

Now it’s simple. If zero byte found, its position added to what we already counted and now we have
ready to return result.

Almost all.

By the way, it’s also should be noted, MSVC compiler emitted two loop bodies side by side, for opti-
mization.

By the way, SSE 4.2 (appeared in Intel Core i7) offers more instructions where these string manipulations
might be even easier:http://www.strchr.com/strcmp_and_strlen_using sse_4.2

"most significant bit

"east significant bit

86

http://www.strchr.com/strcmp_and_strlen_using_sse_4.2

2.19 x86-64

It’s a 64-bit extension to x86-architecture.
From the reverse engineer’s perspective, most important differences are:

e Almost all registers (except FPU and SIMD) are extended to 64 bits and got r- prefix. 8 additional
registers added. Now general purpose registers are: rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8, r9,
r10, r11, r12 ri13, ri14, rib.

It’s still possible to access to older register parts as usual. For example, it’s possible to access lower
32-bit part of RAX using EAX.

New r8-r15 registers also has its lower parts: r8d-r15d (lower 32-bit parts), r8w-ri15w (lower 16-bit
parts), r8b-r15b (lower 8-bit parts).

SIMD-registers number are doubled: from 8 to 16: XMMO-XMM15.

e In Win64, function calling convention is slightly different, somewhat resembling fastcall 3.5.3. First 4
arguments stored in RCX, RDX, R8, R9 registers, others — in stack. Caller function should also allocate
32 bytes so the callee may save there 4 first arguments and use these registers for own needs. Short
functions may use arguments just from registers, but larger may save their values into stack.

See also section about calling conventions 3.5.

e C int type is still 32-bit for compatibility. All pointers are 64-bit now.

Since now registers number are doubled, compilers has more space now for maneuvering calling register
allocation™. What it meanings for us, emitted code will contain less local variables.

For example, function calculating first S-box of DES encryption algorithm, it processing 32/64,/128/256
values at once (depending on DES_type type (uint32, uint64, SSE2 or AVX)) using bitslice DES method
(read more about this method here 2.18):

/ *

Generated S-box files.

This software may be modified, redistributed, and used for any purpose,
so long as its origin is acknowledged.

Produced by Matthew Kwan - March 1998
/

* X X X X X *

#ifdef _WIN64
#define DES_type unsigned __int64

#else
#define DES_type unsigned int
#endif
void
s1 (
DES_type al,
DES_type a2,
DES_type a3,
DES_type a4,
DES_type a5,
DES_type a6,
DES_type *outl,
DES_type *out2,
DES_type *out3,
DES_type *outéd
) A
DES_type x1, x2, x3, x4, x5, x6, x7, x8;
DES_type x9, x10, x11, x12, x13, x14, x15, x16;
DES_type x17, x18, x19, x20, x21, x22, x23, x24;

"2 assigning variables to registers

87

DES_type x25, x26, x27, x28, x29, x30, x31, x32;

DES_type x33, x34, x35, x36, x37, x38, x39, x40;
DES_type x41, x42, x43, x44, x45, x46, x47, x48;
DES_type x49, x50, xb1, xb2, x53, x54, x55, x56;

x1 = a3 & ~ab;
x2 = x1 - a4;

x3 = a3 & Ta4;
x4 = x3 | a5;
x5 = a6 & x4;
x6 = x2 ~ xb;
x7 = a4 & ~ab;
x8 = a3 ~ a4;
x9 = a6 & 7x8;

x10 = x7 =~ x9;
x11 = a2 | x10;
x12 = x6 - x11;
x13 = ab =~ x5;
x14 = x13 & x8;
x15 = ab & Ta4;
x16 = x3 -~ x14;
x17 = a6 | x16;
x18 = x15 =~ x17;
x19 = a2 | x18;
x20 = x14 -~ x19;
x21 = al & x20;
x22 = x12 =~ Tx21;
*out2 ~= x22;

x23 = x1 | x5;
x24 = x23 -~ x8;
x25 = x18 & ~x2;
x26 = a2 & “x25;
x27 = x24 -~ x26;
x28 = x6 | x7;
x29 = x28 ~ x25;
x30 = x9 =~ x24;
x31 = x18 & 7x30;
x32 = a2 & x31;
x33 = x29 ~ x32;
x34 = al & x33;
x35 = x27 ~ x34;
*outd4d ~= x35;

x36 = a3 & x28;
x37 = x18 & "x36;
x38 = a2 | x3;
x39 = x37 ~ x38;
x40 = a3 | x31;
x41 = x24 & ~x37;
x42 = x41 | x3;
x43 = x42 & Ta2;
x44 = x40 ~ x43;
x45 = al & “x44;
x46 = x39 ~ "x45;
*outl ~= x46;

x47 = x33 & ~x9;
x48 = x47 -~ x39;
x49 = x4 -~ x36;
x50 = x49 & ~xb5;
x51 = x42 | x18;
x52 = x51 =~ ab;
x53 = a2 & “x52;
x54 = x50 =~ x53;
x55 = al | x54;
xb6 = x48 ~ 7xbb;
*out3d ~= x56;

88

There is a lot of local variables. Of course, not them all will be in local stack. Let’s compile it with

MSVC 2008 with /0x option:

PUBLIC _sl1

; Function compile flags: /0Ogtpy

_TEXT SEGMENT

_x6$ = -20 ; size = 4

_x3% = -16 ; size = 4

_x1$ = -12 ; size = 4

_x8% = -8 ; size = 4

_x4% = -4 ; size = 4

_al$ = 8 ; size = 4

_a2$ = 12 ; size = 4

_a3% = 16 ; size = 4

_x33%$ = 20 ; size = 4

_x7$ = 20 ; size = 4

_a4$ = 20 ; size = 4

_ab$ = 24 ; size = 4

tv326 = 28 ; size = 4

_x36%$ = 28 ; size = 4

_x28% = 28 ; size = 4

_a6$ = 28 ; size = 4

_outl$ = 32 ; size = 4

_x24%$ = 36 ; size = 4

_out2$ 36 ; size = 4

_out3$ = 40 ; size = 4

_out4d$ = 44 ; size = 4

_si PROC
sub esp, 20
mov edx, DWORD PTR _ab$[esp+16]
push ebx
mov ebx, DWORD PTR _a4$[esp+20]
push ebp
push esi
mov esi, DWORD PTR _a3$[esp+28]
push edi
mov edi, ebx
not edi
mov ebp, edi
and edi, DWORD PTR _a5$[esp+32]
mov ecx, edx
not ecx
and ebp, esi
mov eax, ecx
and eax, esi
and ecx, ebx
mov DWORD PTR _x1$[esp+36], eax
Xor eax, ebx
mov esi, ebp
or esi, edx
mov DWORD PTR _x4$[esp+36], esi
and esi, DWORD PTR _a6$[esp+32]
mov DWORD PTR _x7$[esp+32], ecx
mov edx, esi
Xor edx, eax
mov DWORD PTR _x63%[esp+36], edx
mov edx, DWORD PTR _a3$[esp+32]
Xor edx, ebx
mov ebx, esi
xor ebx, DWORD PTR _ab$[esp+32]
mov DWORD PTR _x8%[esp+36], edx
and ebx, edx
mov ecx, edx
mov edx, ebx
xXor edx, ebp
or edx, DWORD PTR _a6$[esp+32]

3

00000014H

89

not
and
Xor
mov
or

mov
mov
xor
and
mov
Xor
not
or

Xor
mov
mov
Xor
not
Xor
and
mov
mov
or

mov
or

mov
Xor
mov
Xor
not
and
mov
and
Xor
Xor
not
mov
and
and
xor
mov
Xor
xXor
mov
mov
and
mov
or

mov
not
and
or

Xor
not
and
not
or

not
and
or

Xor
mov
Xor
xor
mov
not

ecx
ecx, DWORD PTR _a6$[esp+32]
edx, edi

edi, edx

edi, DWORD PTR _a2$[esp+32]
DWORD PTR _x3%$[esp+36], ebp
ebp, DWORD PTR _a2$[esp+32]
edi, ebx

edi, DWORD PTR _al$[esp+32]
ebx, ecx

ebx, DWORD PTR _x7$[esp+32]
edi

ebx, ebp

edi, ebx

ebx, edi

edi, DWORD PTR _out2$[esp+32]
ebx, DWORD PTR [edil

eax

ebx, DWORD PTR _x6$[esp+36]
eax, edx

DWORD PTR [edi], ebx

ebx, DWORD PTR _x7$[esp+32]
ebx, DWORD PTR _x6$[esp+36]
edi, esi

edi, DWORD PTR _x1$[esp+36]
DWORD PTR _x28$[esp+32], ebx
edi, DWORD PTR _x8$[esp+36]
DWORD PTR _x24$[esp+32], edi
edi, ecx

edi

edi, edx

ebx, edi

ebx, ebp

ebx, DWORD PTR _x28$[esp+32]
ebx, eax

eax

DWORD PTR _x33$[esp+32], ebx
ebx, DWORD PTR _al$[esp+32]
eax, ebp

eax, ebx

ebx, DWORD PTR _out4$[esp+32]
eax, DWORD PTR [ebx]

eax, DWORD PTR _x24$[esp+32]
DWORD PTR [ebx], eax

eax, DWORD PTR _x28$[esp+32]
eax, DWORD PTR _a3$[esp+32]
ebx, DWORD PTR _x3$[esp+36]
edi, DWORD PTR _a3$[esp+32]
DWORD PTR _x36$[esp+32], eax
eax

eax, edx

ebx, ebp

ebx, eax

eax

eax, DWORD PTR _x24$[esp+32]
ebp

eax, DWORD PTR _x3$[esp+36]
esi

ebp, eax

eax, edx

eax, DWORD PTR _ab$[esp+32]
edx, DWORD PTR _x36$[esp+32]
edx, DWORD PTR _x4$[esp+36]
ebp, edi

edi, DWORD PTR _outl$[esp+32]
eax

90

and eax, DWORD PTR _a2$[esp+32]

not ebp
and ebp, DWORD PTR _al$[esp+32]
and edx, esi
Xor eax, edx
or eax, DWORD PTR _al$[esp+32]
not ebp
xor ebp, DWORD PTR [edil
not ecx
and ecx, DWORD PTR _x33$[esp+32]
Xor ebp, ebx
not eax
mov DWORD PTR [edi], ebp
xXor eax, ecx
mov ecx, DWORD PTR _out3$[esp+32]
Xor eax, DWORD PTR [ecx]
pop edi
pop esi
Xor eax, ebx
pop ebp
mov DWORD PTR [ecx], eax
pop ebx
add esp, 20 ; 00000014H
ret 0
_sl ENDP

5 variables was allocated in local stack by compiler.
Now let’s try the same thing in 64-bit version of MSVC 2008:

al$ = 56
a2$ = 64
a3$ = 72
ad$ = 80
x36$1% = 88
ab$ = 88
a6y = 96

outl$ = 104
out2$ = 112
out3$ = 120
out4d$ = 128

s1 PROC
$LN3:
mov QWORD PTR [rsp+24], rbx
mov QWORD PTR [rsp+32], rbp
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
push rsi
push rdi
push ri2
push ri3
push ri4
push rib
mov r1i5, QWORD PTR ab$[rsp]
mov rcx, QWORD PTR a6$[rsp]
mov rbp, r8
mov ri0, r9
mov rax, rilb
mov rdx, rbp
not rax
Xor rdx, r9
not r10
mov ril, rax
and rax, r9
mov rsi, r10
mov QWORD PTR x36%1[rspl, rax
and ril, r8

91

and
and
mov
mov
Xor
mov
mov
or

not
and
mov
and
mov
mov
Xor
Xor
not
and
mov
Xor
or

Xor
and
mov
or

Xor
mov
Xor
and
or

not
Xor
mov
Xor
Xor
mov
mov
mov
or

or

mov
Xor
mov
mov
mov
Xor
not
and
mov
and
Xor
Xor
not
and
mov
and
Xor
mov
Xor
Xor
mov
mov
and
mov
not
and

rsi, r8
r10, ri1b
r13, rdx
rbx, riil
rbx, r9

r9, QWORD PTR a2$[rspl
r12, rsi

ri2, ri15
ri3

r13, rcx
rid, ri12

rl4, rcx

rax, rl4

r8, ril4

r8, rbx

rax, rlb

rbx

rax, rdx

rdi, rax

rdi, rsi

rdi, rcx

rdi, ri10

rbx, rdi

rcx, rdi

rcx, r9

rcx, rax

rax, ril3

rax, QWORD PTR x36%1[rsp]
rcx, QWORD PTR al$[rspl
rax, r9

rcx

rcx, rax

rax, QWORD PTR out2$[rsp]
rcx, QWORD PTR [rax]

rcx, r8

QWORD PTR [rax], rcx

rax, QWORD PTR x36%1[rsp]
rcx, rl4

rax, r8
rcx, riil
ril1, r9

rcx, rdx

QWORD PTR x36%1[rsp]l, rax
r8, rsi

rdx, rcx

rdx, ri13
rdx

rdx, rdi
r10, rdx
ri0, r9
r10, rax
r10, rbx
rbx

rbx, r9

rax, rl0

rax, QWORD PTR ail$[rsp]
rbx, rax

rax, QWORD PTR out4$[rsp]
rbx, QWORD PTR [rax]

rbx, rcx

QWORD PTR [rax], rbx

rbx, QWORD PTR x36$1$[rspl

rbx, rbp
r9, rbx

r9

r9, rdi

92

or r8, riil

mov rax, QWORD PTR outi$[rsp]
Xor r8, r9
not r9
and r9, rcx
or rdx, rbp
mov rbp, QWORD PTR [rsp+80]
or r9, rsi
Xor rbx, ri12
mov rcx, riil
not rcx
not ri4d
not ri3
and rcx, r9
or r9, rdi
and rbx, ril4
Xor r9, rib
Xor rcx, rdx
mov rdx, QWORD PTR al$[rsp]
not r9
not rcx
and ri3, ri10
and r9, rii
and rcx, rdx
Xor r9, rbx
mov rbx, QWORD PTR [rsp+72]
not rcx
Xor rcx, QWORD PTR [rax]
or r9, rdx
not r9
Xor rcx, r8
mov QWORD PTR [rax], rcx
mov rax, QWORD PTR out3$[rsp]
Xor r9, ri3
Xor r9, QWORD PTR [rax]
Xor r9, r8
mov QWORD PTR [rax], r9
pop ris
pop rid
pop ri3
pop ri2
pop rdi
pop rsi
ret 0
s1 ENDP

Nothing allocated in local stack by compiler, x36 is synonym for a5.

By the way, we can see here, the function saved RCX and RDX registers in allocated by caller space, but
R8 and R9 are not saved but used from the beginning.

By the way, there are CPUs with much more general purpose registers, Itanium, for example — 128
registers.

93

Chapter 3

Couple things to add

94

3.1 LEA instruction

LEA (Load Effective Address) is instruction intended not for values summing but for address forming, for
example, for forming address of array element by adding array address, element index, with multiplication

of element size!.

Important property of LEA instruction is that it do not alter processor flags.

int f(int a, int b)

{
return a*x8+b;
»g
MSVC 2010 with /0x option:
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f PROC
mov eax, DWORD PTR _b$[esp-4]
mov ecx, DWORD PTR _a$[esp-4]
lea eax, DWORD PTR [eax+ecx*8]
ret 0
f ENDP

!See also: http://en.wikipedia.org/wiki/Addressing_mode

95

http://en.wikipedia.org/wiki/Addressing_mode

3.2 Function prologue and epilogue

Function prologue is instructions at function start. It is often something like this:

push ebp
mov ebp, esp
sub esp, X

What these instruction do: save EBP register value, set EBP to ESP and then allocate space in stack for
local variables.

EBP value is fixed over a period of function execution and it will be used for local variables and arguments
access. One can use ESP, but it changing over time and it is not handy.

Function epilogue annuled allocated space in stack, returning EBP value to initial state and returning
control flow to callee:

mov esp, ebp
Pop ebp
ret 0

Epilogue and prologue can make recursion performance worse.

For example, once upon a time I wrote a function to seek right tree node. As a recursive function it would
look stylish but because some time was spent at each function call for prologue/epilogue, it was working
couple of times slower than the implementation without recursion.

By the way, that is the reason of tail call? existence: when compiler (or interpreter) transforms recursion
(with which it’s possible: tail recursion) into iteration for efficiency.

thtp://en.wikipedia.org/wiki/Tail_call

96

http://en.wikipedia.org/wiki/Tail_call

3.3 npad

It’s an assembler macro for label aligning by some specific border.

That’s often need for the busy labels to where control flow is often passed, for example, loop begin. So
the CPU will effectively load data or code from the memory, through memory bus, cache lines, etc.

Taken from listing.inc (MSVC):

By the way, it’s curious example of different NOP variations. All these instructions has no effects at all,
but has different size.

55 LISTING.INC

55 This file contains assembler macros and is included by the files created
;3 with the -FA compiler switch to be assembled by MASM (Microsoft Macro
;; Assembler).

;3 Copyright (c) 1993-2003, Microsoft Corporation. All rights reserved.

;3 non destructive nops
npad macro size
if size eq 1
nop
else
if size eq 2
mov edi, edi
else
if size eq 3
; lea ecx, [ecx+00]
DB 8DH, 49H, OOH
else
if size eq 4
; lea esp, [esp+00]
DB 8DH, 64H, 24H, OOH
else
if size eq 5
add eax, DWORD PTR O
else
if size eq 6
; lea ebx, [ebx+00000000]
DB 8DH, 9BH, OOH, OOH, OOH, OOH
else
if size eq 7
; lea esp, [esp+00000000]
DB 8DH, OA4H, 24H, OOH, OOH, OOH, OOH
else
if size eq 8
; jmp .+8; .npad 6
DB OEBH, O6H, 8DH, 9BH, OOH, OOH, OOH, OOH
else
if size eq 9
; jmp .+9; .npad 7
DB OEBH, O7H, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH
else
if size eq 10
; jmp .+A; .npad 7; .npad 1
DB OEBH, O8H, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 90H
else
if size eq 11
; jmp .+B; .npad 7; .npad 2
DB OEBH, O9H, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8BH, OFFH
else
if size eq 12
; jmp .+C; .npad 7; .npad 3
DB OEBH, OAH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8DH, 49H, OOH
else
if size eq 13

97

; jmp .+D; .npad 7; .npad 4
DB OEBH, OBH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8DH, 64H, 24H, OOH
else
if size eq 14
; jmp .+E; .npad 7; .npad 5
DB OEBH, OCH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, O5H, OOH, OOH, OOH, OOH
else
if size eq 15
; jmp .+F; .npad 7; .npad 6
DB OEBH, ODH, 8DH, OA4H, 24H, OOH, OOH, OOH, OOH, 8DH, 9BH, O00OH, OOH, OOH,
OO0H
else
%out error: unsupported npad size
.err
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endif
endm

98

3.4 Signed number representations

There are several methods of representing signed numbers?, but in x86 architecture used "two’s complement".

Difference between signed and unsigned numbers is that if we represent OxFFFFFFFE and 0x0000002
as unsigned, then first number (4294967294) is bigger than second (2). If to represent them both as signed,
first will be -2, and it is lesser than second (2). That is the reason why conditional jumps 2.7 are present
both for signed (for example, JG, JL) and unsigned (JA, JBE) operations.

3.4.1 Integer overflow

It is worth noting that incorrect representation of number can lead integer overflow vulnerability.

For example, we have some network service, it receives network packets. In that packets there are also
field where subpacket length is coded. It is 32-bit value. After network packet received, service checking that
field, and if it is larger than, for example, some MAX_PACKET_SIZE (let’s say, 10 kilobytes), packet ignored as
incorrect. Comparison is signed. Intruder set this value to OxFFFFFFFF. While comparison, this number
is considered as signed -1 and it’s lesser than 10 kilobytes. No error here. Service would like to copy that
subpacket to another place in memory and call memcpy (dst, src, OxFFFFFFFF) function: this operation,
rapidly scratching a lot of inside of process memory.

More about it: http://www.phrack.org/issues.html?issue=60&id=10

3http://en.wikipedia.org/wiki/Signed_number_representations

99

http://www.phrack.org/issues.html?issue=60&id=10
http://en.wikipedia.org/wiki/Signed_number_representations

3.5 Arguments passing methods (calling conventions)

3.5.1 cdecl

This is the most popular method for arguments passing to functions in C/C++ languages.
Caller pushing arguments to stack in reverse order: last argument, then penultimate element and finally
— first argument. Caller also should return back ESP to its initial state after callee function exit.

push arg3

push arg2

push arg3

call function

add esp, 12 ; return ESP

3.5.2 stdcall

Almost the same thing as cdecl, with the exception that callee set ESP to initial state executing RET x
instruction instead of RET, where x = arguments number * sizeof (int)*. Caller will not adjust stack
pointer by add esp, x instruction.

push arg3
push arg2
push argl
call function

function:
do something
ret 12

This method is ubiquitous in win32 standard libraries, but not in win64 (see below about win64).

Variable arguments number functions

printf ()-like functions are, probably, the only case of variable arguments functions in C/C++, but it’s
easy to illustrate an important difference between cdecl and stdcall with help of it. Let’s start with the idea
that compiler knows argument count of each printf () function calling. However, called printf (), which is
already compiled and located in MSVCRT.DLL (if to talk about Windows), do not have information about
how much arguments were passed, however it can determine it from format string. Thus, if printf () would
be stdcall-function and restored stack pointer to its initial state by counting number of arguments in format
string, this could be dangerous situation, when one programmer’s typo may provoke sudden program crash.
Thus it’s not suitable for such functions to use stdcall, cdecl is better.

3.5.3 fastcall

That’s general naming for a method for passing some of arguments via registers and all others — via stack.
It worked faster than cdecl/stdcall on older CPUs. It’s not a standardized way, so, different compilers may
do it differently. Of course, if you have two DLLs, one use another, and they are built by different compilers
with fastcall calling conventions, there will be a problems.

Both MSVC and GCC passing first and second argument via ECX and EDX and other arguments via stack.
Caller should restore stack pointer into initial state.

Stack pointer should be restored to initial state by callee, like in stdcall.

push arg3

mov edx, arg2
mov ecx, argl
call function

function:
do something

4Size of int type variable is 4 in x86 systems and 8 in x64 systems

100

ret 4

GCC regparm

It’s fastcall evolution® is some sense. With the -mregparm option it’s possible to set, how many arguments
will be passed via registers. 3 at maximum. Thus, EAX, EDX and ECX registers will be used.

Of course, if number of arguments is less then 3, not all registers 3 will be used.

Caller restores stack pointer to its initial state.

3.5.4 thiscall

In C++, it’s a this pointer to object passing into function-method.

In MSVC, this is usually passed in ECX register.

In GCC, this pointer is passed as a first function-method argument. Thus it will be seen that internally
all function-methods has extra argument for it.

3.5.5 x86-64
win64

The method of arguments passing in Win64 is somewhat resembling to fastcall. First 4 arguments are
passed via RCX, RDX, R8, R9, others — via stack. Caller also must prepare a place for 32 bytes or 4 64-bit
values, so then callee can save there first 4 arguments. Short functions may use argument values just from
registers, but larger may save its values for further use.

Caller also should return stack pointer into initial state.

This calling convention is also used in Windows x86-64 system DLLs (instead if stdcall in win32).

3.5.6 Returning values of float and double type

In all conventions except of Win64, values of type float or double returning via FPU register ST(0).
In Win64, return values of float and double types are returned in XMMO register instead of ST(0).

Shttp://www.ohse.de/uwe/articles/gcc-attributes. html#func-regparm

101

http://www.ohse.de/uwe/articles/gcc-attributes.html#func-regparm

Chapter 4

Finding important /interesting stuff in the
code

Minimalism it’s not a significant feature of modern software.

But not because programmers wrote a lot, but because all libraries are usually linked statically to exe-
cutable files. If all external libraries were shifted into external DLL files, the world would be different.

Thus, it’s very important to determine origin of some function, if it’s from standard library or well-known
library (like Boost!, libpng?), and which one — is related to what we are trying to find in the code.

It’s just absurdly to rewrite all code to C/C++ to find what we looking for.

One of the primary reverse engineer’s task is to find quickly in the code what is needed.

IDA 6 disassembler can search among text strings, byte sequences, constants. It’s even possible to export
the code into .Ist or .asm text file and then use grep, awk, etc.

When you try to understand what some code is doing, this easily could be some open-source library like
libpng. So when you see some constants or text strings looks familiar, it’s always worth to google it. And
if you find the opensource project where it’s used, then it will be enough just to compare the functions. It
may solve some part of problem.

For example, once upon a time I tried to understand how SAP 6.0 network packets compression/decom-
pression is working. It’s a huge software, but a detailed .PDB with debugging information is present, and
that’s cosily. I finally came to idea that one of the functions doing decompressing of network packet called
CsDecomprLZC(). Immediately I tried to google its name and I quickly found that the function named as
the same is used in MaxDB (it’s open-source SAP project).

http://www.google.com/search?q=CsDecomprLZC

Astoundingly, MaxDB and SAP 6.0 software shared the same code for network packets compression/de-
compression.

4.1 Communication with the outer world

First what to look on is which functions from operation system API and standard libraries are used.

If the program is divided into main executable file and a group of DLL-files, sometimes, these function’s
names may be helpful.

If we are interesting, what exactly may lead to MessageBox () call with specific text, first what we can
try to do: find this text in data segment, find references to it and find the points from which a control may
be passed to MessageBox () call we're interesting in.

If we are talking about some game and we’re interesting, which events are more or less random in it, we
may try to find rand() function or its replacement (like Mersenne twister algorithm) and find a places from
which this function called and most important: how the results are used.

But if it’s not a game, but rand () is used, it’s also interesing, why. There are cases of unexpected rand ()
usage in data compression algorithm (for encryption imitation): http://blogs.conus.info/node/44.

"http://www.boost.org/
2http://www.libpng.org/pub/png/libpng.html

102

http://www.google.com/search?q=CsDecomprLZC
http://blogs.conus.info/node/44
http://www.boost.org/
http://www.libpng.org/pub/png/libpng.html

4.2 String

Debugging messages are often very helpful if present. In some sense, debugging messages are reporting about
what’s going on in program right now. Often these are printf ()-like functions, which writes to log-files, and
sometimes, not writing anything but calls are still present, because this build is not debug build but release
one. If local or global variables are dumped in debugging messages, it might be helpful as well because it’s
possible to get variable names at least. For example, one of such functions in Oracle RDBMS is ksdwrt ().

Sometimes assert () macro presence is useful too: usually, this macro leave in code source file name, line
number and condition.

Meaningful text strings are often helpful. IDA 6 disassembler may show from which function and from
which point this specific string is used. Funny cases sometimes happen.

Paradoxically, but error messages may help us as well. In Oracle RDBMS, errors are reporting using
group of functions. More about it.

It’s possible to find very quickly, which functions reporting about errors and in which conditions. By
the way, it’s often a reason why copy-protection systems has inarticulate cryptic error messages or just error
numbers. No one happy when software cracker quickly understand why copy-protection is triggered just by
error message.

4.3 Constants

Some algorithms, especially cryptographical, use distinct constants, which is easy to find in code using IDA 6.
For example, MD5? algorithm initializes its own internal variables like:

var int hO := 0x67452301
var int hl := OxEFCDAB89
var int h2 := 0x98BADCFE
var int h3 := 0x10325476

If you find these four constants usage in the code in a row — it’s very high probability this function is
related to MD5.

4.3.1 Magic numbers

A lot of file formats defining a standard file header where magic numberis used.

For example, all Win32 and MS-DOS executables are started with two characters "MZ"®.

At the MIDI-file beginning "MThd" signature must be present. If we have a program that using MIDI-files
for something, very likely, it will check MIDI-files for validity by checking at least first 4 bytes.

This could be done like:

(buf pointing to the beginning of loaded file into memory)

cmp [buf], 0x6468544D ; "MThd"
jnz _error_not_a_MIDI_file

or by calling function for comparing memory blocks memcmp() or any other equivalent code up to
CMPSB instruction.
When you find such place you already may say where MIDI-file loading is beginning, also, we could see
a location of MIDI-file contents buffer and what is used from that buffer and how.

3http://en.wikipedia.org/wiki/MD5
‘http://en.wikipedia.org/wiki/Magic_number_(programming)
5http ://en.wikipedia.org/wiki/D0OS_MZ_executable

103

http://blogs.conus.info/node/32
http://blogs.conus.info/node/43
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/DOS_MZ_executable

DHCP

This applies to network protocols as well. For example, DHCP protocol network packets contains so called
magic cookie: 0x63538263. Any code generating DHCP protocol packets somewhere and somehow should
embed this constant into packet. If we find it in the code we may find where it happen and not only this.
Something that received DHCP packet should check magic cookie, comparing it with the constant.

For example, let’s take dhcpcore.dll file from Windows 7 x64 and search for the constant. And we found it,
two times: it seems, that constant is used in two functions eloquently named as DhcpExtractOptionsForValidation()
and DhcpExtractFullOptions():

.rdata:000007FF6483CBE8 dword_7FF6483CBE8 dd 63538263h ; DATA XREF:
DhcpExtractOptionsForValidation+79
.rdata:000007FF6483CBEC dword_7FF6483CBEC dd 63538263h ; DATA XREF:

DhcpExtractFullOptions+97

And the places where these constants accessed:

.text :000007FF6480875F mov eax, [rsil
.text :000007FF64808761 cmp eax, cs:dword_7FF6483CBES8
.text :000007FF64808767 jnz loc_7FF64817179

And:
.text :000007FF648082C7 mov eax, [r12]
.text :000007FF648082CB cmp eax, cs:dword_T7FF6483CBEC
.text :000007FF648082D1 jnz loc_T7TFF648173AF

4.4 Finding the right instructions

If the program is using FPU instructions and there are very few of them in a code, one can try to check each
by debugger.

For example, we may be interesting, how Microsoft Excel calculating formulae entered by user. For
example, division operation.

If to load excel.exe (from Office 2010) version 14.0.4756.1000 into IDA 6, then make a full listing and to
find each FDIV instructions (except ones which use constants as a second operand — obviously, it’s not suits
us):

cat EXCEL.1lst | grep fdiv | grep -v dbl_ > EXCEL.fdiv

... then we realizing they are just 144.

We can enter string like "=(1/3)" in Excel and check each instruction.

Checking each instruction in debugger or tracer 6.0.1 (one may check 4 instruction at a time), it seems,
we are lucky here and sought-for instruction is just 14th:

.text:3011E919 DC 33 fdiv qword ptr [ebx]

PID=13944| TID=28744| (0) 0x2f64e919 (Excel.exe!BASE+0x11e919)
EAX=0x02088006 EBX=0x02088018 ECX=0x00000001 EDX=0x00000001
ESI=0x02088000 EDI=0x00544804 EBP=0x0274FA3C ESP=0x0274F9F8
EIP=0x2F64E919

FLAGS=PF IF

FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM

FPU StatusWord=

FPU ST(0): 1.000000

ST(0) holding first argument (1) and second one is in [ebx].
Next instruction after FDIV writes result into memory:

.text:3011E91B DD 1E fstp gqword ptr [esi]

If to set breakpoint on it, we may see result:

104

PID=32852| TID=36488| (0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00598006 EBX=0x00598018 ECX=0x00000001 EDX=0x00000001
ESI=0x00598000 EDI=0x00294804 EBP=0x026CF93C ESP=0x026CF8F8
EIP=0x2F40E91B

FLAGS=PF IF

FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM

FPU StatusWord=Cl1 P

FPU ST(0): 0.333333

Also, as a practical joke, we can modify it on-fly:

gt -l:excel.exe bpx=excel.exe!base+0x11E91B,set(st0,666)

PID=36540| TID=24056| (0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00680006 EBX=0x00680018 ECX=0x00000001 EDX=0x00000001
ESI=0x00680000 EDI=0x00395404 EBP=0x0290FD9C ESP=0x0290FD58
EIP=0x2F40E91B

FLAGS=PF IF

FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM

FPU StatusWord=C1 P

FPU ST(0): 0.333333

Set STO register to 666.000000

Excel showing 666 in that cell what finally convincing us we find the right place.
=l &

j Calibri 11 - A A ==
_‘=_I‘v
Paste B ;7 U- I A E = =
- 7 —
Clipboard Faont Align
Al - S | =(123/456)
e B C] E

BEE

IR = T B O AL R S

Figure 4.1: Practical joke worked

If to try the same Excel version, but x64, we’ll see there are only 12 FDIV instructions, and the one we
looking for — third.

gt64.exe -l:excel.exe bpx=excel.exe!base+0x1B7FCC,set(st0,666)

It seems, a lot of division operations of float and double types, compiler replaced by SSE-instructions like
DIVSD (DIVSD present here 268 in total).

4.5 Suspicious code patterns
Modern compilers do not emit LOOP and RCL instructions. On the other hand, these instructions are well-

known to coders who like to code in straight assembler. If you spot these, it can be said, with a big probability,
this piece of code is hand-written.

105

Chapter 5

Tasks

There are two questions almost for every task, if otherwise isn’t specified:
1) What this function does? Answer in one-sentence form.
2) Rewrite this function into C/C++-.
Hints and solutions are in the appendix of this brochure.

5.1 Easy level

5.1.1 Task 1.1

This is standard C library function. Source code taken from OpenWatcom. Compiled in MSVC 2010.

_TEXT SEGMENT
_input$ = 8 ; size = 1
_f PROC
push ebp
mov ebp, esp
movsx eax, BYTE PTR _input$ [ebpl
cmp eax, 97 ; 00000061H
jl SHORT $LN1@f
movsx ecx, BYTE PTR _input$ [ebpl
cmp ecx, 122 ; 0000007 aH
ig SHORT $LN1@f
movsx edx, BYTE PTR _input$ [ebpl
sub edx, 32 ; 00000020H
mov BYTE PTR _input$[ebp]l, dl
$LN1ef :
mov al, BYTE PTR _input$[ebp]
pop ebp
ret 0
_f ENDP
_TEXT ENDS

It is the same code compiled by GCC 4.4.1 with -03 option (maximum optimization):

_f proc near
input = dword ptr 8
push ebp
mov ebp, esp
movzx eax, byte ptr [ebp+input]
lea edx, [eax-61h]
cmp dl, 19h
ja short loc_80483F2
sub eax, 20h

loc_80483F2:

pop ebp
retn

106

’_f endp

5.1.2 Task 1.2

This is also standard C library function. Source code is taken from OpenWatcom and modified slightly.
Compiled in MSVC 2010 with /0x optimization flag.
This function also use these standard C functions: isspace() and isdigit().

EXTRN _isdigit :PROC
EXTRN _isspace:PROC
EXTRN ___ptr_check:PROC
; Function compile flags: /Ogtpy
_TEXT SEGMENT
_p$ = 8 ; size = 4
_f PROC
push ebx
push esi
mov esi, DWORD PTR _p$[esp+4]
push edi
push 0
push esi
call ___ptr_check
mov eax, DWORD PTR [esil
push eax
call _isspace
add esp, 12 ; 0000000cH
test eax, eax
je SHORT $LN6@fE
npad 2
$LL7Qf :
mov ecx, DWORD PTR [esi+4]
add esi, 4
push ecx
call _isspace
add esp, 4
test eax, eax
jne SHORT $LL7@f
$LN6QT :
mov bl, BYTE PTR [esil]
cmp bl, 43 ; 0000002DbH
je SHORT $LN4@f
cmp bl, 45 ; 0000002dH
jne SHORT $LN5@f
$LN4Qf :
add esi, 4
$LN5Qf :
mov edx, DWORD PTR [esil
push edx
xor edi, edi
call _isdigit
add esp, 4
test eax, eax
je SHORT $LN2@f
$LL3Qf :
mov ecx, DWORD PTR [esil
mov edx, DWORD PTR [esi+4]
add esi, 4
lea eax, DWORD PTR [edi+edi*4]
push edx
lea edi, DWORD PTR [ecx+eax*2-48]
call _isdigit
add esp, 4
test eax, eax
jne SHORT $LL3@f
$LN2Qf :

107

cmp bl, 45 ; 0000002dH

jne SHORT $LN14ef
neg edi
$LN14ef :
mov eax, edi
pop edi
pop esi
pop ebx
ret 0
_f ENDP
_TEXT ENDS

Same code compiled in GCC 4.4.1. This task is sligthly harder because GCC compiled isspace() and
isdigit() functions like inline-functions and inserted their bodies right into code.

_f proc near
var_10 = dword ptr -10h
var_9 = byte ptr -9
input = dword ptr 8
push ebp
mov ebp, esp
sub esp, 18h
jmp short loc_8048410
loc_804840C:
add [ebp+input], 4
loc_8048410:
call ___ctype_b_loc
mov edx, [eax]
mov eax, [ebp+input]
mov eax, [eax]
add eax, eax
lea eax, [edx+eax]
movzx eax, word ptr [eax]
movzx eax, ax
and eax, 2000h
test eax, eax
jnz short loc_804840C
mov eax, [ebp+input]
mov eax, [eax]
mov [ebp+var_9]1, al
cmp [ebp+var_9], ’+?
jz short loc_8048444
cmp [ebp+var_9]1, ’-°
jnz short loc_8048448
loc_8048444:
add [ebp+input], 4
loc_8048448:
mov [ebp+var_10], O
jmp short 1loc_8048471
loc_8048451:
mov edx, [ebp+var_10]
mov eax, edx
shl eax, 2
add eax, edx
add eax, eax
mov edx, eax
mov eax, [ebp+input]
mov eax, [eax]
lea eax, [edx+eax]
sub eax, 30h

108

mov [ebp+var_10], eax

add [ebp+input], 4
loc_8048471:
call ___ctype_b_loc
mov edx, [eax]
mov eax, [ebp+input]
mov eax, [eax]
add eax, eax
lea eax, [edx+eax]
movzx eax, word ptr [eax]
movzx eax, ax
and eax, 800h
test eax, eax
jnz short loc_8048451
cmp [ebp+var_9], 2Dh
jnz short loc_804849A
neg [ebp+var_10]
loc_804849A:
mov eax, [ebp+var_10]
leave
retn
_f endp

5.1.3 Task 1.3

This is standard C function too, actually, two functions working in pair.

2010 and modified sligthly.

Source code taken from MSVC

The matter of modification is that this function can work properly in multi-threaded environment, and

I removed its support for simplification (or for confusion).
Compiled in MSVC 2010 with /0x flag.

_BSS SEGMENT
_v DD 01H DUP (7)
_BSS ENDS
_TEXT SEGMENT
_s$ = 8 ; size = 4
f1 PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _s$[ebpl]
mov DWORD PTR _v, eax
pop ebp
ret 0
f1 ENDP
_TEXT ENDS
PUBLIC £f2
_TEXT SEGMENT
f2 PROC
push ebp
mov ebp, esp
mov eax, DWORD PTR _v
imul eax, 214013 ; 000343fdH
add eax, 2531011 ; 00269ec3H
mov DWORD PTR _v, eax
mov eax, DWORD PTR _v
shr eax, 16 ; 00000010H
and eax, 32767 ; 00007fffH
pop ebp
ret 0
f2 ENDP

109

_TEXT
END

ENDS

Same code compiled in GCC 4.4.1:

public f1
f1 proc near
arg_O = dword ptr 8
push ebp
mov ebp, esp
mov eax, [ebp+targ_0]
mov ds:v, eax
pop ebp
retn
f1 endp
public f2
£2 proc near
push ebp
mov ebp, esp
mov eax, ds:v
imul eax, 343FDh
add eax, 269EC3h
mov ds:v, eax
mov eax, ds:v
shr eax, 10h
and eax, T(FFFh
pop ebp
retn
£2 endp
bss segment dword public ’BSS’ use32
assume cs:_bss
dd 7
bss ends

5.1.4 Task 1.4

This is standard C library function.

Source code taken from MSVC 2010.

Compiled in MSVC 2010 with

/0x flag.
PUBLIC _f
_TEXT SEGMENT
_argl$ = 8 ; size = 4
_arg2$ = 12 ; size = 4
_f PROC
push esi
mov esi, DWORD PTR _argil$[esp]
push edi
mov edi, DWORD PTR _arg2$[esp+4]
cmp BYTE PTR [edil], O
mov eax, esi
je SHORT $LNT7@f
mov dl, BYTE PTR [esil
push ebx
test dl, dl
je SHORT $LN4Qf
sub esi, edi
npad 6
$LL5Qf :
mov ecx, edi
test dl, dl
je SHORT $LN2@f

110

$LL30Cf :

mov dl, BYTE PTR [ecx]
test dl, dl
je SHORT $LN14ef

movsx ebx, BYTE PTR [esi+ecx]
movsx edx, dl

sub ebx, edx
jne SHORT $LN2ef
inc ecx
cmp BYTE PTR [esi+ecx], bl
jne SHORT $LL3ef
$LN2@f :
cmp BYTE PTR [ecx], O
je SHORT $LN14ef
mov dl, BYTE PTR [eax+1]
inc eax
inc esi
test dl, dl
jne SHORT $LL5Qf
xXor eax, eax
pop ebx
pop edi
pop esi
ret 0
_f ENDP
_TEXT ENDS

END

Same code compiled in GCC 4.4.1:

public £
£ proc near
var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_O = dword ptr 8
arg_4 = dword ptr OCh
push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_0]
mov [ebp+var_4], eax
mov eax, [ebptarg_4]
movzx eax, byte ptr [eax]
test al, al
jnz short loc_8048443
mov eax, [ebp+arg_0]
jmp short locret_8048453
loc_80483F4:
mov eax, [ebp+var_4]
mov [ebp+var_8], eax
mov eax, [ebptarg_4]
mov [ebp+var_C], eax
jmp short loc_804840A
loc_8048402:
add [ebp+var_8], 1
add [ebp+var_Cl, 1
loc_804840A:
mov eax, [ebp+var_8]
movzx eax, byte ptr [eax]
test al, al
jz short loc_804842E

111

mov eax, [ebp+var_C]
movzx eax, byte ptr [eax]
test al, al
jz short loc_804842E
mov eax, [ebp+var_8]
movzx edx, byte ptr [eax]
mov eax, [ebp+var_C]
movzx eax, byte ptr [eax]
cmp dl, al
jz short 1loc_8048402
loc_804842E:
mov eax, [ebp+var_C]
movzx eax, byte ptr [eax]
test al, al
jnz short 1loc_804843D
mov eax, [ebp+var_4]
jmp short locret_8048453
loc_804843D:
add [ebp+var_4]1, 1
jmp short loc_8048444
loc_8048443:
nop
loc_8048444:
mov eax, [ebp+var_4]
movzx eax, byte ptr [eax]
test al, al
jnz short loc_80483F4
mov eax, O
locret_8048453:
leave
retn
f endp

5.1.5 Task 1.5

This task is rather on knowledge than on reading code.
The function is taken from OpenWatcom. Compiled in MSVC 2010 with /0x flag.

_DATA SEGMENT
COMM __v:DWORD
_DATA ENDS
PUBLIC __real@3e45798ee2308c3a
PUBLIC __real@4147£f£f££80000000
PUBLIC __real@4150017ec0000000
PUBLIC _f
EXTRN __fltused:DWORD
CONST SEGMENT
__real@3e45798ee2308c3a DQ 03e45798ee2308c3ar ; 1e-008
__real@4147£f£f££f80000000 DQ 04147£f£ff£80000000r ; 3.14573e+006
__real@4150017ec0000000 DR 04150017ec0000000r ; 4.19584e+006
CONST ENDS
_TEXT SEGMENT
_vi$ = -16 ; size = 8
_v2$ = -8 ; size = 8
_f PROC
sub esp, 16 ; 00000010H
f1d QWORD PTR __real@4150017ec0000000
fstp QWORD PTR _vi$[esp+16]
fld QWORD PTR __real@4147f£f£f£80000000

112

fstp QWORD PTR _v2$[esp+16]

fld QWORD PTR _vi$[esp+16]

f1d QWORD PTR _vi$[esp+16]

fdiv QWORD PTR _v2$[esp+16]

fmul QWORD PTR _v2$[esp+16]

fsubp ST(1), ST(0)

fcomp QWORD PTR __real@3e45798ee2308c3a
fnstsw ax

test ah, 65 ; 00000041H
jne SHORT $LN1@f
or DWORD PTR __v, 1

$LN1Qf :
add esp, 16 ; 00000010H
ret 0

_f ENDP

_TEXT ENDS

5.1.6 Task 1.6
Compiled in MSVC 2010 with /0x option.

PUBLIC _f
; Function compile flags: /Ogtpy
_TEXT SEGMENT
_k0$ = -12 ; size = 4
_k3% = -8 ; size = 4
_k2% = -4 ; size = 4
_v$ = 8 ; size = 4
_k1$ = 12 ; size = 4
_k$ = 12 ; size = 4
_f PROC
sub esp, 12 ; 0000000cH
mov ecx, DWORD PTR _v$[esp+8]
mov eax, DWORD PTR [ecx]
mov ecx, DWORD PTR [ecx+4]
push ebx
push esi
mov esi, DWORD PTR _k$[esp+16]
push edi
mov edi, DWORD PTR [esil
mov DWORD PTR _kO$[esp+24], edi
mov edi, DWORD PTR [esi+4]
mov DWORD PTR _k1$[esp+20], edi
mov edi, DWORD PTR [esi+8]
mov esi, DWORD PTR [esi+12]
Xor edx, edx
mov DWORD PTR _k2$[esp+24], edi
mov DWORD PTR _k3$[esp+24], esi
lea edi, DWORD PTR [edx+32]
$LL8AT :
mov esi, ecx
shr esi, 5
add esi, DWORD PTR _ki1$[esp+20]
mov ebx, ecx
shl ebx, 4
add ebx, DWORD PTR _kO$[esp+24]
sub edx, 1640531527 ; 61c88647H
Xor esi, ebx
lea ebx, DWORD PTR [edx+ecx]
Xor esi, ebx
add eax, esi
mov esi, eax
shr esi, 5
add esi, DWORD PTR _k3$[esp+24]
mov ebx, eax

113

shl ebx, 4

add ebx, DWORD PTR _k2$[esp+24]
Xor esi, ebx
lea ebx, DWORD PTR [edx+eax]
Xor esi, ebx
add ecx, esi
dec edi
jne SHORT $LL8ef
mov edx, DWORD PTR _v$[esp+20]
pop edi
pop esi
mov DWORD PTR [edx], eax
mov DWORD PTR [edx+4], ecx
pop ebx
add esp, 12 ; 0000000cH
ret 0
f ENDP

5.1.7 Task 1.7

This function is taken from Linux 2.6 kernel.
Compiled in MSVC 2010 with /0x option:

_table db 000h, 080h, 040h, OcOh, 020h, OaOh, 060h, 0OeOh
db 010h, 090h, 050h, 0dOh, 030h, ObOh, O70h, OfOh
db 008h, 088h, 048h, 0c8h, 028h, 0a8h, 068h, 0Oe8h
db 018h, 098h, 058h, 0d8h, 038h, Ob8h, 078h, 0f8h
db 004h, 084h, 044h, Oc4h, 024h, Oa4h, 064h, Oe4h
db 014h, 094h, 054h, 0d4h, 034h, Ob4h, 074h, O0f4h
db 00ch, 08ch, 04ch, Occh, 02ch, Oach, 06ch, Oech
db Olch, 09ch, 05ch, Odch, 03ch, Obch, 07ch, Ofch
db 002h, 082h, 042h, 0c2h, 022h, 0Oa2h, 062h, Oe2h
db 012h, 092h, 052h, 0d2h, 032h, Ob2h, 072h, O0f2h
db 00ah, 08ah, 04ah, Ocah, 02ah, Oaah, 0O6ah, Oeah
db 01ah, 09ah, 05ah, Odah, 03ah, Obah, 07ah, Ofah
db 006h, 086h, 046h, Oc6h, 026h, Oa6h, 066h, Oe6h
db 016h, 096h, 056h, 0d6h, 036h, Ob6h, 076h, Of6h
db 00eh, 08eh, 0O4eh, Oceh, 02eh, Oaeh, 06eh, Oeeh
db Oleh, 09eh, 05eh, Odeh, 03eh, Obeh, 07eh, Ofeh
db 001h, 081h, 041h, Oclh, 021h, Oalh, 061h, Oelh
db 011h, 091h, 051h, 0dih, 031h, Obih, O071h, Ofilh
db 009h, 089h, 049h, 0c%9h, 029h, 0a9h, 069h, O0eSh
db 019h, 099h, 059h, 0d9h, 039h, Ob9h, O079h, O0f9h
db 005h, 085h, 045h, Ocbh, 025h, Oabh, 065h, Oeb5h
db 015h, 095h, 055h, 0d5h, 035h, Ob5h, 075h, Of5h
db 00dh, 08dh, 04dh, Ocdh, 02dh, Oadh, 06dh, Oedh
db 01dh, 09dh, 05dh, 0ddh, 03dh, Obdh, 07dh, 0fdh
db 003h, 083h, 043h, 0c3h, 023h, 0Oa3h, 063h, Oe3h
db 013h, 093h, 053h, 0d3h, 033h, Ob3h, 073h, 0f3h
db 00bh, 08bh, 04bh, Ocbh, 02bh, Oabh, 06bh, Oebh
db O1bh, 09bh, 05bh, Odbh, 03bh, Obbh, 07bh, Ofbh
db 007h, 087h, 047h, Oc7h, 027h, Oa7h, 067h, Oe7h
db 017h, 097h, 057h, 0d7h, 037h, Ob7h, 077h, 0f7h
db 00fh, 08fh, 04fh, Ocfh, 02fh, Oafh, 06fh, Oefh
db 01fh, 09fh, 05fh, O0dfh, 03fh, Obfh, 07fh, Offh

£ proc near

arg_O = dword ptr 4
mov edx, [esp+arg_0]
movzx eax, dl
movzx eax, _tablel[eax]
mov ecx, edx
shr edx, 8

114

movzx edx, dl

movzx edx, _tablel[edx]
shl ax, 8
movzx eax, ax
or eax, edx
shr ecx, 10h
movzx edx, cl
movzx edx, _tablel[edx]
shr ecx, 8
movzx ecx, cl
movzx ecx, _tablel[ecx]
shl dx, 8
movzx edx, dx
shl eax, 10h
or edx, ecx
or eax, edx
retn
f endp

5.1.8 Task 1.8
Compiled in MSVC 2010 with /01 option':

_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
7s@Q@YAXPANOO@Z PROC ; s, COMDAT
mov eax, DWORD PTR _b$[esp-4]
mov ecx, DWORD PTR _a$[esp-4]
mov edx, DWORD PTR _c$[esp-4]
push esi
push edi
sub ecx, eax
sub edx, eax
mov edi, 200 ; 000000c8H
$L1L6Gs :
push 100 ; 00000064H
pop esi
$LL30s:
fld QWORD PTR [ecx+eax]

fadd QWORD PTR [eax]
fstp QWORD PTR [edx+eax]

add eax, 8
dec esi
jne SHORT $LL3@s
dec edi
jne SHORT $LL6@s
pop edi
pop esi
ret 0
?s@Q@YAXPANOO@Z ENDP ;S

5.1.9 Task 1.9
Compiled in MSVC 2010 with /01 option:

tv315 = -8 ; size = 4
tv291 = -4 ; size = 4
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
7m@@YAXPANOOQ@Z PROC ; m, COMDAT

! /O1: minimize space

115

push ebp

mov ebp, esp

push ecx

push ecx

mov edx, DWORD PTR _a$[ebp]

push ebx

mov ebx, DWORD PTR _c$[ebpl]

push esi

mov esi, DWORD PTR _b$[ebpl]

sub edx, esi

push edi

sub esi, ebx

mov DWORD PTR tv315[ebpl, 100 ; 00000064H
$LL9Cm:

mov eax, ebx

mov DWORD PTR tv291[ebp]l, 300 ; 0000012cH
$LL6Cm:

fldz

lea ecx, DWORD PTR [esi+eax]

fstp QWORD PTR [eax]

mov edi, 200 ; 000000c8H
$LL3Cm:

dec edi

fld QWORD PTR [ecx+edx]

fmul QWORD PTR [ecx]
fadd QWORD PTR [eax]
fstp QWORD PTR [eax]

jne HORT $LL3Cm
add eax, 8
dec DWORD PTR tv291[ebp]
jne SHORT $LL6@m
add ebx, 800 ; 00000320H
dec DWORD PTR tv315[ebp]
jne SHORT $LL9@Cm
pop edi
pop esi
pop ebx
leave
ret 0
?m@QYAXPANOOQZ ENDP ; m

5.1.10 Task 1.10

If to compile this piece of code and run, some number will be printed. Where it came from? Where it came
from if to compile it in MSVC with optimization (/0x)?

#include <stdio.h>
int main ()
{
printf ("%d\n");

return O;

5.2 Middle level

5.2.1 Task 2.1

Well-known algorithm, also included in standard C library. Source code was taken from glibc 2.11.1. Com-
piled in GCC 4.4.1 with -0s option (code size optimization). Listing was done by IDA 4.9 disassembler from
ELF-file generated by GCC and linker.

116

For those who wants use IDA while learning, here you may find .elf and .idb files, .idb can be opened
with freeware IDA 4.9:
http://conus.info/RE-tasks/middle/1/

£ proc near

var_150 = dword ptr -150h

var_14C = dword ptr -14Ch

var_13C = dword ptr -13Ch

var_138 = dword ptr -138h

var_134 = dword ptr -134h

var_130 = dword ptr -130h

var_128 = dword ptr -128h

var_124 = dword ptr -124h

var_120 = dword ptr -120h

var_11C = dword ptr -11Ch

var_118 = dword ptr -118h

var_114 = dword ptr -114h

var_110 = dword ptr -110h

var_C = dword ptr -0Ch

arg_O = dword ptr 8

arg_4 = dword ptr 0Ch

arg_8 = dword ptr 10h

arg_C = dword ptr 14h

arg_10 = dword ptr 18h
push ebp
mov ebp, esp
push edi
push esi
push ebx
sub esp, 14Ch
mov ebx, [ebptarg_8]
cmp [ebpt+targ_4]1, O
jz loc_804877D
cmp [ebpt+targ_4]1, 4
lea eax, ds:0[ebx*4]
mov [ebp+var_130], eax
jbe loc_804864C
mov eax, [ebptarg_4]
mov ecx, ebx
mov esi, [ebp+targ_0]
lea edx, [ebp+var_110]
neg ecx
mov [ebp+var_118], 0
mov [ebp+var_114]1, O
dec eax
imul eax, ebx
add eax, [ebp+targ_0]
mov [ebp+var_11C], edx
mov [ebp+var_134], ecx
mov [ebp+var_124], eax
lea eax, [ebp+var_118]
mov [ebp+var_14C], eax
mov [ebp+var_120], ebx

loc_8048433: ; CODE XREF: f+28C
mov eax, [ebp+var_124]
Xor edx, edx
push edi
push [ebptarg_10]
sub eax, esi
div [ebp+var_120]
push esi
shr eax, 1
imul eax, [ebp+var_120]

117

http://conus.info/RE-tasks/middle/1/

loc_804846D:

loc_8048482:

loc_80484AB:

loc_80484E1:

loc_80484F6:

lea
push
mov
call
add
mov
test
jns
Xor

mov
mov
mov
mov
inc
cmp
jnz

push
push
mov
push
push
call
mov
add
test
jns
mov
xXor

movzx
mov
mov
mov
mov
inc
cmp
jnz
push
push
mov
push
push
call
add
mov
test
jns
xor

mov
mov
mov
mov
inc
cmp
jnz

mov

edx, [esi+eax]

edx

[ebp+var_138], edx
[ebp+arg_C]

esp, 10h

edx, [ebp+var_138]
eax, eax

short loc_8048482

eax, eax

; CODE XREF:

cl, [edx+eax]

bl, [esi+eax]
[edx+eax], bl
[esi+eax], cl

eax

[ebp+var_120], eax
short 1loc_804846D

; CODE XREF:

ebx

[ebptarg_10]
[ebp+var_138], edx
edx

[ebp+var_124]
[ebpt+arg_C]

edx, [ebp+var_138]
esp, 10h

eax, eax

short loc_80484F6
ecx, [ebp+var_124]
eax, eax

; CODE XREF:

edi, byte ptr [edx+eax]
bl, [ecx+eax]
[edx+eax], bl

ebx, edi
[ecx+eax], bl
eax

[ebp+var_120], eax
short loc_80484AB
ecx

[ebpt+targ_101]
[ebp+var_138], edx

esi

edx

[ebp+arg_C]

esp, 10h

edx, [ebp+var_138]

eax, eax
short loc_80484F6
eax, eax

; CODE XREF:

cl, [edx+eax]

bl, [esi+eax]
[edx+eax], bl
[esi+eax], cl

eax

[ebp+var_120], eax
short loc_80484E1

; CODE XREF:

; £+129

eax, [ebp+var_120]

118

f+CC

f+B5

£+10D

£+140

f+ED

mov edi, [ebp+var_124]

add edi, [ebp+var_134]
lea ebx, [esi+eax]
jmp short loc_8048513
loc_804850D: ; CODE XREF: £f+17B
add ebx, [ebp+var_120]
loc_8048513: ; CODE XREF: £f+157
; £+1F9
push eax
push [ebptarg_10]
mov [ebp+var_138], edx
push edx
push ebx
call [ebpt+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
jns short 1loc_8048537
jmp short 1loc_804850D
loc_8048531: ; CODE XREF: £+19D
add edi, [ebp+var_134]
loc_8048537: ; CODE XREF: £+179
push ecx
push [ebptarg_101]
mov [ebp+var_138], edx
push edi
push edx
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
js short loc_8048531
cmp ebx, edi
jnb short loc_8048596
xor eax, eax
mov [ebp+var_128], edx
loc_804855F: ; CODE XREF: f+1BE
mov cl, [ebx+eax]
mov dl, [edi+eax]
mov [ebx+eax], dl
mov [edi+eax], cl
inc eax
cmp [ebp+var_120], eax
jnz short loc_804855F
mov edx, [ebp+var_128]
cmp edx, ebx
jnz short loc_8048582
mov edx, edi
jmp short loc_8048588
loc_8048582: ; CODE XREF: f+1C8
cmp edx, edi
jnz short 1loc_8048588
mov edx, ebx
loc_8048588: ; CODE XREF: f+1CC
; £+1DO
add ebx, [ebp+var_120]

119

add edi, [ebp+var_134]

jmp short loc_80485AB
loc_8048596: ; CODE XREF: f+1A1
jnz short loc_80485AB
mov ecx, [ebp+var_134]
mov eax, [ebp+var_120]
lea edi, [ebx+ecx]
add ebx, eax
jmp short loc_80485B3
loc_80485AB: ; CODE XREF: f+1EO
; £:10c_8048596
cmp ebx, edi
jbe loc_8048513
loc_80485B3: ; CODE XREF: f+1F5
mov eax, edi
sub eax, esi
cmp eax, [ebp+var_130]
ja short loc_80485EB
mov eax, [ebp+var_124]
mov esi, ebx
sub eax, ebx
cmp eax, [ebp+var_130]
ja short loc_8048634
sub [ebp+var_11C], 8
mov edx, [ebp+var_11C]
mov ecx, [edx+4]
mov esi, [edx]
mov [ebp+var_124], ecx
jmp short loc_8048634
loc_80485EB: ; CODE XREF: £+209
mov edx, [ebp+var_124]
sub edx, ebx
cmp edx, [ebp+var_130]
jbe short loc_804862E
cmp eax, edx
mov edx, [ebp+var_11C]
lea eax, [edx+8]
jle short loc_8048617
mov [edx], esi
mov esi, ebx
mov [edx+4], edi
mov [ebp+tvar_11C], eax
jmp short 1loc_8048634
1loc_8048617: ; CODE XREF: £+252
mov ecx, [ebp+var_11C]
mov [ebp+tvar_11C], eax
mov [ecx], ebx
mov ebx, [ebp+var_124]
mov [ecx+4], ebx
loc_804862E: ; CODE XREF: f+245
mov [ebp+var_124], edi
loc_8048634: ; CODE XREF: £f+21B
; £+235
mov eax, [ebp+var_14C]
cmp [ebp+var_11C], eax

120

loc_804864C:

loc_804866B:

1loc_8048677:

loc_80486A1:

loc_80486A3:

loc_80486B2:

ja
mov

mov
mov
add
dec
imul
add
cmp
mov
jbe
mov

push
push
mov
mov
push
push
call
add
mov
mov
test
jns
mov

add

cmp
jbe
cmp
jz

xor

1oc_8048433

ebx, [ebp+var_120]

>

eax, [ebp+arg_4]
ecx, [ebp+arg_0]
ecx, [ebp+var_130]

eax
eax, ebx

eax, [ebp+targ_0]

ecx, eax
[ebp+var_12017,

eax

short loc_804866B

ecx, eax

>

esi, [ebp+arg_0]
edi, [ebp+arg_0]

esi, ebx
edx, esi

short loc_80486A3

eax
[ebpt+arg_101]
[ebp+var_138],
[ebp+var_13C],
edi

edx
[ebp+arg_C]
esp, 10h

3

edx
ecx

edx, [ebp+var_138]
ecx, [ebp+var_13C]

eax, eax

short loc_80486A1

edi, edx

edx, ebx

edx, ecx

3

3

short loc_8048677
edi, [ebp+arg_0]

1oc_8048762
eax, eax

>

ecx, [ebp+arg_0]

dl, [edi+eax]
cl, [ecx+eax]
[edi+eax], cl

ecx, [ebp+arg_0]

[ecx+eax], dl
eax
ebx, eax

short loc_80486B2

1loc_8048762

edx, [esi+edil

3

short loc_80486D5

CODE XREF:

CODE XREF:

CODE XREF:

CODE XREF:

CODE XREF:

CODE XREF:

CODE XREF:

121

£f+2A

£+2B3

f+2F1

£f+2E9

£+2C1

f+313

loc_80486D3: ; CODE XREF: f+33B

add edx, edi
loc_80486D5: ; CODE XREF: £+31D
push eax
push [ebpt+targ_101]
mov [ebp+var_138], edx
push edx
push esi
call [ebp+arg_C]
add esp, 10h
mov edx, [ebp+var_138]
test eax, eax
js short loc_80486D3
add edx, ebx
cmp edx, esi
mov [ebp+var_124], edx
jz short loc_804876F
mov edx, [ebp+var_134]
lea eax, [esi+ebx]
add edx, eax
mov [ebp+var_11C], edx
jmp short 1loc_804875B
1loc_8048710: ; CODE XREF: f+3AA
mov cl, [eax]
mov edx, [ebp+var_11C]
mov [ebp+var_150], eax
mov byte ptr [ebp+var_130], cl
mov ecx, eax
jmp short 1oc_8048733
loc_8048728: ; CODE XREF: £+391
mov al, [edx+ebx]
mov [ecx], al
mov ecx, [ebp+var_128]
loc_8048733: ; CODE XREF: £+372
mov [ebp+var_128], edx
add edx, edi
mov eax, edx
sub eax, edi
cmp [ebp+var_124], eax
jbe short 1loc_8048728
mov dl, byte ptr [ebp+var_130]
mov eax, [ebp+var_150]
mov [ecx], dl
dec [ebp+var_11C]
loc_804875B: ; CODE XREF: f+35A
dec eax
cmp eax, esi
jnb short 1loc_8048710
jmp short loc_804876F
loc_8048762: ; CODE XREF: f+2F6
; £+315
mov edi, ebx
neg edi
lea ecx, [edi-1]
mov [ebp+var_134], ecx
loc_804876F: ; CODE XREF: £f+347

122

; £+3AC

add esi, ebx
cmp esi, [ebp+var_120]
jbe loc_80486CE
1loc_804877D: ; CODE XREF: f+13
lea esp, [ebp-0Chl]
pop ebx
pop esi
pop edi
pop ebp
retn
£ endp
5.3 crackme / keygenme
/IFRUHeckombko moux keygenme?: Couple of my keygenmes?:
http://crackmes.de/users/yonkie/
2mporpaMMa MMHTHDPYIOMAs 3allUTy BEIMBIIIJIEHHOH OPOTPAMMEI, JIsi KOTOPOHl HYYKHO CIeJaTh TEHEPATOP
KJII09edi /uieHs3nii.

3program which imitates fictional software protection, for which one need to make a keys /licenses generator

123

http://crackmes.de/users/yonkie/

Chapter 6

Tools

e IDA as disassembler. Older freeware version is available for downloading: http://www.hex-rays.com/
idapro/idadownfreeware.htm.

e Microsoft Visual Studio Express': Stripped-down Visual Studio version, convenient for simple exprei-
ments.

e Hiew? /IFRU 1151 mesikoit moudukanun Kojia B ucnosasgeMbix daiiiax for small modifications of code
in binary files.

6.0.1 Debugger

tracer® instead of debugger.

I stopped to use debugger eventually, because all I need from it is to spot some function’s arguments
while execution, or registers’ state at some point. To load debugger each time is too much, so I wrote a small
utility tracer. It has console-interface, working from command-line, allow to intercept function execution,
set breakpoints at arbitrary places, spot registers’ state, modify it, etc.

However, as for learning, it’s highly advisable to trace code in debugger manually, watch how register’s
state changing (for example, classic SoftICE, OllyDbg, WinDbg highlighting changed registers), flags, data,
change them manually, watch reaction, etc.

"http://www.microsoft.com/express/Downloads/
http://www.hiew.ru/
3http://conus.info/gt/

124

http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.microsoft.com/express/Downloads/
http://www.hiew.ru/
http://conus.info/gt/

Chapter 7

Books/blogs worth reading

7.1 Books

7.1.1 Windows
e Windows® Internals (Mark E. Russinovich and David A. Solomon with Alex Ionescu)?

7.1.2 C/C++
e C++ language standard: ISO/IEC 14882:20032

7.1.3 x86 / x86-64

e Intel manuals: http://www.intel.com/products/processor/manuals/

e AMD manuals: http://developer.amd.com/documentation/guides/Pages/default.aspx#manuals

7.2 Blogs

7.2.1 Windows
e Microsoft: Raymond Chen

e http://www.nynaeve.net/

"http://www.microsoft.com/learning/en/us/book.aspx?ID=12069&locale=en-us
Zhttp://www.iso.org/iso/catalogue_detail.htm?csnumber=38110

125

http://www.intel.com/products/processor/manuals/
http://developer.amd.com/documentation/guides/Pages/default.aspx#manuals
http://blogs.msdn.com/oldnewthing/
http://www.nynaeve.net/
http://www.microsoft.com/learning/en/us/book.aspx?ID=12069&locale=en-us
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38110

Chapter 8

Other things

8.1 More examples

e (eng) http://conus.info/RE-articles/qr9.html

e (eng) http://conus.info/RE-articles/sapgui.html

8.2 Compiler’s anomalies

Intel C++ 10.1, which was used for Oracle RDBMS 11.2 Linux86 compilation, may emit two JZ in row, and
there are no references to the second JZ. Second JZ is thus senseless.
For example, kdli.o from libserverll.a:

.text :08114CF1 loc_8114CF1: ; CODE XREF:
__PGOSF539_kdlimemSer+89A

.text :08114CF1 g

PGOSF539_kdlimemSer +3994

.text :08114CF1 8B 45 08 mov eax, [ebp+targ_0]
.text :08114CF4 OF B6 50 14 movzx edx, byte ptr [eax+14h]
.text :08114CF8 F6 C2 01 test di, 1
.text:08114CFB OF 85 17 08 00 00 jnz loc_8115518
.text :08114D01 85 C9 test ecx, ecx

.text :08114D03 OF 84 8A 00 00 00 jz loc_8114D93
.text:08114D09 OF 84 09 08 00 00 jz loc_8115518
.text :08114DOF 8B 53 08 mov edx, [ebx+8]
.text:08114D12 89 55 FC mov [ebp+var_4], edx
.text :08114D15 31 CO Xor eax, eax
.text:08114D17 89 45 F4 mov [ebp+var_C]l, eax
.text:08114D1A 50 push eax
.text:08114D1B 52 push edx
.text:08114D1C E8 03 54 00 00 call len2nbytes

.text :08114D21 83 C4 08 add esp, 8

From the same code:

.text :0811A2A5 loc_811A2A5: ; CODE XREF:
kdliSerLengths+11C

.text :0811A2A5 ; kdliSerLengths
+1C1

.text :0811A2A5 8B 7D 08 mov edi, [ebp+arg_0]

.text:0811A2A8 8B 7F 10 mov edi, [edi+10h]

.text :0811A2AB OF B6 57 14 movzx edx, byte ptr [edi+14h]

.text :0811A2AF F6 C2 01 test dl, 1

.text:0811A2B2 75 3E jnz short loc_811A2F2

.text:0811A2B4 83 EO 01 and eax, 1

.text:0811A2B7 74 1F jz short 1loc_811A2D8

.text :0811A2B9 74 37 jz short loc_811A2F2

.text :0811A2BB 6A 00 push 0

.text :0811A2BD FF 71 08 push dword ptr [ecx+8]

126

http://conus.info/RE-articles/qr9.html
http://conus.info/RE-articles/sapgui.html

.text :0811A2C0 E8 5F FE FF FF call len2nbytes

It’s probably code generator bug wasn’t found by tests, because, resulting code is working correctly
anyway.

127

Chapter 9

Tasks solutions

9.1 Easy level

9.1.1 Task 1.1

Solution: toupper().
C source code:

char toupper (char c)

{
if(¢ >= ’a’ && c <= ’z’) {
c =c - ’a’> + A’
}
return(c);
¥

9.1.2 Task 1.2

Solution: atoi()
C source code:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

int atoi (const *p) /* convert ASCII string to integer x/
{

int 1i;

char s;

while(isspace (*p))

++p;

S = *p;

if(s == '+ || s == -2)
++p;

i = 0;

while (isdigit (xp)) {
i =1 % 10 + *xp - ’07;

++p;

}

if(s == 727)
i= - 1ij;

return(i);

9.1.3 Task 1.3
Solution: srand() / rand().

128

C source code:

static unsigned int v;

void srand (unsigned int s)

{

v = s;
}
int rand ()
{

return(((v = v * 214013L

+ 2531011L) >> 16) & Ox7fff);

}

9.1.4 Task 1.4

Solution: strstr().
C source code:

char * strstr (
const char * stril,
const char * str2

)
{
char *cp = (char *) stril;
char *sl1, *s2;
if (!'*str2)
return ((char *)stril);
while (*cp)
{
sl = cp;
s2 = (char *) str2;
while (*sl1 && *s2 && !(*sl-xs2))
sl++, s2++;
if (!'*s2)
return(cp) ;
cpt+;
}
return (NULL) ;
}

9.1.5 Task 1.5

Hint #1: Keep in mind that __v — global variable.
Hint #2: That function is called in startup code, before main() execution.
Solution: early Pentium CPU FDIV bug checking'.
C source code:

unsigned _v; // _v
enum e {

PROB_P5_DIV = 0x0001
}s

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

129

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

void f(void) // __verify_pentium_fdiv_bug

{
/ *
Verify we have got the Pentium FDIV problem.
The volatiles are to scare the optimizer away.
*/
volatile double vl = 4195835;
volatile double v2 = 3145727;
if((v1 - (vi/v2)x*v2) > 1.0e-8) {
_v |= PROB_P5_DIV;
}
}

9.1.6 Task 1.6

Hint: it might be helpful to google a constant used here.
Solution: TEA encryption algorithm?.
C source code (taken from http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm):

void f (unsigned int* v, unsigned int* k) {

unsigned int vO=v[0], v1=v[1], sum=0, i; /* set up */
unsigned int delta=0x9e3779b9; /* a key schedule constant */
unsigned int kO0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key x*/
for (i=0; i < 32; i++) { /* basic cycle start */
sum += delta;
vO += ((v1<<4) + kO0) -~ (vl + sum) -~ ((vi>>5) + k1);
vl += ((v0<<4) + k2) - (vO + sum) -~ ((vO0O>>5) + k3);
} /* end cycle */
v[0]l=v0; v[1]l=v1;

9.1.7 Task 1.7

Hint: the table contain pre-calculated values. It’s possible to implement the function without it, but it will
work slower, though.

Solution: this function reverse all bits in input 32-bit integer. It’s 1ib/bitrev.c from Linux kernel.

C source code:

const unsigned char byte_rev_table[256] = {

0x00, 0x80, 0x40, OxcO, 0x20, Oxa0, 0x60, OxeO,
0x10, 0x90, 0x50, 0xd0O, 0x30, 0xb0O, 0x70, O0xfO,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, Oxc4, 0x24, Oxa4d, 0x64, Oxe4d,
0x14, 0x94, 0xb4, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, Ox4c, Oxcc, 0x2c, Oxac, 0x6c, Oxec,
Ox1lc, 0x9c, Oxbc, Oxdc, 0x3c, Oxbc, 0x7c, Oxfc,
0x02, 0x82, 0x42, Oxc2, 0x22, 0xa2, 0x62, Oxe2,
0x12, 0x92, 0xb52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, Ox4a, Oxca, 0x2a, Oxaa, 0x6a, Oxea,
Oxla, 0x9a, Oxba, Oxda, Ox3a, Oxba, 0x7a, Oxfa,
0x06, 0x86, 0x46, Oxc6, 0x26, Oxa6, 0x66, Oxe6,
0x16, 0x96, 0xb56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, Ox4e, Oxce, 0x2e, Oxae, 0x6e, Oxee,
Oxle, 0x9e, Oxbe, Oxde, 0x3e, Oxbe, 0x7e, Oxfe,
0x01, 0x81, Ox41, Oxcl, 0x21, Oxal, 0x61, Oxel,
Ox11, 0x91, Oxb51, Oxdl, 0x31, Oxbl, 0x71, Oxfil,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, Oxch, 0x25, Oxab, 0x65, Oxeb,

2Tiny Encryption Algorithm

130

http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

0x15, 0x95, 0xb5, 0xd5, 0x35, Oxbb5, 0x75, O0xf5,
0x0d, 0x8d, 0x4d, Oxcd, 0x2d, Oxad, 0x6d, Oxed,
O0x1d, 0x9d, 0xb5d, Oxdd, 0x3d, Oxbd, 0x7d, Oxfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, Oxe3,
0x13, 0x93, 0xb53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0Ob, 0x8b, 0x4b, Oxcb, 0x2b, Oxab, 0x6b, Oxeb,
O0x1b, 0x9b, 0x5b, Oxdb, 0x3b, Oxbb, 0x7b, Oxfb,
0x07, 0x87, 0x47, Oxc7, 0x27, 0Oxa7, 0x67, OxeT7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, Oxf7,
0x0f, 0x8f, 0x4f, Oxcf, 0x2f, Oxaf, 0x6f, Oxef,
Ox1f, 0x9f, Oxbf, Oxdf, 0x3f, Oxbf, 0x7f, Oxff,

35
unsigned char bitrev8(unsigned char byte)
{
return byte_rev_table[bytel;
}
unsigned short bitrev16 (unsigned short x)
{
return (bitrev8(x & Oxff) << 8) | bitrev8(x >> 8);
}
/ **
* bitrev32 - reverse the order of bits in a unsigned int value
* @x: value to be bit-reversed
*/
unsigned int bitrev32(unsigned int x)
{
return (bitrevi6(x & Oxffff) << 16) | bitrevi6(x >> 16);
}

9.1.8 Task 1.8

Solution: two 100*200 matrices of type double addition.
C/C++ source code:

#define M 100
#define N 200

void s(double *a, double *b, double *c)
{
for(int i=0;i<N;i++)
for (int j=0;j<M; j++)
*(c+i*M+j)=*x(a+i*M+j) + *(b+i*xM+j);

g

9.1.9 Task 1.9

Solution: two matrices (one is 100*200, second is 100*300) of type double multiplication, result: 100*300
matrix.
C/C++ source code:

#define M 100
#define N 200
#define P 300

void m(double *a, double *b, double *c)
{
for (int i=0;i<M;i++)
for (int j=0;j<P;j++)
{

*(c+i*M+3j)=0;

131

for (int k=0;k<N;k++) *(c+i*M+j)+=*(a+i*M+j) * *(b+i*M+j);
}
};

9.2 Middle level

9.2.1 Task 2.1

Hint #1: The code has one characteristic thing, considering it, it may help narrowing search of right function
among glibc functions.

Solution: characteristic — is callback-function calling 2.17, pointer to which is passed in 4th argument.
It’s quicksort ().

C source code:

/* Copyright (C) 1991,1992,1996,1997,1999,2004 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).

The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. x/

/* If you consider tuning this algorithm, you should consult first:
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */

#include <alloca.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>

typedef int (*__compar_d_fn_t) (__const void *, __const void *, void *);

/* Byte-wise swap two items of size SIZE. */

#define SWAP(a, b, size) \
do \
{ \
register size_t __size = (size); \
register char *__a = (a), *__b = (b); \

do \

{ \
char __tmp = *__a; \

*__at+ = *x__b; \

*__b++ = __tmp; \

} while (--__size > 0); \

} while (0)
/* Discontinue quicksort algorithm when partition gets below this size.
This particular magic number was chosen to work best on a Sun 4/260. */

#define MAX_THRESH 4

/* Stack node declarations used to store unfulfilled partition obligations. */
typedef struct

132

char x*1lo;
char *hi;
} stack_node;

/* The next 4 #defines implement a very fast in-line stack abstraction. x/
/* The stack needs log (total_elements) entries (we could even subtract
log(MAX_THRESH)). Since total_elements has type size_t, we get as
upper bound for log (total_elements):
bits per byte (CHAR_BIT) * sizeof(size_t). */

#define STACK_SIZE (CHAR_BIT * sizeof (size_t))

#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)

/* Order size using quicksort. This implementation incorporates

four optimizations discussed in Sedgewick:

1. Non-recursive, using an explicit stack of pointer that store the
next array partition to sort. To save time, this maximum amount
of space required to store an array of SIZE_MAX is allocated on the
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
only 32 * sizeof (stack_node) == 256 bytes (for 64 bit: 1024 bytes).
Pretty cheap, actually.

2. Chose the pivot element using a median-of-three decision tree.
This reduces the probability of selecting a bad pivot value and
eliminates certain extraneous comparisons.

3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
insertion sort to order the MAX_THRESH items within each partition.
This is a big win, since insertion sort is faster for small, mostly
sorted array segments.

4. The larger of the two sub-partitions is always pushed onto the
stack first, with the algorithm then concentrating on the
smaller partition. This *guarantees* no more than log (total_elems)
stack size is needed (actually 0(1) in this case)! */

void

_quicksort (void *const pbase, size_t total_elems, size_t size,
__compar_d_fn_t cmp, void *arg)

{

register char *base_ptr = (char *) pbase;

const size_t max_thresh = MAX_THRESH * size;

if (total_elems == 0)
/* Avoid lossage with unsigned arithmetic below. */
return;

if (total_elems > MAX_THRESH)
{
char *lo = base_ptr;
char *hi = &lo[size * (total_elems - 1)];
stack_node stack[STACK_SIZE];
stack_node *top = stack;

PUSH (NULL, NULL);
while (STACK_NOT_EMPTY)
{

char *left_ptr;
char *right_ptr;

133

/* Select median value from among LO, MID, and HI. Rearrange
L0 and HI so the three values are sorted. This lowers the
probability of picking a pathological pivot value and
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
the while loops. */

char *mid = lo + size * ((hi - lo) / size >> 1);

if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
SWAP (mid, lo, size);

if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
SWAP (mid, hi, size);

else
goto jump_over;

if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
SWAP (mid, lo, size);

jump_over :;

left_ptr = lo + size;
right_ptr

hi - size;

/* Here’s the famous ‘‘collapse the walls’’ section of quicksort.

Gotta like those tight inner loops! They are the main reason
that this algorithm runs much faster than others. */
do
{
while ((*cmp) ((void #*) left_ptr, (void *) mid, arg) < 0)
left_ptr += size;
while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
right_ptr -= size;
if (left_ptr < right_ptr)
{
SWAP (left_ptr, right_ptr, size);
if (mid == left_ptr)
mid = right_ptr;
else if (mid == right_ptr)
mid = left_ptr;
left_ptr += size;
right_ptr -= size;
X
else if (left_ptr == right_ptr)
{
left_ptr += size;
right_ptr -= size;
break;
X
}
while (left_ptr <= right_ptr);
/* Set up pointers for next iteration. First determine whether
left and right partitions are below the threshold size. If so,
ignore one or both. Otherwise, push the larger partition’s

bounds on the stack and continue sorting the smaller one. */

if ((size_t) (right_ptr - lo) <= max_thresh)

{
if ((size_t) (hi - left_ptr) <= max_thresh)
/* Ignore both small partitions. x/
POP (lo, hi);
else
/* Ignore small left partition. */
lo = left_ptr;
}

else if ((size_t) (hi - left_ptr) <= max_thresh)

134

/* Ignore small right partition. */
hi = right_ptr;
else if ((right_ptr - lo) > (hi - left_ptr))

{
/* Push larger left partition indices. */
PUSH (lo, right_ptr);
lo = left_ptr;

}

else

{
/* Push larger right partition indices. */
PUSH (left_ptr, hi);
hi = right_ptr;

}

}

/* Once the BASE_PTR array is partially sorted by quicksort the rest
is completely sorted using insertion sort, since this is efficient

for partitions below MAX_THRESH size. BASE_PTR points to the beginning
of the array to sort, and END_PTR points at the very last element in

the array (*not* one beyond it!). x*/

#define min(x, y) ((x) < (y) 7 (x) : (y))

{
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
char *tmp_ptr = base_ptr;
char *thresh = min(end_ptr, base_ptr + max_thresh);

register char *run_ptr;

/* Find smallest element in first threshold and place it at the
array’s beginning. This is the smallest array element,
and the operation speeds up insertion sort’s inner loop. */

for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)

if ((xcmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
tmp_ptr = run_ptr;

if (tmp_ptr != base_ptr)
SWAP (tmp_ptr, base_ptr, size);

/* Insertion sort, running from left-hand-side up to right-hand-side.

run_ptr = base_ptr + size;
while ((run_ptr += size) <= end_ptr)
{
tmp_ptr = run_ptr - size;
while ((*xcmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
tmp_ptr -= size;

tmp_ptr += size;

if (tmp_ptr != run_ptr)
{
char *trav;
trav = run_ptr + size;
while (--trav >= run_ptr)
{
char ¢ = *trav;

char *hi, *xlo;

for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
*hi = *xlo;
*hi = c;

135

*/

136

	Preface
	Compiler's patterns
	Hello, world!
	Stack
	Save return address where function should return control after execution
	Function arguments passing
	Local variable storage
	(Windows) SEH
	Buffer overflow protection

	 printf() with several arguments
	scanf()
	Global variables
	scanf() result checking

	Passing arguments via stack
	One more word about results returning.
	Conditional jumps
	switch()/case/default
	Few number of cases
	A lot of cases

	Loops
	strlen()
	Division by 9
	Work with FPU
	Simple example
	Passing floating point number via arguments
	Comparison example

	Arrays
	Buffer overflow
	One more word about arrays
	Multidimensional arrays

	Bit fields
	Specific bit checking
	Specific bit setting/clearing
	Shifts
	CRC32 calculation example

	Structures
	SYSTEMTIME example
	Let's allocate place for structure using malloc()
	Linux
	Fields packing in structure
	Nested structures
	Bit fields in structure

	C++ classes
	GCC

	Pointers to functions
	GCC

	SIMD
	Vectorization
	SIMD strlen() () implementation

	x86-64

	Couple things to add
	LEA instruction
	Function prologue and epilogue
	npad
	Signed number representations
	Integer overflow

	Arguments passing methods (calling conventions)
	cdecl
	stdcall
	fastcall
	thiscall
	x86-64
	Returning values of float and double type

	Finding important/interesting stuff in the code
	Communication with the outer world
	String
	Constants
	Magic numbers

	Finding the right instructions
	Suspicious code patterns

	Tasks
	Easy level
	Task 1.1
	Task 1.2
	Task 1.3
	Task 1.4
	Task 1.5
	Task 1.6
	Task 1.7
	Task 1.8
	Task 1.9
	Task 1.10

	Middle level
	Task 2.1

	crackme / keygenme

	Tools
	Debugger

	Books/blogs worth reading
	Books
	Windows
	C/C++
	x86 / x86-64

	Blogs
	Windows

	Other things
	More examples
	Compiler's anomalies

	Tasks solutions
	Easy level
	Task 1.1
	Task 1.2
	Task 1.3
	Task 1.4
	Task 1.5
	Task 1.6
	Task 1.7
	Task 1.8
	Task 1.9

	Middle level
	Task 2.1

