
SECTION I THE BASICS

166

Windows will then ignore the background color and not fill in the gaps. You can obtain
the current background mode (either TRANSPARENT or OPAQUE) by calling GetBkMode.

Drawing Modes
The appearance of lines drawn on the display is also affected by the drawing mode de-
fined in the device context. Imagine drawing a line that has a color based not only on the
color of the pen but also on the color of the display area where the line is drawn. Imag-
ine a way in which you could use the same pen to draw a black line on a white surface
and a white line on a black surface without knowing what color the surface is. Could such
a facility be useful to you? It’s made possible by the drawing mode.

When Windows uses a pen to draw a line, it actually performs a bitwise Boolean
operation between the pixels of the pen and the pixels of the destination display surface,
where the pixels determine the color of the pen and display surface. Performing a bitwise
Boolean operation with pixels is called a “raster operation,” or “ROP.” Because drawing a
line involves only two pixel patterns (the pen and the destination), the Boolean operation
is called a “binary raster operation,” or “ROP2.” Windows defines 16 ROP2 codes that
indicate how Windows combines the pen pixels and the destination pixels. In the default
device context, the drawing mode is defined as R2_COPYPEN, meaning that Windows
simply copies the pixels of the pen to the destination, which is how we normally think
about pens. There are 15 other ROP2 codes.

Where do these 16 different ROP2 codes come from? For illustrative purposes, let’s
assume a monochrome system that uses 1 bit per pixel. The destination color (the color of
the window’s client area) can be either black (which we’ll represent by a 0 pixel) or white
(represented by a 1 pixel). The pen also can be either black or white. There are four combin-
ations of using a black or white pen to draw on a black or white destination: a white pen
on a white destination, a white pen on a black destination, a black pen on a white desti-
nation, and a black pen on a black destination.

What is the color of the destination after you draw with the pen? One possibility is
that the line is always drawn as black regardless of the pen color or the destination color.
This drawing mode is indicated by the ROP2 code R2_BLACK. Another possibility is that
the line is drawn as black except when both the pen and destination are black, in which
case the line is drawn as white. Although this might be a little strange, Windows has a name
for it. The drawing mode is called R2_NOTMERGEPEN. Windows performs a bitwise OR
operation on the destination pixels and the pen pixels and then inverts the result.

The table on the facing page shows all 16 ROP2 drawing modes. The table indi-
cates how the pen (P) and destination (D) colors are combined for the result. The col-
umn labeled “Boolean Operation” uses C notation to show how the destination pixels
and pen pixels are combined.



Chapter 5 Basic Drawing

167

Pen (P): 1 1 0 0 Boolean
Destination (D): 1 0 1 0 Operation Drawing Mode

Results: 0 0 0 0 0 R2_BLACK

0 0 0 1 ~(P œ D) R2_NOTMERGEPEN

0 0 1 0 ~P & D R2_MASKNOTPEN

0 0 1 1 ~P R2_NOTCOPYPEN

0 1 0 0 P & ~D R2_MASKPENNOT

0 1 0 1 ~D R2_NOT

0 1 1 0 P ^ D R2_XORPEN

0 1 1 1 ~(P & D) R2_NOTMASKPEN

1 0 0 0 P & D R2_MASKPEN

1 0 0 1 ~(P ^ D) R2_NOTXORPEN

1 0 1 0 D R2_NOP

1 0 1 1 ~P œ D R2_MERGENOTPEN

1 1 0 0 P R2_COPYPEN (default)

1 1 0 1 P œ ~D R2_MERGEPENNOT

1 1 1 0 P œ D R2_MERGEPEN

1 1 1 1 1 R2_WHITE

You can set a new drawing mode for the device context by calling

SetROP2 (hdc, iDrawMode) ;

The iDrawMode argument is one of the values listed in the “Drawing Mode” column of
the table. You can obtain the current drawing mode by using the function:

iDrawMode = GetROP2 (hdc) ;

The device context default is R2_COPYPEN, which simply transfers the pen color to the
destination. The R2_NOTCOPYPEN mode draws white if the pen color is black and black
if the pen color is white. The R2_BLACK mode always draws black, regardless of the color
of the pen or the background. Likewise, the R2_WHITE mode always draws white. The
R2_NOP mode is a “no operation.” It leaves the destination unchanged.

We’ve been examining the drawing mode in the context of a monochrome system.
Most systems are color, however. On color systems Windows performs the bitwise opera-
tion of the drawing mode for each color bit of the pen and destination pixels and again
uses the 16 ROP2 codes described in the previous table. The R2_NOT drawing mode al-
ways inverts the destination color to determine the color of the line, regardless of the color



SECTION I THE BASICS

168

of the pen. For example, a line drawn on a cyan destination will appear as magenta. The
R2_NOT mode always results in a visible pen except if the pen is drawn on a medium gray
background. I’ll demonstrate the use of the R2_NOT drawing mode in the BLOKOUT
programs in Chapter 7.

DRAWING FILLED AREAS
The next step up from drawing lines is filling enclosed areas. Windows’ seven functions
for drawing filled areas with borders are listed in the table below.

Function Figure

Rectangle Rectangle with square corners

Ellipse Ellipse

RoundRect Rectangle with rounded corners

Chord Arc on the circumference of an ellipse with endpoints connected
by a chord

Pie Pie wedge defined by the circumference of an ellipse

Polygon Multisided figure

PolyPolygon Multiple multisided figures

Windows draws the outline of the figure with the current pen selected in the device
context. The current background mode, background color, and drawing mode are all used
for this outline, just as if Windows were drawing a line. Everything we learned about lines
also applies to the borders around these figures.

The figure is filled with the current brush selected in the device context. By default,
this is the stock object called WHITE_BRUSH, which means that the interior will be drawn
as white. Windows defines six stock brushes: WHITE_BRUSH, LTGRAY_BRUSH, GRAY_
BRUSH, DKGRAY_BRUSH, BLACK_BRUSH, and NULL_BRUSH (or HOLLOW_BRUSH). You
can select one of the stock brushes into the device context the same way you select a stock
pen. Windows defines HBRUSH to be a handle to a brush, so you can first define a vari-
able for the brush handle:

HBRUSH hBrush ;

You can get the handle to the GRAY_BRUSH by calling GetStockObject:

hBrush = GetStockObject (GRAY_BRUSH) ;

You can select it into the device context by calling SelectObject:

SelectObject (hdc, hBrush) ;


